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OUTLINE
In this Outline we give the general ideas of the text as motivation. All this

will be repeated later with detailed explanations and examples, but is given here for

emphasis, and to avoid it getting lost among the trees. It is formatted to give a brief

description of each item listed in the Contents.

Field theory is the description of particle physics in a way that calculations can be

done and compared with experiment. In particular this means the Standard Model,

but also some proposed extensions. For example, Quantum Electrodynamics is the

most accurate theory of nature known, making successful predictions to over 12 deci-

mal places. The most accurate calculations have been done with perturbation theory,

using classical field theory as the lowest order in this perturbation expansion.

Fields is divided into 3 topics: Symmetry, Quanta, and Higher Spin, each of

which is suitable for a one-semester course. “Symmetry” is mostly about relativistic

classical field theory, but also relativistic classical mechanics, and includes a minimal

amount of group theory to understand these topics and particle physics. “Quanta”

is about actual calculations in quantum field theory, and the results; most is in the

form of S-matrix elements, and the resultant cross sections measured by detectors

in particle accelerators (and elsewhere). “Higher Spin” discusses general relativity,

strings, and other topics that do more than simply extend the Standard Model.

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

This is at second-year graduate level. This means:

• It requires the level of physics education of a second-year student.

• It is not a repetition of earlier studies, unlike classical mechanics, quantum me-

chanics, and classical electrodynamics, which you’ve taken 3 times already (lower

division, upper division, graduate).

• It’s harder. Get used to it: Research starts in your third year, and will make this

look easy.

• You’ll be exposed to new ideas (as when you first learned quantum mechanics

and special relativity), but ones that are still being investigated.

• You may think you’re missing something: Maybe that’s an illusion, or maybe

everyone has missed it. A good indication is the homework problems: If you

can solve them, you’re doing OK. (If it isn’t already obvious, each problem is

meant to use what you should have learned from the immediately preceding text.
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Also, parts of each problem should be useful for solving later parts of the same

problem.) If you still feel uncomfortable, welcome to the real world.

This isn’t your parents’ textbook on field theory. In spite of what you may have

heard, getting an exposure to old-fashioned quantum field theory before taking this

course will not help; you may have to “unlearn” it. (However, an exposure to particle

physics, at least at an undergraduate level, is almost a prerequisite.) You can waste

your time looking for a placebo, learning legacy topics that everybody else teaches

but which are useless in real-life applications. But again, once you get to research,

you’ll have to learn how to tackle new ideas, and that conformism will not help you

make your mark. For example:

• Canonical quantization is obsolete. Path integrals are necessary for Yang-Mills

(every textbook does it that way), and for nonperturbative calculations.

• Twistors (“spinor helicity”) are necessary and universally accepted for calculating

amplitudes with external gluons.

• Supersymmetry is the most widely used theory Beyond the Standard Model.

• The 1/N expansion is a standard method of approximation and organization for

Feynman diagrams.

These are not “math” or “tricks”, these are standard tools for LHC physics. Don’t let

someone trick you into thinking that 1970’s baggage is enough to understand modern

physics. Calculations are important for comparing to experiment, but calculational

methods also give insight into new physical principles. However, learning only how

to calculate isn’t enough for a career: There’s an app for that, and you won’t last

long if you can be replaced by a piece of software.

This textbook has both concepts and calculations, each in significant (but not ex-

haustive) detail. This makes it quite long, but it isn’t necessary to study everything.

In particular, the order of the chapters can be rearranged, and several possibilities are

listed, depending on what are considered the relative urgency of 3 features (but all

are important): “statistics” (physical fermions, and ghosts for Yang-Mills), “quanti-

zation”, and “(higher) spin” (gravity).

Some field theory texts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

By the time they’re published, most quantum field theory textbooks are 20 years out

of date. Nevertheless, we recommend some alternatives or supplements to the present

textbook (but see the Preface).
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . PART ONE: SYMMETRY . . . . . . . . . . . . . . . . . .

First we study relativistic quantum mechanics and classical field theory. Special rel-

ativity is the Poincaré group. We also look at enlarged spacetime symmetries that

are useful for many purposes even if they might not be symmetries of nature: confor-

mal symmetry and supersymmetry. To generalize these kinematic considerations to

dynamics we describe equations of motion and actions for particles and fields/wave

functions. Furthermore, internal symmetries appear as both global (e.g., for classify-

ing particles) and local (to define field interactions).

I. Global

Special relativity is a crucial part of relativistic quantum field theory. It is not

about just Lorentz transformations. It is about representations of the Poincaré group,

and how to conveniently deal with them. We give a basic discussion of the group

theory useful in dealing with it, and with the “internal symmetry” used to classify

and relate different kinds of particles. A useful generalization of the Poincaré group,

and an approximate symmetry of nature, is the conformal group, which is actually

simpler in some respects, and often more useful because of its stronger constraints.

A. Coordinates

The most important symmetries are spacetime symmetries, as you (should

have) already learned in nonrelativistic physics, which we review here. They

are directly related to conservation laws by the Hamiltonian (or other action)

formalism. This is clear using the Poisson bracket, which becomes the com-

mutator in quantum mechanics. This can be generalized to anticommutators

by the use of “classical” fermions: Although their physical interpretation is

obscure, this is more than compensated by their usefulness, and the fact that

they are actually simpler mathematically than ordinary commuting variables.

The concept of symmetry leads directly to (continuous) group theory (which

you also should have seen before, at least for translations and rotations).

Nonrelativistic (Galilean) symmetry is closely related to special relativity:

Rotations and Lorentz transformations can (and should) be treated in a sim-

ilar way. The concept of proper time is also useful in this context. Besides

these continuous symmetries there are also the discrete symmetries of Charge

conjugation, Parity, and Time reversal, which are basically reflections in var-

ious coordinates. In particular, C reflects proper time, relating particles to

antiparticles (classically!). Conformal symmetry is a generalization of special

relativity (already known to be a property of electromagnetism since its early
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days) with many useful properties, mostly relating to high energies (short

distances).

1. Nonrelativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

The Poisson bracket is the classical limit h̄ → 0 (first term in the h̄

expansion) of the commutator:

[A,B] ≡

−i
(
∂A

∂pm

∂B

∂qm
− ∂B

∂pm

∂A

∂qm

)
semiclassically

AB −BA quantum mechanically

We use the Einstein summation convention for repeated indices:

AmBm ≡
∑
m

AmBm

The Galilean group is an introductory example of symmetry. Its infinites-

imal transformations are generated by commutators with

M = m, Pi = pi, Jij = x[ipj] ≡ xipj − xjpi,

E = H =
p2
i

2m
, Vi = mxi − pit

For multiple particles interacting only through contact interactions, these

are generalized to their sum over the particles.

2. Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Although bosons and fermions are each identical particles, only 1 fermion

can be in any particular state. The simplest way to implement these

properties is by (anti)symmetry of multiparticle wave functions, e.g.,

bosons : ψii′(x, x
′) = +ψi′i(x

′, x)

fermions : ψii′(x, x
′) = −ψi′i(x′, x)

This means fermionic operators should satisfy relations found by replacing

commutators with anticommutators:

{A,B} = AB +BA

This corresponds to classically defining anticommuting variables, e.g.,

ζζ† + ζ†ζ = 0, {ψ, ψ} = 2ψ2 = 0

Functions of such variables thus have finite Taylor expansions,

f(ψ) = a+ ψb
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We can then define anticommuting differentiation and definite integration

with respect to such variables, where∫
dψ =

∂

∂ψ

Since commutators are antisymmetric while anticommutators are sym-

metric, bosons always come in canonically conjugate pairs, while fermions

can be chosen to be canonically conjugate to themselves without loss of

generality,

{ψµ, ψν} = h̄δµν

3. Lie algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Just as infinitesimal symmetry transformations are defined by commuta-

tors, finite ones come from exponentiation:

δA = iε[G,A] ⇒ A′ = eiGAe−iG

Elements G of a Lie algebra are linear combinations of a basis Gi, whose

algebra is defined in terms of structure constants:

[Gi, Gj] = −ifijkGk

4. Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Special relativity is defined by Minkowski space with the metric

ηmn =


0 1 2 3

0 −1 0 0 0

1 0 1 0 0

2 0 0 1 0

3 0 0 0 1


in dimension D=4 (and similarly for other D). Antiparticles are repre-

sented by solutions of the mass-shell condition p2 + m2 = 0 but with

p0 < 0. The symmetry is the Poincaré group, defined in terms of genera-

tors of translations and Lorentz transformations SO(D−1,1):

Pa = pa, Jab = x[apb]

It preserves the mass-shell condition and the line element

ds2 = −dxmdxnηmn
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which defines the “proper time” s. They are related by

pa =
dxa

dτ
, s = mτ

but τ can be defined even when m = 0. For elastic scattering of particles

all momentum dependence can be expressed in terms of the Mandelstam

variables

s = −(p1+p2)2, t = −(p1−p3)2, u = −(p1−p4)2, s+t+u =
4∑
I=1

m2
I

For some purposes it’s convenient to use a lightcone basis or a null basis:

ηmn =


+ − 2 3

+ 0 −1 0 0

− −1 0 0 0

2 0 0 1 0

3 0 0 0 1

, ηmn =


+ − t t̄

+ 0 −1 0 0

− −1 0 0 0

t 0 0 0 1

t̄ 0 0 1 0


5. Discrete: C, P, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

The symmetries of charge conjugation, parity, and time reversal act as

reflections on various coordinates:

C CT P T CP PT CPT

s − + + − − − +

t + − + − + − −
~x + + − + − − −
E − − + + − + −
~p − + − − + + −

For wave functions/fields, s is undefined, but we can find C, since x and

p are related by Fourier transformation:

φ(x)→ φ*(x) ⇒ φ̃(p)→ [φ̃(−p)]*

While the Minkowski metric is invariant under P and T, the Levi-Civita

tensor

εmnpq totally antisymmetric, ε0123 = −ε0123 = 1

transforms with a sign change.

6. Conformal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

The conformal group is SO(D,2), an enlargement of Poincaré that is a
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symmetry only (sometimes) of massless particles, but is often useful for

many reasons, especially at high energy. It scales p2 and ds2 by a factor. It

can be described simply in terms of the projective lightcone, a space with

an extra space and an extra time dimension, by imposing the constraint

and invariance

y2 = 0, δyA = ζ(y)yA ⇒ y = (y+, ya, y−) ∼ (1, xa, 1
2x

axa)

B. Indices

After the introduction to some simple examples of symmetry as group theory

in the previous section, we next give a more general treatment, but still not

at a much higher level than you have had in your previous courses. The

methods used are not completely general, but cover what we need in this

course, and are easier than the more complete alternatives. We cover the

“classical” groups, which include spacetime symmetries as well as internal

ones, using an explicit notation that makes calculations easier.

1. Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

From any given group representation, we can find 3 others, not necessarily

independent:

ψ′ = gψ : ψ′I = gI
JψJ

ψ′ = (g−1)Tψ : ψ′I = g−1
J
IψJ

ψ′ = g*ψ : ψ′.
I

= g*.
I

.
Jψ .

J

ψ′ = (g−1)†ψ : ψ′
.
I = g*−1 .

J

.
Iψ

.
J

since these matrices g, (g−1)T , g*, (g−1)† satisfy the same algebra.

2. Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

We always have the adjoint representation of any Lie algebra,

G = αiGi, A = βiGi; δA = i[G,A]

⇒ δβi = −iβkαj(Gj)k
i, (Gi)j

k = ifij
k

from which we can define the Cartan metric

ηij = trA(GiGj) = −fiklfjlk

For any representation in an appropriate basis we have the Dynkin index

and Casimir operator

trR(GiGj) = cRδij, ηijGiGj = kRI ⇒ kR =
cRdA
cAdR

, dR ≡ trR(I)



PART ONE: SYMMETRY 15

If a representation satisfies g* = MgM−1 for some matrix M , we can set

M = I if it’s symmetric, and the representation is real, but we can’t if

it’s antisymmetric, when it’s called pseudoreal. Useful ways to construct

new representations from given ones are the direct sum and product:

(g) =

(
gι
κ 0

0 gι′
κ′

)
, gιι′

κκ′ = gι
κgι′

κ′

3. Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Determinants can easily and usefully be defined with either Levi-Civita

tensors,

det MI
J = 1

n!
εJ1...Jnε

I1...InMI1
J1 · · ·MIn

Jn

or Gaussian integrals (with z commuting and ζ anticommuting),∫
dDz* dDz

(2πi)D
e−z

†Hz = (det H)−1,

∫
dDζ† dDζ e−ζ

†Mζ = det M

For antisymmetric matrices we also have the Pfaffian (ξ anticommuting)

Pf A = 1
D!2D

εI1...I2DAI1I2 · · ·AI2D−1I2D =

∫
d2Dξ e−ξ

TAξ/2

(Pf A)2 = det A

4. Classical groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Classical groups are defined by representations satisfying some of

volume: Special: det(g) = 1

metric:


hermitian: Unitary:

(anti)symmetric:

{
Orthogonal:

Symplectic:

g†Υg = Υ

gTηg = η

gTΩg = Ω

reality:

{
Real:

pseudoreal (*):

g* = ηgη−1

g* = ΩgΩ−1

(where Υ † = Υ, ηT = η,ΩT = −Ω), with names

GL(n,C)

[SL(n,C)]

U: [S]U(n+,n−)

O: [S]O(n,C)

Sp: Sp(2n,C)

R: GL(n) [SL(n)]

*: [S]U*(2n)

U R *

O [S]O(n+,n−) SO*(2n)

Sp Sp(2n) USp(2n+,2n−)

5. Tensor notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86

These classical groups are most easily treated with the same 4 kinds of
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indices as used above for vectors and matrices. For example, the invariant

tensors that define the groups are written as

Unitary: ψ
.
I = Υ

.
IJψJ

Orthogonal: ψI = ηIJψJ

Symplectic: ψI = ΩIJψJ

Real: ψ.
I

= η.
I
JψJ

pseudoreal (*): ψ.
I

= Ω.
I
JψJ

The simplest basis for the defining representations is then one where one

element of the matrix is 1 and the rest 0.

C. Representations

Having covered the basic principles of group theory in the previous sections,

further explicit examples and techniques can be studied. This includes vari-

ous types of coordinate transformations, useful ways of dealing with general

representations of classical groups, and internal symmetries of the Standard

Model. There are also useful relations between lower dimensional classical

groups that are useful for spacetime symmetries relevant for the real world.

Finally, the concept of coset space explains why coordinates chosen for many

symmetries, especially spacetime ones, correspond to particular subgroups of

those symmetries.

1. More coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

Various simple coordinates can be chosen for these groups. For example,

U(n) : ĜI
J = a†JaI , [aI , a

†J} = δJI

Sp(n) : ĜIJ = 1
2z(IzJ), [zI , zJ ] = ΩIJ

SO(n) : ĜIJ = 1
2ψ[IψJ ], {ψI , ψJ} = ηIJ

The choice of anticommuting coordinates for orthogonal groups yields

Dirac gamma matrices.

2. Coordinate tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Coordinate transformations themselves form a(n infinite-dimensional)

group, so can be treated by similar methods. The generators are

G = λm(x)∂m

The scalar is the defining representation. From it and the adjoint one,

given above, the rest can be obtained by the methods described earlier.
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3. Young tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

We can draw pictures, e.g.

for representations of the classical groups that are constructed from the

defining one (a single box) by simply symmetrizing (in rows) and anti-

symmetrizing (in columns) its direct products. From these tableaux, rules

can be given to find their sizes, and how to reduce their direct products.

4. Color and flavor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

s = 1
2

color: → quark (3) lepton (1)
flavor (∆Q) (Q̄ = 1

6
) (Q̄ = −1

2)

−1
2 d e

+1
2 u νe

−1
2 s µ

+1
2 c νµ

−1
2 b τ

+1
2 t ντ

s = 1

color: → gluon electroweak
flavor (Q) (8) (1)

0 g γ
0 Z
±1 W

s = 0

(Q = 0) H

The particles of the Standard Model can be classified by their spin (0,1
2 ,1),

mass, and quantum numbers with respect to the SU(3)⊗SU(2)⊗U(1)

symmetry that determines their interactions. The spin 1
2 particles come

in 3 similar families, or 6 flavors, which can be used to classify multiplets

of mesons composed of a quark-antiquark pair (and baryons composed of

3 quarks).

5. Covering groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

For orthogonal groups SO(n) for n≤6, vectors (defining representation)

can be expressed as second-rank tensors of other groups, thus identifying

their Lie algebras:

SO(2) = U(1), SO(3) = SU(2) = SU*(2) = USp(2),

SO(4) = SU(2)⊗SU(2), SO(5) = USp(4), SO(6) = SU(4)

The defining representations of the other group are the spinors of that

orthogonal group; their Young tableaux give complete classifications of

representations, including those the orthogonal tableaux missed.

6. Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Coordinate spaces for general groups can be defined by modding out by

subgroups:

g′ = hgg0; g = eiα
IGI , h = eih

ιHι
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GI = (Hι, Ti)

where α are the group coordinates before modding out the subgroup co-

ordinates h, so h(α) gives a gauge transformation while g0 gives a (con-

stant) global symmetry one. E.g., the D-sphere can be described as the

coset space SO(D+1)/SO(D) to describe SO(D+1) rotations. Many ap-

plications will appear later: Minkowski space for Poincaré or conformal,

superspace for supersymmetry or superconformal, and interacting scalar

field theories at low energies. Of particular use are projective cosets, with

transformation laws of the form

g−1
0 =

(
a b

c d

)
⇒ w′ = (aw + b)(cw + d)−1

Wave functions are defined as

ψ(α) ≡ 〈α|ψ〉 ≡ 〈0|g(α)|ψ〉 , 〈0|h = 0

II. Spin

We describe 2-component spinor notation in detail. “Notation” is not just lan-

guage, but how you make symmetry clear, and algebra simple. We give the simplest

version of this notation, using only 2-component spinor indices, thus avoiding 4-vector

indices, the useless “σ-matrices”, and their pointless Fierz identities. In particular,

we’ll find this the easiest way to discuss supersymmetry, an extension of the Poincaré

group that mixes fermions and bosons, but later we’ll see that even calculations in-

volving only vector fields are practical only in this notation. Another application is

a simple relativistic wave equation that describes all spins (with, e.g., the Dirac and

Maxwell equations as special cases).

A. Two components

The spinor representation of spacetime groups, 2×2 matrices, is simpler than

the vector. This is true not only for the Lorentz group (2<4), but even for

rotations (2<3). All other representations (spins) are then easily described by

using multiple spinor indices (although matrix notation is convenient for lower

spins). There is only 1 identity needed for such algebra, that antisymmetrizing

in 3 indices that take only 2 values gives 0. Dirac spinors and matrices are

described by a simple doubling (related to charge). Chirality and selfduality

are trivial in this notation.

1. 3-vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3-vectors can conveniently be described by 2×2 matrices

V = V †, tr V = 0; |V |2 = −2 det V = tr(V 2)
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and their vector products as matrix products

VW = 1
2(V ·W )I + 1√

2
iV ×W

2. Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Their rotations are just SU(2):

V ′ = UV U †, U † = U−1, det U = 1

3. Spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

This leads directly to 2-component spinors, the defining representation.

4. Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Arbitrary spin then comes simplest in terms of multiple 2-spinor indices

α (2s indices for spin s) with total symmetry:

A′αβ...γ = Uα
δUβ

ε...Uγ
ζAδε...ζ

The only invariant tensor is

Cαβ = −Cβα = −Cαβ = Cβα =
(

0
i
−i
0

)
used to raise, lower, and contract indices. It satisfies only 1 identity,

0 = 1
2C[αβCγ]δ = CαβCγδ + CβγCαδ + CγαCβδ

and those trivially related.

5. Lorentz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

4-vectors are a simple generalization to V α
.
β:

V = V †, V 2 = −2 det V ; V ′ = gV g†, det g = 1

so now 2 kinds of indices can be symmetrized for general representations.

Hilbert space notation can be convenient: e.g., for the inner products of

spinors,

〈ψχ〉 = 〈χψ〉 = ψαχα, [ψχ] = ψ
.
αχ .

α

CP is defined by complex conjugation.

6. Dirac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A Dirac spinor is a pair of spinors, to allow definition of C:

Ψ = 2−1/4

(
ψLα

ψ̄R .
α

)
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or in Hilbert-space notation

21/4Ψ = |α〉ψLα + |
.
α]ψ̄R .

α

Dirac matrices are then simply (with α
.
β the vector index)

2−1/2γ
α
.
β

= −|α〉[.β| − |.β]〈α|

7. Chirality/duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Massless spinors can have a chiral symmetry

ψ′α = eiθψα

Maxwell equations, written in spinor notation

∂β .
γfβα ∼ Jα.

γ

have a chiral symmetry

f ′αβ = eiθfαβ

in the absence of sources, or rotate electric charges into magnetic.

B. Poincaré

Including spacetime translations along with Lorentz transformations gives the

Poincaré group. Finding useful (unitary) representations requires applying

field equations (to eliminate the minus signs associated with the time direc-

tion). This can easily be done for all spins in all dimensions. The massless

cases have a simple interpretation in terms of the conformal group (by relaxing

some conditions), while the massive cases can all be found by “dimensional

reduction”: starting in 1 higher (space) dimension and setting its component

of momentum equal to a constant, identified with the mass. Familiar special

cases (Dirac, Maxwell) follow easily, but the general field equation can also

be solved effortlessly. In D=4 the massless solution can be expressed in a

manifestly Lorentz covariant form in terms of twistors, a special case of the

coset coordinates considered previously. The representation of the little group

(which is just U(1)) is given by a single quantum number, the helicity.

1. Field equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Arguments based on conformal symmetry, or removing timelike polariza-

tions, lead to the universal massless free equations

Sa
bpb + wpa = 0

in terms of spin S and scale weight w.
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2. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

The Dirac and Maxwell equations follow as simple examples, plugging in

the expressions for spin and solving for the scale weight.

3. Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

The equation can be solved in general in a lightcone basis: The solu-

tion gives the corresponding arbitrary representation of the transverse

SO(D−2) part of the spin Sij.

4. Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

The corresponding general massive equations follow by dimensional re-

duction from 1 extra space dimension, labeled as −1, setting

p−1 = m

This gives, e.g., a Stückelberg formalism for a massive vector in terms of

a massless vector + a scalar. Solving the equations gives the little group

SO(D−1) instead of SO(D−2).

5. Foldy-Wouthuysen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

This transformation is an application, for arbitrary spin, from the massless

analog. It gives the field equations as nonrelativistic + corrections. We

apply it to minimal electromagnetic coupling to spin 1/2, in preparation

for nonminimal coupling in chapter VIII for the Lamb shift.

6. Twistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Twistors are a convenient and covariant method to solve massless equa-

tions:

p2 = 0 ⇒ pα
.
β = +pαp

.
β, p

.
β = ±(pβ)*

or in Hilbert-space (matrix) notation,

P = |p〉[p|

They are an example of a coset space, as discussed earlier, for conformal

invariance, also related to selfduality. They will prove extremely useful

for QCD computations in chapter VI.

7. Helicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Helicity is the little group SO(2)=U(1), represented covariantly via

twistors: In momentum space we have simply

ψ̃
α1...αm

.
β1...

.
βn

(p) = pα1 · · · pαm p̄.
β1
· · · p̄.

βn
χ(pα, p .

α)
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C. Supersymmetry

Another interesting generalization of the Poincaré group besides conformal

symmetry is supersymmetry. It also introduces many simplifications at high

energy, especially at the quantum level, as well as suggesting generalizations

of the Standard Model. It even provides new methods to calculate in non-

supersymmetric theories. This symmetry relates fermions to bosons, gener-

alizing translations to fermionic coordinates. One interesting consequence of

supersymmetry is a lower bound on energy: This physical requirement (to

guarantee existence of a stable vacuum state) is thus derived.

1. Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

From unitarity we have

{A,A†} = 0 ⇒ A = 0

Then for supersymmetry, a spacetime symmetry generated by a spinor

(thus anticommuting to preserve statistics) we must have (by dimensional

analysis)

{q, q̄} = 2p/

which implies positivity of the energy. For the massless case we also have

{p/q, q̄p/} = 2p/p/p/ = −2p2p/ = 0 ⇒ p/q = 0

2. Supercoordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157

The superspace on which this symmetry is defined can be found from the

coset construction; however, it’s easy to guess the result for the symmetry

generators

qα = −i ∂
∂θα

+ 1
2 θ̄

.
β ∂

∂xα
.
β
, q̄ .α = −i ∂

∂θ̄
.
α

+ 1
2θ

β ∂

∂xβ
.
α

in terms of anticommuting coordinates θ, as well as the covariant deriva-

tives that anticommute with them,

dα =
∂

∂θα
+ 1

2 θ̄
.
βp

α
.
β
, d̄ .

α =
∂

∂θ̄
.
α

+ 1
2θ

βpβ .
α

3. Supergroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Supergroups that generalize the classical groups are defined by metrics

Unitary: Υ
.
AB

OrthoSymplectic: MAB

Real: η .
A
B

pseudoreal (*): Ω .
A
B
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where again η is symmetric and Ω antisymmetric, but M is graded sym-

metric: For A = (a, α) with bosonic indices a and fermionic ones α,

M [AB) = 0 : Mab −M ba = Maβ −Mβa = Mαβ +Mβα = 0

The superdeterminant is defined by integration: For general graded M,

(sdetM)−1 ∼
∫
dz† dz e−z

†Mz

(with normalization fixed by sdet I = 1), where zA = (za, zα) is part

commuting and part anticommuting according to its index. We also have

the supertrace:

det(eM) = etrM ⇒ sdet(eM) = estrM

str(MA
B) = (−1)AMA

A =Ma
a −Mα

α

4. Superconformal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163

For the supersymmetric generalizations of conformal groups (in D>2) we

find

D = 3 : OSp(N|4)

4 : SU(2,2|N) (or PSU(2,2|4))

6 : OSp*(8|2N)

Alternative coset spaces can be useful that include internal coordinates:

wA
B′ =

( .
β b′

α xα
.
β θα

b′

a θ̄a
.
β ya

b′

)

The free superconformal field equations are then

D(A
(CDB]

D] − δ terms = 0 ⇒ ∂(A′
(C∂B′]

D] = 0

In particular, the 4D N=4 super Yang-Mills field strength Φ(w) is

(φ+ ym
m′φm′

m + 1
2y

2φ̄) + θµ
m′(λm′

µ + ym′
mλm

µ) + θ̄m
.
µ(λ̄.

µ
m + ym′

mλ̄.
µ
m′)

+(θ2
µνf

µν + θ̄2
.
µ
.
ν f̄.
µ
.
ν)− iθµm

′
θ̄m

.
µ∂.

µ
µ(φm′

m + ym′
mφ̄)

−iθ2
µν θ̄m

.
µ∂.

µ
µλmν − iθ̄2

.
µ
.
νθµ

m′∂.
µ
µλ̄.

νm′ − θ2
µν θ̄

2
.
µ
.
ν∂.

µ
µ∂.

ν
νφ̄
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5. Supertwistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164

Supertwistors generalize twistors to supersymmetry for massless repre-

sentations. They also give a nice description of superhelicity. For N

supersymmetries, the massless representations of supersymmetry can be

decomposed into components as

state helicity (Poincaré) multiplicity [SU(N)]

φ h 1

φa h− 1
2 N

φab h− 1 N(N−1)
2

...
...

...

φa1···an h− n
2

(
N
n

)
...

...
...

φ̃a h− N
2

+ 1
2 N

φ̃ h− N
2

1

and their complex conjugates.

III. Local

The basic forces of nature are described by theories with (“gauge”) symmetries

that act independently (“locally”) at each point in spacetime. We discuss such theo-

ries and some of their solutions. As an introductory example, we cover the relativistic

point particle in external fields: Its classical mechanics is analogous to a gauge theory

in a one-dimensional space-time (the “worldline”). Electron-positron pair creation

can be described by this simple approach.

A. Actions

The action principle is as important in physics as symmetry. It relates symme-

try to conservation, and is required for quantization of a classical theory. We

review some general properties and apply them also to fermions. We consider

both classical mechanics and classical field theory, both nonrelativistic and

relativistic, including the previous examples of spins 0, 1/2, 1. The general

features of gauge theories are also considered.

1. General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

The action principle is simply that field equations follow from variation

of a single function, the action S. It can be just a function of some set

of variables, but usually is taken as a functional of some variables that
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are themselves functions of some coordinates, e.g., the time t. Then its

variation,

δS[φ] ≡ S[φ+ δφ]− S[φ] ≡
∫
dt δφ(t)

δS

δφ(t)

defines the field equations as a functional derivative δS/δφ(t). Locality

implies the action can be expressed in terms of a Lagrangian

S[φ] =

∫
dt L[φ(t)]

where L is a function of φ(t) and a finite number of its derivatives, usually

no more than 2.

2. Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Anticommuting quantities can be quantized similarly to commuting. E.g.,

nonrelativistic spin 1
2 can be described by a Hamiltonian action of the form

SH =

∫
dt[− .

xipi + 1
2i

.
ψiψi +H(x, p, ψ)]

which implies

[xi, pj] = ih̄δij, {ψi, ψj} = h̄δij

3. Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

Field theory actions differ from mechanics actions only in that the vari-

ables are functions of not only time but also space. By the correspondence

principle, the field action corresponding to a nonrelativistic mechanics ac-

tion can be expressed in terms of the Hamiltonian H as

Sft =

∫
d4x ψ*(−i∂t +H)ψ

with the usual quantum mechanical replacement of momenta by deriva-

tives pi → −i∂i. The distinction between the classical mechanics and

classical field theory limits of quantum field theory follows from how h̄ is

placed: From putting 1/h̄ in front of the classical mechanics action we get

∂i → h̄∂i, ∂t → h̄∂t

while for field theory we instead do

Sft → h̄−1Sft

Quantization of the field theory then follows identification of the field

theory Hamiltonian in terms of the Hamiltonian density H:

Hft[ψ, ψ*] =

∫
d3x H, H = ψ*Hψ
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which expresses locality in space as well as time. More general actions

can be defined that are not quadratic in fields by introduction of the

Lagrangian density

S[φ] =

∫
dt d3x L[φ(t, xi)]

in direct analogy to the mechanics case.

4. Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Some examples of relativistic field actions include:

Se =

∫
dx [ψ̄

.
β
L(−i∂+A)

α
.
β
ψαL + ψ̄

.
β
R(−i∂−A)

α
.
β
ψαR + m√

2
(ψαLψRα+ ψ̄

.
α
Lψ̄R .

α)]

SA =

∫
dx 1

2e2
fαβfαβ =

∫
dx 1

2e2
f̄

.
α
.
β f̄ .

α
.
β

=

∫
dx 1

8e2
F abFab

F
α
.
γ,β

.
δ

= ∂α.
γAβ

.
δ
− ∂

β
.
δ
Aα.

γ = Cαβ f̄.
γ
.
δ

+ C̄.
γ
.
δ
fαβ, fαβ = 1

2∂(α
.
γAβ)

.
γ

for electrodynamics, which is invariant under C,

ψαL ↔ ψαR, A→ −A

We require good ultraviolet behavior, that couplings should have nonneg-

ative mass (engineering) dimension, to make perturbation well defined.

General considerations show forces always attract except for odd-spin

forces between particles of the same-sign charge.

5. Constrained systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Gauge invariance is related to constraints: e.g., Gauss’s law generates

electromagnetic gauge transformations, and the time component of the 4-

vector potential is also the Lagrange multiplier for this constraint. More

generally we have actions of the form

S =

∫
dt(− .

qmpm +H), H = Hgi(q, p) + λiGi(q, p)

[Gi, Gj] = −ifijkGk, [Gi, Hgi] = 0

for constraints G and Lagrange multiplier/gauge fields λ.

B. Particles

Relativistic classical mechanics is now explored in detail. It will prove use-

ful later in understanding Feynman diagrams. It gives a simple example of

local symmetry. External fields are coupled, and used to described particle-

antiparticle creation/annihilation classically.
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1. Free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

The free, relativistic, scalar particle has the Hamiltonian (first-order) ac-

tion

SH =

∫
dτ [− .

xmpm + v 1
2(p2 +m2)]

where the worldline metric (v > 0) is the Lagrange multiplier for the

mass-shell condition (Klein-Gordon equation) as well as the gauge field

for coordinate transformations of the worldline coordinate τ , of which

these variables are functions. From this follows the Lagrangian (second-

order) form (eliminating p by its equation of motion)

SL =

∫
dτ 1

2(vm2 − v−1 .
x2)

and in the massive case the geometric form (eliminating v)

S = m

∫
dτ
√
− .
x2 = m

∫ √
−dx2 = m

∫
ds = ms

2. Gauges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Useful gauges (τ coordinate choices) are v = 1 (identifying intrinsic length∫
dτ v with τ itself),

SH,AP =

∫ T

0

dτ [− .
xmpm + 1

2(p2 +m2)]

and the lightcone gauge τ = x+/p+,

SH,LC =

∫ τf

τi

dτ [
.
x−p+ − .

xipi + 1
2(pi2 +m2)]

3. Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

External metric, electromagnetic, and scalar fields can be coupled in an

obvious way:

SL =

∫
dτ [−1

2v
−1gmn(x)

.
xm

.
xn + Am(x)

.
xm + vφ(x)]

4. Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

These external gauge field couplings lead directly to conserved currents.

Integrating them gives the charges (for the free particle)

Q = ε(p0), Pm = ε(p0)pm

giving through the charge Q the relation between the sign of p0 and par-

ticle vs. antiparticle, and the distinction between the canonical energy p0

and the true energy P 0, which is always positive.
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5. Pair creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201

and annihilation can be described for classical particles and antiparticles

in an external electromagnetic field. The antiparticle appears because the

particle’s path reverses its direction in time:

6. Superparticle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The spinless, massless particle action can be generalized to supersymme-

try:

S =

∫
dτ [−(

.
x+ i

.
θγθ) · p+ v 1

2p
2]

This action is invariant under a new gauge symmetry, generated by the

constraint

p/d = 0

the covariant form of the massless constraint p/q = 0 found earlier.

C. Yang-Mills

For many reasons the most important field theory for the Standard Model is

Yang-Mills theory: It describes most of its forces, and gives self-coupling for

spin 1. (Its most significant properties are related to its high-energy behavior

at the quantum level, to be discussed later.) It represents the primary appli-

cation of group theory to internal symmetry. We also consider here various

solutions to the classical theory.

1. Nonabelian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Self-interactions follow for gauge fields associated with nonabelian groups:

As a generalization of the procedure for electromagnetism, we begin with

global symmetry transformations for matter,

ψ′ = eiλψ, λ = λiGi

and make them local by introducing covariant derivatives

∇′ = eiλ∇e−iλ, ∇a = ∂a + iAa, Aa = Aa
iGi

to replace partial derivatives in the matter action. We then find the

covariant field strengths

[∇a,∇b] = iFab ⇒ Fab
i = ∂[aAb]

i + Aa
jAb

kfjk
i
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and Yang-Mills Lagrangian

LA(Aia) = 1
8g2
A

F iabF j
abηij = 1

8g2
R

trR F
abFab

2. Lightcone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Axial gauges set n · A = 0 for some fixed vector n. The lightcone gauge

A+ = 0 (i.e., n2 = 0) is the simplest unitary gauge. It leads us to treat

∂− = −∂+ as a time derivative, since it then appears only linearly. A−

is then nondynamical, and can be eliminated by its field equation. By

the same interpretation 1
2 the components of a spinor field can also be

eliminated. In both cases the free field equation is then just the Klein-

Gordon equation.

3. Plane waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212

A simple exact solution to this interacting theory is the plane wave:

A+ = xiF i+(x−)

While only 1 Lorentz component (but all group components) of the gauge

field is nonvanishing, the field strength has arbitrary transverse polariza-

tions.

4. Selfduality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

An interesting class of solutions to the field equations are the selfdual

ones,

[∇a,∇b] = ±1
2εabcd[∇

c,∇d]

The selfduality equation itself, which is only first-order in derivatives,

implies the usual field equations.

∇[aFbc] = 0 ⇒ 0 = ±1
2ε
abcd∇aFbc = ∇aF

ad

For massive spins 1 and also 1
2 , the mass term allows reduction of the

action to a form where only a selfdual/chiral field appears.

5. Twistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Twistors are useful for solving selfduality, and again relate to a kind of

lightcone gauge. (These twistors are not the previous ones, but a different

coset of the conformal group.)

6. Instantons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

These twistors are then applied to find a nonperturbative selfdual solution

for SU(2) that is localized in space and in time.
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7. ADHM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224

The construction is then generalized to arbitrary multi-instanton solutions

for arbitrary classical gauge groups.

8. Monopoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Monopoles are related selfdual solutions that are static.

IV. Mixed

We then put all the above together to discuss the Standard Model and its ex-

tensions. One important case is the Higgs mechanism, which describes how particles

get mass. This is closely related to the concept of breaking of chiral symmetry, an

approximate symmetry useful at energies below the confinement scale but above the

masses of the lightest quarks. Grand Unified Theories propose a simpler treatment

of the fermions and forces. We then construct supersymmetric theories by the use

of superspace, which not only allows a simple description of classical supersymmetric

theories but will also be used later to make quantum calculations simpler than in

nonsupersymmetric theories.

A. Hidden symmetry

Important yet unobserved symmetries can be either explicitly (approximate)

or spontaneously (not a property of the vacuum) broken, or confined. Spon-

taneously broken symmetries can be treated by the method of coset spaces,

here applied to fields rather than coordinates (second-quantized rather than

first). All these hidden symmetries reappear at high energies; so the way they

break is important for understanding low-energy physics. A related effect

is the Higgs mechanism, which describes how particles get mass. Another

interesting application is the dilaton, describing spontaneous breakdown of

conformal invariance, which gives a simple description of most of cosmology

without including gravity.

1. Spontaneous breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

The Goldstone theorem says that there is a massless scalar corresponding

to any spontaneously broken continuous global symmetry, i.e., a symmetry

that preserves the action, but not the vacuum solution. This scalar has

constant potential in the direction of the symmetry, hence no mass. A

trivial example is a free massless scalar, whose symmetry is translation

by a constant:

L = 1
4
(∂φ)2, δφ = constant, 〈φ〉 = 0
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This kind of symmetry breaking tends to generate masses for other fields

coupling to the Goldstone boson, since the symmetry breaking arises from

some scalar getting a vacuum value.

2. Sigma models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234

We consider models for which the potential is polynomial, and so has

good high-energy behavior. But then we study the low-energy behavior by

taking all nonvanishing masses to ∞, decoupling those particles, leaving

a nonlinear theory for the Goldstone bosons.

3. Coset space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

We then recognize such models as defined on coset spaces for the fields, in

a similar way to how coset spaces for coordinates were treated in subsec-

tion IC6. The construction uses a covariant derivative, constructed from

scalars, for the gauge group:

g∂ag
−1 = ∂a + iAιaHι + iF i

aTi = ∇a + iF i
aTi

The Lagrangian is then

L = 1
4
m2tr(F 2)

4. Chiral symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

To complete this low-energy description of hadrons, we add quarks (easier

to treat than baryons for group theory reasons) to the pseudogoldstone

boson mesons. The “pseudo” is because of an explicit breaking term (the

last term below), which leads to a Partially Conserved Axial Current for

these pseudoscalar mesons:

L = (q†Li∂qL + qTRi∂q*R) + [1
2(∂φ)† · (∂φ) + 1

4
λ2(φ†φ− 1

2m
2I)2]

+Λ(qLφq
T
R + qR*φ†q†L)− ξ tr(φ+ φ† −

√
2mI)

Spontaneous breaking of chiral symmetry generates mass terms for the

quarks.

5. Stückelberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

If a gauge symmetry is spontaneously broken, what would have been a

Goldstone boson (but not, since gauge-noninvariant quantities are unob-

servable) generates mass for the vector that gauges it. Here we look at the

free case, with an Abelian vector that gauges the translation symmetry

of a free massless scalar:

L = 1
8
F 2 + 1

4
(mA+ ∂φ)2
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6. Higgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

In the case of interactions things are less trivial, since the polynomiality

of the scalar potential (for good high-energy behavior) means that there

are always some massive scalars left over after vectors eat some would-be

massless ones to become massive. A simple example is the Gervais-Neveu

model, which will prove interesting later when considering more general

gauges:

L = tr[ 1
8g2
F 2 + 1

2(∇φ)† · (∇φ) + 1
4
λ2(φ†φ− 1

2m
2I)2]

Here φ is an n⊗n matrix where one n is that of a U(n) gauge group.

7. Dilaton cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

A simplified treatment of cosmology with gravity replaced by the Gold-

stone boson of scale invariance

−ds2 = dxmdxnφ2(x)ηmn

but with the wrong-sign kinetic term

Sφ = −
∫

d4x

(2π)2
1
2(∂φ)2

is sufficient to produce many of the important features. Newton’s constant

comes from its vacuum value:

〈φ〉 =

√
3

κ
, κ2 =

G

π

B. Standard model

The Standard Model gives an excellent description of all of nature except

gravity. Although its particle content was described previously, here we give

the details of its interactions through its action. These features include con-

finement and CP violation. Grand Unified Theories provide interesting gener-

alizations that unify the particles of spins 1
2 and 1 at the price of introducing

a complicated spin 0 sector. (Their most interesting feature appears at the

quantum level, to be described later.)

1. Chromodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259

The strong interactions are mediated by SU(3)-color Yang-Mills, with

observed hadrons color singlets. It has more discrete symmetries than the

weak interactions: CPT is a symmetry for all local, hermitian, Poincaré

invariant actions. But C, P, and T are separate symmetries of QCD

because of gauge invariance: The fact that all quarks are in the defining
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representation allows the mass matrix to be diagonalized, making these

symmetries manifest. The Lagrangian is

tr[1
8
F 2 + (q†Li∇qL + q†Ri∇qR) + ( M√

2
qTRqL + h.c.)]

2. Electroweak . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .264

In the Standard Model electromagnetic and weak interactions are unified.

Masses for all particles (except neutrinos) come from the Higgs. The

gauge group being SU(2)⊗U(1) (gauged by W and V ) allows a simple

choice of 4 Higgs that give mass to 3 of the 4 vectors while leaving 1

massive scalar. The Lagrangian can be written as (ψ = quarks q and

leptons l), ignoring neutrino masses,

L = L1 + L0 + L1/2

L1 = 1
8g′2

F 2(V ) + 1
8g2
tr F 2(W )

L0 = tr[1
4
(∇φ)†(∇φ) + 1

4
λ2(φ†φ− 1

2m
2)2]

L1/2 = tr(ψ†i∇ψ) + tr

[(
Λ+

0

0

Λ−

)
qTRqLφ+ ΛlTRlLφ

(
1

0

)
+ h.c.

]
3. Families . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

The fact that the fermions are almost replicated in 3 families allows for

small (due to the large masses of the heaviest family) violation of CP, as

observed experimentally, since not all matrices for Yukawa interactions

(scalar couplings) can be diagonalized simultaneously.

4. Grand Unified Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269

Incorporation of the Standard Model gauge group SU(3)⊗SU(2)⊗U(1)

into the simple group SU(5) allows unification of not only the vector

mesons, but also the fermions into 2 multiplets per family. The larger

group SO(10) reduces this to 1 multiplet per family, and includes extra

fermions to allow masses for neutrinos, as well as providing a (seesaw)

mechanism for their smallness. (Unfortunately the Higgs sector in both

cases is messy.) These GUT scenarios can be related as

SO(10)

↙ ↘
SU(5) SU(4)⊗SU(2)L⊗SU(2)R

↘ ↙ ≈ 1016 GeV?

SU(3)⊗SU(2)L⊗U(1)R

↓ ≈ 100 GeV

SU(3)⊗U(1)
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C. Supersymmetry

The basics of supersymmetry were described earlier; here we describe inter-

actions and give some explicit models. The simplest method is to define

superfields in superspace. We also consider methods of breaking supersym-

metry: The symmetry has not yet been observed, so if it exists it appears

only at relatively high energies. Generalizations with multiple supersymme-

tries have less phenomenological interest, but have quantum features that are

simpler. In fact, the most interesting features of supersymmetry are quantum

(to be discussed later): Some models are so much better behaved at high

energy that they solve problems of perturbation resummation.

1. Chiral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

The simplest (“matter”) multiplet (complex scalar + spinor) is described

by a complex scalar superfield satisfying a chirality condition d̄ .
αφ = 0.

This reduces the superspace to the smaller coset, chiral superspace. In

the massless case, this and the general field equation p/d = 0 are enough

to determine the free field equations.

2. Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277

Its action is

S = −
∫
dx d4θ φ̄φ+

[∫
dx d2θ f(φ) + h.c.

]
Component expansions are easily evaluated with covariant derivatives, in

terms of which superfield equations are expressed.

3. Covariant derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

As a generalization of bosonic Yang-Mills, covariant derivatives are used to

construct the gauge multiplet (vector + spinor): Since the free covariant

derivatives satisfy

dA = (dα, d̄ .
α, ∂α .

α), [dA, dB} = TAB
CdC , T

α
.
β
γ
.
γ = T.

βα
γ
.
γ = −iδγαδ

.
γ.
β

the gauge-covariant ones have

∇A = dA + iAA, [∇A,∇B} = TAB
C∇C + iFAB

Fαβ = F .
α
.
β

= F
α
.
β

= 0; F
α,β

.
β

= −iCαβW .
β
, F .

α,β
.
β

= −iC .
α
.
β
Wβ

where Wα is the chiral field strength with the physical spinor at θ = 0.

4. Prepotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

The constraints on the covariant derivatives can be solved in terms of a



PART ONE: SYMMETRY 35

fundamental scalar superfield. After a nonunitary transformation to a

chiral representation, they take the form

∇ .
α = d .

α, ∇α = e−V dαe
V , −i∇α

.
α = {∇α,∇ .

α}

5. Gauge actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

The action for the gauge multiplet is

SsYM = − 1
g2
tr

∫
dx d2θ 1

2W
αWα

In the Abelian case a Fayet-Iliopoulos term can be added:

SFI = ζ

∫
dx d4θ V

Gauge coupling to matter follows directly from gauge covariantizing the

(anti)chirality condition.

6. Breaking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Spontaneous supersymmetry breaking can be achieved by linear terms in

the action. An alternative is to introduce explicit breaking, of the kind

expected from supergravity, by introducing constant (in x) superfields

with θ dependence (spurions).

7. Extended . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Theories with multiple supersymmetries are also understood. For sim-

plicity we describe them here mostly in the superspace of simple super-

symmetry. In extended superspace, the covariant derivatives for super

Yang-Mills satisfy

{∇iα,∇j .
β
} = −δji i∇α

.
β

{∇iα,∇jβ} = Cβαiφ̄ij

[∇i .
α,−i∇β

.
β
] = C.

β
.
α
iW i

β

[∇α
.
α,∇β

.
β
] = Cαβif̄ .

α
.
β

+ C .
α
.
β
ifαβ

(and complex conjugates of some of these equations), displaying all the

spins. In particular, for N=4 this is the only multiplet with spins ≤ 1,

further satisfying

φij = 1
2ε
ijklφ̄kl
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Here we focus on the quantum aspects of field theory. Most (but not all) is based

on various forms of perturbation theory: expansions in loops, helicity, and internal

symmetry. Although some have conjectured that nonperturbative approaches might

solve renormalization difficulties found in perturbation, all evidence indicates these

problems worsen instead in the complete theory.

V. Quantization

The most versatile method to quantize field theory is path (functional) integrals:

They’re more rigorous, easier, manifestly Lorentz covariant, more general, and more

pedagogical than canonical quantization. It’s the one method everybody uses, even

though it isn’t the one everyone teaches. (An interesting analogy: 3D physics is

usually taught in Gibbs’s notation, but 4D physics is always taught with index no-

tation, which works for all dimensions.) We use this method to find S-matrices, and

thus cross sections, for general field theories. We use Feynman diagrams (graphs) to

describe the general features, such as unitarity and causality. The group theory of

internal symmetry can also be calculated diagrammatically. Backgrounds fields are

used instead of sources exclusively: All uses of Feynman diagrams involve either the

S-matrix or effective action, both of which require removal of external propagators,

equivalent to replacing sources with fields.

A. General

We begin by discussing various properties of quantum physics in general con-

text, so these items need not be repeated in more specialized and compli-

cated cases of field theory. The path integral formalism can be derived from

the general properties of causality and unitarity, which define the dynamics.

Although its application in quantum mechanics is somewhat limited, it be-

comes the most powerful method for quantizing field theory. We also review

the JWKB expansion and Green functions. The properties of unitarity and

causality are defined in terms of the S-matrix. Wick rotation to imaginary

time is a useful procedure in quantum mechanics that will prove even more

important in field theory (as has been seen in the earlier example of instan-

tons).

1. Path integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Feynman’s alternative to Heisenberg and Schrödinger methods can be

derived by general considerations of unitarity and causality in terms of
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the time development operator:

causality (locality) : U(t3, t2)U(t2, t1) = U(t3, t1)

unitarity : U(t2, t1)†U(t2, t1) = I

The solution of these conditions relates to canonical quantization:

U(tf , ti) = e−iεH(tf−ε) · · · e−iεH(ti+ε)e−iεH(ti) ≡ T
{
exp

[
−i
∫ tf

ti

dt H(t)

]}
Inserting the identity as a sum over a complete set of states between each

infinitesimal leads to the path integral:

〈qf , tf |qi, ti〉 =

∫
Dp Dq e−iS, S =

∫ tf

ti

dt[− .
qp+H(p, q, t)]

2. Semiclassical expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

The JWKB expansion now has a natural interpretation in the path inte-

gral as the stationary phase approximation.

3. Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307

Green functions are time development operators in a coordinate or energy-

momentum basis. For the latter, the retarded propagator is chosen by an

appropriate iε prescription:∫
dt eiEtθ(t)e−iHt−εt =

i

E −H + iε

4. S-matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

The Scattering-matrix S is a modification of the time development oper-

ator appropriate for scattering, the most common use of field theory. In

terms of it unitarity has the naive form, while causality requires introduc-

tion of a background χ:

δ

δχ(t)

(
S[χ]†

δ

δχ(t′)
S[χ]

)
= 0 for t > t′

5. Wick rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315

Pushing the iε prescription further, we analytically continue time to be

imaginary:

t→ −it, E → iE

In the path integral, this has the effect, for kinetic (T ) and potential (V )

terms,

e−iS, S =

∫
dt(V − T ) → e−S, S =

∫
dt(V + T )
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The path integral is then better defined, since S is now positive. JWKB

becomes the steepest descent approximation.

B. Propagators

We now turn to the case of field theory. At this point we consider only free

quantum field theory, approached from the point of view of relativistic quan-

tum mechanics. The treatment of the propagator follows from either Wick

rotation or our previous classical discussion of antiparticles. Inner products

are defined in terms of propagators.

1. Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

The Stückelberg-Feynman propagator for spin 0 can be obtained by slight

modification of the nonrelativistic result, in either covariant gauge or light-

cone gauge:

∆(p) =
−i

1
2(p2 +m2 − iε)

The directly resulting iε prescription agrees with the classical interpre-

tation of antiparticles as traveling backwards in time. A useful form is

in terms of the Schwinger parameter T that appeared classically in the

covariant gauge:

∆(p) =

∫
dT θ(T )e−iT (p2+m2−iε)/2

2. Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

These Green functions are used as in nonrelativistic quantum mechanics

and classical field theory. E.g., the iε prescription that makes the quantum

mechanical path integral converge is the same as that for the quantum

field theory, since the kinetic operator appears in the same way in the

action (but multiplied by the square of the field).

3. Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Propagators for other spins are similar, but with matrix numerator fac-

tors.

4. Wick rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .329

Wick rotation is similar to the nonrelativistic case, but now time compo-

nents of vector indices on fields are rotated the same way as that on the

coordinates. Again i’s and ε’s disappear, e.g., in the scalar propagator

∆(p) =

∫
dT θ(T )e−T (p2+m2)/2 =

1
1
2(p2 +m2)

and actions become positive∫
dτ 1

2(vm2 − v−1 .
xm

.
xnηmn) →

∫
dτ 1

2(vm2 + v−1 .
xm

.
xnδmn)
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∫
dx 1

4
[ηmn(∂mφ)(∂nφ) +m2φ2] →

∫
dx 1

4
[δmn(∂mφ)(∂nφ) +m2φ2]

C. S-matrix

The primary use of quantum field theory (here described by path integration)

is to produce Feynman diagrams/graphs. General properties described above

for quantum theory are specialized to field theory. Here simple examples

are given from scalar theories. Functional methods simplify combinatorics.

Many properties of the perturbation expansion are described, such as unitarity

and causality. The locations of singularities are given by classical mechanics.

Group theory is described pictorially (as is momentum).

1. Path integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

S-matrix amplitudes can be evaluated by the path integral

A =

∫
Dφ e−iS[φ]Ψ [φ]

with the combined initial and final wave functional Ψ , whose Taylor ex-

pansion in the fields φ has the usual free (asymptotic) multi-particle wave

functions as coefficients. When a basis of products of 1-particle wave

functions is used, the N -particle amplitude can be expressed as

AN =
N∏
i=1

(∫
ψNi

δ

δφ

)
Z[φ]

∣∣∣∣∣
φ=0

, Z[ϕ] =

∫
Dφ e−i(S0[φ]+SI [φ+ϕ])

after separating the action into its free (S0) and interacting (SI) parts.

The generating functional Z can be evaluated by perturbation in SI , giv-

ing a simple integral of Gaussian times polynomial. Pictorially,

∆ : SI( )SI

1 : ψ( )SI

〈 || 〉 : ψ( )ψ

A
Z

e-iSI

SI
!

" || # 1/K

1
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where factors of SI are connected by propagators ∆ = 1/K in terms of

kinetic operators of the (gauge-fixed) action, 1-particle wave functions ψ

are attached to SI directly (factor of 1), and wave functions for particles

that avoid interactions simply have inner products (involving integrals

over space or spatial momenta only).

2. Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Perturbation theory can be represented pictorially in terms of Feynman

diagrams/graphs. The graphs of the S-matrix generating functional Z

can be broken into connected parts W that can be divided into one-

particle-irreducible parts (effective action) Γ (from which the vacuum is

determined):

Z

W

W W

Γ

Γ

Γ

Γ

The effective action Γ is thus the (nonlocal) “action” whose trees alone

give all the graphs from the usual action S. Momentum conservation is

always factored out of connected S-matrices:

S = iδ(p)T

The numbers of propagators, vertices, and loops of a connected graph are

related by

P − V = L− 1

3. Semiclassical expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

From this last relation it follows that the field theory JWKB is an expan-

sion in loops, and classical (tree) graphs give the perturbative solution to
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classical field equations. E.g.,

KΦ = − δSI [Φ]

δΦ
: K Φ

φ
φ

φ

Φ

Φ

φ

φ

φ

φ

=

4. Feynman rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349

Here we collect simplified steps from the action to graphs, after Wick

rotating. Then perturbation is defined by taking the propagator ∆ =

1/K from the (gauge-fixed) kinetic operator K and applying it to the

interaction terms SI

S =

∫
dx 1

2φKφ+ SI [φ]

to find the generating functional Z (and thus its connected part W )

Z[φ] = e−W [φ] = exp

(∫
1
2

δ

δφ

1

K

δ

δφ

)
e−SI [φ]

Expressions are usually simplest in momentum space. Functional notation

automatically takes care of combinatoric factors. A simple example is the

4-point trees in a scalar theory:

1

2

3

4

s

1+2
t

1

2

3

4

1+3 1+4 u

1

2

3

4

+ +

T = g2

(
1

1
2(m2 − s)

+
1

1
2(m2 − t)

+
1

1
2(m2 − u)

)
5. Semiclassical unitarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Unitarity already imposes conditions on the classical action: hermiticity

and positive definiteness (the same as positivity of the energy). These

are clearest in a lightcone gauge. Poincaré invariance of the action relates

spin and statistics: integer for bosons, half-integer for fermions.

6. Cutting rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Unitarity and causality can be expressed diagrammatically; they are seen



42

to be satisfied by the Feynman rules. They can be expressed concisely in

functional language in terms of either the S-matrix operator itself,

S†S = 1 ,
δ

δφ(x)

(
S[φ]†

δ

δφ(y)
S[φ]

)
= 0

(for x0 > y0), or its generating functional

Z[φ]†eD+Z[φ] = 1 ,
δ

δφ(x)

(
Z[φ]†eD+

δ

δφ(y)
Z[φ]

)
= 0

D+ =

∫
dp

←
δ

δφ(p)
∆+(p)

δ

δφ(−p)
, ∆+(p) = θ(p0)2πδ[1

2(p2 +m2)]N(p)

7. Cross sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

Scattering probabilities are expressed in terms of (differential) cross sec-

tions. E.g., in 2→2 scattering in D=4, we have

dσ

dt
= 1

2(2π)3|Tfi|2
1

λ2
12

in terms of the Mandelstam variable t and

λ2
12 ≡ 1

4
[s− (m1 +m2)2][s− (m1 −m2)2]

We sometimes consider Feynman diagrams for cross sections themselves,

S S†

∆

∆ _

∆ _

∆+

∆+

∆*

where we also use complex conjugate propagators ∆* as well as cut prop-

agators that have only positive (∆+) or only negative (∆−) energy states.

8. Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

Singularities in momenta in S-matrices appear whenever they take classi-

cal values. This follows from exponentiating propagators with Schwinger

parameters ∫
dx′idpijdτij e

−i
∑
〈ij〉

[τij(p
2
ij

+m2)/2−(xi−xj)·pij ]

and treating the resulting exponent as a classical action:

τij(p
2
ij +m2) = 0, pij =

xi − xj
τij

,
∑
j

pij = 0
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CPT invariance is a special case of crossing symmetry, relating incoming

particles with outgoing antiparticles (and vice versa), as is clear from

Wick rotation.

9. Group theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

Group theory can also be treated conveniently in Feynman diagrams.

Conservation of charge means group theory lines are continuous. E.g.,

gluon quark

color

flavor

VI. Quantum gauge theory

Quantization of gauge theories requires some special techniques. There are many

different gauges useful for different purposes (hence the whole point of gauge symme-

try). A general method for gauge fixing is that of Becchi, Rouet, Stora, and Tyutin,

which we derive for general quantum mechanics, and use to explain the appearance

of “ghosts”. We then apply these techniques to calculate some tree amplitudes in

various gauge theories, including QCD, QED, and some supersymmetric theories. In

particular, we apply the spacecone gauge to explicitly find 4 and 5-gluon amplitudes,

which are almost trivial using the methods introduced, but would be harder with the

older “spinor helicity” methods, and prohibitively difficult with 4-vector notation in

Lorenz gauges.

A. Becchi-Rouet-Stora-Tyutin

The BRST method is the easiest way to gauge fix, with fermionic symmetry

relating unphysical degrees of freedom. Unitarity is clear by relating general

gauges to unitary gauges. Again we begin with a general discussion in the

framework of quantum physics and canonical quantization, and then address

field theory covariantly with path integrals.

1. Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Applying constraints Gi to states directly is inconsistent when their al-

gebra is nonabelian. The solution is to introduce anticommuting ghost
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pairs for each constraint to reduce the constraints to a single fermionic

one:

Q = ciGi − i1
2c
icjfji

kbk, {bi, cj} = δji ⇒ {Q,Q} = 0

along with the ghost number operator

J = cibi ⇒ [J,Q] = Q

Then physical operators A and states |ψ〉 have the constraints and gauge

invariance

[Q,A] = [J,A] = 0, δA = {Q,Λ}

Q|ψ〉 = J |ψ〉 = 0, δ|ψ〉 = Q|λ〉

The original gauge-invariant Hamiltonian (with Lagrange multiplier

terms) is replaced by a gauge-fixed one

H = Hgi + λiGi → Hgi + {Q,Λ}

2. Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .378

The choice of gauges can be extended by introducing still more (nonmin-

imal) ghosts, commuting and anticommuting, corresponding to adding

trivial constraints:

Q = ciGi − i1
2c
icjfji

kbk + b̃iBi, J = cibi − c̃ib̃i

[Bi, λ
j] = −iδji , {c̃i, b̃j} = δji

In particular, it permits reintroduction of the gauge fields λ. This allows

translation to a Lagrangian formalism, where

L = Lgi(q, λ) +QΛL

Qqm = ciGiq
m, Qλi = −i(.

ci + cjλkfkj
i),

Qci = −i1
2c
jckfkj

i, Qc̃i = Bi, QBi = 0

Usually one uses gauge fixing of the form (for parameter α)

ΛL = 1
2 c̃i[f

i(λ, q) + 1
2αη

ijBj]

3. Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Simple examples are first-quantization of relativistic spins 0 and 1
2 . For

the latter, more nonminimal ghosts are needed to define a vacuum.
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4. Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

These results carry over directly to Yang-Mills, where

QAa = −[∇a, C], QC = iC2, QC̃ = −iB, QB = 0

while for matter transforming as δφ = iλφ we have

Qφ = iCφ

BRST derives, at the classical level, gauges that are equivalent to unitary

gauges at the quantum level.

B. Gauges

The whole point of gauge invariance is to use different gauges for different

applications (just as Lorentz invariance allows different choices of reference

frames). Many different gauges are given, and BRST is applied. Unitary

gauges eliminate all unphysical components, and so can be more convenient

for seeing physical degrees of freedom; Lorentz covariant gauges may be more

useful for calculation because of their extra manifest symmetry. Some gauges

are more useful for trees (i.e., classically), some for loops (i.e., at the quantum

level). The spacecone gauge allows simpler application of twistor methods for

massless particles. Special features of supersymmetric gauges are described.

1. Radial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

The radial gauge sets the radial component of the gauge field to vanish.

This condition can be solved for the gauge field in terms of just its field

strength. It can be useful for particles in external fields. For example, for

electromagnetism we can write

x · A(y + x) = 0 ⇒ Am(y + x) =

∫ 1

0

dτ τxnFnm(y + τx)

2. Lorenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .389

The covariant class of gauges

f = ∂ · A

is simplest. In particular, the Fermi-Feynman gauge α = 1 gives for all

kinetic operators, and thus simple propagators. The lightcone gauge is a

further gauge fixing of the Landau gauge α = 0. It can be generalized

by choosing a different null direction for different external lines. This can

be made covariant by choosing the null directions to be the momenta of

different lines.
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3. Massive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

For vectors made massive by Higgs, the unitary gauge simply gauges away

the eaten scalar. But simple propagators come from generalizations of the

Fermi-Feynman gauge, of the form

f = ∂ · A+mφ

4. Gervais-Neveu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

For the Gervais-Neveu model (subsection IVA6) we can choose the unitary

complex gauge

φ = 〈φ〉 = 1√
2
mI

treating φ† as independent and unfixed, but eliminated by its algebraic

field equation (as in the lightcone gauge). In this gauge, instead of 2 mass-

less polarizations, or 3 massive ones, the gauge field contains 3 massive

vector + 1 massive scalar, so the propagator is simple without the use of

ghosts. An added bonus is that 1
2 of the interaction terms are canceled.

These simplifications are preserved in the massless case, by taking the

limit m→ 0.

5. Super Gervais-Neveu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

Supersymmetrizing the Gervais-Neveu model automatically produces

N=2 supersymmetry. Further simplifications to interactions result from

the field redefinition

eV → 1 + V

6. Spacecone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .399

This gauge is a Wick rotation of the lightcone gauge to a complex, null,

spatial gauge, e.g.,

A2 − iA3 = 0

An advantage over the lightcone gauge is that it’s defined by 2 fixed

spinors instead of 1, each of which can be identified with a different ex-

ternal momentum:

n · A = 0, n = |+〉[−|, P(±) = |∓〉[∓|

where P(±) is the momentum of a particular external line with helicity

±1. Then all components of momenta (including those appearing in the

action for the Feynman rules) can be expressed as scalars:

p+ = 〈p−〉[−p], p− = 〈+p〉[p+], p = 〈+p〉[−p], p̄ = 〈p−〉[p+]
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where we can normalize 〈+−〉 = [−+] = 1 (and restore dimensions later).

Then the external line factors (fields) for positive and negative helicity

are

A+ =
[−p]
〈+p〉

, A− =
〈+p〉
[−p]

since in this gauge A+ is the only component in the action for helicity +1,

and A− for helicity −1.

7. Superspacecone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403

These results can be supersymmetrized, or generalized to massless spinors.

Their external line factors are (with now 1 component each for helicities

±1
2)

ψ+ = [−p], ψ− = 〈+p〉

8. Background-field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

These gauges preserve gauge invariance in external fields of the effective

action Γ , even after gauge fixing the fields on internal lines. This sim-

plifies Γ , since it’s gauge invariant, not just BRST invariant, and needs

no ghosts. When the S-matrix is evaluated, a gauge can be chosen for Γ

that is unrelated to the one for internal lines.

9. Nielsen-Kallosh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .412

More general gauges, useful for supersymmetry, require more ghosts.

10. Super background-field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

Background field methods have further advantages for supersymmetry:

Prepotentials appear only as potentials, avoiding exponentials and other

possible nonlinearities.

C. Scattering

Finally many explicit S-matrices are calculated at the tree level. Twistor

methods are used for Yang-Mills and its supersymmetric generalizations. γ-

matrix methods are applied to QED. Supergraphs (Feynman graphs in super-

space) are described for supersymmetric theories.

1. Yang-Mills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419

Spacecone methods make explicit tree amplitudes easy. The 4-gluon tree

amplitude is evaluated in a couple of lines, from a single term of a single

graph:

1

2+ 3

4

+
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The 5-gluon tree amplitude has 6 terms, and takes less than a page to

evaluate. These are examples of Maximal Helicity Violating amplitudes,

which have all helicities the same except for 2, and take the general form

gn−2 〈ij〉4

〈12〉〈23〉 · · · 〈n− 1, n〉〈n1〉

(The fact that amplitudes with 0 or 1 helicity different vanish is obvious

from the rules without evaluation.)

2. Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

We give an example of a recursion relation; such methods are useful for

generalizations of results to arbitrary number of external lines.

3. Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

Similar simplifications are found for massless fermions (e.g., high-energy

QCD). Particularly simple is N=4 super Yang-Mills. Using a chiral su-

pertwistor space,

〈p| = pα, [p| = (p
.
α, pa)

the amplitude for helicities summing to n−4 for n external lines, including

the (super)momentum conservation factor, is

gn−2 δ(
∑
|i〉[i|)

〈12〉〈23〉 · · · 〈n− 1, n〉〈n1〉

4. Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

Trees are more complicated for massive theories: We evaluate all 4-point

tree amplitudes of QED, directly in terms of their differential cross sec-

tions, to allow simply summing over final polarizations and averaging over

initial ones (i.e., initial and final spins aren’t measured).

s

1

3 4

2
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1
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42
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5. Supergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

Supersymmetric theories are simpler because of superspace. The super-

fields are all scalars. Anticommuting integrals reduce to algebra of co-

variant derivatives, which are simply integrated by parts onto external

lines, leaving trivial δ(θ) integrals. The resulting explicit locality of the
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effective action in anticommuting coordinates implies nonrenormalization

theorems.

VII. Loops

We generalize to the quantum corrections to these “semiclassical” results by de-

scribing “loop” diagrams. Integration over the momenta circulating in these loops

is generally divergent at large (“UV”) momenta, so we begin with the general pro-

cedure of how to remove these infinities. The most general, easiest, and manifestly

symmetric method is dimensional regularization: For all intents and purposes it’s the

only one used in actual calculations at more than 1 loop. We then give some 1 and

2-loop examples, and discuss some physical consequences, such as symmetry break-

ing, energy-dependence of effective coupling constants, and how to make fermions

out of bosons in two dimensions. We also discuss the summation of the perturbation

expansion, which fails, and can only be fixed if the UV divergences did not appear in

the first place.

A. General

General properties and methods of loop calculations are described. In partic-

ular, the procedure is given for how to evaluate loop momentum integrals in

arbitrary dimensions so that dimensional regularization and renormalization

can be applied. The principle of renormalizability (previously called “good

high-energy behavior” classically) is important in restricting choice of theo-

ries. Besides UV divergences there can also be “IR” (low energy) divergences,

but these cancel in cross sections without renormalization.

1. Dimensional renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

To eliminate UV infinities from loop momentum integration, calculate

in arbitrary complex dimensions D, where the result can be made finite

for non-integer D by analytic continuation from low enough D. Then for

D=4−2ε, the result is (multiple) poles in ε + finite stuff. The poles can

be canceled by adding pole terms to the coefficients of the classical action.

2. Momentum integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

Integrals are performed by first introducing Schwinger parameters for

propagators. Then all momentum integrals are just Gaussians × polyno-

mials. But then the integrals over Schwinger parameters get complicated.

However, by scaling all the parameters, the integral over scale gives the

overall divergence of the graph, in terms of a Γ function,

Γ (z) =

∫ ∞
0

dλ λz−1e−λ
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where in this case z is −1
2 the overall power of momentum in the integral.

Since this power depends on D as LD for L loops, and Γ has poles for

nonpositive integers, the UV divergences appear as poles in ε.

3. Modified subtractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .447

Funny extra constant pieces can appear when subtracting these poles, so

modifications are made to the normalization of the action: For minimal

subtraction (MS) we normalize the action as

S0 =
(1

2µ
2)(D−4)/2

g2

∫
dDx

(2π)D/2
1
2φKφ

where (1
2µ

2)(D−4)/2 fixes the engineering dimension, but for MS there is

an extra 1/Γ (D/2) to eliminate Euler γ’s, etc. There is also momentum

(MOM) subtraction, which keeps the quantum propagator the same as

the classical one near the pole at p2 +m2 = 0.

4. Optical theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

This theorem relates cross sections to the imaginary parts of forward

scattering, and decay rates to the imaginary parts of kinetic operators,

using unitarity:

S = 1 + iT , S†S = 1 ⇒ T †T = i(T † − T ) ⇒
∑
f

|Tfi|2 = 2 Im Tii

5. Power counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .453

New divergences at any loop level, coming from all momenta going to

∞, are called “superficial divergences”. Killing them by differentiation

with respect to external momenta shows they must be polynomial. The

optical theorem shows they must be real. Thus they correspond to (di-

vergent) terms in the action. Dimensional analysis then shows that theo-

ries with good high-energy behavior (“renormalizable”) will generate only

such terms. Since there are only a finite number of possibilities of such

terms for any given set of fields, they have more predictive power than

nonrenormalizable theories, which would generate more terms with worse

behavior at each loop level. Of course, terms in the action are also re-

stricted by Poincaré and gauge invariances. Furthermore, C symmetry in

theories like QED (A → −A) restricts terms in the effective action for

just A to be even in A (Furry’s theorem).

6. Infrared divergences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

Unlike ultraviolet (UV) divergences, IR (infrared) ones automatically can-

cel in cross sections, although this may be hard to see from the S-matrices.
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One way to implement this is to regularize (cut off) low energies (soft)

and small angles (collinear) for massless particles in external states, at in-

termediate steps in calculations. If calculations can be done to all orders,

IR divergences exponentiate as phase factors, which can be dropped: An

example is given, nonrelativistic Coulomb scattering. Using the JWKB

and “eikonal” (small angle) approximations, the exact result can be ob-

tained. Another interesting property of this example is that the bound

states show up as poles in the energy in analytic continuation from the

continuum (scattering):

T = g
Γ [−α(E)]

Γ [2 + α(E)]
(1

2∆p
2)α(E)(1

2µ
2)−1−α(E)

α(E) = −1 + i
g

v̄
, E = 1

2mv̄
2

B. Examples

Many examples are calculated, mostly at one loop (lowest order quantum

correction). Physical consequences (quantum effects) include modification

of the potential (changing the vacuum), change in engineering dimension of

coupling constants, and constructing fermions from bosons in 2 dimensions.

2-loop examples of subdivergences are given.

1. Tadpoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

. . .

The simplest examples are the tadpoles, which have only one external

line, and are thus constants (by momentum conservation). They are easy

at 1 loop, and even at 2 if the masses are restricted.

2. Effective potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .465

The simplest application is 1-loop graphs with all external lines at 0 mo-

mentum, which are essentially tadpoles, used as a low-energy approxima-

tion. This can change the vacuum (Coleman-Weinberg mechanism) by

changing the potential,

V = 1
2(1

2m
2 + φ)2ln

(
1 +

2φ

m2

)
More general cases can be treated by first-quantization.
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3. Dimensional transmutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .468

The most important loop effect in the effective potential calculation is that

classical theories without a mass scale can get one quantum mechanically,

as a result of renormalization. Since the renormalization mass scale µ that

was included in the regularized action was arbitrary, it can appear only

in a specific combination with a coupling: Thus a dimensionless coupling

is replaced with an invariant mass scale (dimensional transmutation):

M2 = µ2e−1/g2

4. Massless propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

These are the next simplest examples, and will find important applications

later, since they govern high-energy behavior.

5. Bosonization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .473

Fermion fields can be constructed from boson fields in D=2 at the quan-

tum level, nonperturbatively (summing an infinite number of graphs).

Calculations are performed in position space because: (1) for the mass-

less case only, propagators are as simple there as in momentum space,

and (2) the number of momentum integrals is the number of loops, while

the number of coordinate integrals is the number of vertices minus the

number of external lines. In this simple example a free theory is analyzed,

so there are no coordinate integrals. Thus the effect, though quantum, is

kinematical.

6. Massive propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

These calculations are a bit more complicated, but allow a regularization

of a kind of IR divergence.

7. Renormalization group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482

The renormalization group is the application of dimensional transmuta-

tion to analyze the running of couplings at high energy. In an example,

the classical coupling combines with the 1-loop correction to the kinetic

operator of an auxiliary field as

−2

g
+ ln

(
p2

µ2

)
= ln

(
p2

M2

)
, M2 = µ2e2/g
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so effectively the dimensionless coupling g has been replaced by a mass

M that defines its logarithmic dependence on the energy.

8. Overlapping divergences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .485

We next look at 2-loop, massless propagator corrections. This illustrates

the elimination of subdivergences (the effect of 1-loop divergences on 2-

loop graphs).

C. Resummation

The perturbation expansion is somewhat formal, since it doesn’t converge.

Consequences are discussed, and a possible solution is given, provided no

renormalization was required. (Examples of finite theories are given in the

following section.)

1. Improved perturbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492

We return to the renormalization group in more detail. Although useful

at small (running) coupling, it becomes ambiguous when the coupling

gets larger (third order in perturbation). It can also be used to study the

resummation of the perturbation expansion, revealing problems that will

be more closely analyzed in the rest of this section.

2. Renormalons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

. . .

. . .

The perturbation expansion naively diverges at high orders, due to a

factor of n! at nth order. This factor can be attributed to instantons and

IR and UV renormalons.

3. Borel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

This n! can apparently be canceled by a Borel transform,

A(h̄) =
∞∑
n=0

h̄nan ⇒ Ã(z) = δ(z)a0 +
∞∑
n=0

zn 1
n!
an+1

Ã(z) ≡
∫ r+i∞

r−i∞

d(1/h̄)

2πi
ez/h̄A(h̄) , A(h̄) =

∫ ∞
0

dz e−z/h̄Ã(z)
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But there are ambiguities in inverting this transform, related to nonper-

turbative vacuum values of composite fields. Generically,

A(h̄) ∼
∞∑
n=1

h̄n(n− 1)!(−k)n ⇒ Ã(z) ∼ 1

z + 1
k

leads to an ambiguity ζ in choice of contour

A(h̄) = A0(h̄) + ζe−1/|k|h̄

The problem is tantamount to nonrenormalizability at the nonperturba-

tive level. These problems have also appeared in the rigorous constructive

quantum field theory approach, where only superrenormalizable theories

(ones with no divergences beyond a certain number of loops) with unique

vacua can be proven to exist.

4. 1/N expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .504

N 1

The 1/N expansion is a reorganization of resummation based on group

theory. It is also useful at finite orders of perturbation to separate graphs

at a given loop order into gauge-invariant subsets. It is related to string

theory, in that a planar geometry can be associated with the lowest order

in the expansion. It has experimental verification in the Okubo-Zweig-

Iizuka rule, which compares the relative importance of scattering con-

tributions with different group theory. It may provide a solution to the

instanton ambiguity, in that instanton contributions vanish in the limit

N→∞.

VIII. Gauge loops

Important improvements appear upon the introduction of vector fields in the

loops, including the possibility of cancellation of UV divergences. GUTs get an ex-

perimental verification from the convergence of the couplings of the various forces

to a single value at high energies, especially in the supersymmetric case. Another

important effect is the violation of gauge symmetry unless fermions satisfy certain

constraints, verified experimentally by the Standard Model. Lattice gauge theory is a

nonperturbative approach with some success in describing confinement. The parton
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model, as predicted by QCD, allows the calculation of the “weak” parts of strongly-

interacting processes. The first-quantized methods described previously can also be

applied to loops.

A. Propagators

Propagator corrections are pretty fundamental, since they determine the be-

havior of gauge coupling “constants”. (In background field gauges, 3-point

functions need not be considered for this determination.) Both abelian and

nonabelian theories are calculated. Applications to GUTs provide their one

quantum success: The meeting of couplings at high energy. For supersym-

metric gauge theories, where propagator corrections give all renormalizations,

conditions are found for 1-loop finiteness (which can be shown to be sufficient

for all loops). The Schwinger model is another interesting example from 2

dimensions (massless QED).

1. Fermion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

The correction to the fermion propagator from a gauge field is evaluated

in 2 subtraction schemes.

2. Photon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

The correction to a gauge propagator from a fermion is also done in 2

schemes. For high energy (or a massless fermion) in QED its contribution

to the effective action takes the form, before renormalization,

Γ1 = h̄2
3

∫
dx 1

8
F ab(1

ε
− ln )Fab

showing the preservation of gauge invariance.

3. Gluon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
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The correction to a gauge propagator from self-interaction is calculated

using the background field method, and added to that from spins 0 and 1
2 .

It makes use of the universal kinetic operator in a Yang-Mills background

K = −1
2( − iF abSba)

which is also useful for higher-point functions. The gauge invariance of

this method makes such graphs sufficient for finding the running of the

coupling. Interesting cases where divergences cancel (so the coupling

doesn’t run at high energies) include the massless sectors of open (su-

per)strings reduced to D=4. In general, Yang-Mills is necessary for gauge

couplings to decrease at high energies (asymptotic freedom).

4. Grand Unified Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .521

Besides the unification seen classically, an experimental verification of

GUTs is that the 3 gauge couplings run to 1 at high energy. (I.e., the

unified value at energies above the symmetry breaking scale produces ex-

perimentally correct approximate values at low energies by virtue of their

running.) In particular, supersymmetrization improves agreement with

experiment, suggesting also experimental evidence for supersymmetry.

5. Supermatter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

For the possibility of finite N=1 supersymmetric theories as a solution to

the renormalon problem, we evaluate some supergraphs at 1 loop, first

for matter propagators.

6. Supergluon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

The remaining conditions for finiteness can be found from the gauge prop-

agators.

7. Schwinger model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

Returning to the simple example of D=2, this time for massless QED, we

find kinematic “bound” states at one loop (quantum Stückelberg), and

use the axial anomaly (1-loop violation of conservation) to evaluate the

1-loop effective action for the photon exactly.

B. Low energy

More 1-loop effects can be easily evaluated if we restrict to low-energy con-

tributions. An important example is the quantum violation of gauge sym-

metries, which must be avoided if theories are to maintain unitarity. Quan-

tization on a spacetime lattice can evaluate nonperturbative contributions
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(especially in QCD), but the lack of symmetry restricts to low-energy quan-

tities (e.g., ground-state masses), and resummation ambiguities return in a

different guise.

1. JWKB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

Low energy in the first-quantized approach is JWKB, so we return to that

method, now for external gauge fields.

2. Axial anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

We return to the axial anomaly, now for general (even) D:

∂ · J = 2
1

2D/2(D
2

)!
εab···cdFab...Fcd

For just this example, we use Pauli-Villars regularization (massive ghosts).

3. Anomaly cancellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

Gauge invariance is required for unitarity, so axial anomalies must cancel

if they couple to gauge vectors. This imposes constraints on electroweak

models. The easiest way to see cancelation for the Standard Model is

from GUTs.

4. π0 → 2γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

An application of an uncanceled anomaly in D=4 is the decay of this pseu-

doscalar meson, related to axial symmetry violation by PCAC (subsection

IVA4), but here at the quantum level:

Γ0 =

∫
π 1

8
εabcdFabFcd

5. Vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .548

The one-loop 3-point function in QED is calculated, and evaluated in the

low-energy limit.
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6. Nonrelativistic JWKB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551

The Foldy-Wouthuysen transformation is applied to find the nonrelativis-

tic form of the effective action useful for finding the Lamb shift (including

the anomalous magnetic moment).

7. Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554

Lattices are a useful nonperturbative approach to QCD. The lattice not

only acts a regulator, but eliminates the need for gauge fixing. The gauge

field is replaced with the group element Ux,x−k associated with each link,

where k is now any of the 4 orthonormal basis vectors (in Euclidean

space):

S = − 1
g2
tr
∑

plaquets

(Ux,x−kUx−k,x−k−k′Ux−k−k′,x−k′Ux−k′,x − 1)

≈ − 1
g2
tr
∑

plaquets

1
2(ikak′bFab)

2 ∼ 1
g2
tr
∑
x

F 2(x)

However, it has some problems with fermions. Arguments can be given

for confinement, but nonuniversality is expected in the continuum limit

for the same reasons that renormalons hinder resummation.

C. High energy

Confinement is hard to treat in QCD, but running coupling makes partons

“asymptotically free”, so perturbation can be partially applied at high en-

ergies, corresponding to large-angle scattering. However, these perturbative

calculations require many approximations, and wave functions for partons

inside hadrons must be determined by experiment alone. This section also

discusses special features of supersymmetry, and the use of first-quantized

methods.

1. Conformal anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

Quantum breaking of scale invariance is related to asymptotic freedom.

2. e+e− → hadrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .564
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The simplest QCD loop application involves only leptons in the initial

states. Then summing over final hadrons can be treated as the same as

summation over final partons (quarks and gluons), at least at high energy.

In practice, this is because a high-energy parton gets made into a color

singlet (jet) by accompaniment with low-energy partons traveling within

a small angle of it. Experimental agreement is found by comparison with

lepton production.

3. Parton model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 566

Generalizations to initial hadron states, or measurement of final hadrons,

is more difficult, because it requires factoring in probabilities (parts with

soft parton momenta), determined experimentally, for finding partons in

hadrons: e.g., for lepton-hadron scattering,

hard

soft

k

p

ξ p

k

ξ p

≈ q

or more generally

dσA...B =
∑
a...b

∫
dξa · · · dξb fAa(ξa) · · · fBb(ξb)dσa...b(ξi)

for hard parts dσa...b (calculated) and soft parts fAa (measured). But after

applying various approximations, and using the running of the coupling,

predictions can be made.

4. Maximal supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

1-loop amplitudes simplify as supersymmetry increases, as already de-

scribed for propagator corrections. Using the same expression for the

kinetic operator in a background, the same is seen to be true for 3- and

4-point amplitudes. For N=4 supersymmetry, these amplitudes actually

vanish for <4-point. Similar remarks apply to supergravity, where N=8

is maximal, using a generalization:

+ 1
2W

abcdSLabS
R
cd , Sab = SLab + SRab
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5. First quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576

The worldline can be used for tree and 1-loop calculations. (Earlier we

used it only for low-energy at 1 loop.)
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. . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Finally we consider general spins. Spin 2 (and possibly spin 3/2) must be included in

any complete theory of nature. This and even higher spins are observed experimen-

tally for bound states, but sometimes there are advantages to describing them with

fundamental fields.

IX. General relativity

To go far beyond the Standard Model, we need to understand spins > 1. In

particular, general relativity is the study of spin 2. The treatment we use is closely

related to that applied to Yang-Mills (and super Yang-Mills). It allows coupling to

all the fields of the Standard Model, not just point particles and electromagnetism,

and can be generalized to supergravity and superstrings. We use somewhat new, but

the simplest, methods of calculating curvatures for purposes of solving the classical

field equations. In particular Weyl symmetry, the local generalization of conformal

symmetry, is the simplest way to construct solutions applicable to astronomy and

cosmology.

A. Actions

As for lower-spin theories, actions are the starting point for deriving field

equations for gravity (with matter). The methods for deriving them, like

Yang-Mills, are based on covariant derivatives. The use of a vierbein instead

of a metric is more general, allowing coupling to fermions, and generalization

to superspace (in the next chapter), where a metric can’t be defined. It’s

also closely analogous to the coset spaces defined previously. The notion of

Weyl scale invariance helps isolate certain features from the metric, as the

dilaton applied to cosmology in subsection IVA7. It also gives the simplest

construction of the most important solutions to the field equations, as applied

below.

1. Gauge invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

Since the global symmetry of flat spacetime is Poincaré, we choose that

as our gauge group, but really the translation part is coordinate trans-

formations for curved space, while the Lorentz is like a Yang-Mills gauge

group. These 2 types of symmetries each have their own type of indices,

“curved” for coordinates and “flat” for Lorentz:

g = eλ, λ = λm∂m + 1
2λ

abMba
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Lorentz generators are defined by the way they act on the indices of fields:

e.g., on a vector

[Mab, Vc] = V[aηb]c

2. Covariant derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592

For these local symmetries we introduce gauge fields: the vierbein (for

coordinate symmetry) and Lorentz connection:

∇a = ea
m∂m + 1

2ωa
bcMcb

The vierbein is the generalization of the familiar unit vectors used in

introductory physics courses as a basis in flat space for curvilinear coordi-

nates. All curved (coordinate) indices, except that on the vierbein (since

it is the gauge field for coordinate transformations), can be converted by

it to flat (Lorentz) indices. This allows the gauge transformations of both

gravity and matter fields ψ to take the same form as in Yang-Mills:

∇′ = eλ∇e−λ, ψ′ = eλψ

The metric tensor gmn is the conversion of the Minkowski metric from flat

to curved indices:

Ωa ≡ dxmem
a ⇒ −ds2 = ΩaΩbηab ≡ dxmdxngmn

where em
a is the inverse of ea

m. These gauge fields that define the covari-

ant derivative in turn define its field strengths (torsion, curvature), and

matter coupling:

[∇a,∇b] = Tab
c∇c + 1

2Rab
cdMdc

Killing vectors are generators for symmetries of particular spaces:

[K,∇a] = 0, K = Ka∇a + 1
2K

abMba ⇒ ∇(aKb) = 0

3. Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598

Gauge fixing local Lorentz invariance can be avoided by working with the

metric tensor

gmn = ηabea
meb

n

instead of the vierbein (since it carries no flat indices), but this isn’t

possible when spinors are treated. The gauge fields can be restricted by

not only gauge choices, but also covariant constraints: Specifically, the
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torsion is usually set to vanish to determine the Lorentz connection from

the vierbein. The curvature (Riemann) tensor is reducible (with respect

to the Lorentz group) into the Weyl tensor, Ricci tensor, and Ricci scalar.

Rabcd → ⊕ ⊕ •

4. Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .601

The covariant integration measure is defined from the vierbein. Together

with the covariant derivative, flat-space actions can be generalized to

curved.

e = det ea
m = (−det gmn)−1/2, S =

∫
dx e−1L

This follows from defining the measure in terms of Ωa. The flat-space La-

grangians are then modified by replacing partial derivatives with covariant

ones: e.g., for a Dirac spinor,

S =

∫
e−1Ψ̄(γai∇a +m)Ψ

This statement of minimal coupling is the equivalence principle: the fact

that inertial and gravitational mass are the same, at least at long dis-

tances.

5. Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .605

Similarly, the gravity action is found from the curvature scalar:

LG = −1
4
R = −1

4
Rab

ab

Newton’s constant comes from the vacuum value of the vierbein:

〈eam〉 = κ2/(D−2)δa
m

which makes ∇ and ds dimensionless. There is also the cosmological term

Scos = Λ

∫
dx e−1

Variation of the curvature (to find the field equations) comes from varia-

tion of the covariant derivative. Covariant variation is defined by

δea
m ≡ ζa

beb
m ⇔ ζa

b ≡ (δea
m)em

b

6. Energy-momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .609

Variation of the matter action defines the energy-momentum tensor T

and its properties:

δSM =

∫
e−1ζabTab
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ζab =

{
λab = −λba ⇒ T [ab] = 0 : Lorentz

−1
2∇(aλb) ⇒ ∇aT

ab = 0 : coordinate

Killing vectors then define conserved currents (and thus charges)

Ja ≡ KbT
ba ⇒ ∇aJ

a = (∇aKb)T
ba +Kb(∇aT

ba) = 0

T appears in the gravitational field equations

Rab − 1
2ηabR = 2Tab

A similar, but noncovariant, quantity can be defined for gravity itself, as

for the gauge current in Yang-Mills, such that a conserved total energy-

momentum vector can be defined. However, if the space has a symmetry,

its Killing vector can be used to define such a conserved quantity for just

the matter.

7. Weyl scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

Local (Weyl) scale invariance can be introduced via a compensating scalar

(dilaton):

ψ → Φw+(D−2)/2ψ, ∇a → Φ∇a + (∇bΦ)Mab,

Rab
cd → Φ2Rab

cd + Φδ
[c
[a∇b]∇d]Φ− δc[aδdb](∇Φ)2

This is useful for many purposes, including the simplest method for finding

the cosmological and (static) spherically symmetric solutions. For such

solutions, rescalings are combined with direct products,

ds2 = ds2
1 + ds2

2 ⇒ ∇ = (∇1,∇2)

and coordinate transformations,

∇a(x)→ ∇a(x
′)

A single overall scaling for the vierbein modifies the action to that of a

wrong-sign scalar conformally coupled to gravity:

SG → 4D−1
D−2

∫
dx e−1 1

4
φ( − 1

4
D−2
D−1

R)φ

The Weyl scale gauge φ = 1 returns the original gravity action. Conformal

invariance then appears as:

flat space: conformal invariance

curved space: Weyl invariance

dilaton: dilaton decoupling
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B. Gauges

As for Yang-Mills, many gauges can be useful, here meaning coordinate

choices as well as choices for local Lorentz and Weyl scale transformations.

1. Lorenz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .620

Commonly used gauges include globally Lorentz covariant gauges,

fa = ∂bhab − 1
2∂ah

b
b

or a nonlinearization such as the de Donder gauge,

fn = 1
2∂m(

√
−ggmn)

In a Fermi-Feynman gauge, the kinetic terms are almost simple:

LG,FF = −1
4
hab hab + 1

8
haa hbb

Such gauges are useful for perturbation, and BRST can be applied in the

usual way.

2. Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622

A useful related concept is geodesics, the curved-space analog of straight

lines. They can be defined as solutions for particle equations of motion.

A dust is a generalization to a family of such particles spread through

space, defining a field:

pb∇bpa = 0

The component of a particle’s momentum along a Killing vector is con-

served:

p · ∇ pa = 0 ⇒ p · ∇ K · p = 0 ⇒ d

dτ
K · p = 0

3. Axial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625

Geodesics define axial gauges, e.g.,

nm = δm0 ⇒ g0m = η0m

known in gravity as Gaussian normal coordinates. They can be useful

for studying particle dynamics. Null geodesics define the lightcone gauge:

There only the traceless, transverse part of the field survives, with the

usual Klein-Gordon kinetic operator.

4. Radial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629

Radial gauges (Riemann normal coordinates) are again useful for external
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fields. They are the natural locally flat coordinates (local inertial frame),

since at the origin

em
a(0) = δam, ωm

ab(0) = 0

and describe gauge-covariant translation (parallel transport) from a point.

5. Weyl scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633

Weyl scale invariance is now used to simplify gauges: After introducing

the dilaton (scale compensator), the coordinate and scale gauge-fixing

functions

fa = ∂bhab − 1
2∂ah

b
b + 1

2∂aχ, f = χ− haa

allow the gauge for the kinetic terms

L = −1
4
hab hab + 1

4
1

D−2
χ χ

Even simpler gauges for ghosts are allowed when gravity is coupled to a

physical, massless scalar: Such gauges appear in string theory. In partic-

ular, the physical scalar can be gauge fixed in place of the compensating

scalar.

C. Curved spaces

Classical solutions to the field equations are particularly important in gravity

as in electromagnetism, as massless fields have long-distance effects. However,

unlike electromagnetism, but like Yang-Mills, gravity has self-interactions,

so solutions are more complicated and harder to find. (But Yang-Mills is

confined, so its classical solutions are less important.) Most important are

the cosmological and astrophysical (planets, stars, etc.) solutions, and some

observational tests are discussed.

1. Selfduality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638

As in Yang-Mills, the simplest solutions are selfdual, e.g., waves:

∇+ = ∂+ − 1
2x

ixjR+i+j(x−)∂− − xiR+i+j(x−)M−j

Again the lightcone gauge is a simplification for this case.

2. De Sitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640

The addition of a cosmological (nonderivative) term changes the vacuum

to a space of constant (scalar) curvature, which have as much (but differ-

ent) symmetry as flat space:

Rab
cd = kδc[aδ

d
b]
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It also can be expressed as a Weyl scaling of flat space:

Φ = A+Baxa + C 1
2x

axa, k = 2AC −B2

This describes the coset spaces (for various signatures)

k > 0 : SO(p+1,q)

k = 0 : ISO(p,q)

k < 0 : SO(p,q+1)

 /SO(p,q)

where the gauge group is the local Lorentz group. The most important

cases are

k > 0 = 0 < 0

q = 0 sphere Euclidean hyperbolic

1 de Sitter Minkowski anti-de Sitter

The boundary limit of anti-de Sitter corresponds to a contraction of the

isotropy group: The boundary itself is then recognized as Minkowski space

as a coset of the conformal group in 1 less spatial dimension. As a result,

the spectrum of wave equations is easier to find there: This will prove

useful later for the AdS/CFT correspondence.

3. Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642

Cosmological solutions describe the universe. They can be expressed as

double Weyl scalings,

ds2 = φ2(t)d̂s2, d̂s2 = −dt2 + Υ

where Υ is the sphere, Euclidean, or hyperbolic metric for the 3 spatial

dimensions. The simple results of subsection IVA7 (for Υ Euclidean) are

derived from gravity, and generalized.

4. Red shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645

Some important cosmological measurements are of the Hubble constant

and deceleration parameter, again generalized from IVA7. These are

based on observing red shifts, defined by a certain Weyl scale transfor-

mation that preserves the symmetry generated by an appropriate Killing

vector:

K̂ · ∇̂Φ = 0 ⇒ K = K̂ ⇒ Ka = Φ−1K̂a

5. Schwarzschild . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .646

Non-cosmological gravitational experiments are based on the spherical

symmetry of astrophysical objects (e.g., the sun). The metric is given by

−ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2(dθ2 + sin2θ dφ2)
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which can also be derived by multiple Weyl scalings, combined with di-

rect products and coordinate transformations. This is a good example to

illustrate various general methods for solving the field equations. Electro-

magnetism is included as a slight generalization.

6. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654

The scale of all objects in the universe can be represented by

The classic experimental tests are described: They are based on gravita-

tional redshift and geodesics.

7. Black holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660

Black holes are an extrapolation of spherically symmetric solutions (using

Kruskal-Szekeres coordinates):

t"

r"

r = 0

r = 0

r =
 2G

M

r = 2GM
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The maximal extensions include singularities in both the future (black

hole) and past (white hole), both hidden behind event horizons that are

traversable in only 1 direction. These solutions can be modified to de-

scribe gravitational collapse. The appearance of physical singularities in

such solutions indicates a breakdown of the classical theory: Quantum

modifications to eliminate them should also eliminate the event horizons.

X. Supergravity

Supergravity is the supersymmetric generalization of gravity (local supersym-

metry), and the only nontrivial way to describe spin 3/2. We give descriptions here,

with and without superspace. The Higgs mechanism for supersymmetry gives mass to

spin 3/2. A closely related topic is the derivation of theories from higher-dimensional

ones, since many supersymmetric theories become simpler in some ways in higher

dimensions.

A. Superspace

As supergravity is the supersymmetric generalization of gravity to include

spin 3/2, the simplest method for general applications is superspace. (But

the description is still complicated.) This is especially true for quantum effects

(not discussed here). The method applied here is thus basically a combination

of those described above for super Yang-Mills and General Relativity: It is

again based on covariant derivatives.

1. Covariant derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664

Combining everything you know about covariant derivatives from super

Yang-Mills and gravity, for supergravity we have

K = KM∂M + 1
2K

αβMβα + 1
2K

.
α
.
βM.

β
.
α

+ iK−1Y

∇A = EA
M∂M + 1

2ΩA
βγMγβ + 1

2ΩA

.
β
.
γM.

γ
.
β

+ iAAY

[∇A,∇B} = TAB
C∇C + 1

2RAB
γδMδγ + 1

2RAB

.
γ
.
δM.

δ
.
γ

+ iFABY

where translations include also those for fermionic coordinates, and we

also added their U(1) chiral symmetry to the gauge group. Constraints

are solved in a way similar to the 2 previous theories, in terms of a vector

prepotential.

2. Field strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 669

Again as for the previous 2 theories, some field strengths are constrained,

leaving a reduced set.
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3. Compensators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 672

There is more than one supersymmetric generalization of the dilaton.

4. Scale gauges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 675

As in gravity, scale gauges offer various useful possibilities.

B. Actions

Again we generalize from global supersymmetry, using superspace, but also

components. Compensators, the supersymmetrizations of the dilaton (dis-

cussed in the previous section) become especially important in supergravity.

The superhiggs effect gives mass to the unobserved spin 3/2.

1. Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .681

Different measures are found for
∫
d4θ and

∫
d2θ. The supergravity action

is given by a wrong-sign action for a compensator. After gauging the

compensator to 1, the action is simply the integration measure:

SSG = 3

∫
dx d4θ E−1

2. Ectoplasm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 684

We describe an alternative method of integration, geared for components,

based on differential forms on a bosonic hypersurface in superspace.

3. Component transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .687

Similarly, gauge transformations of components can be derived from su-

perspace.

4. Component approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689

Starting directly from components can be simpler for pure supergravity.

The action is the sum of terms for gravity, spin 3/2, and auxiliary fields:

LSG = LG + Lψ + e−1La

LG = −1
4
e−1R, Lψ = εmnpqψ̄m .

α
1
2{en

α
.
α,∇p}ψqα, La = −3

8
(Ga)

2 +3B̄B

5. Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .692

The relations of different formulations of supergravity due to different

compensators can be derived by electromagnetic-type duality transfor-

mations.

6. Superhiggs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695

The generalization of the Higgs effect to local supersymmetry gives mass

to the gravitino. We give a simplified analysis using compensators.
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7. No-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .698

Some simple models of superhiggs with naturally vanishing cosmological

constant are given. Some have sigma-model symmetries.

C. Higher dimensions

Consideration of dimensions greater than 4 (and reduction to 4 dimensions) is

necessary for superstring theory, but also useful for supergravity with multiple

supersymmetries. This necessarily includes a general analysis of spinors in

higher dimensions.

1. Dirac spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701

Here we derive irreducible spinors for general orthogonal groups, including

their spinor-space metrics. The results are useful for analyzing theories

in higher dimensions, but also for internal symmetries in GUTs.

2. Wick rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .704

We then generalize to arbitrary signature, for Lorentz as well as conformal

symmetry. Symmetries of σ matrices are given, and reality properties of

spinors are found.

3. Other spins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708

A catalog of all types of fields that can appear in supergravity is given in

terms of numbers of their various types of components:

field physical auxiliary gauge

h(ab)
1
2D(D − 3) D D

A[a1...an]

(
D−2
n

) (
D−2
n−1

) (
D−1
n−1

)
ψaα

1
2D
′(D − 3) 1

2D
′(D + 1) D′

χα
1
2D
′ 1

2D
′ 0

Upper limits on the number of dimensions for a given number of super-

symmetries are given:
N D
1 4
2 6
4 10
8 11

4. Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709

Supersymmetry in general dimensions (and thus also extended supersym-

metry) is considered.
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5. Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .713

Examples of supersymmetric and supergravity theories in higher dimen-

sions are given. Of particular interest are super Yang-Mills theories with

only a vector and spinor (closely related to open superstring theory), for

which

{∇α,∇β} = −Γ a
αβi∇a, [∇α,∇a] = ΓaαβW

β, [∇a,∇b] = iFab

⇒ Γa(αβΓ
a
γ)δ = 0

implying D=3,4,6,10. Another interesting theory is 11D supergravity,

with a Lagrangian of the form

L = e−1[−1
4
R + ψ̄mγ

mnp∇nψp + 1
96

(Fabcd)
2 + ψ2F + ψ4]

+ 1
4·3!(4!)2

εmnpqrstuvwxAmnpFqrstFuvwx

6. Reduction to D=4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715

These theories are reduced to D=4 theories from higher dimensions, with

some discussion of extended supergravities and S-duality. The reduction

of the vielbein (as opposed to its inverse, or the metric), e.g., from 1

higher dimension,

ea
m →

( m −1

a ea
m Aa

−1 0 ψ

)
gives the simplest fields, as seen from the reduced momentum becoming

a U(1) generator:

λ ≡ λm∂m, ea ≡ ea
m∂m; δea = [λ, ea]

λ→ λ+ λ−1∂−1, ea → (ea + Aa∂−1, ψ∂−1)

7. 10D IIB on AdS5×S5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Type IIB (maximal, chiral) supergravity in D=10 is discussed at the lin-

earized level, in perturbation about both flat space and AdS5×S5. The

latter, the product of D=5 Anti-de Sitter space with the D=5 Sphere, is

a solution of the supergravity field equations. Its chiral field strength is

χ(θ) = φ+ θαλα + 1
2θ

αθβHαβ + 1
6
θαθβθγRαβγ + 1

24
θαθβθγθδRαβγδ + ...

Its linearized field equations are

DA
CDC

B = 0 mod δ terms
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Solving these equations in a lightcone gauge, as well as the reality condi-

tions

d4
αβγδχ = d̄4

αβγδχ̄

leads to a real prepotential

V = (h+ A) + (θψ̄ + θ̄ψ) + (θ2B̄ + θ̄2B) + θθ̄(h+ A) + (θ3λ̄+ θ̄3λ)

+ (θ2θ̄ψ̄ + θ̄2θψ) + (θ4φ+ θ̄4φ̄) + (θ3θ̄B̄ + θ̄3θB) + θ2θ̄2(h+ A)

+ (θ4θ̄λ̄+ θ̄4θλ) + (θ3θ̄2ψ̄ + θ̄3θ2ψ) + (θ4θ̄2B̄ + θ̄4θ2B)

+ θ3θ̄3(h+ A) + (θ4θ̄3ψ̄ + θ̄4θ3ψ) + θ4θ̄4(h+ A)

Later we’ll find its relation to 4D N=4 super Yang-Mills via the AdS/CFT

correspondence.

XI. Strings

String theory is an active area of research, attempting to generalize point particles

to objects with one-dimensional extent in space. Most of it is speculative, so we

give a limited approach (but including loops). In particular, the only experimental

evidence of strings comes from the scattering and spectrum of hadrons, which are

related by Regge theory. It is thus an approach to studying the most important

yet least understood property of QCD: confinement. (Other proposed methods have

achieved explicit results for only low hadron energy.) The naive string theories fail

in the description of high-energy fixed-angle scattering, whose origin we explain by

examining the parton model implied by the string action. String theory is also useful

for field theory in general.

A. Generalities

Known string theories are not suitable for describing hadrons quantitatively,

but are useful models of observed properties. So we consider qualitative fea-

tures of general string theories. Some of these can be understood from the

geometrical properties of the “worldsheet” that the string sweeps out as it

propagates in spacetime. Others follow from using the dilaton and the de-

scription of closed strings as the direct product of 2 open strings. Yet more are

seen in particle field theory, such as high-energy behavior or the definition of

“planar” Feynman diagrams through the use of group theory as in subsection

VIIC4.

1. Regge theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 724

High-energy behavior in quantum mechanics or field theory, after sum-
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ming an appropriate set of graphs to all orders,

often takes the simple Regge form (for s→ −∞, t fixed)

A4(s, t) = kg2Γ [−α(t)](−s)α(t) = k
∞∑
J=0

1
J !
sJ

g2

J − α(t)

The poles in the Γ function indicate bound states at spin J = α(t) non-

negative integer. The Regge trajectory α(t) has qualitative behavior de-

pending on the theory:

Hadrons are observed to have α(t) linear. Theories that have this Regge

behavior at tree level necessarily have also s-t duality, the property that

summing poles in the s channel gives the same result as summing in the

t channel. Such theories are string theories.

2. Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 728

The string is a generalization of the worldline of the particle to a world-

sheet: For open and closed strings,

τ

σ
σ

τ
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Loops are simplified by geometry, stretching the worldsheet: e.g., gener-

ating a closed string as a bound state from an open-string loop,

=

Multiple loops can also be stretched to insertions of 1-loop tadpoles, al-

lowing a complete divergence analysis from 1-loop graphs: For the su-

perstring, the divergence of the “handle” cancels between bosons and

fermions, while those of the “window” and “cross-cap” cancel each other

for appropriate choice of gauge group.

3. Classical mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733

The bosonic string action is a generalization of the particle action, both

in metric and geometric forms,

SL =
1

α′

∫
d2σ

2π

√
−ggmn 1

2(∂mX
a)(∂nX

b)ηab

S =
1

α′

∫
d2σ

2π

√
−g̃, g̃mn = (∂mX) · (∂nX)

where α′ is the Regge slope (from α(t)) or inverse string tension. The

spinning string action is a generalization of that and the spinning (Dirac)

particle, with the additional terms

∆S =

∫
d2σ

2π

√
−g
[
−i 1√

2
Ψ± · ∇∓Ψ± + χ∓Ψ± · ∇±X − 1

2χ+χ−Ψ+ · Ψ−
]

4. Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 736

Worldsheet CPT invariance is imposed as a reality condition on the string

field/wave function:

worldsheet CPT : Φ[X(σ)] = Φ†[X(π − σ)]

P (and CT) can also be imposed for unoriented strings, restricting states

but allowing more general worldsheet geometries.

worldsheet P : Φ[X(σ)] = MΦT [X(π − σ)]M−1 ⇔

worldsheet CT : Φ[X(σ)] = MΦ*[X(σ)]M−1

(In the open string sector, associating internal symmetry for classical

groups with boundary factors leads to U groups for oriented strings and
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SO or USp for unoriented.) All strings have gravity in their massless sec-

tor, but superstrings have supergravity. These closed-string states come

as direct products of open-string states, which in the massless sector in-

cludes Yang-Mills, but super Yang-Mills for the superstring. Considera-

tion of the various possible products of open strings, and application of

the P condition, allows a classification of the various types of (super)string

theories, and their massless sectors. In addition, on the spinning string

we need to impose

GSO : Φ[Ψ ] = Φ[−Ψ ]

5. T-duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .740

Strings unify massless antisymmetric tensors with gravity: O(D−1,1)

Lorentz is enlarged to O(D,D), which mixes these 2 fields.

6. Dilaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .742

Closed string states can be expressed as the direct product of 2 sets of

open string states, corresponding to string modes propagating clockwise

or counterclockwise. From the vector appearing in the massless sector of

all open strings, this gives a physical scalar as well as the graviton. It

is important for allowing T-duality, but in the supersymmetric case also

introduces S-duality, from mixing with a pseudoscalar partner.

7. Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 747

Lattice quantization of the string worldsheet gives the geometry of a sum

of Feynman diagrams, from summing over different worldsheet metrics.

This defines an underlying parton field theory, whose unusual form ex-

plains why known strings behave differently from observed hadrons.

8. AdS/CFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Anti-de Sitter/Conformal Field Theory correspondence relates 10D

strings on AdS5×S5 to 4D N=4 super Yang-Mills:

Zstring[φ(x)] =
〈
e
∫
dxφO

〉
CFT

for string field φ and CFT operator O. It also relates weak coupling to

strong:

gs = g2
YM ,

(
R2

α′

)2

= 4πNg2
YM

for string couplings α′ and gs and AdS radius R, and CFT coupling gYM

and color number N . It provides a hope that string theory might yet

be capable of describing strong interactions. In particular, the lightcone
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prepotential V found earlier for supergravity couples on the boundary to

a source whose Taylor expansion contains terms

tr{[x−Φ(w)]n}

in terms of the super Yang-Mills field strength Φ. The “bulk” coordinate

x− on the AdS side is the isotropy coordinate on the CFT side that defines

conformal weight.

9. Superstring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The action for the superstring combines the features of the superparticle

and the bosonic string.

S =

∫
d2σ

2π
[1
2F

2 − dX ∧ (χL − χR) + χL ∧ χR]

χL,R ≡ i(dΘL,R)ΓΘL,R , F ≡ dX + χL + χR

An unexpected feature is (∧) terms that don’t couple to the worldsheet

metric, a consequence of the fact that the covariant derivatives of su-

persymmetry (even for the particle) have nonvanishing torsion in empty

(super)space. This action is quantized most simply in the lightcone gauge.

B. Quantization

Now we analyze calculational methods in string theory via first-quantization.

This includes determining the spectrum and evaluating tree graphs. The first-

quantization is similar to second-quantization of a field theory in 2 dimensions

(in the same sense that addition is similar to multiplication, but they are easy

to tell apart). The Weyl scale invariance of this 2D theory (see the previous

section) is violated quantum mechanically unless the spacetime dimension is

fixed to be 26 (or 10 in the supersymmetric case).

1. Gauges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756

The 2D gravity of the worldsheet has also local scale invariance, allowing

it to be gauged to flat:

gmn = ηmn

In either this conformal gauge (with ghosts) or a lightcone gauge, the

action has a simple quadratic form, as for the particle. Similar remarks

apply to the spinning string, with the superconformal gauge also imposing

χ± = 0

It also has 2 kinds of boundary conditions, which can be expressed as

Ψ(−π) =

{
Ψ(π) Ramond

−Ψ(π) Neveu-Schwarz
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2. Quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 761

X can then be quantized as harmonic oscillators: In the lightcone gauge,

for the open string,

H − E = α′(p2
a +M2), M2 = α′−1(N − α0), N =

∞∑
n=1

nain
†ain

giving a linear spectrum (in M2). The leading spin for any mass is given

by all ai1
†’s, so

J = α(M2) = α′M2 + α0

The appearance of massless particles requires also tachyons in the bosonic

string (but prohibited by supersymmetry). For interacting strings, with

nontrivial geometries, conformal transformations can be used as in 2D

electrostatics, after Wick rotation.

3. Commutators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .766

From the usual path-integral definition of commutators (e.g.) on the

worldsheet, they can be evaluated in terms of propagators.

4. Conformal transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 769

2D conformal transformations of the worldsheet (what’s left of 2D coordi-

nate and Weyl invariance in the conformal gauge) are infinite dimensional:

In terms of the Wick-rotated line element,

dz′dz̄′ = h(z, z̄)dz dz̄ ⇒ z′ = f(z), h(z, z̄) = (∂f)(∂̄f̄)

Effectively, z and z̄ are independent coordinates with their own general co-

ordinate transformations. Preservation of conformal invariance (or BRST

invariance) requires 26D spacetime for the bosonic string and 10D for the

superstring.

5. Triality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 773

These considerations can be generalized to external fields (vertex opera-

tors). 2D bosonization now relates spacetime vector and spinor fermions

for superstrings, a special property of 8 transverse dimensions.

6. Open trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778

Finally we come to explicit calculation of S-matrix tree amplitudes, for

some simpler cases, using first-quantized methods, but also worldsheet

conformal transformations. The simplest is the 4-tachyon amplitude in

the open bosonic string,

A4 = 2α′g2Γ [−α(s)]Γ [−α(t)]

Γ [−α(s)− α(t)]
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We examine some of its properties, such as an explicit expansion in poles.

The amplitude has Regge behavior, but not QCD parton behavior: For

large angles, it decays exponentially with momentum, not by powers, as

explained by the unusual partons found in subsection XIA7.

7. Closed trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 778

Since the closed-string spectrum is essentially the direct product of 2

open-string spectra, up to a certain constraint, the calculation of closed-

string trees is very similar to those of the open string, and the amplitudes

have similar properties. (For loops we’ll need a bit of topology, as we’ll

see later.) In fact, these amplitudes can be considered as the products of

open-string amplitudes in a certain way.

8. Ghosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 785

Ghosts allow conformal invariance to be preserved automatically. The

worldsheet vacuum is identified as the spacetime Yang-Mills ghost at p = 0

(i.e., constant), related to global Yang-Mills symmetry.

9. Vertex operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BRST can be applied to vertex operators to give amplitudes that are

automatically spacetime gauge invariant. They satisfy

[Q, V ] = ∂W ⇒ Q

∫
V = QW = 0

defining integrated vertex operators V (that appear in the action) and

unintegrated ones W .

10. Lightcone algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lightcone algebra is an analog to BRST algebra for the lightcone gauge.

C. Loops

The 1-loop corrections (in the quantum field theory sense) can be calcu-

lated via first quantized methods (as for particles in subsection VIIIC5). An

unusual feature (described geometrically above) is the generation of closed

strings as bound states from open strings. As for particle theory, supersym-

metry can cancel divergences. But this now happens in cases which seem

impossible in particle theory: Theories in greater than 4 dimensions, and

theories containing gravity.

1. Partition function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 791

As for particles (see subsection VIIIC5), first-quantized 1-loop graphs can

be reduced to some simple elements. A new element of string amplitudes
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is the canonical partition function (in terms of the Schwinger scale param-

eter T ), which essentially counts the number of states. This introduces

an extra factor of

f(w)2−D : f(w) =
∞∏
n=1

(1− wn), w = e−T

2. Jacobi Theta function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794

The cyclicity properties of the Jacobi Θ function make it essential for all

1-loop string graphs. It can be defined in terms of the grand canonical

partition function for a ghost system (in terms of T and ghost number). As

a special case, its properties determine behavior of the canonical partition

function, which can be used to find the deconfinement phase transition in

string theory: The number of states at the nth excited level is then given

by

N(n) =

∮
dw

2πi

[f(w)]2−D

wn+1
∼ n−(D+1)/4e2π

√
n(D−2)/6

which implies a transition at energy

m0 =
1

2π

√
6

(D − 2)α′

3. Green function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 797

As for the particle, the most important part of the path integral is the

worldsheet Green function, which determines the spacetime momentum

dependence. It has a simple expression in terms of the Jacobi Θ function,

allowing an explicit representation of the amplitude in terms of integration

over all Schwinger parameters.

4. Open . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 801

Properties of the Jacobi Θ function allow an analysis of momentum singu-

larities, confirming the properties implied by coordinate and Weyl invari-

ance of the worldsheet, including generation of closed strings from open,

and conversion of UV divergences into IR tadpole divergences (mostly by

just switching σ ↔ τ). Another string feature is divergence cancelation

between diagrams of different topology.

5. Closed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .806

Similar behavior is found for closed strings, but a new feature is (infinite)

overcounting, corresponding to an unfixed discrete symmetry (modular

invariance),

τ ′ =
aτ + b

cτ + d
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where τ here is a complex parameter giving the ratio of the positions of

the “corners” of the torus (string loop).

6. Super . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .810

Superstring amplitudes are evaluated for ≤4 external lines, with diver-

gence cancelations similar to those of the corresponding particle theories.

Unlike the bosonic string, now all divergences can be canceled.

7. Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 814

Anomalies are avoided in superstrings in the same cases in which diver-

gences are. They would pose problems in 10D supergravity.

XII. Mechanics

String theories provide specific interacting models of higher spin. But free theo-

ries of higher spin can be described in full generality. The equations of motion were

described earlier; here we give the gauge-invariant actions. Again a simple expression

can be applied to arbitrary representations of the Poincaré group in arbitrary dimen-

sions. (String field theory is a special case.) The method is based on adding equal

numbers of commuting and anticommuting ghost dimensions. The usual ghost fields

appear as components of gauge fields in anticommuting directions, as do necessary

auxiliary fields like the determinant of the metric tensor in gravity. Since this method

is based on BRST, it also automatically gives the gauge fixing.

A. OSp(1,1|2)

The first method used is the generalization of BRST as conformal symmetry

in 2 anticommuting dimensions, OSp(1,1|2). We apply it to first-quantization

to find all the properties of all free field theories, with examples.

1. Lightcone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 819

This BRST is based on the lightcone formulation of the Poincaré group,

which we describe here. The only nontrivial generators are (in the mass-

less case)

J i− = −x−∂i +
1

∂+
[1
2x

i(∂j)2 + Sij∂j + w∂i]

2. Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 822

The BRST algebra is obtained by adding extra dimensions, 2 commuting

+ 2 anticommuting. The Poincaré algebra for this bigger space is then

found in a lightcone formalism, where the usual ± of the lightcone are

interpreted as the 2 commuting just added, and the fermionic index for

the 2 anticommuting is α (not a spinor). The SO(D−1,1) Lorentz and

extended BRST subgroups of this enlarged, graded OSp(D,2|2) Lorentz
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are then identified by breaking up the indices as

longitudinal, nonlinear SO(1,1): ±

transverse, manifest OSp(D−1,1|2): i =

{
α

a

}
= A : OSp(1,1|2) BRST

: SO(D−1,1)

The relations between the manifest Lorentz symmetries are:

↘ field equations

↙ BRST singlets

↗ add 2+2

OSp(D,2|2)

↗↙ ↘
SO(D−1,1) =⇒ OSp(D−1,1|2)

field strengths gauge fields/BRST

↘ ↗↙
SO(D−2)

lightcone

Nonminimal terms may also be needed, as seen earlier for first-quantized

BRST for spin 1
2 (subsection VIA3).

3. Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .826

The free gauge-invariant action for general spin can then be written with

a δ function for OSp(1,1|2):

S = −
∫
dx dx−d2xα 1

4
Φ∂+δ(JAB)Φ

where x−, xα are the additional auxiliary coordinates (x+ having been

eliminated, as in lightcone for fixed time), which can be integrated out

easily.

4. Spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 827

The slight generalization of a nonminimal term is needed for half-integer

spin.

5. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 829

For general massless bosons, the gauge-invariant kinetic operator is

Kgi = 1
2(− + 1

2Q
αQα), Qα = Sαa∂a

while for massless fermions

Kgi,f = γ̃αSα
a∂a

in terms of auxiliary Sp(2) γ-matrices γ̃α. The usual known results are

shown to follow for massless spins 0, 1
2 , 1, 3

2
, 2.

B. IGL(1)

This subalgebra is simpler and sufficient. Unlike the previous, here gauge
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fixing is automatic. Equivalence to the lightcone gauge is shown for the

general case. String theory is treated as a special case.

1. Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 834

The algebra is found as a restriction from OSp(1,1|2), with only the 2

usual generators, ghost number and BRST:

J = cb+ S3, Q = 1
2c + S⊕a∂a + S⊕⊕b

where now there is only 1 auxiliary (fermionic) coordinate c = x⊕, and

α = (⊕,	).

2. Inner product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 835

Similar remarks apply to the inner product used to write actions, which

is itself fermionic because of the
∫
dc.

3. Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .837

The action now has a simpler form,

S0 = −(−1)Φ
∫
dx dc 1

2Φ
T (−1)J−1QΦ = 1

2〈Φ|iQΦ〉

where in this form we have included extra fields (ghosts and antifields)

that allow it to be used as a second-quantized BRST operator.

4. Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840

BRST is solved, and equivalence to the lightcone is found (unitarity).

5. Spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843

Again nonminimal terms are added, and BRST is solved.

6. Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 844

Masses are again added by dimensional reduction, with examples for spins
1
2 , 1.

7. Background fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 845

Background Yang-Mills is added to BRST:

QI = 1
2c( − iF abSba) + S⊕a∇a + S⊕⊕b = Q+W

The vertex operators W relate to those in open superstrings, including

the vacuum. Thus,

W = i1
2c({Aa, ∂

a}+ iA2 − F abSba) + iAaS
⊕a

⇒ W0|0〉 = Aa|a〉+ ic1
2(∂ · A)|0〉

8. Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847

Strings are treated as a special case, giving an alternate derivation of
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its BRST. In particular, for the massless states, the string’s version of

(super)gravity can be derived by direct products of (super) Yang-Mills,

including ghosts and gauge transformations.

9. Relation to OSp(1,1|2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .852

The equivalence is shown by elimination of IGL(1)’s auxiliary fields.

C. Gauge fixing

We show how the Fermi-Feynman gauge is automatic, and relate to a previ-

ously known method for field theory.

1. Antibracket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855

Antifields and the antibracket appear naturally from the anticommuting

coordinate, which is the first-quantized ghost of the Klein-Gordon equa-

tion.

2. ZJBV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 858

The Zinn-Justin-Batalin-Vilkovisky method is thus derived in a natural

way.

3. BRST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 862

The relation of this first-quantized BRST to second-quantized BRST is

shown. In particular, in the first-quantized approach Nakanishi-Lautrup

fields appear as antifields of antighosts.

AfterMath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866

Following the body of the text (and preceding the Index) is the AfterMath, containing

conventions and some of the more important equations.



85

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Scientific method

Although there are many fine textbooks on quantum field theory, they all have

various shortcomings (although some of this can be compensated for by learning from

more than one text). Instinct is claimed as a basis for most discussions of quantum

field theory, though clearly this topic is too recent to affect evolution. Their sub-

jectivity more accurately identifies this as fashion: (1) The old-fashioned approach

justifies itself with the instinct of intuition. But the caveman found fire and the

wheel “counter-intuitive”. We have not physically evolved significantly since then.

So if you can handle learning about those things, then intuition isn’t the problem.

Anyone who remembers when they first learned quantum mechanics or special rela-

tivity knows they are counter-intuitive; quantum field theory is the synthesis of those

two topics. Thus, the intuition in this case is probably just habit : Such an approach

is actually historical or traditional , recounting the chronological development of the

subject. Generally the first half (or volume) is devoted to quantum electrodynamics,

treated in the way it was viewed in the 1950’s, while the second half tells the story

of quantum chromodynamics, as it was understood in the 1970’s. Such a “dualistic”

approach is necessarily redundant, e.g., using canonical quantization for QED but

path-integral quantization for QCD, contrary to scientific principles, which advocate

applying the same “unified” methods to all theories. (In fact, not a single textbook

on quantum field theory quantizes QCD canonically. Furthermore, canonical quan-

tization has proven useless beyond S-matrices, while path integrals are required for

nonperturbative techniques such as lattice QCD and constructive quantum field the-

ory.) While some teachers may feel more comfortable by beginning a topic the way

they first learned it, students may wonder why the course didn’t begin with the ap-

proach that they will wind up using in the end. Topics that are unfamiliar to the

author’s intuition are often labeled as “formal” (lacking substance) or even “math-

ematical” (devoid of physics). Recent topics are usually treated there as advanced:

The opposite is often true, since explanations simplify with time, as the topic is better

understood. On the positive side, this approach generally presents topics with better

experimental verification.

(2) In contrast, the fashionable approach is described as being based on the in-

stinct of beauty . But this subjective beauty of art is not the instinctive beauty of

nature, and in science it is merely a consolation. Treatments based on this approach

are usually found in review articles rather than textbooks, due to the shorter life ex-
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pectancy of the latest fashion. On the other hand, this approach has more imagination

than the traditional one, and attempts to capture the future of the subject.

A related issue in the treatment of field theory is the relative importance of con-

cepts vs. calculations : (1) Some texts emphasize the concepts, including those which

have not proven of practical value, but were considered motivational historically (in

the traditional approach) or currently (in the artistic approach). However, many ap-

proaches that were once considered at the forefront of research have faded into oblivion

not because they were proven wrong by experimental evidence or lacked conceptual

attractiveness, but because they were too complex for calculation, or so vague they

lacked predictive ability. Some methods claimed total generality, which they used to

prove theorems (though sometimes without examples); but ultimately the only useful

proofs of theorems are by construction. Often a dualistic, two-volume approach is

again advocated (and frequently the author writes only one of the two volumes): Like

the traditional approach of QED volume + QCD volume, some prefer concept volume

+ calculation volume. Generally, this means that gauge theory S-matrix calculations

are omitted from the conceptual field theory course, and left for a “particle physics”

course, or perhaps an “advanced field theory” course. Unfortunately, the particle

physics course will find the specialized techniques of gauge theory too technical to

cover, while the advanced field theory course will frighten away many students by its

title alone.

(2) On the other hand, some authors express a desire to introduce Feynman graphs

as quickly as possible: This suggests a lack of appreciation of field theory outside of

diagrammatics. Many essential aspects of field theory (such as symmetry breaking

and the Higgs effect) can be seen only from the action, and its analysis also leads to

better methods of applying perturbation theory than those obtained from a fixed set

of rules. Also, functional equations are often simpler than pictorial ones, especially

when they are nonlinear in the fields. The result of over-emphasizing the calculations

is a cookbook, of the kind familiar from some lower-division undergraduate courses

intended for physics majors but designed for engineers.

The best explanation of a theory is the one that fits the principles of scientific

method : simplicity, generality, and experimental verification. In this text we thus

take a more economical or pragmatic approach, with methods based on efficiency

and power. Unattractiveness or counter-intuitiveness of such methods become ad-

vantages, because they force one to accept new and better ways of thinking about

the subject: The efficiency of the method directs one to the underlying idea. For

example, although some consider Einstein’s original explanation of special relativity
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in terms of relativistic trains and Lorentz transformations with square roots as be-

ing more physical, the concept of Minkowski space gave a much simpler explanation

and deeper understanding that proved more useful and led to generalization (general

relativity). Many theories have “miraculous cancellations” when traditional methods

are used, which led to new methods (background field gauge, supergraphs, spacecone,

etc.) that not only incorporate the cancellations automatically (so that the “zeros”

need not be calculated), but are built on the principles that explain them. We place

an emphasis on such new concepts, as well as the calculational methods that allow

them to be compared with nature. It is important not to neglect one for the sake of

the other, artificial and misleading to try to separate them.

As a result, many of our explanations of the standard topics are new to textbooks,

and some are completely new. For example:

(1) We derive the Foldy-Wouthuysen transformation by dimensional reduction from

an analogous one for the massless case (subsections IIB3,5).

(2) Cosmology is discussed with just the dilaton instead of full general relativity

(subsection IVA7). With only some minor fudges, this is sufficient to fit the

post-inflation universe to observations.

(3) We derive the Feynman rules in terms of background fields rather than sources

(subsection VC1); this avoids the need for amputation of external lines for S-

matrices or effective actions, and is more useful for background-field gauges.

(4) We obtain the nonrelativistic QED effective action, used in modern treatments

of the Lamb shift (because it makes perturbation easier than the older Bethe-

Salpeter methods), by field redefinition of the relativistic effective action (sub-

section VIIIB6), rather than fitting parameters by comparing Feynman diagrams

from the relativistic and nonrelativistic actions. (In general, manipulations in the

action are easier than in diagrams.)

(5) We present two somewhat new methods for solving for the covariant derivatives

and curvature in general relativity (including Weyl scaling) that are slightly easier

than all previous methods (subsections IXA2,A7,C5).

There are also some completely new topics, like:

(1) the anti-Gervais-Neveu gauge, where spin in U(N) Yang-Mills is treated in al-

most the same way as internal symmetry — with Chan-Paton factors (subsection

VIB4);

(2) the superspacecone gauge, the simplest gauge for QCD (subsection VIB7); and

(3) a new “(almost-)first-order” superspace action for supergravity, analogous to the

one for super Yang-Mills (subsection XB1).
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We try to give the simplest possible calculational tools, not only for the above

reasons, but also so group theory (internal and spacetime) and integrals can be per-

formed with the least effort and memory. Some traditionalists may claim that the old

methods are easy enough, but their arguments are less convincing when the order of

perturbation is increased. Even computer calculations are more efficient when left as

a last resort; and you can’t see what’s going on when the computer’s doing the calcu-

lating, so you don’t gain any new understanding. We give examples of (and exercises

on) these methods, but not exhaustively. We also include more recent topics (or those

more recently appreciated in the particle physics community) that might be deemed

non-introductory, but are commonly used, and are simple and important enough to

include at the earliest level. For example, the related topics of (unitary) lightcone

gauge, twistors, and spinor helicity are absent from all but the most recent field the-

ory texts (i.e., those later than this one). As a result only those recent texts perform

the calculation of as basic an amplitude as the 4-gluon tree, and do so in way that

requires a couple of pages of explanation, instead of a couple of lines (as here), be-

cause all the contractions of indices (vector and spinor) are applied in each Feynman

diagram, instead of having already been applied in the action (since in the spacecone

gauge each helicity is described by its own 1-component field), as a result of which

vanishing diagrams must be evaluated, whereas here that is already obvious from the

Feynman rules. Another missing topic is the relation of QCD to strings through the

random worldsheet lattice and large-color (1/N) expansion, which is the only known

method that might quantitatively describe its high-energy nonperturbative behavior

(bound states of arbitrarily large mass).

This text is meant to cover all the field theory every high energy theorist should

know, but not all that any particular theorist might need to know. It is not meant as

an introduction to research, but as a preliminary to such courses: We try to fill in the

cracks that often lie between standard field theory courses and advanced specialized

courses. For example, we have some discussion of string theory, but it is more oriented

toward the strong interactions, where it has some experimental justification, rather

than quantum gravity and unification, where its usefulness is still under investigation.

We do not mention statistical mechanics, although many of the field theory methods

we discuss are useful there. Also, we do not discuss any experimental results in

detail; phenomenology and analysis of experiments deserve their own text/course.

We give and apply the methods of calculation and discuss the qualitative features of

the results, but do not make a numerical comparison to nature: We concentrate more

on the “forest” than the “trees”.
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Unlike all previous comprehensive texts on quantum field theory, this one is avail-

able for free over the Internet (as usual, from arXiv.org and its mirrors), and may be

periodically updated. Errata, additions, and other changes will be posted on my web

page at http://insti.physics.sunysb.edu/˜siegel/plan.html until enough are accumu-

lated for a new edition. Electronic distribution has many advantages (as by now is

well known to students of all ages, as well as readers of popular books):

• It’s free.

• It’s available quickly and easily. You can download it from the arXiv.org or its

mirrors, just like preprints, without a trip to the library (do those still exist?),

where it may be checked out, or bookstore (the brick-and-mortar kind), or waiting

for an order from the publisher. (If your connection is really slow, download

overnight.) And it won’t go “out of print”.

• Download it at work, home, etc. (or to the cloud, or carry it on a USB stick),

rather than carrying a book or printing multiple copies.

• It’s easy to deal with when you move.

• Get updates just as quickly, rather than printing yet again.

• It has the usual Web links, so you can get the referenced papers just as easily.

• It has a separate “outline” window containing a table of contents on which you

can click to take the main window to that item.

• You can electronically search (do a “find” on) the text.

• Easier to read on the computer screen or mobile device (arbitrary magnification,

etc.)

• Save trees, ink, and space.

• Theft is not a problem.

• No wear or tear.

• No paper cuts.

• You can even add notes (far bigger than would fit in the margin) with various

software programs.

Highlights

The preceding Table of Contents lists the three parts of the text: Symmetry,

Quanta, and Higher Spin. Each part is divided into four chapters, each of which has

three sections, divided further into subsections. Each section is followed by references

to reviews and original papers. Exercises appear throughout the text, immediately

following the items they test: This purposely disrupts the flow of the text, forcing

http://insti.physics.sunysb.edu/~siegel/plan.html


90

the reader to stop and think about what he has just learned. These exercises are

interesting in their own right, and not just examples or memory tests. This is not a

crime for homeworks and exams, which at least by graduate school should be about

more than just grades.

This text also differs from any other in most of the following ways:

(1) We place a greater emphasis on mechanics in introducing some of the more ele-

mentary physical concepts of field theory:

(a) Some basic ideas, such as antiparticles, can be more simply understood al-

ready with classical mechanics.

(b) Some interactions can also be treated through first-quantization: This is suf-

ficient for evaluating certain tree and one-loop graphs as particles in external

fields. Also, Schwinger parameters can be understood from first-quantization:

They are useful for performing momentum integrals (reducing them to Gaus-

sians), studying the high-energy behavior of Feynman graphs, and finding

their singularities in a way that exposes their classical mechanics interpreta-

tion.

(c) Quantum mechanics is very similar to free classical field theory, by the usual

“semiclassical” correspondence (“duality”) between particles (mechanics) and

waves (fields). They use the same wave equations, since the mechanics Hamil-

tonian or Becchi-Rouet-Stora-Tyutin operator is the kinetic operator of the

corresponding classical field theory, so the free theories are equivalent. In

particular, (relativistic) quantum mechanical BRST provides a simple expla-

nation of the off-shell degrees of freedom of general gauge theories, and in-

troduces concepts useful in string theory. As in the nonrelativistic case, this

treatment starts directly with quantum mechanics, rather than by (first-)

quantization of a classical mechanical system. Since supersymmetry and

strings are so important in present theoretical research, it is useful to have a

text that includes the field theory concepts that are prerequisites to a course

on these topics. (For the same reason, and because it can be treated so

similarly to Yang-Mills, we also discuss general relativity.)

(2) We also emphasize conformal invariance. Although a badly broken symmetry,

the fact that it is larger than Poincaré invariance makes it useful in many ways:

(a) General classical theories can be described most simply by first analyzing

conformal theories, and then introducing mass scales by various techniques.

This is particularly useful for the general analysis of free theories, for finding
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solutions in gravity theories, and for constructing actions for supergravity

theories.

(b) Spontaneously broken conformal invariance produces the dilaton, which can

be used in place of general relativity to describe cosmology.

(c) Quantum theories that are well-defined within perturbation theory are confor-

mal (“scaling”) at high energies. (A possible exception is string theories, but

the supposedly well understood string theories that are finite perturbatively

have been discovered to be hard-to-quantize membranes in disguise nonper-

turbatively.) This makes methods based on conformal invariance useful for

finding classical solutions, as well as studying the high-energy behavior of the

quantum theory, and simplifying the calculation of amplitudes.

(d) Theories whose conformal invariance is not (further) broken by quantum cor-

rections avoid certain problems at the nonperturbative level. Thus conformal

theories ultimately may be required for an unambiguous description of high-

energy physics.

(3) We make extensive use of two-component (chiral) spinors , which are ubiquitous

in particle physics:

(a) The method of twistors (more recently dubbed “spinor helicity”) greatly sim-

plifies the Lorentz algebra in Feynman diagrams for massless (or high-energy)

particles with spin, and it’s now a standard in QCD. (Twistors are also re-

lated to conformal invariance and selfduality.) On the other hand, most texts

still struggle with 4-component Dirac (rather than 2-component Weyl) spinor

notation, which requires gamma-matrix and Fierz identities, when discussing

QCD calculations.

(b) Chirality and duality are important concepts in all the interactions: Two-

component spinors were first found useful for weak interactions in the days

of 4-fermion interactions. Chiral symmetry in strong interactions has been

important since the early days of pion physics; the related topic of instantons

(selfdual solutions) is simplified by two-component notation, and general self-

dual solutions are expressed in terms of twistors. Duality is simplest in two-

component spinor notation, even when applied to just the electromagnetic

field.

(c) Supersymmetry still has no convincing experimental verification (at least not

at the moment I’m typing this), but its theoretical properties promise to solve

many of the fundamental problems of quantum field theory. (Although there

is no experimental evidence for supersymmetry, it was also a hard and long
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task to find experimental evidence for the Higgs boson. They are equally

important for predictability in particle physics, although for the latter this

is seen in perturbation theory, while for the former only when attempting

to resum it.) It is an element of most of the proposed generalizations of

the Standard Model. Chiral symmetry is built into supersymmetry, making

two-component spinors unavoidable.

(4) The topics are ordered in a more pedagogical manner:

(a) Abelian and nonabelian gauge theories are treated together using modern

techniques. (Classical gravity is treated with the same methods.)

(b) Classical Yang-Mills theory is discussed before any quantum field theory. This

allows much of the physics, such as the Standard Model (which may appeal to

a wider audience), of which Yang-Mills is an essential part, to be introduced

earlier. In particular, symmetries and mass generation in the Standard Model

appear already at the classical level, and can be seen more easily from the

action (classically) or effective action (quantum) than from diagrams.

(c) Only the method of path integrals is used for second-quantization. Canonical

quantization is more cumbersome and hides Lorentz invariance, as has been

emphasized even by Feynman when he introduced his diagrams. We thus

avoid such spurious concepts as the “Dirac sea”, which supposedly explains

positrons while being totally inapplicable to bosons. However, for quantum

physics of general systems or single particles, operator methods are more

powerful than any type of first-quantization of a classical system, and path

integrals are mainly of pedagogical interest. We therefore “review” quantum

physics first, discussing various properties (path integrals, S-matrices, unitar-

ity, BRST, etc.) in a general (but simpler) framework, so that these properties

need not be rederived for the special case of quantum field theory, for which

path-integral methods are then sufficient as well as preferable.

(5) Gauge fixing is discussed in a way more general and efficient than older methods:

(a) The best gauge for studying unitarity is the (unitary) lightcone gauge. This

rarely appears in field theory (and gravity) texts, or is treated only half way,

missing the important explicit elimination of all unphysical degrees of free-

dom.

(b) Ghosts are introduced by BRST symmetry, which proves unitarity by showing

equivalence of convenient and manifestly covariant gauges to the manifestly

unitary lightcone gauge. It can be applied directly to the classical action,
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avoiding the explicit use of functional determinants of the older Faddeev-

Popov method. It also allows direct introduction of more general gauges

(again at the classical level) through the use of Nakanishi-Lautrup fields

(which are omitted in older treatments of BRST), rather than the functional

averaging over Landau gauges required by the Faddeev-Popov method.

(c) For nonabelian gauge theories the background field gauge is a must. It makes

the effective action gauge invariant, so Slavnov-Taylor identities need not be

applied to it. Beta functions can be found from just propagator corrections.

(6) Dimensional regularization is used exclusively (with the exception of one-loop

axial anomaly calculations):

(a) It is the only one that preserves all possible symmetries, as well as being the

only one practical enough for higher-loop calculations.

(b) We also use it exclusively for infrared regularization, allowing all divergences

to be regularized with a single regulator (in contrast, e.g., to the three regu-

lators used for the standard treatment of Lamb shift).

(c) It is good not only for regularization, but renormalization (“dimensional

renormalization”). For example, the renormalization group is most simply de-

scribed using dimensional regularization methods. More importantly, renor-

malization itself is performed most simply by a minimal prescription implied

by dimensional regularization. Unfortunately, many books, even among those

that use dimensional regularization, apply more complicated renormalization

procedures that require additional, finite renormalizations as prescribed by

Slavnov-Taylor identities. This is a needless duplication of effort that ignores

the manifest gauge invariance whose preservation led to the choice of dimen-

sional regularization in the first place. By using dimensional renormalization,

gauge theories are as easy to treat as scalar theories: BRST does not have to

be applied to amplitudes explicitly, since the dimensional regularization and

renormalization procedure preserves it.

(7) Perhaps the most fundamental omission in most field theory texts is the expansion

of QCD in the inverse of the number of colors :

(a) It provides a gauge-invariant organization of graphs into subsets, allowing

simplifications of calculations at intermediate stages, and is commonly used

in QCD today.

(b) It is useful as a perturbation expansion, whose experimental basis is the

Okubo-Zweig-Iizuka rule.
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(c) At the nonperturbative level, it leads to a resummation of diagrams in a way

that can be associated with strings, suggesting an explanation of confinement.

(8) Our treatment of gravity is closely related to that applied to Yang-Mills theory,

and differs from that of most texts on gravity:

(a) We emphasize the action for deriving field equations for gravity (and matter),

rather than treating it as an afterthought.

(b) We make use of local (Weyl) scale invariance for cosmological and spherically

symmetric solutions, gauge fixing, field redefinitions, and studying conformal

properties. In particular, other texts neglect the (unphysical) dilaton, which

is crucial in such treatments (especially for generalization to supergravity and

strings).

(c) While most gravity texts leave spinors till the end, and treat them briefly,

our discussion of gravity is based on methods that can be applied directly to

spinors, and therefore to supergravity and superstrings.

(d) Our methods of calculating curvatures for purposes of solving the classical

field equations are somewhat new, but probably the simplest, and are directly

related to the simplest methods for super Yang-Mills theory and supergravity.

Notes for instructors

(This includes self-instructors.) This text is intended for reference and as the basis

for a course on relativistic quantum field theory for second-year graduate students.

The first two parts were repeatedly used for a one-year course I taught at Stony

Brook. (There is more there than can fit comfortably into one year, so I skipped

some subsections, but my choice varied.) It also includes material I used for a one-

semester relativity course, which I gave many times here, and for my third/fourth of

a one-year string course, which we give every year. I used most of the following:

relativity: IA, B3, C2; IIA; IIIA-C5; IVA7; VIB1; IX; XIA3, A5-6, B1-2

strings: IIIB6; VIIA2,6 B5, C4; VIIIA3, B2, C4-5; IXB5; XI

(Sometimes for strings I used other sections, such as [IIB1-2; XIIA2, B1-3,8], or

supplementary notes, as replacements. Subject matter varies from year to year.)

The prerequisites (for the quantum field theory course) are the usual graduate

courses in classical mechanics, classical electrodynamics, and quantum mechanics.

For example, the student should be familiar with Hamiltonians and Lagrangians,

Lorentz transformations for particles and electromagnetism, Green functions for wave
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equations, SU(2) and spin, and Hilbert space. Unfortunately, I find that many second-

year graduate students (especially many who got their undergraduate training in the

USA) still have only an undergraduate level of understanding of the prerequisite

topics, lacking a working knowledge of action principles, commutators, creation and

annihilation operators, etc. While most such topics are briefly reviewed here, they

should be learned elsewhere.

Generally students need to be prepared to begin research at the beginning of their

third year. This means they have to begin preparation for research in the middle of

their second year, so standard courses for high-energy theorists, such as quantum

field theory (and maybe even string theory), should already be finished by then. This

is rather difficult, considering that quantum field theory is usually considered a one-

year course that follows one-year prerequisites. The best solution would be to improve

undergraduate courses, making them less repetitive, so first-semester graduate courses

could be eliminated. An easier fix would be to make graduate courses more efficient,

or at least better coordinated and more modern. For example:

(1) Sometimes relativistic quantum mechanics is taught in the second semester of

quantum mechanics. If this were done consistently, it wouldn’t need to be treated

in the quantum field theory course.

(2) The useful parts of classical electrodynamics are covered in the first semester. (Do

all physicists really need to learn wave guides?) This is especially true if methods

for solving wave equations (special functions, radiation, etc.) are not covered

twice, once in quantum mechanics and once in electromagnetism. Furthermore,

we now know (since the early 20th century) that electromagnetism is not the

only useful classical field theory: Why not have a one-year course on classical

field theory, covering not only electromagnetism, but also Yang-Mills and general

relativity?

(3) A lot of the important concepts in the Standard Model (especially the electroweak

interactions) are essentially classical: spontaneous symmetry breaking, the Higgs

effect, tree graphs, etc. They could be covered as a third semester of classical

field theory.

(4) Meanwhile, true quantum field theory (quantization, loops, etc.) could become a

third semester of quantum theory, taken in parallel with the Standard Model.

(5) Much of string theory is mechanics, not field theory. A string theory course could

begin in the first semester of the second year (classical and statistical mechanics

having been covered in the first year).
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In summary, a curriculum for high-energy theorists could look something like...

sem. Mechanics Classical fields Quantum
1 Classical mechanics Actions & symmetries Quantum theory

2 Statistical mechanics Yang-Mills & gravity Solving wave equations

3 Strings Standard Model Quantum field theory

followed by more advanced courses (e.g., more quantum field theory or strings).

A more drastic (but efficient) alternative is:

(1) Combine the Action & symmetries course with the Wave equations course, since

they are complementary. This would produce a modernized alternative to Classi-

cal electrodynamics which would include wave equations for Quantum mechanics,

and use the latter’s more modern methods. Include Yang-Mills in the Standard

Model course.

(2) Nowadays much of string theory is really just supergravity, including modifi-

cations such as branes and new interpretations such as AdS/CFT. These topics

could be combined with General Relativity to give a more accessible, phenomeno-

logical approach to strings, leaving the String course to cover the the truly stringy

topics, in the same way as the Standard Model/Quantum field theory split.

This allows courses to be arranged so the first semester covers courses required of

all grad students, the second semester those for all theory students, and the third

semester courses useful for preparation for research:

sem. Mechanics (Semi)Classical fields Quantum
1 Classical mechanics Wave theory Quantum theory

2 Statistical mechanics Standard Model Quantum field theory

3 miscellaneous Supergravity & branes Strings

leaving the fourth semester for courses not needed for research.

A more mild alternative is to start quantum field theory in the second semester

of the first year. Unfortunately, in most places students start quantum field theory

in their second year, having had little relativistic quantum mechanics and no Yang-

Mills, so those subjects will comprise the first semester of the “quantum” field theory

course, while the true quantum field theory will wait till the second semester of that

year.

To fit these various scenarios, the ordering of the chapters is somewhat flexible:

The “flow” is indicated by the following “3D” plot:
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lower spin

↘ ↙
higher spin

classical → quantum

symmetry fields quantize loop

Bose I III V VII

↓ IX XI

X XII

Fermi II IV VI VIII

where the 3 dimensions are statistics (“s”), quantization (“h̄”), and spin (“j”): The

respective independent flows are down the page, to the right, and into the page. (The

third dimension has been represented as perpendicular to the page, with “higher spin”

in smaller type to indicate perspective, for legibility.) To present these chapters in the

1 dimension of time we have classified them as jh̄s, but other orderings are possible:

jh̄s : I II III IV V VI VII VIII IX X XI XII

jsh̄ : I III V VII II IV VI VIII IX XI X XII

h̄js : I II III IV IX X V VI XI XII VII VIII

h̄sj : I II III IX IV X V XI VI XII VII VIII

sjh̄ : I III V VII IX XI II IV VI VIII X XII

sh̄j : I III IX V XI VII II IV X VI XII VIII

(However, the spinor notation of II is used for discussing instantons in III, so some

rearrangement would be required, except in the jh̄s, h̄js, and h̄sj cases.) For exam-

ple, the first half of the course can cover all of the classical, and the second quantum,

dividing Part Three between them (h̄js or h̄sj). Another alternative (jsh̄) is a one-

semester course on quantum field theory, followed by a semester on the Standard

Model, and finishing with supergravity and strings. Although some of these (espe-

cially the first two) allow division of the course into one-semester courses, this should

not be used as an excuse to treat such courses as complete: Any particle physics

student who was content to sit through another entire year of quantum mechanics in

graduate school should be prepared to take at least a year of field theory.

Notes for students

Field theory is a hard course. (If you don’t think so, name me a harder one at this

level.) But you knew as an undergraduate that physics was a hard major. Students

who plan to do research in field theory will find the topic challenging; those with less

enthusiasm for the topic may find it overwhelming. The main difference between field

theory and lower courses is that it is not set in stone: There is much more variation in

style and content among field theory courses than, e.g., quantum mechanics courses,

since quantum mechanics (to the extent taught in courses) was pretty much finished
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in the 1920’s, while field theory is still an active research topic, even though it has had

many experimentally confirmed results since the 1940’s. As a result, a field theory

course has the flavor of research: There is no set of mathematically rigorous rules to

solve any problem. Answers are not final, and should be treated as questions: One

should not be satisfied with the solution of a problem, but consider it as a first step

toward generalization. The student should not expect to capture all the details of

field theory the first time through, since many of them are not yet fully understood

by people who work in the area. (It is far more likely that instead you will discover

details that you missed in earlier courses.) And one reminder: The only reason for

lectures (including seminars and conferences) is for the attendees to ask questions

(and not just in private), and there are no stupid questions (except for the infamous

“How many questions are on the exam?”). Only half of teaching is the responsibility

of the instructor.

Some students who have a good undergraduate background may want to begin

graduate school taking field theory. That can be difficult, so you should be sure you

have a good understanding of most of the following topics:

(1) Classical mechanics: Hamiltonians, Lagrangians, actions; Lorentz transforma-

tions; Poisson brackets

(2) Classical electrodynamics: Lagrangian for electromagnetism; Lorentz transfor-

mations for electromagnetic fields, 4-vector potential, 4-vector Lorentz force law;

Green functions

(3) Quantum mechanics: coupling to electromagnetism; spin, SU(2), symmetries;

Green functions for Schrödinger equation; Hilbert space, commutators, Heisen-

berg and Schrödinger pictures; creation and annihilation operators, statistics

(bosons and fermions); JWKB expansion

It is not necessary to be familiar with all these topics, and most will be briefly

reviewed, but if most of these topics are not familiar then there will not be enough

time to catch up. A standard undergraduate education in these three courses is not

enough.
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(amounting to a 10% increase in size): corrections, improved explanations, exam-

ples, (20% more) exercises, figures, references, cosmetics (including more color), and
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. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . SOME FIELD THEORY TEXTS . . . . . . . . . . . . .

There are now too many textbooks, even just recent ones, to give even a some-

what comprehensive listing. Most of the ones I’ll omit are the better-known ones;

you’ll find them anyway. They are useful for teachers and students who are uncom-

fortable with unfamiliar concepts, even when they are more powerful or necessary for

generalizations. I would rather here point out those that are unique and interesting,

particularly ones that: (1) treat all field theories in a unified way, with the same

methods, (2) show how to do complicated calculations in detail, or (3) use more mod-

ern methods that have become universal among quantum field theory practitioners,

such as 2-component spinors (yes, even in QCD).

1 N.N. Bogoliubov and D.V. Shirkov, Introduction to the theory of quantized fields ,

3rd ed. (Wiley, 1980) 620 pp.:

Ahead of its time (1st English ed. 1959): early treatments of path integrals, causal-

ity, background fields, and renormalization of general field theories; but before

Yang-Mills and Higgs.

2 R.P. Feynman, Quantum electrodynamics: a lecture note and reprint volume

(Perseus, 1961) 198 pp.:

Original treatment of quantum field theory as we know it today, but from me-

chanics; includes reprints of original articles (1949).

3 A.I. Akhiezer and V.B. Berestetskii, Quantum electrodynamics (Wiley, 1965) 868

pp.:

Numerous examples of QED calculations.

4 B. de Wit and J. Smith, Field theory in particle physics , v. 1 (Elsevier Science,

1986) 490 pp.:

Novel approach to tree diagrams, derived from classical field equations. Yang-Mills

and Higgs to appear in second edition (“forthcoming”), with E. Laenen.

5 G. Sterman, An introduction to quantum field theory (Cambridge University,

1993) 572 pp.:

First 3/4 can be used as basic text, including S-matrix examples; last 1/4 has

extensive treatment of perturbative QCD, emphasizing factorization.

6 M. Srednicki, Quantum Field Theory (Cambridge, 2007) 608 pp.:

Has many modern topics: spinor helicity, background field and Gervais-Neveu

gauges, 1/N expansion, supersymmetry, GUTs.

7 M.D. Schwartz, Quantum field theory and the Standard Model (Cambridge, 2014)

850 pp.:

Has spinor helicity, background field gauge, many applications.
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8 Theoretical Advanced Study Institute in Elementary Particle Physics (TASI) pro-

ceedings, University of Colorado, Boulder, CO (World Scientific), Inspire:

Annual collection of summer school lectures on recent research topics.

9 W. Siegel, Introduction to string field theory (World Scientific, 1988), [arXiv:hep-

th/0107094], 244 pp.:

Reviews lightcone, BRST, gravity, first-quantization, spinors, twistors, strings;

besides, I like the author.

10 S.J. Gates, Jr., M.T. Grisaru, M. Roček, and W. Siegel, Superspace: or one thou-

sand and one lessons in supersymmetry (Benjamin/Cummings, 1983), [arXiv:hep-

th/0108200], 548 pp.:

Covers supersymmetry, spinor notation, lightcone, Stückelberg fields, gravity,

Weyl scale, gauge fixing, background-field method, regularization, and anoma-

lies; same author as previous, plus three other guys whose names sound familiar.

http://inspirehep.net/search?ln=en&as=1&m1=a&p1=tasi&f1=&op1=a&m2=a&p2=&f2=&op2=a&m3=a&p3=&f3=&action_search=Search&sf=&so=d&rm=citation&rg=250&sc=0&of=hd
http://arXiv.org/abs/hep-th/0107094
http://arXiv.org/abs/hep-th/0107094
http://arXiv.org/abs/hep-th/0108200
http://arXiv.org/abs/hep-th/0108200
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PART ONE: SYMMETRY
The first four chapters present a one-semester course on “classical field theory”.

Perhaps a more accurate description would be “everything you should know before

learning quantum field theory”.

One of the most important and fundamental principles in physics is symmetry.

A symmetry is a transformation (a change of variables) under which the laws of

nature do not change. It places strong restrictions on what kinds of objects can exist,

and how they can interact. When dynamics are described by an action principle

(Lagrangian, Hamiltonian, etc.), as required by quantum mechanics (but also useful

classically), continuous symmetries are equivalent to conservation laws, which are the

sole content of Newton’s laws. In particular, local (“gauge”) symmetries, which allow

independent transformations at each coordinate point, are basic to all the fundamental

interactions: All the fundamental forces are mediated by particles described by Yang-

Mills theory and its generalizations.

From a practical viewpoint, symmetry simplifies calculations by relating different

solutions to equations of motion, and allowing these equations to be written more

concisely by treating independent degrees of freedom as a single entity.

Part One is basically a study of global and local symmetries: Classical dynamics

represents only a certain limit of quantum dynamics, and not the one usually em-

phasized, but most of the symmetries of classical physics survive quantization. The

phenomenon of symmetry breaking, and the related mechanisms of mass generation,

can also be seen at the classical level. In perturbative quantum field theory, classical

field theory is simply the leading term in the perturbation expansion.

Note that “global” (time-, and usually space-independent) symmetries can elim-

inate a variable, but not its time derivative. For example, translation invariance

allows us to fix (i.e., eliminate) the position of the center of mass of a system at some

initial time, but not its time derivative, which is just the total momentum, whose

conservation is a consequence of that same symmetry. A local symmetry, being time

dependent, may allow the elimination of a variable at all times: The existence of this

possibility depends on the dynamics, and will be discussed later.

Of particular interest are ways in which symmetries can be made manifest. Fre-

quently in the literature “manifest” is used vacuously; a “manifest symmetry” is an

obvious one: If you know the group, the representation under consideration doesn’t

need to be stated, but can be seen from just the notation. (In fact, one of the main
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uses of index notation is just to manifest the symmetry.) Formulations where global

and local symmetries are manifest simplify calculations and their results, as well as

clarifying their meaning.

One of the main uses of manifest symmetry is rarely needing to explicitly perform

a specific symmetry transformation. For example, one might need to examine a rela-

tivistic problem in different Lorentz frames. Rather than starting with a description

of the problem in one frame, and then explicitly transforming to another, it is much

simpler to start with a manifestly covariant description, make one choice of frame,

then make another choice of frame. One then never uses the messy square roots of the

familiar Lorentz contraction factors (although they may appear at the end from kine-

matic constraints). A more extreme example is the corresponding situation for local

symmetries, where such transformations are intractable in general, and one always

starts with the manifestly covariant form.

I. GLOBAL
In the first chapter we study symmetry in general, concentrating primarily on

spacetime symmetries, but also discussing general properties that will have other

applications in the following chapter.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . A. COORDINATES . . . . . . . . . . . . . . . . . . . . . . .

In this section we discuss the Poincaré (and conformal) group as coordinate trans-

formations. This is the simplest way to represent it on the physical world. In later

sections we find general representations by adding spin.

1. Nonrelativity

We begin by reviewing some general properties of symmetries, including as an

example the symmetry group of nonrelativistic physics. Symmetries are the result of a

redundant, but useful, description of a theory. (Note that here we refer to symmetries

of a theory, not of a solution to the theory.) For example, translation invariance says

that only differences in position are measurable, not absolute position: We can’t

measure the position of the “origin”. There are three ways to deal with this:

(1) Keep this invariance, and the corresponding redundant variables, which allows all

positions to be treated equally.

(2) Choose an origin; i.e., make a “choice of coordinates”. For example, place an

object at the origin; i.e., choose the position of an object at a certain time to
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be the origin. We can use translational invariance to fix the position of any

one object at a given time, but not the rest: The differences in position are

“translationally invariant”. For example, for N particles there are 3N coordinates

describing the particles, but still only 3 translations: The particles interact in the

same 3-dimensional space.

(3) Work only in terms of the differences of positions themselves as the variables,

allowing a symmetric treatment of objects in terms of translationally invariant

variables. However, this would require applying constraints on the variables: In

the above example, there are 3N(N−1)/2 differences, of which only 3(N−1) are

independent.

Although the last choice is most physical, the first is usually most convenient: The

use of redundant variables, together with symmetry, often gives a simpler description

of a theory. We will find similar features later for “local” invariances: In general, the

most convenient description of a theory is with the invariance; the invariance can then

be fixed, or invariant combinations of variables used, appropriately for the particular

application.

Exercise IA1.1

Consider a system of objects labeled by the index I, each object located at

position xI . (For simplicity, we can consider one spatial dimension, or just

ignore an index labeling the different directions.) Because of translational

invariance

x′I = xI + δx

where δx is a constant independent of I, we are led to define new variables

xIJ ≡ xI − xJ

invariant under the above symmetry. But these are not independent, satisfy-

ing

xIJ = −xJI , xIJ + xJK + xKI = 0

for all I, J,K. Start with xIJ as fundamental instead, and show that the

solution of these constraints is always in terms of some derived variables xI

as in our original definition. (Hint: What happens if we define x1 = 0?)

The appearance of a new invariance upon solving constraints in terms of new

variables is common in physics: e.g., the gauge invariance of the potential

upon solving the source-free half of Maxwell’s equations.

Another example is quantum mechanics, where the arbitrariness of the phase of

the wave function can be considered a symmetry: Although quantum mechanics can
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be reformulated in terms of phase-invariant probabilities, currents, or density matri-

ces instead of wave functions, and this can be useful for some purposes of exposing

physical properties, formulating and solving the Schrödinger equation is simpler in

terms of the wave function. The same applies to “local” symmetries, where there

is an independent symmetry at each point of space and time: For example, quarks

and gluons have a local “color” symmetry, and are not (yet) observed independently

in nature, but are simpler objects in terms of which to describe strong interactions

than the observed hadrons (protons, neutrons, etc.), which are described by color-

invariant products of quark/gluon wave functions, in the same way that probabilities

are phase-invariant products of wave functions.

(Note that in quantum mechanics there is a subtle distinction between observed

and observer that can obscure this symmetry if the observer is not invariant under

it. This can always be avoided by choosing to define the observer as invariant: For

example, the detection apparatus can be included as part of the quantum mechanical

system, while the observer can be defined as some “remote” recorder, who may be

abstracted as even being translationally invariant. In practice we are less precise, and

abstract even the detection apparatus to be invariant: For example, we describe the

scattering of particles in terms of the coordinates of only the particles, and deal with

the origin problem as above in terms of just those coordinates.)

In the Hamiltonian approach to mechanics, both symmetries and dynamics can

be expressed conveniently in terms of a “bracket”: the Poisson bracket for classical

mechanics, the commutator for quantum mechanics. In this formulation, the fun-

damental variables (operators) are some set of coordinates qm and their canonically

conjugate momenta pm, as functions of time.

Our indices may appear either as subscripts or superscripts, with preferences to

be explained later: For nonrelativistic purposes we treat them the same, because of

the existence of Cartesian coordinates for Euclidean space and its definition of length,

but not for more general spaces (including those not associated with space and time).

We also use the Einstein summation convention, that any repeated index in a product

is summed over (“contracted”); usually we contract a superscript with a subscript:

AmBm ≡
∑
m

AmBm

The (Heisenberg) operator approach to quantum mechanics then is related to

classical mechanics by identifying the semiclassical limit of the commutator as the

Poisson bracket: For any functions A and B of p and q, the quantum mechanical
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commutator is

AB −BA = −ih̄
(
∂A

∂pm

∂B

∂qm
− ∂B

∂pm

∂A

∂qm

)
+O(h̄2)

where all terms are generated by re-ordering. (For example, if we define “normal

ordering” in A and B by putting all q’s to the left of all p’s, then doing so in the

products will lead to an automatic cancellation of the “classical” terms, with all the

original p’s and q’s.) In other words, the true classical limit of AB−BA is zero, since

classically functions commute; thus the semiclassical limit is defined by

lim
h̄→0

[
1

h̄
(AB −BA)

]
(which is really a derivative with respect to h̄). We therefore define the bracket for

the two cases by

[A,B] ≡

−i
(
∂A

∂pm

∂B

∂qm
− ∂B

∂pm

∂A

∂qm

)
semiclassically

AB −BA quantum mechanically

The semiclassical definition of the bracket then can be applied to classical physics

(where it was originally discovered). Classically A and B are two arbitrary functions

of the coordinates q and momenta p; in quantum mechanics they can be arbitrary

operators. We have included an “i” in the classical normalization so the two agree

in the semiclassical limit. We generally use (natural/Planck) units h̄ = 1, so mass is

measured as inverse length, etc. (In fact, the value of h̄ has been fixed by definition

to be 6.62607015×10−34 J s/2π.) When we do use an explicit h̄, it is a dimensionless

parameter, and appears only for defining Jeffries-Wentzel-Kramers-Brillouin (JWKB)

expansions or (semi)classical limits.

The definition of the bracket is equivalent to using

[pm, q
n] = −iδnm

where δnm is the “Kronecker delta function”: 1 if m = n, 0 if m 6= n. Note that in this

general use of the Kronecker δ, it has 1 up and 1 down index: Thus it represents the

identity matrix in index notation, and preserves subscripts and superscripts:

δnmpn = pm, qnδmn = qm

The bracket definition also implies the general properties

[A,B] = −[B,A], [A,B]† = −[A†, B†]
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[[A,B], C] + [[B,C], A] + [[C,A], B] = 0

[A,BC] = [A,B]C +B[A,C]

The first set of identities exhibit the antisymmetry of the bracket; next are the “Ja-

cobi identities”. In the last identity the ordering is important only in the quantum

mechanical case: In general, the difference between classical and quantum mechanics

comes from the fact that in the quantum case, operator reordering after taking the

commutator results in multiple commutators.

Infinitesimal symmetry transformations are then written as

δA = i[G,A], A′ = A+ δA

where G is the “generator” of the transformation. More explicitly, infinitesimal gen-

erators will contain infinitesimal parameters: For example, for translations we have

G = εipi ⇒ δxi = i[G, xi] = εi, δpi = 0

where εi are infinitesimal numbers.

As we’ll see later (subsection IA3), the bracket of any two generators of infinites-

imal transformations is also an infinitesimal transformation. Thus, any symmetry

group defines an algebra whose properties follow from the above general properties

of the bracket.

The most evident physical symmetries are those involving spacetime. (Because of

the usual Euclidean square of a spatial vector A2 = AiAjδij with Euclidean “metric”

δij, we now ignore the distinction between superscripts and subscripts for spatial

indices.) For nonrelativistic particles, these symmetries form the “Galilean group”:

For the free particle, those infinitesimal transformations are linear combinations of

M = m, Pi = pi, Jij = x[ipj] ≡ xipj − xjpi, E = H =
p2
i

2m
, Vi = mxi − pit

in terms of the position xi (i = 1, 2, 3), momenta pi, and (nonvanishing) mass m,

where [ij] means to antisymmetrize in those indices, by summing over all permuta-

tions (just two in this case), with plus signs for even permutations and minus for odd.

(In three spatial dimensions, one often writes Ji = 1
2εijkJjk to make J into a vector,

where ε is totally antisymmetric in its indices and ε123 = 1. This is a peculiarity of

three dimensions, and will lose its utility once we consider relativity in four spacetime

dimensions.) These transformations are the space translations (momentum) P , rota-

tions (angular momentum — just orbital for the spinless case) J , time translations
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(energy) E, and velocity transformations (“Galilean boosts”) V . (The mass M is not

normally associated with a symmetry, and is not conserved relativistically.)

Exercise IA1.2

Let’s examine the Galilean group more closely. Using just the relations for

[x, p] and [A,BC] (and the antisymmetry of the bracket):

a Find the action on xi of each kind of infinitesimal Galilean transformation.

b Show that the nonvanishing commutation relations for the generators are

[Jij, Pk] = iδk[iPj], [Jij, Vk] = iδk[iVj], [Jij, J
kl] = iδ

[k
[i Jj]

l]

[Pi, Vj] = −iδijM, [H,Vi] = −iPi

For more than one free particle, we introduce anm, xi, and pi for each particle (but

the same t), and the generators are the sums over all particles of the above expressions.

If the particles interact with each other the expression for H is modified, in such a

way as to preserve the commutation relations. If the particles also interact with

dynamical fields, field-dependent terms must be added to the generators. (External,

nondynamical fields break the invariance. For example, a particle in a Coulomb

potential is not translation invariant since the potential is centered about some point.)

Exercise IA1.3

Show that the Hamiltonian

H =

(∑
I

p2
I

2mI

)
+ V [(xI − xJ)2]

preserves the algebra of exercise IA1.2 for the Galilean group, where the other

generators are modified only by summing over the index “I ” labeling each

particle. (There are also implicit sums over the usual vector index “i”; the

potential V is a function of coordinate differences for each I and J .)

The rotations (or at least their “orbital” parts) and space translations are exam-

ples of coordinate transformations. In general, generators of coordinate transforma-

tions are of the form

G = λi(x)pi ⇒ δφ(x) = i[G, φ] = λi∂iφ

where ∂i = ∂/∂xi and φ(x) is a “scalar field” (or “spin-0 wave function”), a function of

only the coordinates. Here we treat φ as both a function and an operator, which may

be a little confusing, but the distinction should be clear by context. More explicitly,

if x is a coordinate and X is the corresponding operator, then (for 1 coordinate, for
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simplicity) i[P, φ(X)] = φ′(X), where φ′(x) = ∂φ(x)/∂x. So we may sometimes write

∂φ/∂x as (∂/∂x)φ(x) to mean the ∂/∂x acts only on φ (treat φ as a wave function,

e.g.), but we may also write [∂/∂x, φ(x)] when treating φ as an operator. If you’re

not familiar with [∂/∂x, φ(x)] = φ′(x), check it by Taylor expansion (which is always

OK for φ(x) about some point x0).

In classical mechanics, or quantum mechanics in the Heisenberg picture, time

development also can be expressed in terms of the Hamiltonian using the bracket:

d

dt
A =

[
∂

∂t
+ iH,A

]
=

∂

∂t
A+ i[H,A]

(The middle expression with the commutator of ∂/∂tmakes sense only in the quantum

case, and is not defined for the Poisson bracket.) Again, this general relation is

equivalent to the special cases, which in the classical limit are Hamilton’s equations

of motion:
dqm

dt
= i[H, qm] =

∂H

∂pm
,

dpm
dt

= i[H, pm] = − ∂H
∂qm

The Hamiltonian has no explicit time dependence in the absence of time-dependent

nondynamical fields (external potentials whose time dependence is fixed by hand,

rather than by introducing the fields and their conjugate variables into the Hamilto-

nian). Consequently, time development is itself a symmetry: Time translations are

generated by the Hamiltonian; the ∂/∂t term in d/dt term can be dropped when

acting on operators without explicit time dependence.

Invariance of the theory under a symmetry means that the equations of motion

are unchanged under the transformation:(
dA

dt

)′
=
dA′

dt

To apply our above translation of infinitesimal transformations into bracket language,

we define δ(d/dt) by

δ

(
d

dt
A

)
= δ

(
d

dt

)
A+

d

dt
δA

In the quantum case we can write

δ

(
d

dt

)
=

[[
iG,

∂

∂t
+ iH

]
,

]
which follows from the Jacobi identity using B = iG and C = ∂/∂t+iH, and inserting

A into the blank spaces of the commutators above. (The classical case can be treated

similarly, except that the time derivatives are not written as brackets.) We then find

that the generator of a symmetry transformation is conserved (constant), since

0 = δ

(
d

dt

)
=

[
−i∂G

∂t
− [G,H],

]
= −i

[
dG

dt
,

]
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Exercise IA1.4

Show that the generators of the Galilean group are conserved:

a Use the relation d/dt = ∂/∂t+ i[H, ] for the Hamiltonian H of a free particle.

b Solve the equations of motion for x(t) and p(t) in terms of initial conditions,

and substitute into the expression for the generators to give an independent

derivation of their time independence.

Note that in the case where the Galilean symmetry persists for interacting mul-

tiparticle systems, (total) mass is conserved. In particular, invariance under transla-

tions and velocity transformations implies mass conservation.

In the cases where time dependence is not involved, symmetries can be treated

in almost exactly the same way either classically or quantum mechanically using the

corresponding bracket (Poisson or commutator), by using the properties that they

have in common. In particular, the fact that a symmetry generator G = λm(x)pm

is conserved means that we can solve for a component of p in terms of the constant

G, and substitute the result into the remaining equations of motion, and that the

conjugate to G doesn’t appear in H. For example, translation invariance of a poten-

tial in a particular direction means that component of the momentum is a constant

(dp1/dt = −∂H/∂q1 = 0), rotational invariance about some axis means that compo-

nent of angular momentum is a constant (dJ/dt = −∂H/∂θ = 0), etc.

2. Fermions

As we learned in our quantum mechanics course, two particles of the same type

are indistinguishable. Furthermore, while an arbitrary number of bosons (particles

satisfying Bose-Einstein statistics) can each exist in the same one-particle state, only

one (or zero) fermions can exist in the same one-particle state. (For example, we can

have a state consisting of 17 photons each of the same momentum and each of the

same polarization, and we can’t tell which is which, but we can only have 1 electron

in such a state.) In terms of wave functions, e.g., a 2-particle wave function, made

from 1-particle wave functions of the form ψi(x) (where x labels the spatial position

and i other properties), we conveniently define

bosons : ψii′(x, x
′) = +ψi′i(x

′, x)

fermions : ψii′(x, x
′) = −ψi′i(x′, x)

For x = x′ and i = i′ the signs (which could be phases, but are chosen real for

convenience) are chosen so ψii(x, x) vanishes for fermions but not necessarily for
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bosons, so no 2 fermions are in the same state. For other cases the relation avoids

double counting for the 2 particles being switched; the signs are arbitrary, but are

chosen consistently with the previous case so that the relation is local. The symmetry

of wave functions for bosons and antisymmetry for fermions corresponds to operators

that commute for bosons and anticommute for fermions (or for properties associated

with fermions).

As we know experimentally, and we will see follows from relativistic field theory,

particles with half-integral spins obey Fermi-Dirac statistics. Let’s therefore consider

the classical limit of fermions: This will prove useful later, when we define quantum

field theory by quantizing classical field theory. (A similar approach can be taken to

the quantum mechanics of fermions, but is less useful, which is one reason why non-

relativistic quantum mechanics of spin 1
2 is usually done directly, without reference to

the corresponding classical mechanics.) This will lead to generalizations of the con-

cepts of brackets and coordinates. Bosons (more generally, bosonic operators) obey

commutation relations, such as [x, p] = ih̄; in the classical limit they just commute.

Fermions obey anticommutation relations, such as {ζ, ζ†} = h̄ for a single fermionic

harmonic oscillator, where

{A,B} = AB +BA

is the anticommutator, expressed in terms of “braces” { , } instead of the “(square)

brackets” [ , ] used for commutators. So, in the truly classical (not semiclassical)

limit they anticommute, ζζ† + ζ†ζ = 0. Actually, the simplest case is a single real

(hermitian) fermion: Quantum mechanically, or semiclassically, we have

h̄ = {ξ, ξ} = 2ξ2

while classically ξ2 = 0. There is no analog for a single boson: [x, x] = x2 − x2 = 0.

This means that classical fermionic fields must be “anticommuting”: Two such objects

get a minus sign when pushed past each other. As a result, the product of two

fermionic quantities is bosonic, while fermionic times bosonic gives fermionic.

Exercise IA2.1

Show

[B,C] = [A,D] = 0 ⇒ [AB,CD] = 1
2{A,C}[B,D] + 1

2 [A,C]{B,D}

Functions of anticommuting variables are simpler than functions of commuting

variables in every way (algebra and calculus) except for keeping track of signs. This
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is because Taylor expansions in anticommuting variables always terminate. For in-

stance, given a single anticommuting variable ψ, we need to be able to Taylor expand

functions in ψ, e.g., to find a basis for the states. We then have simply

f(ψ) = a+ ψb

for constants a and b, since ψ2 = 0. This generalizes in an obvious way to a function

of many anticommuting variables: For N such variables, we have 2N terms in the

Taylor expansion, since any term can be either independent or first-order in each

variable.

Note that a has the same statistics as f , while b has the opposite; thus func-

tions of anticommuting variables will include some anticommuting coefficients. In

general, when Taylor expanding a function of anticommuting variables we must pre-

serve the statistics: If we Taylor expand a quantity that is defined to be commuting

(bosonic), then the coefficients of even powers of anticommuting variables will also be

commuting, while the coefficients of odd powers will be anticommuting (fermionic),

to maintain the commuting nature of that term (the product of the variables and

coefficient). Similarly, when expanding an anticommuting quantity the coefficients of

even powers will also be anticommuting, while for odd powers it will be commuting.

To work with wave functions that are functions of anticommuting numbers, we

must also understand calculus of anticommuting variables. Since the Taylor expansion

of a function terminates because ψ2 = 0, as follows from anticommutativity, an

anticommuting derivative ∂/∂ψ must also satisfy(
∂

∂ψ

)2

= 0

from either anticommutativity or the fact functions of ψ terminate at first order in ψ.

We also need a ψ integral to define the inner product; definite integration turns out

to be enough. (Think of it as integration over all of a space with no boundary, like

a circle; then, no boundary → no boundary terms.) The most important property of

the integral is integration by parts; then, when acting on any function of ψ,∫
dψ

∂

∂ψ
= 0 ⇒

∫
dψ =

∂

∂ψ

where the normalization is fixed for convenience.

Exercise IA2.2

Prove this is the most general possibility for anticommuting integration by
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considering action of integration and differentiation on the most general func-

tion of ψ (which has only two terms). Note that integration by parts is the

same as translational invariance.

Exercise IA2.3

Consider functions of just anticommuting variables θi and θ̄i. (Hint: This

problem is separable, so it may be easier to consider 1 “dimension” at a

time.) Define the “covariant derivatives”

Di ≡
∂

∂θi
+ 1

2 θ̄i , D̄i ≡ ∂

∂θ̄i
+ 1

2θ
i

{Di, D̄
j} = δji , {D,D} = {D̄, D̄} = 0

Further define “chiral” and “antichiral” fields (wave functions) f and ḡ by

D̄if = Diḡ = 0

a Show that

Di = e−θ
iθ̄i/2

∂

∂θi
eθ
iθ̄i/2 , D̄i = eθ

iθ̄i/2
∂

∂θ̄i
e−θ

iθ̄i/2

f(θ, θ̄) = eθ
iθ̄i/2f̂(θ) , g(θ, θ̄) = e−θ

iθ̄i/2ˆ̄g(θ̄)

b Show that hitting with all D’s or all D̄’s yields a fermionic Fourier transform

and its inverse:

ḡ ≡ (
∏

D)f

⇒ ˆ̄g =

∫
(
∏

dθ)eθ
iθ̄i f̂ , f = (

∏
D̄)g , f̂ =

∫
(
∏

dθ̄)e−θ
iθ̄i ˆ̄g

c Show that the components (in the Taylor expansion) of f̂ and ˆ̄g are the same,

except for a switch between positions from the top and the bottom.

d Consider instead functions of just θi, and define

Di ≡
∂

∂θi
+ θi , {Di,Dj} = 2δij

For

g ≡ (
∏
D)f

what is the relation of the components of g and f?

This also implies a definition of the “(anticommuting) Dirac delta function”,

δ(ψ) = ψ
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which satisfies ∫
dψ′ δ(ψ′ − ψ)f(ψ′) = f(ψ)

for any function f . However, unlike the commuting case, we also have

δ(−ψ) = −δ(ψ)

We can now consider operators that depend on both commuting (φm) and anti-

commuting (ψµ) classical variables,

ΦM = (φm, ψµ)

Classically they satisfy the “graded” commutation relations (anticommutation if both

elements are fermionic, commutation otherwise), not to be confused with the Poisson

bracket,

classically [ΦM , ΦN} = 0 : φmφn−φnφm = φmψν−ψνφm = ψµψν+ψνψµ = 0

where we use mixed brackets (square and brace), the square one to the left to indicate

the usual commutator unless both arguments are fermionic. As a shorthand for these

signs, we write these equations as

[ΦM , ΦN} ≡ ΦMΦN − (−1)MNΦNΦM

where

(−1)MN ≡
{
−1 for M = µ and N = ν

+1 otherwise

Similarly, for cases where statistics are not indicated by indices, we write

[A,B} ≡ AB − (−1)ABBA

This relation is then generalized to the graded quantum mechanical commutator

or Poisson bracket by

[ΦM , ΦN} = h̄ΩMN , ΩMNΩPN = δMP

where Ω is constant, hermitian, and “graded antisymmetric”:

Ω(MN ] = 0 : Ω(mn) = Ω[µν] = Ωmν +Ωνm = 0

where [µν] is the difference of the two orderings, as above, while (µν) is the sum. For

the standard normalization of canonically conjugate pairs of bosons

φm = φiα = (qi, pi)
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and self-conjugate fermions, we choose

Ωµν = δµν ; Ωiα,jβ = δijCαβ, Cαβ =
(

0
−i

i
0

)
Because of signs resulting from ordering anticommuting quantities, we define

derivatives unambiguously by their action from the left:

∂

∂ΦM
ΦN = δNM

The general Poisson bracket then can be written as

semiclassically [A,B} ≡ −A
←
∂

∂ΦM
ΩNM ∂

∂ΦN
B

Since derivatives are normally defined to act from the left, there is a minus sign from

pushing the first derivative to the left if A and that particular component of ∂/∂ΦM

are both fermionic.

We can also replace anticommuting coordinates and their canonical conjugates

with creation and annihilation operators by taking complex combinations, just as for

commuting coordinates. But since these operators will produce only a finite number

of states, they can be represented by finite-dimensional matrices. This means that

anticommuting coordinates can also be represented by finite-dimensional matrices.

But for many applications it is more convenient to treat them in almost the same

way as commuting coordinates.

Exercise IA2.4

Let’s examine some properties of fermionic oscillators:

a For a single set of harmonic oscillators we have

{a, a†} = 1, {a, a} = {a†, a†} = 0

Show that the “number operator” a†a has the property

{a, eiπa†a} = 0

(Hint: Since this system has only 2 states, the easiest way is to check the

action on those states.)

b Define eigenstates of the annihilation operator (“coherent states”) by

a|ζ〉 = ζ|ζ〉

where ζ is anticommuting. Show that this implies

a†|ζ〉 = − ∂

∂ζ
|ζ〉, |ζ〉 = e−ζa

†|0〉, e−ζ
′a†|ζ〉 = |ζ + ζ ′〉, xa

†a|ζ〉 = |xζ〉,
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〈ζ|ζ ′〉 = eζ*ζ
′
, 1 =

∫
dζ*dζ e−ζ*ζ |ζ〉〈ζ|

Define wave functions in this space, Ψ(ζ*) = 〈ζ|Ψ〉. Taylor expand them in

ζ*, and compare this to the usual two-component representation using |0〉
and a†|0〉 as a basis.

c Define the “supertrace” by

str(A) =

∫
dζ*dζ e−ζ*ζ〈ζ|A|ζ〉

Find the relation between any operator in this space and a 2×2 matrix, and

find the expression for the supertrace in terms of this matrix.

d For two sets of fermionic oscillators, we define

{a1, a
†
1} = {a2, a

†
2} = 1, other { , } = 0

Show that the new operators

ã1 = a1, ã2 = eiπa
†
1a1a2

(and their Hermitian conjugates) are equivalent to the original ones except

that one set of the new oscillators commutes (not anticommutes) with the

other ([ã1, ã
†
2] = 0, etc.), even though each set satisfies the same anticom-

mutation relations with itself ({ã1, ã
†
1} = 1, etc.). Thus, choice of statistics

is relevant only for particles in the same state: at most one fermion, but

unlimited bosons. (This change of oscillator basis is called a “Klein trans-

formation”. It can be useful for discrete sets of oscillators, but not for those

labeled by a continuous parameter, because of the discontinuity in the com-

mutation relations when the two labels are equal.)

Exercise IA2.5

Repeat exercise IA2.4 for the bosonic oscillator ([a, a†] = 1), where the Hilbert

space is infinite-dimensional, paying attention to signs, interchanging commu-

tators with anticommutators where necessary, etc. Show that the analog of

part c defines the ordinary trace.

“Reality” has an unusual definition for anticommuting numbers. As in quantum

mechanics, we define reality as hermiticity (to be consistent with classical limits). As

discussed previously, the simplest anticommuting number is hermitian, and all such

numbers can be decomposed into them by taking hermitian and antihermitian parts.

But say we have several such numbers; then their product has the unusual property

(ψµ)† = ψµ ⇒ (ψµψν)† = (ψν)†(ψµ)† = ψνψµ = −ψµψν
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Thus the product of any 2 real anticommuting numbers is imaginary . It is then

appropriate to introduce extra factors of “i” as needed in definitions where such

products are involved (e.g., in Taylor expansions) to restore reality of products.

Similar remarks apply to “transposition”: In analogy to reality, it’s defined for op-

erators by integration by parts, but without complex conjugation of 1 wave function;

i.e., instead of

〈α|β〉 =
∫
α†β ⇒ 〈Oα|β〉 = 〈α|O†β〉 , (AB)† = B†A†

we have

〈α|β〉 =
∫
αTβ ⇒ 〈Oα|β〉 = (−1)Oα〈α|OTβ〉 , (AB)T = (−1)ABBTAT

The extra sign for fermionicO and α has been introduced so that reality for numbers is

the same as hermiticity; this means transposition for numbers should be the identity.

Thus, for real anticommuting numbers,

(ψµψν)T = −(ψν)T (ψµ)T = −ψνψµ = +ψµψν

A* ≡ (A†)T ⇒ (ψµψν)* = (ψµψν)† = −ψµψν

3. Lie algebra

Since the same symmetries can be expressed in terms of different kinds of brackets

for classical and quantum theories, it can be useful to work with just those properties

that the Poisson bracket and commutator have in common, i.e., those that involve

only the bracket of two operators, not just their ordinary product:

[αA+ βB,C] = α[A,C] + β[B,C] for numbers α, β (distributivity)

[A,B] = −[B,A] (antisymmetry)

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 (Jacobi identity)

with similar expressions (differing only by signs) for anticommutators or mixed com-

mutators and anticommutators.

Exercise IA3.1

Find the generalizations of the Jacobi identity using also anticommutators,

corresponding to the cases where 2 or 3 of the objects involved are considered

as fermionic instead of bosonic.
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These properties also give an abstract definition of a form of multiplication, the

“Lie bracket”, which defines a “Lie algebra”. (The first property is true of algebras in

general.) The most common examples of Lie brackets are those defined by another,

associative, form of multiplication, such as matrix multiplication, or operator (infi-

nite matrix) multiplication as in quantum mechanics: In those cases we can write

[A,B] = AB−BA, and use the usual properties of multiplication (distributivity and

associativity) to derive the properties of the Lie bracket. (Another familiar example

in physics is the “cross” product for three-vectors; however, this can also be expressed

in terms of matrix multiplication: See subsection IIA1.) The most important use of

Lie algebras for physics is for describing (continuous) infinitesimal transformations,

especially those describing symmetries.

Exercise IA3.2

Using only the commutation relations of the generators of the Galilean group

(exercise IA1.2), check all the Jacobi identities.

For describing transformations, we can also think of the bracket as a derivative:

The “Lie derivative” of B with respect to A is defined as

LAB = [A,B]

As a consequence of the properties of the Lie bracket, this derivative satisfies the

usual properties of a derivative, including the Leibniz (distributive) rule. (In fact,

for coordinate transformations the Lie derivative is really a derivative with respect to

the coordinates.)

We can now define finite transformations by exponentiating infinitesimal ones:

A′ ≈ (1 + iεLG)A ⇒ A′ = lim
ε→0

(1 + iεLG)1/εA = eiLGA

In cases where we have [A,B] = AB −BA, we can also write

eiLGA = eiGAe−iG

This follows from replacing G on both sides with αG and taking the derivative with

respect to α, to see that both satisfy the same differential equation with the same

initial condition. We then can recognize this as the way transformations are performed

in quantum mechanics: A linear transformation that preserves the Hilbert-space inner

product must be unitary, which means it can be written as the exponential of an

antihermitian operator. Familiar examples from quantum mechanics are translations

and rotations, from exponentiating momentum and angular momentum.
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Just as infinitesimal transformations define a Lie algebra with elements G, finite

ones define a “Lie group” with elements

g = eiG

(or similarly with LG). The multiplication law of two group elements follows from

the fact the product of two exponentials can be expressed in terms of multiple com-

mutators (Baker-Campbell-Hausdorff theorem):

eAeB = eA+B+
1
2 [A,B]+...

We now have the mathematical properties that define a group, namely:

(1) a product, so that for two group elements g1 and g2, we can define g1g2, which is

another element of the group (closure),

(2) an identity element, so gI = Ig = g,

(3) an inverse, where gg−1 = g−1g = I, and

(4) associativity, g1(g2g3) = (g1g2)g3.

In this case the identity is 1 = e0, while the inverse is (eA)−1 = e−A.

Thus two consecutive symmetry transformations will automatically involve Lie

brackets of the generators of infinitesimal transformations. In particular, performing

two consecutive infinitesimal transformations, followed by the inverse transformations

in the same order, gives their bracket:

eAeBe−Ae−B = exp(eABe−A)e−B ≈ e[A,B]

Since the elements of a Lie algebra form a vector space (we can add them and

multiply by numbers), it’s useful to define a basis:

G = αiGi ⇒ g = eiα
iGi

The parameters αi then also give a set of coordinates for the Lie group. (Previously

they were required to be infinitesimal, for infinitesimal transformations; now they are

finite, but may be periodic, as determined by topological considerations that we will

mostly ignore.) For the familiar example of translations, Gi = Pi, and αi = ∆xi is

the change in position. Similarly for rotations by angular momentum G = J , α is the

angle of rotation.

Now the multiplication rules for both the algebra and the group are given by

those of the basis:

[Gi, Gj] = −ifijkGk
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for the (“structure”) constants fij
k = −fjik, which define the algebra/group (but are

ambiguous up to a change of basis). They satisfy the Jacobi identity

[[G[i, Gj], Gk]] = 0 ⇒ f[ij
lfk]l

m = 0

A familiar example is SO(3) (SU(2)), 3D rotations, where fij
k = −εijk if we use

Gi = 1
2εijkJjk.

Another useful concept is a “subgroup”: If some subset of the elements of a group

also form a group, that is called a “subgroup” of the original group. In particular, for

a Lie group the basis of that subgroup will be a subset of some basis for the original

group. For example, for the Galilean group Jij generate the rotation subgroup.

Exercise IA3.3

Let’s examine the subgroup of the Galilean group describing (spatial) coor-

dinate transformations — rotations and spatial translations:

a Show that the infinitesimal transformations are given by

δxi = xjεj
i + ε̂i, εij = −εji

where the ε’s are constants.

b Exponentiate to find the finite transformations

x′i = xjΛj
i + Λ̂i

c Show that Λi
j must satisfy

Λi
kΛj

lδkl = δij

both to preserve the scalar product, and as a consequence of exponentiating.

(Hint: Use matrix notation, and find the equivalent relation between Λ and

Λ−1.)

d Show that the last equation implies det Λ = ±1, while exponentiating can

give only det Λ = 1 (since +1 can’t change continuously to −1). What is the

physical interpretation of a transformation with det Λ = −1? (Hint: Consider

a simple example.)

These results can be generalized to include anticommutators: When some of the

basis elements Gi are fermionic, the corresponding parameters αi are anticommuting

numbers, the structure constants are defined by [Gi, Gj}, etc.. Then G = αiGi is

bosonic term by term, as is g, so bosons transform into bosons and fermions into



A. COORDINATES 121

fermions, but Taylor expansion in the α’s will have both bosonic and fermionic co-

efficients. (For example, for δA = εB, if A is bosonic, then so is εB, but if also ε is

fermionic, then B will also be fermionic.)

For some purposes it is more convenient to absorb the “i” in the infinitesimal

transformation into the definition of the generator:

G→ −iG ⇒ δA = [G,A] = LGA, g = eG, [Gi, Gj] = fij
kGk

This affects the reality properties of G: In particular, if g is unitary (gg† = I), as

usually required in quantum mechanics, g = eiG makes G hermitian (G = G†), while

g = eG makes G antihermitian (G = −G†). In some cases antihermiticity can be

an advantage: For example, for translations we would then have Pi = ∂i and for

rotations Jij = x[i∂j], which is more convenient since we know the i’s in these (and

any) coordinate transformations must cancel anyway. On the other hand, the U(1)

transformations of electrodynamics (on the wave function for a charged particle) are

just phase transformations g = eiθ (where θ is a real number), so clearly we want the

explicit i; then the only generator has the representation Gi = 1. In general we’ll find

that for our purposes absorbing the i’s into the generators is more convenient for just

spacetime symmetries, while explicit i’s are more convenient for internal symmetries.

4. Relativity

The Hamiltonian approach singles out the time coordinate. In relativistic theories

time can be treated on equal footing with space, and it is useful to take advantage of

this fact, so that the full Poincaré invariance is manifest. So, we treat the time t and

spatial position xi together as a four-vector (or D-vector in D−1 space and 1 time

dimension)

xm = (x0, xi) = (t, xi)

where m = 0, 1, ..., 3 (or D−1), i = 1, 2, 3. Since the energy E and three-momentum

pi are canonically conjugate to them,

[pi, xj] = −iδij, [E, t] = +i

we define the 4-momentum as

pm = (E, pi) = ηmnpn, pm = ηmnp
n; [pm, xn] = −iηmn, [pm, x

n] = −iδnm
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where we raise and lower indices with the “Minkowski metric”, in an “orthonormal

basis”,

ηmn =


0 1 2 3

0 −1 0 0 0

1 0 1 0 0

2 0 0 1 0

3 0 0 0 1

 ⇒ p0 = −p0 = −E

in four spacetime dimensions, with obvious generalizations to higher dimensions.

(Sometimes the metric with signs +−−− is used; we prefer −+++ because it is

more convenient for quantum calculations. The numbers of positive and negative

eigenvalues of an invertible matrix is known as its “signature”.) Therefore, we now

distinguish upper and lower indices in general: At least for position and momentum,

the upper-indexed xm and pm have the usual physical interpretation (so xm and pm

have extra signs). This is consistent with our previous nonrelativistic notation, since

3-vector indices do not change sign upon raising or lowering.

Of course, we could have done that much nonrelativistically. Relativity is a

symmetry of kinematics and dynamics: In particular, a free, spinless, relativistic

particle is completely described by the constraint

p2 +m2 = 0

where we define the covariant square

p2 = pmpm = pmpnηmn = −(p0)2 + (p1)2 + (p2)2 + (p3)2

(The square of p on the left should not be confused with the second component of p

on the right.) Our relativistic symmetry must leave this constraint invariant: Thus

the metric defines the norm of a vector (and an invariant inner product). Therefore,

to preserve Lorentz invariance it is important that we contract only an upper index

with a lower index. For similar reasons, we have

∂m =
∂

∂xm
, ∂mx

n = δnm

so quantum mechanically pm = −i∂m.

We use (natural/Planck) units c = 1 (where c is the speed of light in a vacuum),

so length and duration are measured in the same units; c then appears only as a

parameter for defining nonrelativistic expansions and limits. For example, in astro-

nomical units, c=1 light year/year. In fact, the speed of light is no longer measured,

but used to define the meter (since 1986) in terms of the second (itself defined by an
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atomic clock), as the distance light travels in a vacuum in exactly 1/299,792,458th

of a second. So, using metric system units for c is no different than measuring land

distance in miles and altitude in feet and writing ds2 = dx2 + dy2 + b2dz2, where

b=(1/5280)miles/foot is the slope of a line raised up 45◦. (As we mentioned in sub-

section IA1, similar remarks apply to h̄ and the kilogram, h̄ = 1 being another

natural/Planck unit.)

Unlike the positive-definite nonrelativistic norm of a 3-vector V i, for an arbitrary

4-vector V m we can have

V 2


<

=

>

 0 :


timelike

lightlike/null

spacelike

In particular, the 4-momentum is timelike for massive particles (m2 > 0) and lightlike

for massless ones (while “tachyons”, with spacelike momenta andm2 < 0, do not exist,

for reasons that are most clear from quantum field theory). With respect to “proper”

Lorentz transformations, those that can be obtained continuously from the identity,

we can further classify timelike and lightlike vectors as “forward” and “backward”,

since there is no way to continuously “rotate” a vector from forward to backward

without it being spacelike (“sideways”), so only spacelike vectors can have their time

component change sign continuously.

The quantum mechanics will be described later, but the result is that this con-

straint can be used as the wave equation. The main qualitative distinction from the

nonrelativistic case in the constraint

nonrelativistic : − 2mE + ~p 2 = 0

relativistic : − E2 +m2 + ~p 2 = 0

is that the equation for the energy E ≡ p0 is now quadratic, and thus has two

solutions:

p0 = ±ω, ω =
√

(pi)2 +m2

Later we’ll see how the second solution is interpreted as an “antiparticle”. (p0 is not

the same as the usual conserved energy that is measured for an entire system at a

given time. The classical mechanics solution to this “Klein paradox” will be discussed

in subsection IIIB4, and the corresponding quantum solution in VC3.)

The translations and Lorentz transformations make up the Poincaré group, the

symmetry that defines special relativity. (The Lorentz group in D−1 space and 1

time dimension is the “orthogonal” group “O(D−1,1)”. The “proper” Lorentz group
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“SO(D−1,1)”, where the “S” is for “special”, transforms the coordinates by a matrix

whose determinant is 1. The Poincaré group is ISO(D−1,1), where the “I” stands

for “inhomogeneous”.) For the spinless particle they are generated by coordinate

transformations GI = (Pa, Jab):

Pa = pa, Jab = x[apb]

(where also a, b = 0, ..., 3).

Exercise IA4.1

The Poincaré group ISO(D−1,1) is a “contraction” of the orthogonal groups

SO(D,1) (the “de Sitter group”) and SO(D−1,2) (the “anti de Sitter group”).

a Find the commutation relations of the Poincaré generators in the coordinate

representation given above.

b Write the commutation relations for just J in D+1 dimensions, where the

extra dimension, labeled “1”, can be either spacelike or timelike, separating

out the original Jab from the new J1a.

c In these relations, replace J1a with J1a/ε everywhere. Multiply both sides

of these equations with an appropriate power of ε such that the left-hand

(commutator) side has no ε’s, and then take the limit ε→ 0. Show the result

is the same as the Poincaré algebra, with J1a identified with Pa, independent

of the sign of η11. (An equivalent way to take this contraction is to simply

take the “limit” η11 → 0.)

Then the fact that the physics of the free particle is invariant under Poincaré

transformations is expressed as

[Pa, p
2 +m2] = [Jab, p

2 +m2] = 0

Writing an arbitrary infinitesimal transformation as a linear combination of the gen-

erators, we find

δxm = xnεn
m + ε̂m, εmn = −εnm

where the ε’s are constants. Note that antisymmetry of εmn does not imply antisym-

metry of εm
n = εmpη

pn, because of additional signs. (Similar remarks apply to Jab.)

Exponentiating to find the finite transformations, we have

x′m = xnΛn
m + Λ̂m, Λm

pΛn
qηpq = ηmn

The same Lorentz transformations apply to pm, but the translations do not affect

it. The condition on Λ follows from preservation of the Minkowski norm (or inner
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product), but it is equivalent to the antisymmetry of εm
n by exponentiating Λ = eε

(compare exercise IA3.3).

Since dxapa is invariant under the coordinate transformations defined by the Pois-

son bracket (the chain rule, since effectively pa ∼ ∂a), it follows that the Poincaré

invariance of p2 is equivalent to the invariance of the line element

ds2 = −dxmdxnηmn

which defines the “proper time” s. Spacetime with this indefinite metric is called

“Minkowski space”, in contrast to the “Euclidean space” with positive definite metric

used to describe nonrelativistic length measured in just the three spatial dimensions.

(The signature of the metric is thus the numbers of space and time dimensions.)

Exercise IA4.2

For general variables (qm, pm) and generator G, show from the definition of

the Poisson bracket that

δ(dqmpm) = −d
(
G− pm

∂G

∂pm

)
and that this vanishes for any coordinate transformation.

For the massive case, we also have

pa = m
dxa

ds

For the massless case ds = 0: Massless particles travel along lightlike lines. However,

we can define a new parameter τ such that

pa =
dxa

dτ

is well-defined in the massless case. In general, we then have

s = mτ

While this fixes τ = s/m in the massive case, in the massless case it instead restricts

s = 0. Thus, proper time does not provide a useful parametrization of the world

line of a classical massless particle, while τ does: For any piece of such a line, dτ is

given in terms of (any component of) pa and dxa. Later we’ll see how this parameter

appears in relativistic classical mechanics, and is useful for quantum mechanics and

field theory.

Exercise IA4.3

Starting from the usual Lorentz force law for a massive particle in terms of



126 I. GLOBAL

proper time s (which doesn’t apply to m = 0), rewrite it in terms of τ to find

a form which can apply to m = 0.

Exercise IA4.4

The relation between x and p is closely related to the Poincaré conservation

laws:

a Show that

dPa = dJab = 0 ⇒ p[adxb] = 0

and use this to prove that conservation of P and J imply the existence of a

parameter τ such that pa = dxa/dτ .

b Consider a multiparticle system (but still without spin) where some of the

particles can interact only when at the same point (i.e., by collision; they

act as free particles otherwise). Define Pa =
∑

I p
I
a and Jab =

∑
I x

I
[ap

I
b] as

the sum of the individual momenta and angular momenta (where we label

the particle with “I ”). Show that momentum conservation implies angular

momentum conservation,

∆Pa = 0 ⇒ ∆Jab = 0

where “∆” refers to the change from before to after the collision(s).

Special relativity can also be stated as the fact that the only physically observ-

able quantities are those that are Poincaré invariant. (Other objects, such as vectors,

depend on the choice of reference frame.) For example, consider two spinless par-

ticles that interact by collision, producing two spinless particles (which may differ

from the originals). Consider just the momenta. (Quantum mechanically, this is a

complete description.) All invariants can be expressed in terms of the masses and the

“Mandelstam variables” (not to be confused with time and proper time)

s = −(p1 + p2)2, t = −(p1 − p3)2, u = −(p1 − p4)2

where we have used momentum conservation, which shows that even these three

quantities are not independent:

p2
I = −m2

I , p1 + p2 = p3 + p4 ⇒ s+ t+ u =
4∑
I=1

m2
I

(The explicit index now labels the particle, for the process 1+2→3+4.) The simplest

reference frame to describe this interaction is the center-of-mass frame (actually the

center of momentum, where the two 3-momenta cancel). In that Lorentz frame, using
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also rotational invariance, momentum conservation, and the mass-shell conditions, the

momenta can be written in terms of these invariants as

p1 = 1√
s
(1

2(s+m2
1 −m2

2), λ12, 0, 0)

p2 = 1√
s
(1

2(s+m2
2 −m2

1),−λ12, 0, 0)

p3 = 1√
s
(1

2(s+m2
3 −m2

4), λ34 cos θ, λ34 sin θ, 0)

p4 = 1√
s
(1

2(s+m2
4 −m2

3),−λ34 cos θ,−λ34 sin θ, 0)

cos θ =
s2 + 2st− (

∑
m2
I)s+ (m2

1 −m2
2)(m2

3 −m2
4)

4λ12λ34

λ2
IJ = 1

4
[s− (mI +mJ)2][s− (mI −mJ)2]

The “physical region” of momentum space is then given by s ≥ (m1 + m2)2 and

(m3 +m4)2, and |cos θ| ≤ 1.

Exercise IA4.5

Derive the above expressions for the momenta in terms of invariants in the

center-of-mass frame.

Exercise IA4.6

Find the conditions on s, t and u that define the physical region in the case

where all masses are equal.

There is some ambiguity in how momenta are numbered, and thus how s, t, u

are defined. The default convention is to draw a planar spacetime picture of the

scattering, labeling the 4 trajectories. Then (1) s is defined in terms of just the

incoming (or just the outgoing) momenta, which are drawn as adjacent (as they both

come from earlier time). (2) t is defined in terms of the independent pair of adjacent

particles. (3) Thus, u is defined in terms of opposite particles.

For some purposes it will prove more convenient to use a “lightcone basis”

p± = 1√
2
(p0±p1) ⇒ ηmn =


+ − 2 3

+ 0 −1 0 0

− −1 0 0 0

2 0 0 1 0

3 0 0 0 1

, p2 = −2p+p−+(p2)2+(p3)2

and similarly for the “lightcone coordinates” (x±, x2, x3). (“Lightcone” is an unfor-

tunate but common misnomer, having nothing to do with cones in most usages.) In

this basis the solution to the mass-shell condition p2 +m2 = 0 can be written as

p± = −p∓ =
(pi)2 +m2

2p∓



128 I. GLOBAL

(where now i = 2, 3), which more closely resembles the nonrelativistic expression.

(Note the change on indices +↔ − upon raising and lowering.) A special lightcone

basis is the “null basis”,

p± = 1√
2
(p0 ± p1), pt = 1√

2
(p2 − ip3), p̄t = 1√

2
(p2 + ip3)

⇒ ηmn =


+ − t t̄

+ 0 −1 0 0

− −1 0 0 0

t 0 0 0 1

t̄ 0 0 1 0

, p2 = −2p+p− + 2ptp̄t

where the square of a vector is linear in each component. (We often use “ ” to

indicate complex conjugation.)

Exercise IA4.7

Show that for p2 + m2 = 0 (m2 ≥ 0, pa 6= 0), the signs of p+ and p− are

always the same as the sign of the canonical energy p0.

Exercise IA4.8

Consider the Poincaré group in 1 extra space dimension (D space, 1 time) for

a massless particle. Interpret p+ as the “mass”, and p− as the “energy”.

a Show that the constraint p2 = 0 gives the usual nonrelativistic expression for

the energy.

b Show that the subgroup of the Poincaré group generated by all generators that

commute with p+ is the Galilean group (in D−1 space and 1 time dimensions).

Now nonrelativistic mass conservation is part of momentum conservation,

and all the Galilean transformations are coordinate transformations. Also,

positivity of the mass is related to positivity of the energy (see exercise IA4.7).

There are two standard examples of relativistic effects on geometry. Without loss

of generality we can consider 2 dimensions, by considering motion in just 1 spatial

direction. One example is called “Lorentz-Fitzgerald contraction”: Consider a finite-

sized object moving with constant velocity. In our 2D space, this looks like 2 parallel

lines, representing the endpoints:
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(In higher dimensions, this represents a one-spatial-dimensional object, like a thin

ruler, moving in the direction of its length.) If we were in the “rest frame” of this

object, the lines would be vertical. In that frame, there is a simple physical way to

measure the length of the object: Send light from a clock sitting at one end to a

mirror sitting at the other end, and time how long it takes to make the round trip.

A clock measures something physical, namely the proper time T ≡
∫ √

ds2 along its

“worldline” (the curve describing its history in spacetime). Since ds2 is by definition

the same in any frame, we can calculate this quantity in our frame.

In this 2D picture lightlike lines are always slanted at ±45◦. The 2 lines representing

the ends of the object are (in this frame) x = vt and x = L + vt. Some simple

geometry then gives

T =
2L√

1− v2
⇒ L =

√
1− v2 T/2

This means that the length L we measure for the object is shorter than the length

T/2 measured in the object’s rest frame by a factor
√

1− v2 < 1. Unlike T , the L we

have defined is not a physical property of the object: It depends on both the object

and our velocity with respect to it. There is a direct analogy for rotations: We can

easily define an infinite strip of constant width in terms of 2 parallel lines (the ends),

where the width is defined by measuring along a line perpendicular to the ends. If

we instead measure at an arbitrary angle to the ends, we won’t find the width, but

the width times a factor depending on that angle.

The most common point of confusion about relativity is that events that are

simultaneous in one reference frame are not simultaneous in another (unless they are

at the same place, in which case they are the same event). A frequent example is of

this sort: You have too much junk in your garage, so your car won’t fit anymore. So

your spouse/roommate/whatever says, “No problem, just drive it near the speed of

light, and it will Lorentz contract to fit.” So you try it, but in your frame inside the

car you find it is the garage that has contracted, so your car fits even worse. The real
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question is, “What happens to the car when it stops?” The answer is, “It depends on

when the front end stops, and when the back end stops.” You might expect that they

stop at the same time. That’s probably wrong, but assuming it’s true, we have (at

least) two possibilities: (1) They stop at the same time as measured in the garage’s

reference frame. Then the car fits. However, in the car’s frame (its initial fast frame),

the front end has stopped first, and the back end keeps going until it smashes into

the front enough to make it fit. (2) They stop at the same time in the car’s frame. In

the garage’s frame, the back end of the car stops first, and the front end keeps going

until it smashes out the back of the garage.

The other standard example is “time dilation”: Consider two clocks. One moves

with constant velocity, so we choose the frame where it is at rest. The other moves

at constant speed in this frame, but it starts at the position of the first clock, moves

away, and then returns. (It is usually convenient to compare two clocks when they

are at the same point in space, since that makes it unambiguous that one is reading

the two clocks at the same time.)

A simple calculation shows that when the moving clock returns it measures a time

that is shorter by a factor of
√

1− v2. Of course, this also has a Newtonian analog:

Curves between two given points are longer than straight lines. For relativity, straight

lines are always the longest timelike curves because of the funny minus sign in the

metric.

Exercise IA4.9

You are standing in the road, and a police car comes toward you, flashing

its lights at regular intervals. It runs you down and keeps right on going,

as you watch it continue to flash its lights at you at the same intervals (as

measured by the clock in the car). Treat this as a two-dimensional problem

(one space, one time), and approximate the car’s velocity as constant. Draw

the Minkowski-space picture (including you, the car, and the light rays). If

the car moves at speed v and flashes its lights at intervals t0 (as measured by
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the clock’s car), at what intervals (according to your watch) do you see the

lights flashing when it is approaching, and at what intervals as it is leaving?

Special relativity is so fundamental a part of physics that in some areas of physics

every experiment is more evidence for it, so that the many early experimental tests

of it are more of historical interest than scientific.

The Galilean group is a symmetry of particles moving at speeds small compared

to light, but electromagnetism is symmetric under the Poincaré group (actually the

conformal group). This caused some confusion historically: Since the two groups have

only translations and rotations in common, it was assumed that nature was invariant

under no velocity transformation (neither Galilean nor Lorentz boost). In particular,

the speed of light itself would seem to depend on the reference frame, since the laws

of nature would be correct only in a “rest frame”. To explain “at rest with respect

to what,” physicists invented something that is invariant under rotations and space

and time translations, but not velocity transformations, and called this “medium” for

wave propagation the “ether,” probably because they were only semiconscious at the

time. (The idea was supposed to be like sound traveling through the air, although

nobody had ever felt an ethereal wind.)

Many experiments were performed to test the existence of the ether, or at least to

show that the wave equation for light was correct only in references frames at rest. So

as not to keep you in suspense, we first tell you the general result was that the ether

theory was wrong. On the contrary, one finds that the speed of light in a vacuum is

measured as c in both of two reference frames that are moving at constant velocity

with respect to each other. This means that electromagnetism is right and Newtonian

mechanics is wrong (or at least inaccurate), since Maxwell’s equations are consistent

with the speed of light being the same in all frames, while Newtonian mechanics is

not consistent with any speed being the same in all frames.

The first such experiment was performed by A.A. Michelson and E.W. Morley

in 1887. They measured the speed of light in various directions at various times of

year to try to detect the effect of the Earth’s motion around the sun. They detected

no differences, to an accuracy of 1/6th the Earth’s speed around the sun (≈ 10−4c).

(The method was interferometry: seeing if a light beam split into perpendicular paths

of equal length interfered with itself.)

Another interesting experiment was performed in 1971 by J.C. Hafele and R.

Keating, who compared synchronized atomic clocks, one at rest with respect to the

Earth’s surface, one carried by plane (a commercial airliner) west around the world,



132 I. GLOBAL

one east. Afterwards the clocks disagreed in a way predicted by the relativistic effect

of time dilation.

Probably the most convincing evidence of special relativity comes from experi-

ments related to atomic, nuclear, and particle physics. In atoms the speed of the

electrons is of the order of the fine structure constant (≈1/137) times c, and the

corresponding effects on atomic energy levels and such is typically of the order of the

square of that (≈ 10−4), well within the accuracy of such experiments. In particle

accelerators (and also cosmic rays), various particles are accelerated to over 99% c,

so relativistic effects are exaggerated to the point where particles act more like light

waves than Newtonian particles. In nuclear physics the relativistic relation between

mass and energy is demonstrated by nuclear decay where, unlike Newtonian mechan-

ics, the sum of the (rest) masses is not conserved; thus the atomic bomb provides

a strong proof of special relativity (although it seems like a rather extreme way to

prove a point).

5. Discrete: C, P, T

By considering only symmetries than can be obtained continuously from the iden-

tity (Lie groups), we have missed some important symmetries: those that reflect some

of the coordinates. It’s sufficient to consider a single reflection of a spacelike axis,

and one of a timelike axis; all other reflections can be obtained by combining these

with the continuous (“proper, orthochronous”) Lorentz transformations. (Spacelike

and timelike vectors can’t be Lorentz transformed into each other, and reflection of

a lightlike axis won’t preserve p2 + m2.) Also, the reflection of one spatial axis can

be combined with a π rotation about that axis, resulting in reflection of all three

spatial coordinates. (Similar generalizations hold for higher dimensions. Note that

the product of an even number of reflections about different axes is a proper rotation;

thus, for even numbers of spatial dimensions reflections of all spatial coordinates are

proper rotations, even though the reflection of a single axis is not.) The reversal of the

spatial coordinates is called “parity (P)”, while that of the time coordinate is called

“time reversal” (“T”; actually, for historical reasons, to be explained shortly, this is

usually labeled “CT”.) These transformations have the same effect on the momen-

tum, so that the definition of the Poisson bracket is also preserved. These “discrete”

transformations, unlike the proper ones, are not symmetries of nature (except in cer-

tain approximations): The only exception is the transformation that reflects all axes

(“CPT”).
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While the metric ηmn is invariant under all Lorentz transformations (by defini-

tion), the “Levi-Civita tensor”

εmnpq totally antisymmetric, ε0123 = −ε0123 = 1

is invariant under only proper Lorentz transformations: It has an odd number of

space indices and of time indices, so it changes sign under parity or time reversal.

(More precisely, under P or T the Levi-Civita tensor does not suffer the expected

sign change, since it’s constant, so there is an “extra” sign compared to the one

expected for a tensor.) Consequently, we can use it to define “pseudotensors”: Given

“polar vectors”, whose signs change as position or momentum under improper Lorentz

transformations, and scalars, which are invariant, we can define “axial vectors” and

“pseudoscalars” as

Va = εabcdB
bCcDd, φ = εabcdA

aBbCcDd

which get an extra sign change under such transformations (P or CT, but not CPT).

There is another such “discrete” transformation that is defined on phase space,

but which does not affect spacetime. It changes the sign of all components of the

momentum, while leaving the spacetime coordinates unchanged. This transforma-

tion is called “charge conjugation (C)”, and is also only an approximate symmetry

in nature. (Quantum mechanically, complex conjugation of the position-space wave

function changes the sign of the momentum.) Furthermore, it does not preserve the

Poisson bracket, but changes it by an overall sign. (The misnomer “CT” for true time

reversal follows historically from the fact that the combination of reversing the time

axis and charge conjugation preserves the sign of the energy. So the name “T” is actu-

ally a combination of time reversal and C to preserve the sign of the energy, as required

nonrelativistically, and accounts for the fact that it includes complex conjugation.)

The physical meaning of this transformation is clear from the spacetime-momentum

relation of relativistic classical mechanics p = m dx/ds: It is proper-time reversal,

changing the sign of s. The relation to charge follows from “minimal coupling”: The

“covariant momentum”

m dx/ds = p+ qA

(for charge q) appears in the constraint

(p+ qA)2 +m2 = 0

in an electromagnetic background. p → −p then has the same effect as q →
−q. Note that p is the “total” energy-momentum, mdx/ds is the “kinetic” energy-

momentum, and−qA is the “potential” energy-momentum. The kinetic part is gauge-

independent, and thus directly physically measurable (in terms of the spacetime path),
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while the total is gauge-dependent, but is what will be conserved if there are symme-

tries.

In the previous subsection, we mentioned how negative energies were associated

with “antiparticles”. Now we can better see the relation in terms of charge conjuga-

tion. Note that charge conjugation, since it only changes the sign of τ but does not

affect the coordinates, does not change the path of the particle, but only how it is

parametrized. This is also true in terms of momentum, since the velocity is given by

pi/p0. Thus, the only observable property that is changed is charge; spacetime prop-

erties (path, velocity, mass; also spin, as we’ll see later) remain the same. Another

way to say this is that charge conjugation commutes with the Poincaré group. One

way to identify an antiparticle is that it has all the same kinematical properties (mass,

spin) as the corresponding particle, but opposite sign for internal quantum numbers

(like charge). (Another way is pair creation and annihilation: See subsection IIIB5

below.)

All these transformations are summarized in the table:

C CT P T CP PT CPT

s − + + − − − +

t + − + − + − −
~x + + − + − − −
E − − + + − + −
~p − + − − + + −

(The upper-left 3×3 matrix contains the definitions, the rest is implied.) In terms

of complex wave functions, we see that C is just complex conjugation (no effect on

coordinates, but momentum and energy change sign because of the “i” in the Fourier

transform). On the other hand, for CT and P there is no complex conjugation, but

changes in sign of the coordinates that are arguments of the wave functions, and

also on the corresponding indices — the “orbital” and “spin” parts of these discrete

transformations. (For example, derivatives ∂a have sign changes because xa does, so

a vector wave function ψa must have the same sign changes on its indices for ∂aψ
a to

transform as a scalar.) The other transformations follow as products of these.

Exercise IA5.1

Find the effect of each of these 7 transformations on wave functions that are:

a scalars, b pseudoscalars, c vectors, d axial vectors.

However, from the point of view of the “particle” there is some kind of kinematic

change, since the proper time has changed sign: If we think of the mechanics of a
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particle as a one-dimensional theory in τ space (the worldline), where x(τ) (as well as

any such variables describing spin or internal symmetry) is a wave function or field on

that space, then τ → −τ is CPT on that one-dimensional space. (CPT is a symmetry

of any local, unitary, Poincaré invariant theory in any dimension. Here P is trivial:

1 time dimension, no space. There is no worldline C, because everything, like x, is

real. Things are less trivial for strings.) Thus, in terms of “zeroth quantization”,

worldline CPT ↔ spacetime C

On the other hand, spacetime P and CT are simply internal symmetries with respect

to the worldline (as are proper, orthochronous Poincaré transformations).

Quantum mechanically, there is a good reason for particles of negative energy:

They appear in complex-conjugate wave functions, since (e−iωt)* = e+iωt. Since we

always evaluate expressions of the form 〈f |i〉, it is natural for energies of both signs

to appear.

In classical field theory, we can identify a particle with its antiparticle by requiring

the field to be invariant under charge conjugation: For example, for a scalar field

(spinless particle), we have the reality condition

φ(x) = φ*(x)

or in momentum space, by Fourier transformation,

φ̃(p) = [φ̃(−p)]*

which implies the particle has charge zero (neutral).

6. Conformal

Poincaré transformations are the most general coordinate transformations that

preserve the mass condition p2 + m2 = 0, but there is a larger group, the “confor-

mal group”, that preserves this constraint in the massless case. Although conformal

symmetry is not observed in nature, it is important in all approaches to field theory:

(1) First of all, it is useful in the construction of free theories (see subsections IIB1-4

below). All massive fields can be described consistently in quantum field theory

in terms of coupling massless fields. Massless theories are a subset of conformal

theories, and some conditions on massless theories can be found more easily by

finding the appropriate subset of those on conformal theories. This is related to

the fact that the conformal group, unlike the Poincaré group, is “simple”: It has
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no nontrivial subgroup that transforms into itself under the rest of the group (like

the way translations transform into themselves under Lorentz transformations).

(2) In interacting theories at the classical level, conformal symmetry is also impor-

tant in finding and classifying solutions, since at least some parts of the action are

conformally invariant, so corresponding solutions are related by conformal trans-

formations (see subsections IIIC5-7). Furthermore, it is often convenient to treat

arbitrary theories as broken conformal theories, introducing fields with which

the breaking is associated, and analyze the conformal and conformal-breaking

fields separately. This is particularly true for the case of gravity (see subsections

IXA7,B5,C2-3,XA3-4,B5-7).

(3) Within quantum field theory at the perturbative level, the only physical quantum

field theories are ones that are conformal at high energies (see subsection VIIIC1).

The quantum corrections to conformal invariance at high energy are relatively

simple.

(4) Beyond perturbation theory, the only quantum theories that are well defined may

be just the ones whose breaking of conformal invariance at low energy is only

classical (see subsections VIIC2-3,VIIIA5-6). Furthermore, the largest possible

symmetry of a nontrivial S-matrix is conformal symmetry (or superconformal

symmetry if we include fermionic generators).

(5) Selfduality (a generalization of a condition that equates electric and magnetic

fields) is useful for finding solutions to classical field equations as well as sim-

plifying perturbation theory, and is closely related to “twistors” (see subsections

IIB6-7,C5,IIIC4-7). In general, selfduality is related to conformal invariance: For

example, it can be shown that the free conformal theories in arbitrary even di-

mensions are just those with (on-mass-shell) field strengths on which selfduality

can be imposed. (In arbitrary odd dimensions the free conformal theories are just

the scalar and spinor.)

(6) Through the Anti-de Sitter/Conformal Field Theory correspondence (see sub-

section XIA8), conformal field theories are the easiest ones about which to find

explicit nonperturbative information.

Coordinate transformations λ that satisfy (using Poisson brackets)

[λa(x)pa, p
2] = ζ(x)p2

for some ζ also preserve p2 = 0, although they don’t leave p2 invariant. Equivalently,

we can look for coordinate transformations that scale

dx′2 = ξ(x)dx2
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since quantum mechanically p ∼ ∂/∂x, which is “dual” to dx. (Their coordinate

transformations carry inverse matrix factors.)

Exercise IA6.1

Find the conformal group explicitly in two dimensions, and show it’s infinite

dimensional (not just the SO(2,2) described below). (Hint: Use lightcone

coordinates.)

We’ll use a different method for defining conformal symmetry (but see exercise

IA6.4 below). This symmetry can be made manifest by starting with a space with

one extra space and time dimension:

yA = (y+, ya, y−) ⇒ y2 = yAyBηAB = (ya)2 − 2y+y−

where (ya)2 = yaybηab uses the usual D-dimensional Minkowski-space metric ηab,

and the two additional dimensions have been written in a lightcone basis (not to

be confused for the similar basis that can be used for the Minkowski metric itself).

With respect to this metric, the original SO(D−1,1) Lorentz symmetry has been

enlarged to SO(D,2). This is the conformal group in D dimensions. However, rather

than also preserving (D+2)-dimensional translation invariance, we instead impose the

constraint and invariance

y2 = 0, δyA = ζ(y)yA

This reduces the original space to the “projective” (invariant under the ζ scaling)

lightcone (which in this case really is a cone).

These two conditions can be solved by

yA = ewA, wA = (1, xa, 1
2x

axa)

Projective invariance then means independence from e (y+), while the lightcone con-

dition has determined y−. y2 = 0 implies y · dy = 0, so the simplest conformal

invariant is

dy2 = (edw + wde)2 = e2dw2 = e2dx2

where we have used w2 = 0 ⇒ w · dw = 0. This means any SO(D,2) transformation

on yA will simply scale dx2, and scale e2 in the opposite way:

dx′2 =

(
e2

e′2

)
dx2

in agreement with the previous definition of the conformal group. The finite difference

can be done the same way as the differential:

−1
2(y − y′)2 = y · y′ = ee′w · w′ = −1

2ee
′(w − w′)2 = −1

2ee
′(x− x′)2
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A similar example is nonrelativistic momenta (see exercise IA4.8): The analogous

parametrization is

p = (m, pi, E) = m(1, v, 1
2v

2) ⇒ p · p′ = −1
2mm

′(v − v′)2

The explicit form of conformal transformations on xa = ya/y+ now follows from

their linear form on yA, using the generators

GAB = y[ArB], [rA, y
B] = −iδBA

of SO(D,2) in terms of the momentum rA conjugate to yA. (These are defined the

same way as the Lorentz generators Jab = x[apb]. You may find it easier to look at

just δyA = yBεB
A instead.) For example, G+− just scales xa. (Scale transformations

are also known as “dilatations”, or just “dilations”.) We can also recognize G+a as

generating translations on xa. The only complicated transformations are generated

by G−a, known as “conformal boosts” (acceleration transformations). Since they

commute with each other (like translations), it’s easy to exponentiate to find the

finite transformations:

y′ = eGy, G = vay
[−∂a]

for some constant D-vector va (where ∂A ≡ ∂/∂yA). Since the conformal boosts act

as “lowering operators” for scale weight (+ → a → −), only the first three terms in

the exponential survive:

Gy− = 0, Gya = vay−, Gy+ = vaya ⇒

y′− = y−, y′a = ya + vay−, y′+ = y+ + vaya + 1
2v

2y− ⇒

x′a =
xa + 1

2v
ax2

1 + v · x+ 1
4
v2x2

using xa = ya/y+, y−/y+ = 1
2x

2. We then give the individual labels to these genera-

tors (consistent with our previous notation for Poincaré)

(G+a, Gab, G+−, G−a) = (P a, Jab, ∆,Ka)

Exercise IA6.2

Let’s consider the relation of massless equations of motion for a spinless par-

ticle with and without the extra dimensions.

a Make the change of variables to xa = ya/y+, e = y+, z = 1
2y

2. Express

rA in terms of the momenta (pa, n, s) conjugate to (xa, e, z). Show that the
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conditions y2 = yArA = r2 = 0 become z = en = p2 = 0 in terms of the new

variables.

b Let’s repeat this quantum mechanically: Then the second constraint should

be y ·r+r ·y = 0 for closure of the constraint algebra. Paying careful attention

to ordering, show the resulting constraints in the new coordinates are then

z = en+ (D−2)/2 = p2 = 0.

Exercise IA6.3

Find the generator of infinitesimal conformal boosts in terms of xa and pa.

Exercise IA6.4

Instead of using this algebraic way of finding the conformal group, one can use

an analytic way: Use the definition of infinitesimal conformal transformations

given above as preserving p2 = 0. Solve the resulting first-order differential

equation by Taylor expanding λa and ζ in x. (Hint: To prove completeness, it

may prove useful to show for any tensor A, that Aabc = Abac = −Aabc ⇒ A = 0

by considering enough permutations.)

We actually have the full O(D,2) symmetry: Besides the continuous symmetries,

and the discrete ones of SO(D−1,1), we have a second “time” reversal (from our

second time dimension):

y+ ↔ −y− ⇒ xa ↔ − xa

1
2x

2

This transformation is called an “inversion”.

Exercise IA6.5

Show that a finite conformal boost can be obtained by performing a trans-

lation sandwiched between two inversions. (Do this completely in terms of

x.)

Exercise IA6.6

The conformal group for Euclidean space (or any spacetime signature) can be

obtained by the same construction. Consider the special case of D=2 for these

SO(D+1,1) transformations. (This is a subgroup of the 2D superconformal

group: See exercise IA6.1.) Use complex coordinates for the two “physical”

dimensions:

z = 1√
2
(x1 + ix2)

Using the above expressions for transformations of x,

a Show that the inversion is

z ↔ − 1

z*
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b Show that the conformal boost is (using a complex number also for the boost

vector)

z → z

1 + v*z

c Show the full SO(3,1) transformations are generated by

z → az + b

cz + d

What transformations are generated by each of the 4 parameters a, b, c, d?

(Hint: Show that only ratios of the parameters can be read from the trans-

formation.)

Exercise IA6.7

Another way to represent conformal transformations in arbitrary D is with

Dirac γ-matrices (see subsections IC1 and IIA6). Here we won’t need Dirac

spinors, and the only identity for the matrices we’ll need is

{γa, γb} = −2ηab

(The method we’ll use is essentially the coset method of subsection IC6, as

was the previous problem.) Consider the transformation(
γ · x′

1

)
=

(
1 0

−1
2γ · v 1

)(
γ · x

1

)
A

where A is an “operator” (not a matrix) to be determined, if we consider γa

to be operators, so that we’re dealing with just 2×2 explicit matrices and

2-component explicit column vectors. (Actually γ and A are matrices, but

only 1/2 as big as the ones above.)

a Find A explicitly in terms of x, v, γ. (Hint: What is (1+γ ·aγ ·b)(1+γ ·bγ ·a)?)

b Show the result for x′ is the conformal boost given above.

c Instead of using a column vector for x, use the matrix(
γ · x

1

)
( γ · x 1 ) =

(−x2 γ · x
γ · x 1

)
Write the transformation law for this matrix by taking transposes, treating

γT as γ. Show that A is replaced by just a scale factor (no γ’s). This matrix

is essentially γ · y for γ-matrices in 2 higher dimensions. (Its “square root”,

the column vector, is a position-space “twistor”: See subsection IIB6.)

d Show how the rest of the conformal transformations, including inversions, fit

into the matrix with v. This 2×2 matrix is still x-independent (unlike A).
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(Lorentz transformations on γ’s are generated by commutators with γ[aγb].

Hint: This exercise is similar to the previous, but only the placement of

dilatations is ambiguous.)

Exercise IA6.8

Relate the results of exercise IA6.6 to the D=2 case of exercise IA6.7.

Exercise IA6.9

Any parity transformation (reflection in a spatial axis) can be obtained from

any other by a rotation of the spatial coordinates. Similarly, when there

is more than one time dimension, any time reversal can be obtained from

another (but time reversal can’t be rotated into parity, since a timelike vector

can’t be rotated into a spacelike one). Thus, the complete orthogonal group

O(m,n) can be obtained from those transformations that are continuous from

the identity by combining them with 1 parity transformation and 1 time

reversal transformation (for mn6=0).

a For the conformal group, find the rotation (in terms of an angle) that rotates

between the two time directions, and express its action on xa.

b Show that for angle π it produces a transformation that is the product of time

reversal and inversion.

c Use this to show that inversion is related to time reversal by finding the

continuum of conformal transformations that connect them.
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In the previous section we saw various spacetime groups (Galilean, Poincaré,

conformal) in terms of how they acted on coordinates. This not only gave them a

simple physical interpretation, but also allowed a direct relation between classical

and quantum theories. However, as we know from studying rotations in quantum

theory in terms of spin, we will often need to study symmetries of quantum theories

for which the classical analog is not so useful or perhaps even nonexistent.

We therefore now consider some general results of group theory, mostly for con-

tinuous groups. We use tensor methods, rather than the slightly more powerful but

greatly less convenient Cartan-Weyl-Dynkin methods. Much of this section should

be review, but is included here for completeness; it is not intended as a substitute for

a group theory course, but as a summary of those results commonly useful in field

theory.

1. Matrices

Matrices are defined by the way they act on some vector space; an n×n matrix

takes one n-component vector to another. Given some group, and its multiplication

table (which defines the group completely), there is more than one way to represent

it by matrices. Any set of matrices we find that has the same multiplication table as

the group elements is called a “representation” of that group, and the vector space on

which those matrices act is called the “representation space.” The representation of

the algebra or group in terms of explicit matrices is given by choosing a basis for the

vector space. If we include infinite-dimensional representations, then a representation

of a group is simply a way to write its transformations that is linear: ψ′ = Mψ is

linear in ψ. More generally, we can also have a “realization” of a group, where the

transformations can be nonlinear. These tend to be more cumbersome, so we usually

try to make redefinitions of the variables that make the realization linear. A precise

definition of “manifest symmetry” is that all the realizations used are linear. (One

possible exception is “affine” or “inhomogeneous” transformations ψ′ = Mψ + V ,

such as the usual coordinate representation of Poincaré transformations, since these

transformations are still very simple, because they are really still linear, though not

homogeneous.)

Exercise IB1.1

Consider a general real affine transformation ψ′ = Mψ+V on an n-component
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vector ψ for arbitrary real n× n matrices M and real n-vectors V . A general

group element is thus (M,V ).

a Perform 2 such transformations consecutively, and give the resulting “group

multiplication” rule for (M1, V1) “×” (M2, V2) = (M3, V3).

b Find the infinitesimal form of this transformation. Define the n2+n generators

as operators on ψ, in terms of ψa and ∂/∂ψa.

c Find the commutation relations of these generators.

d Compare all the above with (nonrelativistic) rotations and translations.

Exercise IB1.2

Let’s consider some properties of matrix inverses:

a Show (AB)−1 = B−1A−1 for matrices A and B that have inverses but don’t

necessarily commute with each other.

b Show that
1

A+B
=

1

A
− 1

A
B

1

A
+

1

A
B

1

A
B

1

A
− ...

(There may be other assumptions; ignore convergence questions. Hint: Mul-

tiply both sides by A+B.)

For convenience, we write matrices with a Hilbert-space-like notation, but unlike

Hilbert space we don’t necessarily associate bras directly with kets by Hermitian

conjugation, or even transposition. In general, the two spaces can even be different

sizes, to describe matrices that are not square; however, for group theory we are

interested only in matrices that take us from some vector space into itself, so they

are square. Bras have an inner product with kets, but neither necessarily has a norm

(inner product with itself): In general, if we start with some vector space, written

as kets, we can always define the “dual” space, written as bras, by defining such an

inner product. In our case, we may start with some representation of a group, in

terms of some vector space, and that will give us directly the dual representation. (If

the representation is in terms of unitary matrices, we have a Hilbert space, and the

dual representation is just the complex conjugate.)

So, we define column vectors |ψ〉 with a basis |I〉, and row vectors 〈ψ| with a

basis 〈I |, where I = 1, ...,n to describe n×n matrices. The two bases have a relative

normalization defined so that the inner product gives the usual component sum:

|ψ〉 = |I〉ψI , 〈χ| = χI〈I |; 〈I |J〉 = δJI ⇒ 〈χ|ψ〉 = χIψI ; 〈I |ψ〉 = ψI , 〈χ|I〉 = χI

These bases then define not only the components of vectors, but also matrices:

M = |I〉MI
J〈J | , 〈I |M |J〉 = MI

J
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M |I〉 = |J〉MJ
I , 〈I |M = MI

J〈J |

where as usual the I on the component (matrix element) MI
J labels the row of the

matrix M , and J the column. This implies the usual matrix multiplication rules,

inserting the identity in terms of the basis,

I = |K〉〈K | ⇒ (MN)I
J = 〈I |M |K〉〈K |N |J〉 = MI

KNK
J

Closely related is the definition of the trace,

tr M = 〈I |M |I〉 = MI
I ⇒ tr(MN) = tr(NM)

(We’ll discuss the determinant later.)

The bra-ket notation is really just matrix notation written in a way to clearly

distinguish column vectors, row vectors, and matrices. We can, of course, also use

the usual pictorial notation

|ψ〉 =

ψ1

ψ2
...

 , 〈χ| = (χ1 χ2 . . .)

M =



1 2 . . . J . . .

1 M1
1 M1

2 . . . M1
J . . .

2 M2
1 M2

2 . . . M2
J . . .

...
...

...
. . .

...
. . .

I MI
1 MI

2 . . . MI
J . . .

...
...

...
. . .

...
. . .


This is useful only when listing individual components.

We can easily translate transformation laws from matrix notation into index no-

tation just by using a basis for the representation space. We now write g and G to

refer to either matrix representations of the group and algebra elements, or to the

abstract elements: i.e., either to a specific representation, or the most general one.

Again writing g = eiG,

g|I〉 = |J〉gJ I , G|I〉 = |J〉GJ
I

G = αiGi, δ|ψ〉 = iG|ψ〉 = |I〉iαi(Gi)I
JψJ ⇒ δψI = iαi(Gi)I

JψJ

Of course, all of this can be expressed in the dual notation, which is perhaps

more analogous to quantum mechanical language. For example, to see that matrix

multiplication corresponds to the usual operator multiplication,

〈I |M |ψ〉 = MI
J〈J |ψ〉 = MI

JψJ ⇒
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〈I |MN |ψ〉 = MI
J〈J |N |ψ〉 = MI

JNJ
K〈K |ψ〉 = (MN)I

KψK

We have already seen this in our quantum mechanics courses for the interpretation

of operators as infinite-dimensional matrices, but relating Hilbert-space operators O
to differential operators Ô instead of matrices:

〈x|O|ψ〉 = Ô〈x|ψ〉 = Ôψ(x) ⇒ 〈x|O1O2|ψ〉 = Ô1〈x|O2|ψ〉 = Ô1Ô2ψ(x)

where the Ô’s are expressed in terms of x and ∂/∂x. For example, this implies O’s

and Ô’s satisfy the same algebra (including signs) for both “Heisenberg algebras”

([p, q] = −i) and Lie algebras.

For any representation of a group, the transpose

(MT )IJ = MJ
I

of the inverse of those matrices also gives a representation of the group, since

g1g2 = g3 ⇒ (g1)T−1(g2)T−1 = (g3)T−1

[G1, G2] = G3 ⇒ [−GT
1 ,−GT

2 ] = −GT
3

This is the dual representation, which follows from defining the above inner product

to be invariant under the group:

δ〈ψ|χ〉 = 0 ⇒ δψI = −iψJαi(Gi)J
I

The complex conjugate of a complex representation is also a representation, since

g1g2 = g3 ⇒ g1*g2* = g3*

[G1, G2] = G3 ⇒ [G1*, G2*] = G3*

From any given representation, we can thus find three others from taking the dual

and the conjugate: In matrix and index notation,

ψ′ = gψ : ψ′I = gI
JψJ

ψ′ = (g−1)Tψ : ψ′I = g−1
J
IψJ

ψ′ = g*ψ : ψ′.
I

= g*.
I

.
Jψ .

J

ψ′ = (g−1)†ψ : ψ′
.
I = g*−1 .

J

.
Iψ

.
J

since (g−1)T , g*, and (g−1)† (but not gT , etc.) satisfy the same multiplication algebra

as g, including ordering. We use up/down and dotted/undotted indices to denote

the transformation law of each type of index; contracting undotted up indices with

undotted down indices preserves the transformation law as indicated by the remaining

indices, and similarly for dotted indices. These four representations are not necessarily

independent: Imposing relations among them is how the classical groups are defined

(see subsections IB4-5 below).



B. INDICES 147

2. Representations

For example, we always have the “adjoint” representation of a Lie group/algebra,

which is how the algebra acts on its own generators:

(1) adjoint as operator: G = αiGi, A = βiGi ⇒ δA = i[G,A] = βjαifij
kGk

⇒ δβi = −iβkαj(Gj)k
i, (Gi)j

k = ifij
k

This gives us two ways to represent the adjoint representation space: as either the

usual vector space, or in terms of the generators. Thus, we either use the matrix

A = βiGi (for arbitrary representation of the matrices Gi, or treating Gi as just

abstract generators), or we can write A as a row vector:

(2) adjoint as vector: 〈A| = βi〈i| ⇒ δ〈A| = −i〈A|G

⇒ δβi〈i| = −iβkαj(Gj)k
i〈i|

The adjoint representation also provides a convenient way to define a (symmetric)

group metric invariant under the group, the “Cartan metric”:

ηij = trA(GiGj) = −fiklfjlk

(trA refers to the trace taken with respect to the representation A; equivalently, we

could take the G’s inside the trace to be in the A representation.) For “Abelian”

groups the structure constants vanish, and thus so does this metric. “Semisimple”

groups are those where the metric is invertible (no vanishing eigenvalues). A “simple”

group has no nontrivial subgroup that transforms into itself under the rest of the

group: Semisimple groups can be written as “products” of simple groups. “Compact”

groups are those where it is positive definite (all eigenvalues positive); they are also

those for which the invariant volume of the group space is finite. For simple, compact

groups it’s convenient to choose a basis where

ηij = cAδij

for some constant cA (the “Dynkin index” for the adjoint representation, also known

as the “dual Coxeter number”). For some general “irreducible” representation R (one

that doesn’t break up into smaller representations) of such a group the normalization

of the trace is

trR(GiGj) = cRδij =
cR
cA
ηij

Now the proportionality constant cR/cA is fixed by the choice of R (only), since we

have already fixed the normalization of our basis.
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Exercise IB2.1

What is cR for an Abelian group? (Hint: not just 1.)

In general, the cyclicity property of the trace implies, for any representation, that

0 = tr([Gi, Gj]) = −ifijktr(Gk)

so tr(Gi) = 0 for semisimple groups. Similarly, we find

fijk ≡ fij
lηlk = i trA([Gi, Gj]Gk)

is totally antisymmetric: For semisimple groups, this implies the total antisymmetry

of the structure constants fij
k, up to factors (which are absent for compact groups in

a basis where ηij ∼ δij). This also means the adjoint representation is its own dual.

(For example, for the compact group SO(3), we have ηij = −εiklεjlk = 2δij.) Thus,

we can write A in a third way, as a column vector

(3) adjoint as dual vector: |A〉 = |i〉βi ≡ |i〉βjηji ⇒ δ|A〉 = iG|A〉

We can also do this for Abelian groups, by defining an invertible metric unrelated to

the Cartan metric: This is trivial for Abelian groups, since the generators themselves

are invariant, and thus so is any metric on them.

An identity related to the trace one is the normalization of the value kR of the

“Casimir operator” for any particular representation,

ηijGiGj = kRI

Its proportionality to the identity follows from the fact that it commutes with each

generator:

[ηjkGjGk, Gi] = −if j ik{Gj, Gk} = 0

using the antisymmetry of the structure constants. (Thus it takes the same value on

any component of an irreducible representation, since they are all related by group

transformations.) By tracing this identity, and contracting the trace identity,

cR
cA
dA = trR(ηijGiGj) = kRdR

⇒ kR =
cRdA
cAdR

where dR ≡ trR(I) is the dimension of that representation.

The fact that any matrix that commutes with the generators in an irreducible

representation is proportional to the identity is “Schur’s lemma”. It’s easy to prove
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by first separating out the hermitian and antihermitian parts of the matrix (in this

case it’s already hermitian) then diagonalizing each hermitian matrix. Separating the

resultant matrix into blocks each proportional to the identity, one sees that the gener-

ators must be block diagonal with respect to them, so each block is a representation.

Exercise IB2.2

Consider the transformation properties of these tensors under the action of

the group, G′i = gGig
−1 = gi

jGj.

a Prove invariance of fij
k and thus ηij.

b Show trR(GiGj) ≡ ηRij is invariant; as a matrix in the adjoint space, η′R =

gηRg
T = ηR. For 2 different representations, looking at the η of one times the

inverse of the η of another, show using Schur’s lemma that this implies that

all η’s are proportional.

Although quantum mechanics is defined on Hilbert space, which is a kind of com-

plex vector space, more generally we want to consider real objects, like spacetime

vectors. This restricts the form of linear transformations: Specifically, if we absorb

i’s as g = eG, then in such representations G itself must be real. These represen-

tations are then called “real representations”, while a “complex representation” is

one whose representation isn’t real in any basis. A complex representation space can

have a real representation, but a real representation space can’t have a complex rep-

resentation. In particular, coordinate transformations (of real coordinates) have only

real representations, which is why absorbing the i’s into the generators is a useful

convention there. For semisimple unitary groups, hermiticity of the generators of the

adjoint representation implies (using total antisymmetry of the structure constants

and reality of the Cartan metric) that the structure constants are real, and thus the

adjoint representation is a real representation. More generally, any real unitary rep-

resentation will have antisymmetric generators (G = G* = −G† ⇒ G = −GT ). If the

complex conjugate representation is the same as the original (same matrices up to a

similarity transformation g* = MgM−1), but the representation is not real, then it

is called “pseudoreal”. (An example is the spinor of SU(2), to be described in section

IC.)

For any representation g of the group, a transformation g → g0gg
−1
0 on every

group element g for some particular group element g0 clearly maps the algebra to

itself, and preserves the multiplication rules. (Similar remarks apply to applying the

transformation to the generators.) However, the same is true for complex conjugation,

g → g*: Not only are the multiplication rules preserved, but for any element g

of that representation of the group, g* is also an element. (This can be shown,
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e.g., by defining representations in terms of the values of all the Casimir operators,

constructed from various powers of the generators.) In quantum mechanics (where

the representations are unitary), the latter is called an “antiunitary transformation”.

Although this is a symmetry of the group, it cannot be reproduced by a unitary

transformation, except when the representation is (pseudo)real.

Exercise IB2.3

Show how this works for the Abelian group U(1). Explain this antiunitary

transformation in terms of two-dimensional rotations O(2). (U(1)=SO(2),

the “proper rotations” obtained continuously from the identity.)

A very simple way to build a representation from others is by “direct sum”. If we

have two representations of a group, on two different spaces, then we can take their

direct sum by just putting one column vector on top of the other, creating a bigger

vector whose size (“dimension”) is the sum of that of the original two. Explicitly, if

we start with the basis |ι〉 for the first representation and |ι′〉 for the second, then

the union (|ι〉, |ι′〉) is the basis for the direct sum. (We can also write |I〉 = (|ι〉, |ι′〉),
where ι = 1, ...,m; ι′ = 1, ..., n; I = 1, ...,m,m + 1, ...,m + n.) The group then acts

on each part of the new vector in the obvious way:

ψ = |ι〉ψι, χ = |ι′〉χι′ ; g|ι〉 = |κ〉gκι, g|ι′〉 = |κ′〉gκ′ ι
′

⇒ |Ψ〉 = |ι〉ψι ⊕ |ι
′〉χι′ = |ψ〉 ⊕ |χ〉 or (Ψ) =

(
ψ

χ

)

g|Ψ〉 = |κ〉gκιψι ⊕ |κ
′〉gκ′ ι

′
χι′ or (g) =

(
gι
κ 0

0 gι′
κ′

)
(We can replace the ⊕ with an ordinary + if we understand the basis vectors to be

now in a bigger space, where the elements of the first basis have zeros for the new

components on the bottom while those of the second have zeros for the new compo-

nents on top.) The important point is that no group element mixes the two spaces:

The group representation is block diagonal. Any representation that can be written

as a direct sum (after an appropriate choice of basis) is called “reducible”. For exam-

ple, we can build a reducible real representation from an irreducible complex one by

just taking the direct sum of this complex representation with the complex conjugate

representation. Similarly, we can take direct sums of more than two representations.

A more useful way to build representations is by “direct product”. The idea there

is to take a column vector and a row vector and use them to construct a matrix, where

the group element acts simultaneously on rows according to one representation and
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columns according to the other. If the two original bases are again |ι〉 and |ι′〉, the

new basis can also be written as |I〉 = |ιι′〉 (I = 1, ...,mn). Explicitly,

|ψ〉 = |ι〉 ⊗ |ι′〉ψιι′ , g(|ι〉 ⊗ |ι′〉) = |κ〉 ⊗ |κ′〉gκιgκ′ ι
′ ⇒ gιι′

κκ′ = gι
κgι′

κ′

or in terms of the algebra

Gιι′
κκ′ = Gι

κδι′
κ′ + δι

κGι′
κ′

A familiar example from quantum mechanics is rotations (or Lorentz transforma-

tions), where the first space is position space (so ι is the continuous index x), acted

on by the orbital part of the generators, while the second space is finite-dimensional,

and is acted on by the spin part of the generators. Direct product representations

are usually reducible: They then can be written also as direct sums, in a way that

depends on the particulars of the group and the representations.

Consider a representation constructed by direct product: In matrix notation

Ĝi = Gi ⊗ I ′ + I ⊗G′i

Using tr(A⊗B) = tr(A)tr(B), and assuming tr(Gi) = tr(G′i) = 0, we have

tr(ĜiĜj) = tr(I ′)tr(GiGj) + tr(I)tr(G′iG
′
j)

For example, for SU(N) (see subsection IB4 below) we can construct the adjoint rep-

resentation from the direct product of the N-dimensional, “defining” representation

and its complex conjugate. (We also get a singlet, but it will not affect the result for

the adjoint.) In that case we find

trA(GiGj) = 2N trD(GiGj) ⇒ cD
cA

=
1

2N

For most purposes, we use trD(GiGj) = δij (cD = 1) for SU(N), so cA = 2N .

3. Determinants

We now “review” some properties of determinants that will prove useful for the

group analysis of the following subsections. Determinants can be defined in terms of

the Levi-Civita tensor ε. As a consequence of its antisymmetry,

ε totally antisymmetric, ε12...n = ε12...n = 1 ⇒ εJ1...Jnε
I1...In = δI1[J1

· · · δInJn]

since each possible numerical index value appears once in each ε, so they can be

matched up with δ’s. As a special case of this equation, we can write

εI1...In = δ1
[I1
· · · δnIn]
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By similar reasoning,

1
m!
εK1...KmJ1...Jn−mε

K1...KmI1...In−m = δI1[J1
· · · δIn−mJn−m]

where the normalization compensates for the number of terms in the summation.

Exercise IB3.1

Apply these identities to rotations in three dimensions:

a Given only the commutation relations [Jij, J
kl] = iδ

[k
[i Jj]

l] and the definition

Gi ≡ 1
2εijkJjk, derive fij

k = −εijk.

b Show the Jacobi identity ε[ij
lεk]l

m = 0 by explicit evaluation.

c Find the Cartan metric, and thus the value of cA.

This tensor is used to define the determinant:

det MI
J = 1

n!
εJ1...Jnε

I1...InMI1
J1 · · ·MIn

Jn ⇒ εJ1...JnMI1
J1 · · ·MIn

Jn = εI1...Indet M

since anything totally antisymmetric in n indices must be proportional to the ε tensor.

This yields an explicit expression for the inverse:

(M−1)J1
I1 = 1

(n−1)!
εJ1...Jnε

I1...InMI2
J2 · · ·MIn

Jn(det M)−1

Exercise IB3.2

Write expressions for the determinant and the inverse without Levi-Civita

tensors, using only antisymmetrizations and Kronecker δ’s (but eliminate as

many of them as possible).

From this follows a useful expression for the variation of the determinant:

∂

∂MI
J
det M = (M−1)J

I det M

which is equivalent to

δ ln det M = tr(M−1δM)

Replacing M with eM gives the often-used identity

δ ln det eM = tr(e−MδeM) = tr δM ⇒ det eM = etrM

where we have used the boundary condition for M = 0. Finally, replacing M in

the last identity with ln(1 + L) and expanding both sides to order Ln gives general

expressions for determinants of n× n matrices in terms of traces:

det(1 + L) = etr ln(1+L) ⇒ det L = 1
n!

(tr L)n − 1
2(n−2)!

(tr L2)(tr L)n−2 + · · ·
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Exercise IB3.3

Use the definition of the determinant (and not its relation to the trace) to

show

det(AB) = det(A)det(B)

These identities can also be derived by defining the determinant in terms of a

Gaussian integral. We first collect some general properties of (indefinite) Gaussian

integrals. The simplest such integral is∫
d2x

2π
e−x

2/2 =

∫ 2π

0

dθ

2π

∫ ∞
0

dr re−r
2/2 =

∫ ∞
0

du e−u = 1

⇒
∫

dDx

(2π)D/2
e−x

2/2 =

(∫
dx√
2π

e−x
2/2

)D
=

(∫
d2x

2π
e−x

2/2

)D/2
= 1

The complex form of this integral is∫
dDz* dDz

(2πi)D
e−|z|

2

= 1

by reducing to real parameters as z = (x + iy)/
√

2. These generalize to integrals

involving a real, symmetric matrix S or a Hermitian matrix H as∫
dDx

(2π)D/2
e−x

TSx/2 = (det S)−1/2,

∫
dDz* dDz

(2πi)D
e−z

†Hz = (det H)−1

by diagonalizing the matrices, making appropriate redefinitions of the integration

variables, and identifying the determinant of a diagonal matrix. (Strictly speaking,

these integrals converge only if the matrices have positive-definite eigenvalues; the

general case then follows as described below.) Alternatively, we can use these integrals

to define the determinant, and derive the previous definition. The relation for the

symmetric matrix follows from that for the Hermitian one by separating z into its real

and imaginary parts for the special case H = S. If we treat z and z* as independent

variables, the determinant can also be understood as the Jacobian for the (dummy)

variable change z → H−1z, z* → z*. More generally, if we define the integral by

an appropriate limiting procedure or analytic continuation (for convergence), we can

choose z and z* to be unrelated (or even separate real variables), and S and H to be

complex.

Exercise IB3.4

Other properties of determinants can also be derived directly from the integral

definition:
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a Find an integral expression for the inverse of a (complex) matrix M by using

the identity

0 =

∫
∂

∂zI
(zJ e

−z†Mz)

b Derive the identity δ ln det M = tr(M−1δM) by varying the Gaussian defi-

nition of the (complex) determinant with respect to M .

An even better definition of the determinant is in terms of an anticommuting

integral (see subsection IA2), since anticommutativity automatically gives the anti-

symmetry of the Levi-Civita tensor, and we don’t have to worry about convergence.

We then have, for any matrix M ,∫
dDζ† dDζ e−ζ

†Mζ = det M

where ζ† can be chosen as the Hermitian conjugate of ζ or as an independent variable,

whichever is convenient. From the definition of anticommuting integration, the only

terms in the Taylor expansion of the exponential that contribute are those with the

product of one of each anticommuting variable. Total antisymmetry in ζ and in ζ†

then yields the determinant; we define “dDζ† dDζ” to give the correct normalization.

(The normalization is ambiguous anyway because of the signs in ordering the dζ’s.)

This determinant can also be considered a Jacobian, but the inverse of the commuting

result follows from the fact that the integrals are now really derivatives.

Exercise IB3.5

Divide up the range of a square matrix into two (not necessarily equal) parts:

In block form,

M =

(
A B

C D

)
and do the same for the (commuting or anticommuting) variables used in

defining its determinant. Show that

det

(
A B

C D

)
= det D · det(A−BD−1C) = det A · det(D − CA−1B)

a by integrating over one part of the variables first (this requires off-diagonal

changes of variables of the form y → y +Ox, which have unit Jacobian), or

b by first proving the identity(
A B

C D

)
=

(
I BD−1

0 I

)(
A−BD−1C 0

0 D

)(
I 0

D−1C I

)
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We then have, for any antisymmetric (even-dimensional) matrix A,∫
d2Dξ e−ξ

TAξ/2 = Pf A, (Pf A)2 = det A

by the same method as the commuting case (again with appropriate definition of the

normalization of d2Dξ; the determinant of an odd-dimensional antisymmetric matrix

vanishes, since det M = det MT ). However, there is now an important difference: The

“Pfaffian” is not merely the square root of the determinant, but itself a polynomial,

since we can evaluate it also by Taylor expansion:

Pf AIJ = 1
D!2D

εI1...I2DAI1I2 · · ·AI2D−1I2D

which can be used as an alternate definition. (Normalization can be checked by

examining a special case; the overall sign is part of the normalization convention.

Note that this relation for the determinant provides a simpler expression for the

inverse of an antisymmetric matrix directly in terms of the Pfaffian.) We then also

have
1

D!2D
A[I1I2 ...AI2D−1I2D] = εI1...I2DPf A

4. Classical groups

The rotation group in three dimensions can be expressed most simply in terms

of 2×2 matrices. This description is the most convenient for not only spin 1/2, but

all spins. This result can be extended to orthogonal groups (such as the rotation,

Lorentz, and conformal groups) in other low dimensions, including all those relevant

to spacetime symmetries in four dimensions.

There are an infinite number of Lie groups. Of the compact ones, all but a finite

number are among the “classical” Lie groups. These classical groups can be defined

easily in terms of (real or complex) matrices satisfying a few simple constraints. (The

remaining “exceptional” compact groups can be defined in a similar way with a little

extra effort, but they are of rather specialized interest, so we won’t cover them here.)

These matrices are thus called the “defining” representation of the group. (Sometimes

this representation is also called the “fundamental” representation; however, this term

has been used in slightly different ways in the literature, so we will avoid it.) These

constraints are a subset of:

volume: Special: det(g) = 1

metric:


hermitian: Unitary:

(anti)symmetric:

{
Orthogonal:

Symplectic:

g†Υg = Υ

gTηg = η

gTΩg = Ω

(Υ † = Υ )

(ηT = η)

(ΩT = −Ω)

reality:

{
Real:

pseudoreal (*):

g* = ηgη−1

g* = ΩgΩ−1
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where g is any matrix in the defining representation of the group, while Υ, η,Ω are

group “metrics”, defining inner products, while the determinant defines the volume,

as in the Jacobian. (Actually, the matrix appearing in a reality condition can also be

used as a metric.) For the compact cases Υ and η can be chosen to be the identity,

but we will also consider some noncompact cases. (There are also some uninteresting

variations of “Special” for complex matrices, setting the determinant to be real or its

magnitude to be 1.)

Exercise IB4.1

Write all the defining constraints of the classical groups (S, U, O, Sp, R,

pseudoreal) in terms of the algebra rather than the group.

Note the modified definition of unitarity, etc. Such things are also encountered

in quantum mechanics with ghosts, since the resulting Hilbert space can have an

indefinite metric. For example, if we have a finite-dimensional Hilbert space where

the inner product is represented in terms of matrices as

〈ψ|χ〉 = ψ†Υχ

then “observables” satisfy a “pseudohermiticity” condition

〈ψ|Hχ〉 = 〈Hψ|χ〉 ⇒ ΥH = H†Υ

and unitarity generalizes to

〈Uψ|Uχ〉 = 〈ψ|χ〉 ⇒ U †ΥU = Υ

Similar remarks apply when replacing the Hilbert-space “sesquilinear” (vector times

complex conjugate of vector) inner product with a symmetric (orthogonal) or anti-

symmetric (symplectic) bilinear inner product. An important example is when the

wave function carries a Lorentz vector index, as expected for a relativistic description

of spin 1; then clearly the time component is unphysical.

The groups of matrices that can be constructed from these conditions are then:

GL(n,C) [SL(n,C)] U: [S]U(n+,n−)

O: [S]O(n,C)

Sp: Sp(2n,C)

R: GL(n) [SL(n)]

*: [S]U*(2n)

U R *

O [S]O(n+,n−) SO*(2n)

Sp Sp(2n) USp(2n+,2n−)

Of the non-determinant constraints, in the first column we applied none (“GL” means

“general linear”, and “C” refers to the complex numbers; the real numbers “R” are
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implicit); in the second column we applied one; in the third column we applied three,

since two of the three types (unitarity, symmetry, reality) imply the third. (The prod-

uct of any 2 independent types of metric gives the third.) The corresponding groups

with unit determinant, when distinct, are given in brackets. These square matrices

are of size n, n++n−, 2n, or 2n++2n−, as indicated. n+ and n− refer to the number

of positive and negative eigenvalues of the metric Υ or η. O(n) differs from SO(n) by

including “parity”-type transformations, which can’t be obtained continuously from

the identity. (SSp(2n) is the same as Sp(2n).) For this reason, and also for study-

ing “topological” properties, for finite transformations it is sometimes more useful to

work directly with the group elements g, rather than parametrizing them in terms

of algebra elements as g = eiG. U(n) differs from SU(n) (and similarly for GL(n)

vs. SL(n)) only by including a U(1) group that commutes with the SU(n): Although

U(1) is noncompact (it consists of just phase transformations), a compact form of

it can be used by requiring that all “charges” are integers. (I.e., all representations

transform as ψ′ = eiqθψ for group parameter θ, where q is an integer defining the

representation. The charge is canonically conjugate to the group coordinate θ. So if

θ is compact (i.e., an “angle”), q is quantized; but if q can take continuous values,

the group must be non-compact.)

Of these groups, the compact ones are just SU(n), SO(n) (and O(n)), and USp(2n)

(all with n−=0). The compact groups have an interesting interpretation in terms of

various number systems: SO(n) is the unitary group of n×n matrices over the real

numbers, SU(n) is the same for the complex numbers, and USp(2n) is the same for

the quaternions. (Similar interpretations can be made for some of the noncompact

groups.) The remaining compact Lie groups that we didn’t discuss, the “exceptional”

groups, can be interpreted as unitary groups over the octonions. (Unlike the classical

groups, which form infinite series, there are only five exceptional compact groups,

because of the restrictions following from the nonassociativity of octonions.)

The “Cartan subalgebra” of a semisimple Lie algebra is its maximal Abelian

subalgebra. (It has a more general definition for other Lie algebras.) The number of

its generators is the “rank” of the original algebra.

Exercise IB4.2

The simplest case of a Cartan subalgebra is for GL(n), since those are arbi-

trary matrices: The Cartan subalgebra is then just the diagonal matrices, so

the rank is just n. Do the same for the compact groups. Show the result is n

for:

a SU(n+1).
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b SO(2n) and SO(2n+1). (Hint: Consider block-diagonal matrices.)

c USp(2n). (Hint: Choose a convenient form for the metric Ω.)

5. Tensor notation

Usually nonrelativistic physics is written in matrix or Gibbs’s notation. This is

insufficient even for 19th century physics: We can write a column or row vector p

for momentum, and a matrix T for moment of inertia, but how do we write in that

notation more general objects? These are different representations of the rotation

group: We can write how each transforms under rotations:

p′ = pA, T ′ = ATTA

The problem is to write all representations.

One alternative is used frequently in quantum mechanics: A scalar is “spin 0”, a

vector is “spin 1”, etc. Spin s has 2s+1 components, so we can write a column “vector”

with that many components. For example, moment of inertia is a symmetric 3×3

matrix, and so has 6 components. It can be separated into its trace S and traceless

pieces R, which don’t mix under rotations:

T = R + 1
3
SI, tr(T ) = S, tr(R) = 0

⇒ tr(T ′) = tr(ATTA) = tr(AATT ) = tr(T ) ⇒ tr(R′) = 0, S ′ = S

using the cyclicity of the trace. Thus the “irreducible” parts of T are the scalar S

and the spin-2 (5 components) R. But if we were to write R as a 5-vector, it would

be a mess to relate the 5×5 matrix that rotates it to the 3×3 matrix A, and even

worse to write a scalar like pRpT in terms of 2 3-vectors and 1 5-vector. (In quantum

mechanics, this is done with “Clebsch-Gordan-Wigner coefficients”.)

The simplest solution is to use indices. Then it’s easy to write an object of

arbitrary integer spin s as a generalization of what we just did for spins 0,1,2: It

has s 3-vector indices, in which it is totally (for any 2 of its indices) symmetric and

traceless:

T i1...is : T ...i...j... = T ...j...i..., T ...i...j...δij = 0

and it transforms as the product of vectors:

T ′i1...is = T j1...jsAj1
i1 ...Ajs

is
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Similar remarks apply to group theory in general: Although historically group

representations have usually been taught in the notation where an m-component rep-

resentation of a group defined by n×n matrices is represented by an m-component

vector, carrying a single index with values 1 to m, a much more convenient and trans-

parent method is “tensor notation”, where a general representation carries many

indices ranging from 1 to n, with certain symmetries (and perhaps tracelessness) im-

posed on them. (Tensor notation for a covering group is generally known as “spinor

notation” for the corresponding orthogonal group: See subsection IC5.) This notation

takes advantage of the property described above for expressing arbitrary representa-

tions in terms of direct products of vectors. In terms of transformation laws, it means

we need to know only the defining representation, since the transformation of this

representation is applied to each index.

There are at most four vector representations, by taking the dual and complex

conjugate; we use the corresponding index notation. Then the group constraints

simply state the invariance of the group metrics (and their complex conjugates and

inverses), which thus can be used to raise, lower, and contract indices:

volume: Special: εI1...In

metric:

{
hermitian: Unitary:

(anti)symmetric:

{
Orthogonal:

Symplectic:

Υ
.
IJ

ηIJ

ΩIJ

reality:

{
Real:

pseudoreal (*):

η.
I
J

Ω.
I
J

As a result, we have relations such as

〈I |J〉 = ηIJ or ΩIJ , 〈
.
I |J〉 = Υ

.
IJ

We also define inverse metrics satisfying

ηKIηKJ = ΩKIΩKJ = Υ
.
KIΥ .

KJ
= δIJ

(and similarly for contracting the second index of each pair). We can then write

various inner products 〈ψ|χ〉 in index notation, such as

ψIχI , ψ.
I
Υ

.
IJχJ , ψIη

IJχJ , ψIΩ
IJχJ

Therefore, with unitarity/(pseudo)reality we can ignore complex conjugate rep-

resentations (and dotted indices), converting them into unconjugated ones with the
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metric, while for orthogonality/symplecticity we can do the same with respect to

raising/lowering indices:

Unitary: ψ
.
I = Υ

.
IJψJ

Orthogonal: ψI = ηIJψJ

Symplectic: ψI = ΩIJψJ

Real: ψ.
I

= η.
I
JψJ

pseudoreal (*): ψ.
I

= Ω.
I
JψJ

For the real groups there is also the constraint of reality on the defining representation:

ψ̄.
I
≡ (ψI)* = ψ.

I
≡ η.

I
JψJ

Exercise IB5.1

As an example of the advantages of index notation, show that SSp is the

same as Sp. (Hint: Write one ε in the definition of the determinant in terms

of Ω’s by total antisymmetrization, which then can be dropped because it

is enforced by the other ε. One can ignore normalization by just showing

det M = det I.)

For SO(n+,n−), there is a slight modification of a sign convention: Since then

indices can be raised and lowered with the metric, εI... is usually defined to be the

result of raising indices on εI..., which means

ε12...n = 1 ⇒ ε12...n = det η = (−1)n−

Then εI... should be replaced with (−1)n−εI... in the equations of subsection IB3: For

example,

εJ1...Jnε
I1...In = (−1)n−δI1[J1

· · · δInJn]

We now give the simplest explicit forms for the defining representations of the

classical groups. The most convenient notation is to label the generators by a pair of

defining indices, since the adjoint representation is obtained from the direct product

of the defining representation and its dual (i.e., as a matrix labeled by row and

column). The simplest example is GL(n), since the generators are arbitrary matrices.

We therefore choose as a basis matrices with a 1 as one entry and 0’s everywhere else,

and label that generator by the row and column where the 1 appears. Explicitly,

GL(n) : (GI
J)K

L = δLI δ
J
K ⇒ GI

J = |J〉〈I |

This basis applies for GL(n,C) as well, the only difference being that the coefficients

α in G = αI
JGJ

I are complex instead of real. The next simplest case is U(n): We can
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again use this basis, although the matrices GI
J are not all hermitian, by requiring

that αI
J be a hermitian matrix. This turns out to be more convenient in practice

than using a hermitian basis for the generators. A well known example is SU(2),

where the two generators with the 1 as an off-diagonal element (and 0’s elsewhere)

are known as the “raising and lowering operators” J±, and are more convenient than

their hermitian parts for purposes of constructing representations. (This generalizes

to other unitary groups, where all the generators on one side of the diagonal are

raising, all those on the other side are lowering, and those along the diagonal give the

Cartan subalgebra: See subsection IB4.)

Representations for the other classical groups follow from applying their defini-

tions to the GL(n) basis. We thus find

SL(n) : (GI
J)K

L = δLI δ
J
K − 1

n
δJI δ

L
K ⇒ GI

J = |J〉〈I | − 1
n
δJI |K〉〈K |

SO(n) : (GIJ)KL = δK[I δ
L
J ] ⇒ GIJ = |[I〉〈J ]|

Sp(n) : (GIJ)KL = δK(I δ
L
J) ⇒ GIJ = |(I〉〈J)|

As before, SL(n,C) and SU(n) use the same basis as SL(n), etc. For SO(n) and Sp(n)

we have raised and lowered indices with the appropriate metric (so SO(n) includes

SO(n+,n−)). For some purposes (especially for SL(n)), it’s more convenient to impose

tracelessness or (anti)symmetry on the matrix α, and use the simpler GL(n) basis.

Exercise IB5.2

Our normalization for the generators of the classical groups is the simplest,

and independent of n (except for subtracting out traces):

a Find the commutation relations of the generators (structure constants) for the

defining representation of GL(n) as given in the text. Note that the values of

all the structure constants are 0, ±i. Show that

cD = 1

(see subsection IB2).

b Consider the GL(m) subgroup of GL(n) (m<n) found by restricting the range

of the index of the above defining representation. Show the structure con-

stants are the same as those given by starting with the above representation

of GL(m).

c Find the structure constants for SO(n) and Sp(n).

d Directly evaluate kDcA (= δijGiGj) for SL(n), SO(n), and Sp(n), and compare

with cDdA/dD.
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Exercise IB5.3

A tensor that pops up in various contexts is

dijk = tr(Gi{Gj, Gk})

It takes a very simple form in terms of defining indices:

a Show that for SU(n) this tensor is determined to be, up to an overall normal-

ization (that depends on the representation),

tr
(
GI1

J1
{
GI2

J2 , GI3
J3
})
∼ [(231)+(312)]− 2

n
[(132)+(213)+(321)]+

4

n2
(123)

(abc) ≡ δJ1Ia δ
J2
Ib
δJ3Ic

(where a, b, c are some permutation of 1, 2, 3) from just the total symmetry

of dijk (and GI
I = 0), since the only invariant tensor available is δJI . (If εIJ...

were used, εIJ... would also be required, to balance the number of subscripts

and superscripts; but their product can be expressed in terms of just δ’s also.)

b Check this result by using the explicit G’s for the defining representation, and

determine the proportionality constant for that representation.

With the exception of the “spinor” representations of SO(n) (to be discussed

in subsection IC5, section IIA, and subsection XC1), general representations can be

obtained by reducing direct products of the defining representations. This means they

can be described by objects with multiple indices (up/down, dotted/undotted), where

each index is that of a defining representation, and satisfying various (anti)symmetry

and tracelessness conditions on the indices.

Exercise IB5.4

Consider the representations of SU(n) obtained from the symmetric and an-

tisymmetric part of the direct product of two defining representations. For

simplicity, one can work with the U(n) generators, since the U(1) pieces will

appear in a simple way.

a Using tensor notation for the generators (GI
J)KL

MN , find their explicit rep-

resentation for these two representations.

b By evaluating the trace, show that the Dynkin index for the two cases is

ca = n− 2, cs = n+ 2

c Show the sum of these two is consistent with the argument at the end of

subsection IB2. Show each case is consistent with n=2, and the antisymmetric
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case with n=3, by relating those cases to the singlet, defining, and adjoint

representations.
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We now consider some of the more useful representations, as explicit examples

of the results of the previous section. In particular, we consider symmetries of the

quark model.

1. More coordinates

We began our “review” of group theory by looking at how symmetries were rep-

resented on coordinates. We now return to coordinates as a special case (particular

representation) of the general results of the previous section. The idea is that the

coordinates themselves are already a representation of the group, and the wave func-

tions are functions of these coordinates. For example, for ordinary rotations we use

wave functions that depend on position or momentum, which transforms as a vec-

tor. (This is not always the case: For example, in our description of the conformal

group the usual space and time coordinates transformed nonlinearly, and not just

by multiplication by constant matrices unless the extra two coordinates were intro-

duced.) This is the basic distinction between classical mechanics and classical field

theory: Mechanics uses the coordinates themselves as the basic variables, while field

theory uses functions of the coordinates. (Similarly, in quantum mechanics the wave

functions are functions of the coordinates, while in quantum field theory the wave

functions are “functionals” of functions of the coordinates.)

In general, the construction of such a “coordinate representation” starts with a

given matrix representation (usually finite dimensional) (Gi)I
J and then defines a

new representation

Ĝi = qI(Gi)I
JpJ ; [pI , q

J} = δJI , [q, q} = [p, p} = 0

for some objects q and p, which are interpreted as either coordinates and their con-

jugate momenta (up to a factor of i), or as creation and annihilation operators: The

latter nomenclature is used when the boundary conditions allow the existence of a

state |0〉 called the “vacuum”, satisfying p|0〉 = 0, so we can define the other states

as functions of q acting on |0〉. (If the coordinates are fermionic, the distinction is

moot, since by the usual Taylor expansion the Hilbert space is finite dimensional. See

exercise IA2.4.) It is easy to check that Ĝi satisfy the same commutation relations

as Gi. In particular, if the matrices are in the adjoint representation, qi can be inter-

preted as the group coordinates themselves: This follows from considering the action

of an infinitesimal transformation on the group element g(q) = eiq
iGi (or just the Lie

algebra element G(q) = qiGi).
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If we write these results in bra/ket notation, since

Ĝiq
I = qJ(Gi)J

I , ĜipI = −(Gi)I
JpJ

it is more natural to look at the action on bras:

〈q| = qI〈I |, |p〉 = |I〉pI ⇒ Ĝi〈q| = 〈q|Gi, Ĝi|p〉 = −Gi|p〉

(Here the Ĝ’s are understood to act as differential operators, so they are not written as

commutators, to emphasize that they are not matrices in the vector space.) Note that

this vector space is position space itself, not the space of functions of the coordinates;

it is the same space on which Gi is defined. (Of course, Ĝi is defined on arbitrary

functions of the coordinates; it has a reducible representation bigger than (Gi)I
J .

Effectively, (Gi)I
J is represented on the space of functions linear in the coordinates.)

Then, for example

Ĝ1Ĝ2〈q| = Ĝ1〈q|G2 = 〈q|G1G2

is obviously equivalent, while (ignoring any extra signs for fermions)

Ĝ1Ĝ2|p〉 = −Ĝ1G2|p〉 = −G2Ĝ1|p〉 = G2G1|p〉

at least gives an equivalent result for the commutator algebra [Ĝ1, Ĝ2]. This is the

expected result for the dual representation Gi → −GT
i .

Interesting examples are given by using the defining representation for G. For

example, the commonly used oscillator representation for U(n) is

U(n) : ĜI
J = a†JaI , [aI , a

†J} = δJI

where the oscillators can be bosonic or fermionic. For the SO and Sp cases, because

we can raise and lower indices, and because of the (anti)symmetry on the indices, the

interesting possibility arises to identify the coordinates with their momenta, with the

statistics appropriate to the symmetry:

Sp(n) : ĜIJ = 1
2z(IzJ), [zI , zJ ] = ΩIJ

SO(n) : ĜIJ = 1
2ψ[IψJ ], {ψI , ψJ} = ηIJ

For SO(n) the representation is finite dimensional because of the Fermi-Dirac statis-

tics, and is called a “Dirac spinor” (and γ =
√

2ψ the “Dirac matrices” or “Clifford

algebra”). If the opposite statistics are chosen, the coordinates and momenta can’t be

identified: For example, bosonic coordinates for SO(n) give the usual spatial rotation

generators ĜIJ = x[I∂J ].
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Exercise IC1.1

Use this bosonic oscillator representation for U(2)=SU(2)⊗U(1), and use the

SU(2) subgroup to describe spin.

a Show that the spin s (the integer or half-integer number that defines the rep-

resentation) itself has a very simple expression in terms of the U(1) generator.

Show this holds in the quantum mechanical case (by interpreting the bracket

as the quantum commutator), giving the usual s(s + 1) for the sum of the

squares of the generators (with appropriate normalization).

b Use this result to show that these oscillators, acting on the vacuum state, can

be used to construct the usual states of arbitrary spin s.

Exercise IC1.2

Considering SO(2n), divide up ψI into pairs of canonical (and complex) con-

jugates a1 = (ψ1 + iψ2)/
√

2, etc., so {a, a†} = 1.

a Write the SO(2n) generators in terms of aa, a†a†, and a†a. Show that the

a†a’s by themselves generate a U(n) subgroup.

b Decompose the Dirac spinor into U(n) representations. Show that the product

of all the ψ’s is related to the U(1) generator, and commutes with all the

SO(2n) generators. Show that the states created by even or odd numbers of

a†’s on the vacuum don’t mix with each other under SO(2n), so the Dirac

spinor is reducible into two “Weyl spinors”.

2. Coordinate tensors

We have just seen how groups can be represented on coordinates. Depending

on the choice of coordinates, the coordinates may transform nonlinearly (i.e., as a

realization, not a representation), as for the D-dimensional conformal group in terms

of D (not D+2) coordinates. However, given the nonlinear transformation of the

coordinates, there are always representations other than the defining one (scalar field)

that we can immediately write down (such as the adjoint). We now consider such

representations: These are useful not only for the spacetime symmetries we have

already considered, but also for general relativity, where the symmetry group consists

of arbitrary coordinate transformations. Furthermore, these considerations are useful

for describing coordinate transformations that are not symmetries, such as the change

from Cartesian to polar coordinates in nonrelativistic theories.

When applied to quantum mechanics, we write the action of a symmetry on a

state as δψ = iGψ (or ψ′ = eiGψ), but on an operator as δA = i[G,A] (or A′ =
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eiGAe−iG). In classical mechanics, we always write δA = i[G,A] (since classical

objects are identified with quantum operators, not states). However, if G = λm∂m is

a coordinate transformation (e.g., a rotation) and φ is a scalar field, then in quantum

notation we can write

δφ(x) = [G, φ] = Gφ = λm∂mφ (φ′ = eGφe−G = eGφ)

since the derivatives in G just differentiate φ. (For this discussion of coordinate

transformations we switch to absorbing the i’s into the generators.) The coordinate

transformation G has the usual properties of a derivative:

[G, f(x)] = Gf ⇒ Gf1f2 = [G, f1f2] = (Gf1)f2 + f1Gf2

eGf1f2 = eGf1f2e
−G = (eGf1e

−G)(eGf2e
−G) = (eGf1)(eGf2)

and similarly for products of more functions.

The adjoint representation of coordinate transformations is a “vector field” (in the

sense of a spatial vector), a function that has general dependence on the coordinates

(like a scalar field) but is also linear in the momenta (as are the Poincaré generators):

G = λm(x)∂m, V = V m(x)∂m ⇒ δV = [G, V ] = (λm∂mV
n − V m∂mλ

n)∂n

⇒ δV m = λn∂nV
m − V n∂nλ

m

The same result follows if we use the Poisson bracket instead of the quantum me-

chanical commutator, replacing ∂m with ipm in both G and V .

Finite transformations can also be expressed in terms of transformed coordinates

themselves, instead of the transformation parameter:

φ(x) = e−λ
m∂mφ′(x) = φ′(e−λ

m∂mx)

as seen, for example, from a Taylor expansion of φ′, using e−Gφ′ = e−Gφ′eG. We then

define

φ′(x′) = φ(x) ⇒ x′ = e−λ
m∂mx

This is essentially the statement that the active and passive transformations cancel.

However, in general this method of defining coordinate transformations is not con-

venient for applications: When we make a coordinate transformation, we want to

know φ′(x). Working with the “inverse” transformation on the coordinates, i.e., our

original e+G,

x̃ ≡ e+λm∂mx ⇒ φ′(x) = eGφ(x) = φ(x̃(x))
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So, for finite transformations, we work directly in terms of x̃(x), and simply plug this

into φ in place of x (x→ x̃(x)) to find φ′ as a function of x.

Similar remarks apply for the vector, and for derivatives in general. We then use

x′ = e−Gx ⇒ ∂′ = e−G∂eG

where ∂′ = ∂/∂x′, since ∂′x′ = ∂x = δ. This tells us

V m(x)∂m = e−GV ′m(x)∂me
G = V ′m(x′)∂′m

or V ′(x′) = V (x). Acting with both sides on x′m,

V ′m(x′) = V n(x)
∂x′m

∂xn

On the other hand, working in terms of x̃ is again more convenient: Changing the

transformation for the vector operator in the same way as the scalar

V ′(x) = V (x̃)

⇒ V ′m(x)∂m = V m(x̃)∂̃m

⇒ V ′m(x) = V n(x̃)
∂xm

∂x̃n

where ∂̃ = ∂/∂x̃ and as usual

(∂̃mx
n)(∂nx̃

p) = δpm ⇒ ∂xn

∂x̃m
=

[(
∂x̃(x)

∂x

)−1
]
m

n

We can also use

V ′(x) = eGV (x)e−G

⇒ V ′m(x)∂m = (eGV m(x)e−G)(eG∂me
−G) = V m(x̃)∂̃m

A “differential form” is defined as an infinitesimal W = dxmWm(x). Its transfor-

mation law under coordinate transformations, like that of scalar and vector fields, is

defined by W ′(x′) = W (x). For any vector field V = V m(x)∂m, V mWm transforms as

a scalar, as follows from the “chain rule” d = dx′m∂′m = dxm∂m. Explicitly,

W ′
m(x′) = Wn(x)

∂xn

∂x′m

or in infinitesimal form

δWm = λn∂nWm +Wn∂mλ
n

Thus a differential form is dual to a vector, at least as far as the matrix part of coor-

dinate transformations is concerned. They transform the same way under rotations,
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because rotations are orthogonal; however, more generally they transform differently,

and in the absence of a metric there is not even a way to relate the two by raising or

lowering indices.

Higher-rank differential forms can be defined by antisymmetric products of the

above “one-forms”. These are useful for integration: Just as the line integral
∫
W =∫

dxmWm is invariant under coordinate transformations by definition (as long as we

choose the curve along which the integral is performed in a coordinate-independent

way), so is a totally antisymmetric Nth-rank tensor (“N -form”) Wm1···mN integrated

on an N -dimensional subspace as∫
dxm1 · · · dxmNWm1···mN : W ′

m1···mN (x′) = Wp1···pN (x)
∂xp1

∂x′m1
· · · ∂x

pN

∂x′mN

where the surface element dxm1 · · · dxmN is interpreted as antisymmetric. (The signs

come from switching initial and final limits of integration, as prescribed by the “ori-

entation” of the hypersurface.) This is clear if we rewrite the integral more explicitly

in terms of coordinates σi for the subspace: Then∫
dxm1 · · · dxmNWm1···mN (x) =

∫
dσi1 · · · dσiNŴi1···iN (σ) =

∫
dNσ εi1···iNŴi1···iN (σ)

where

Ŵi1···iN (σ) =
∂xm1

∂σi1
· · · ∂x

mN

∂σiN
Wm1···mN (x)

is the result of a coordinate transformation that converts N of the x’s to σ’s, an

interpretation of the functions x(σ) that define the surface. Then any coordinate

transformation on x → x′ (not on σ) will leave Ŵ (σ) invariant. In particular, if the

subspace is the full space, so we can look directly at
∫
dNx εm1···mNWm1···mN , we see

that a coordinate transformation generates from W an N -dimensional determinant

exactly canceling the Jacobian resulting from changing the integration measure dNx.

Exercise IC2.1

For all of the following, use the exponential form of the finite coordinate

transformation:

a Show that any (local) function of a scalar field (without explicit x dependence

additional to that in the field) is also a scalar field (i.e., satisfies the same

coordinate transformation law).

b Show that the transformation law of a vector field or differential form remains

the same when multiplied by a scalar field (at the same x).

c Show that V φ = V m∂mφ is a scalar field for any scalar field φ and vector field

V .
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d Show that [V,W ] is a vector field for any vector fields V and W .

Exercise IC2.2

Examine finite coordinate transformations for integrals of differential forms

in terms of x̃ rather than x′. Find the explicit expression for W ′(x) in terms

of W (x̃(x)), etc., and use this to show invariance:∫
dxm1 · · · dxmNW ′

m1···mN (x) =

∫
dx̃m1 · · · dx̃mNWm1···mN (x̃)

=

∫
dxm1 · · · dxmNWm1···mN (x)

where in the last step we have simply substituted x̃→ x as a change of integra-

tion variables. Note that, using the x̃ form of the transformation rather than

x′, the transformation generates the needed Jacobian, rather than canceling

one.

From the above transformation law, we see that the curl of a differential form is

also a differential form:

∂′[m1
W ′
m2···mN ](x

′) = ∂′[m1
(∂′m2

xp2) · · · (∂′mN ]x
pN )Wp2···pN (x)

= [∂[p1Wp2···pN ](x)](∂′m1
xp1) · · · (∂′mNx

pN )

because the curl kills ∂′∂′x terms that would appear if there were no antisymmetriza-

tion. Objects that transform “covariantly” under coordinate transformations, without

such higher derivatives of x (or λ in the other notation), like scalars, vectors, differen-

tial forms and their products, are called (coordinate) “tensors”. Getting derivatives of

tensors to come out covariant in general requires special fields, and will be discussed

in chapter IX. An important application of the covariance of the curl of differential

forms is the generalized Stokes’s theorem (which includes the usual Stokes’s theorem

and Gauss’s law as special cases):∫
dxm1 · · · dxmN+1 1

(N+1)!
∂[m1Wm2···mN+1] =

∮
dxm1 · · · dxmNWm1···mN

where the second integral is over the boundary of the space over which the first is

integrated. (We use the symbol “
∮

” to refer to boundary integrals, including those

over contours, which are closed boundaries of 2D surfaces.) It is basically just the

fundamental theorem of (integral) calculus (
∫ b
a
dx f ′(x) = f(b) − f(a)), as is clear

from choosing a coordinate system where the boundary is at a fixed value of just one

coordinate (at least in patches). (A standard example is a pair of infinite constant-

time surfaces, neglecting the boundaries that connect them at spatial infinity.)
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3. Young tableaux

We now return to our discussion of finite-dimensional representations. In the

previous section we gave the machinery for describing them using index notation,

but examined only the defining representation in detail. Now we analyze general

irreducible representations.

All the irreducible finite-dimensional representations of the groups SU(N) can be

described by tensors with lower N-valued indices with various (anti)symmetrizations.

(An upper index can be replaced with N−1 lower indices by using the Levi-Civita

tensor.) Although detailed calculations require explicit use of these indices, three

properties can be more conveniently discussed pictorially:

(1) the (anti)symmetries of the indices,

(2) the dimension (number of independent components) of the representation, and

(3) the reduction of the direct product of two representations (which irreducible rep-

resentations result, and how many of each).

A “Young tableau” is a picture representing an irreducible representation in terms

of boxes arranged in a regular grid into rows and columns, such that the columns are

aligned at the top, and their depths are nonincreasing to the right: for example,

Each box represents an index, with antisymmetry among indices in any column, and

symmetry among indices in any row. More precisely, since one can’t simultaneously

have these symmetries and antisymmetries, it corresponds to the result of taking any

arbitrary tensor with that many indices, first symmetrizing the indices in each row,

and then antisymmetrizing the indices in each column (or vice versa; symmetrizing

and then antisymmetrizing and then symmetrizing again gives the same result as

skipping the first symmetrization, etc.). This gives a simple way to classify and

symbolize each representation. (We can denote the singlet representation, which has

no boxes, by a dot.) Note that the deepest column should have no more than N−1

boxes for SU(N) because of the antisymmetry.

To calculate the dimension of the representation for a given tableau, we use the

“factors over hooks” rule:

(1) Write an “N” in the box in the upper-left corner, and fill the rest of the boxes

with numbers that decrease by 1 for each step down and increase by 1 for each

step to the right.
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(2) Draw (or picture in your mind) a “hook” for each box — a “Γ ” with its corner

in the box and lines extending right and down out of the tableau.

(3) The dimension is then given by the formula

dimension =
∏

each box

integer written there

# boxes intersected by its hook

For the previous example, we find (listing boxes first down and then to the right)

N

8
· N − 1

6
· N − 2

3
· N − 3

1
· N + 1

6
· N

4
· N − 1

1
· N + 2

4
· N + 1

2
· N + 3

3
· N + 2

1
· N + 4

1

The direct product of two Young tableaux A⊗B is analyzed by the following rules:

First, label all the boxes in B by putting an “a” in each box in the top row, “b” in

the second row, etc. Then, take the following steps in all possible ways to find the

Young tableaux resulting from the direct product:

(1) Add all the “a” boxes from B to the right side and bottom of A, then “b” to

the right and bottom of that, etc., to make a new Young tableaux. Any two

tableaux constructed in this way with the same arrangement of boxes but different

assignment of letters are considered distinct, i.e., multiple occurrences of the same

representation in the direct product.

(2) No more than 1 “a” can be in any column, and similarly for the other letters.

(3) Reading from right to left, and then from top to bottom (i.e., like Hebrew/Arabic),

the number of a’s read should always be ≥ the number of b’s, b’s ≥ c’s, etc.

For example,

⊗ a
b
a = b

a a ⊕ a
a
b ⊕ a

b

a

Note that A⊗B always gives the same result as B⊗A, but one way may be simpler

than the other. For a given value of N, a column of N boxes is equivalent to none

(again by antisymmetry), while more than N boxes in a column gives a vanishing

tableau.

Exercise IC3.1

Calculate

⊗

Check the result by finding the dimensions of all the representations and

adding them up.

These SU(N) tableaux also apply to SL(N): Only the reality properties are dif-

ferent. Similar methods can be applied to USp(2N) (or Sp(2N)), but tracelessness
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(with respect to the symplectic metric) must be imposed in antisymmetrized indices,

so these trace pieces must be separated out when considering the above rules. (I.e.,

consider USp(2N)⊂SU(2N).) Similar remarks apply to SO(N), which has a symmet-

ric metric, but there are also “spinor” representations (see below). The additional

irreducible representations then can be constructed from taking direct products of

the above with the smallest spinors, and removing the “gamma-matrix” traces. Fur-

thermore, using the Levi-Civita tensor, all columns can be reduced to no more than

N/2 in height.

4. Color and flavor

We now consider the application of these methods to “internal symmetries” (those

that don’t act on the coordinates) in particle physics. The symmetries with experi-

mental confirmation involve only the unitary groups (U and SU) of small dimension.

However, we will find later that larger unitary groups can be useful for approxima-

tion schemes. (Also, larger unitary and other groups continue to be investigated for

unification and other purposes, which we consider in later chapters.)

The “Standard Model” describes all of particle physics that is well confirmed

experimentally (except gravity, which is not understood at the quantum level). It

includes as its “fundamental” particles:

(1) the spin-1/2 quarks that make up the observed strongly interacting particles, but

do not exist as asymptotic states,

(2) the weakly interacting spin-1/2 leptons,

(3) the spin-1 gluons that bind the quarks together, which couple to the charges

associated with SU(3) “color” symmetry, but also are not asymptotic,

(4) the spin-1 particles that mediate the weak and electromagnetic interactions, which

couple to SU(2)⊗U(1) “flavor”, and

(5) the spin-0 Higgs particles that are responsible for all the masses of these weakly

interacting particles.

(However, quarks and gluons are temporarily free at high energy, eventually recom-

bining to give rise to “jets”, clusters of resulting hadrons.) These particles, along

with their masses (in GeV) and (electromagnetic) charges (Q = Q̄+∆Q), are:
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s = 1
2

color: → quark (3) lepton (1)
flavor (∆Q) (Q̄ = 1

6
) (Q̄ = −1

2)

−1
2 d (.0048) e (.00051099893)

+1
2 u (.0023) νe (< 2 · 10−9)

−1
2 s (.095) µ (.105658372)

+1
2 c (1.28) νµ (<.00019)

−1
2 b (4.18) τ (1.7768)

+1
2 t (160) ντ (<.0182)

s = 1

color: → gluon electroweak
flavor (Q) (8) (1)

0 g (0) γ (< 1 · 10−27)
0 Z (91.188)
±1 W (80.38)

s = 0

(Q = 0) H (125.7)

The quark masses we have listed are the “current quark masses”, the effective (“run-

ning”) masses when the quarks are relativistic with respect to their hadron (at least

for the lighter quarks), and act as almost free. But since they are not free, their

masses are ambiguous and energy dependent, and defined by some convenient con-

ventions. Nonrelativistic quark models use instead the “constituent quark masses”,

which include potential energy from the gluons. This extra potential energy is about

.30 GeV per quark in the lightest mesons, .35 GeV in the lightest baryons; there is

also a contribution to the binding energy from spin-spin interaction. Unlike electrody-

namics, where the potential energy is negative because the electrons are free at large

distances, where the potential levels off (the top of the “well”), in chromodynamics

the potential energy is positive because the quarks are free at high energies (short

distances, the bottom of the well), and the potential is infinitely rising. Masslessness

of the gluons is implied by the fact that no colorful asymptotic states have ever been

observed. We have divided the spin-1/2 particles into 3 “families” with the same

quantum numbers (but different masses). Within each family, the quarks are similar

to the leptons, except that:

(1) the masses and average charges (Q̄) are different,

(2) the quarks come in 3 colors, while the leptons are colorless, and

(3) the neutrinos are almost massless (mass differences have been measured, but not

individual masses), so to a great accuracy (and in the original version of the

Standard Model) they can be treated as having half as many components as the

massive fermions (1 helicity state each, instead of 2 spin states each).

This means that each lepton family has 1 SU(2) doublet and 1 SU(2) singlet. For

symmetry (and better, quantum mechanical, reasons to be explained later), we also
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assume the quarks have 1 SU(2) doublet, but therefore 2 SU(2) singlets. (General-

ization of the original Standard Model to include massive neutrinos, such as models

with parity broken by interactions, introduce the other components of the neutrinos

as singlets under all the gauge symmetries of the Standard Model. Some examples of

such theories will be discussed in subsection IVB4.)

We first look at the color group theory of the physical states, which are color

singlets. The fundamental unobserved particles are the spin-1 “gluons”, described by

the Yang-Mills gauge fields, and the spin-1/2 quarks. Suppressing all but color indices,

we denote the quark states by qi, and the antiquarks by q†i, where the indices are those

of the defining representation of SU(n), and its complex conjugate. The quarks also

carry a representation of a “flavor” group, unlike the gluons. The simplest flavorful

states are those made up of only (anti)quarks, with indices completely contracted

by one factor of an SU(n) group metric: From the “U” of SU(n), we can contract

defining indices with their complex conjugates, giving the “mesons”, described by

q†iq
i (quark-antiquark), which are their own antiparticles. From the “S” of SU(n),

we have the “baryons”, described by εi1...inq
i1 ...qin (n-quark), and the antibaryons,

described by the complex conjugate fields. All other colorless states made of just

(anti)quarks can be written as products of these fields, and therefore considered as

describing composites of them. Thus, we can approximate the ground states of the

mesons by

q†i(x)qi(x)

which describe spins 0 and 1 because of the various combinations of spins (from
1
2 ⊗

1
2 = 0⊕ 1). The first excited level will then be described by

q†
↔
∂q ≡ q†∂q − (∂q†)q

The antisymmetric derivative picks out the relative momentum of the two quarks,

rather than the total, and thus introduces orbital angular momentum 1 (and simi-

larly for more such derivatives). This level thus includes spins 0, 1, and 2. (Similar

remarks apply to baryons.) We can also have flavorless states made from just gluons,

called “glueballs”: The ground states can be described by Fi
jFj

i, where each F is a

gluon state (in the adjoint representation of SU(n)), and includes spins 0 and 2 (from

the symmetric part of 1 ⊗ 1). Because of their flavor multiplets and (electroweak)

interactions, many mesons and baryons corresponding to such ground and excited

states have been experimentally identified, while the glueballs’ existence is still un-

certain. Actually, quarks and gluons can almost be observed independently at high

energies, where the “strong” interaction is weak: The energetic particle appears as
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a “jet” — a particle of high energy accompanied by particles of much lower energy

(perhaps too small to detect) in color-singlet combinations. (Depending on the avail-

able decay modes, the jet might not be observed until after decaying, but still within

a small angle of spread.)

Just as all physical states are singlets of the local color SU(3), they are also singlets

of the local SU(2) of electroweak interactions. As will be explained later (subsection

IVB2), there are four Higgs fields, which transform simultaneously as a doublet of

this local SU(2) and a doublet of a broken, global isospin SU(2). (The determinant

of this 2×2 matrix gives the observable singlet Higgs.) For example, the proton and

neutron, which have close but different mass, are a doublet of this global SU(2). Unlike

the confinement responsible for SU(3) singlets, which is nonperturbative, the Higgs

mechanism responsible for SU(2) singlets is perturbative, since the scalar Higgs fields

can be expanded about their “vacuum values”, which are just numbers: SU(2) singlets

can be found from multiplying general fields by Higgs scalars, which trade the local

SU(2) for the global one, while there are no scalars that transform under SU(3), and

giving a vacuum value to a field with spin would violate Lorentz invariance. Ironically,

while the Higgs is easy to describe theoretically, but difficult to find experimentally,

confinement is the opposite. However, they look similar: Both have (lowest mass)

composite scalars of the form ψτψ and vectors of the form ψτi∇aψ that are singlets

under their (nonabelian) gauge group, where ψ is a scalar field for Higgs and a spinor

(fermion) field for confinement. Classically they seem quite different, but the quantum

relation is still unclear. Supersymmetry might provide some relation.

We now look at the flavor group theory of the physical hadronic states. In contrast

to the previous paragraph, we now suppress all but the flavor indices. Mesons Mi
j =

q†iq
j are thus in the adjoint representation of flavor U(m) (m ⊗ m̄, where m is the

defining representation and m̄ its complex conjugate), for both the spin-0 and the

spin-1 ground states. The baryons are more complicated: For simplicity we consider

SU(3) color, which accurately describes physics at observed energies. Then the color

structure described above results in total symmetry in combined flavor and Lorentz

indices (from the antisymmetry in the color indices, and the overall antisymmetry for

Fermi-Dirac statistics). Thus, for the 3-quark baryons, the Young tableaux

⊕ ⊕

for SU(m) flavor are accompanied by the same Young tableaux for spin indices: In

nonrelativistic notation, the first tableau, being totally antisymmetric in flavor in-

dices, is also totally antisymmetric in the three two-valued spinor indices, and thus

vanishes. Similarly, the last tableau describes spin 3/2 (total symmetry in both types
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of indices), while the middle one describes spin 1/2. Since only 3 flavors of quarks

have small masses compared to the hadronic mass scale, hadrons can be most conve-

niently grouped into flavor multiplets for SU(3) flavor: The ground states are then,

in terms of SU(3) flavor multiplets, 8⊕1 for the pseudoscalars, 8⊕1 for the vectors, 8

for spin 1/2, and 10 for spin 3/2. (One might expect 2 Young tableaux of the middle

type, but total symmetry in the combined SU(m)-spin indices relates them.)

Exercise IC4.1

What SU(flavor) Young tableaux, corresponding to what spins, would we have

for mesons and baryons if there were

a 2 colors?

b 4 colors?

However, the differing masses of the different flavors of quarks break the SU(3)

flavor symmetry (as does the weak interaction). In particular, the mass eigenstates

tend to be pure states of the various combinations of the different flavors of quarks,

rather than the linear combinations expected from the flavor symmetry. Specifically,

the linear combinations predicted by an 8⊕1 separation for mesons (trace and traceless

pieces of a 3⊗3 matrix) are replaced with particles that are more accurately described

by a particular flavor of quark bound to a particular flavor of antiquark. (This is

known as “ideal mixing”.) The one exception is the lightest mesons (pseudoscalars),

which are more accurately described by the 8⊕1 split, for this restriction to the 3

lighter flavors of quarks, but the mass of the singlet differs from that naively expected

from group theory or nonrelativistic quark models. (This is known as the “U(1)

problem”.) The solution is probably that the singlet mixes strongly with the lightest

pseudoscalar glueball (described by tr εabcdFabFcd); the mass eigenstates are linear

combinations of these two fields with the same quantum numbers. In any case, the

most convenient notation for labeling the entries of the matrix Mi
j representing the

various meson states for any particular spin and angular momentum of the quark-

antiquark combination is that corresponding to the choice we gave earlier for the

generators of U(n): Label each entry by a separate name, where the complex conjugate

appears reflected across the diagonal. These directly correspond to the combination

of a particular quark with a particular antiquark, and to the mass eigenstates, with

the possible exception of the entries along the diagonal for the 3 lightest flavors,

where the mass eigenstates are various linear combinations. (However, the SU(2) of

the 2 lightest flavors is only slightly broken by the quark masses, so in that case the

combinations are very close to the 3⊕1 split of SU(2).)
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For example, for the lightest multiplet of mesons (spin 0, and relative angular mo-

mentum 0 for the quark and antiquark, but not all of which have yet been observed),

we can write the U(6) matrix (for the 6 flavors of the 3 known families)

Mi
j =



d̄d d̄u d̄s d̄c d̄b d̄t

ūd ūu ūs ūc ūb ūt

s̄d s̄u s̄s s̄c s̄b s̄t

c̄d c̄u c̄s c̄c c̄b c̄t

b̄d b̄u b̄s b̄c b̄b b̄t

t̄d t̄u t̄s t̄c t̄b t̄t



=



d u s c b t

d̄ ηd π+(.1395702) K̄0(.49761) D+(1.8696) B̄0(5.2796) T+

ū π−(") ηu K−(.49368) D0(1.86484) B−(5.2793) T 0

s̄ K0(") K+(") ηs D+
s (1.9683) B̄0

s (5.3668) T+
s

c̄ D−(") D̄0(") D−s (") ηc(2.9836) B−c (6.276) T 0
c

b̄ B0(") B+(") B0
s (") B+

c (") ηb(9.398) T+
b

t̄ T− T̄ 0 T−s T̄ 0
c T−b ηt


where (approximately)

ηu = 1√
2
π0(.1349766) + 1

2 [η′(.95778) + η(.54786)]

ηd = − 1√
2
π0 + 1

2(η′ + η), ηs = 1√
2
(η′ − η)

in terms of the mass eigenstates (observed particles), with masses again in GeV,

and ditto marks refer to the transposed entry. (We have neglected the important

contribution from the glueball.) For the corresponding spin-1 multiplet,

M̃i
j =



d u s c b t

d̄ ωd ρ+(.7751) K̄*0(.8961) D*+(2.01026) B̄*0(5.3252) T*+

ū ρ−(") ωu K*−(.8917) D*0(2.0070) B*−(5.3252) T*0

s̄ K*0(") K*+(") φ(1.01946) D*+
s (2.1121) B̄*0

s(5.415) T*+
s

c̄ D*−(") D̄*0(") D*−s (") J/ψ(3.09692) B*−c T*0
c

b̄ B*0(") B*+(") B*0
s(") B*+

c Υ (9.4603) T*+
b

t̄ T*− T̄*0 T*−s T̄*0
c T*−b θ


where

ωu = 1√
2
[ω(.7826) + ρ0(.7753)], ωd = 1√

2
(ω − ρ0)

(with s̄s = φ, ideal mixing, also approximate).
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Exercise IC4.2

Check the consistency of the masses in the second mass matrix above by as-

suming the meson masses are just the sum of the “constituent” quark masses:

See how close a fit you can get. (Potential energies have just been lumped

into the quark masses, assuming they are the same throughout the multiplet.

Note that masses on the diagonal will come out a bit low from annihilation

effects. The first multiplet was not used because of complications from mix-

ing with glueballs. Similar mass relations can be obtained from group theory

arguments, but the underlying physics is explained by the quark model.)

5. Covering groups

The orthogonal groups O(n+,n−) are of obvious interest for describing Lorentz

symmetry in spacetimes with n+ space and n− time dimensions, or conformal sym-

metry in spacetimes with n+−1 space and n−−1 time dimensions. This means we

should be interested in O(n) for n≤6, and their “Wick rotations”: transformations

that put in extra factors of i to change some signs on the metric. Coincidentally, these

are just the cases where the Lie algebras of the orthogonal groups are equivalent to

those of some algebras for smaller matrices. The smaller representation then can be

identified as the “spinor” representation of that orthogonal group. Since the “vec-

tor”, or defining representation space of the orthogonal group, itself is represented as

a matrix with respect to the other group (i.e., the state carries two spinor indices),

the other group may include certain phase transformations (such as −1) that cancel

in the transformation of the vector. The other group is then called the “covering”

group for that orthogonal group, since it includes those missing transformations in

its defining representation. (As a result, its group space also has a more interesting

topology, which we won’t discuss here.)

One way to discover these covering groups is to first count generators, then try

to construct explicitly the orthogonal metric on matrices. SO(n) has n(n−1)/2 gen-

erators (antisymmetric matrices), Sp(n) has n(n+1)/2 (symmetric), and SU(n) has

n2−1 (traceless). (These are hermitian generators, since we applied reality or her-

miticity.) So, for some group SO(n), we look for another group that has the same

number of generators. Then, if the new group is defined on m×m matrices, we look

for conditions to impose on an m×m matrix (not necessarily the adjoint) to get an

n-component representation. This is easy to do by inspection for small n; for large n

it’s easy to see that it can’t work, since m will be of the order of n, and the simple

constraints will give of the order of n2 components instead of n. We then construct
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the norm of this matrix M as tr(M †M), which is just the sum of the absolute value

squared of the components, for SO(n), and the other orthogonal groups by Wick

rotation. (Wick rotation affects mainly the reality conditions on M .)

The identifications for the Lie algebras are then:

SO(2) = U(1), SO(1,1) = GL(1)

SO(3) = SU(2) = SU*(2) = USp(2), SO(2,1) = SU(1,1) = SL(2) = Sp(2)

SO(4) = SU(2)⊗SU(2), SO(3,1) = SL(2,C) = Sp(2,C), SO(2,2) = SL(2)⊗SL(2)

SO(5) = USp(4), SO(4,1) = USp(2,2), SO(3,2) = Sp(4)

SO(6) = SU(4), SO(5,1) = SU*(4), SO(4,2) = SU(2,2), SO(3,3) = SL(4)

Note that the Euclidean cases are all unitary, while the ones with (almost) equal

numbers of space and time dimensions are all real. There are also some similar

relations for the pseudoreal orthogonal groups:

SO*(2) = U(1), SO*(4) = SU(2)⊗SL(2), SO*(6) = SU(3,1), SO*(8) = SO(6,2)

The norm and conditions for an m-spinor of SO(n+,n−) are:

n− ⇒ 0 1 2 3

m n norm symmetry : zT = reality : z* =

1 2 z′z z′ z (z′* = z′)

2 3 zαβzγδεγαεδβ z −εzε z
4 zαβ

′
zγδ

′
εγαεδ′β′ −εzε zT z

4 5 zαβzγδεδγβα −z (zαβΩβα = 0) 1
2εz

1
2ε(ΥzΥ ) z

6 zαβzγδεδγβα −z 1
2εz −ΩzΩ 1

2ε(ΥzΥ ) z

Note that in all but the 2D cases the norms are associated with determinants: For

D=3 and 4 the norm is given by the determinant, while for D=5 and 6 we use the

fact that the determinant of an antisymmetric matrix is the square of the Pfaffian.

Exercise IC5.1

Show that for D=5 zzε and zzΩΩ give the same norm. (Hint: Consider

Ω[αβΩγδ].)

Unfortunately, for SO(n) for larger n, the spinor is as least as large as, and usu-

ally larger than, the vector. In general, the spinor is like the “square root” of the

vector, in that the vector can be found by taking the direct product of two spinors.

It is impossible to find the spinor representation by taking direct products of vec-

tors. This situation occurs only for orthogonal groups: In all other classical groups,

all (finite-dimensional) representations are among those obtained from multiple di-

rect products of vectors. Furthermore, in those cases the “irreducible” representa-

tions (those that can’t be divided into smaller representations) can be picked out by
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(anti)symmetrization, and by separating trace and traceless pieces (where traces are

taken with the group metrics). Fortunately, for the above cases of orthogonal groups,

we can perform the same construction starting with the spinor representations, since

those are the “vectors” of non-orthogonal groups.

6. Cosets

A general way to construct representation spaces of Lie groups would be to con-

sider arbitrary functions of the coordinates of the group space. (In quantum me-

chanical language, this is a “wave function”, as opposed to Hilbert space, approach.)

But these representations are reducible, and we’re interested in irreducible subsets,

obtained by first identifying states related by a (“isotropy”, “stability”, “stabilizer”,

“little”, “gauge”, or “local”) subgroup H of the original (“isometry”, “symmetry”,

“global”, or “rigid”) group G. We are then left with functions of coordinates associ-

ated with all the generators of the group G less those of H. These coordinates define

the “coset space” G/H. We’ll find later interesting examples of coset spaces as coor-

dinate spaces: Minkowski space as either Poincaré/Lorentz or conformal/(everything

but translations), depending on what symmetry we want to describe, and super-

spaces as various supersymmetrizations of these. We’ll also use cosets to describe

field spaces (sets of scalar fields with symmetry, in subsection IVA3): These 2 types

of applications can be considered first-quantized (mechanics) and second-quantized

(field theory).

In general, we can write an exponential parametrization of the group elements g,

and identify them under left action of the subgroup, with elements h, by interpreting

this as a gauge transformation,

g′ = hg; g = eiα
IGI , h = eih

ιHι

GI = (Hι, Ti)

(note the different types of indices), where Ti are the remaining generators, corre-

sponding to G/H. (For some purposes it will prove more convenient to work with g−1

rather than g: This is the analog of working with the inverse vielbein rather than

the vielbein in general relativity.) Since hι are gauge parameters, they can be chosen

arbitrary functions of α. For coset spaces, we often use the alternate parametrization

g = eiα
ιHιeiα

iTi

so h will transform only the αι, not the αi. In particular, we can choose the “unitary”

gauge

gauge αι = 0 ⇒ g = eiα
iTi



182 I. GLOBAL

(Note there is an ambiguity in the definition of the T ’s, by adding to each a bit of the

H’s. This corresponds to different choices of the unitary gauge.) However, G should

still be a global symmetry: We therefore assume the global transformation, operating

on the side opposite to the local one

g′ = gg0

where g0 is an element of the full group G, but is independent of the group coordinates.

This is the action of the symmetry before choosing a gauge: If applied after, it

may change the gauge, and require a specific gauge transformation to restore the

gauge. In general this transformation will be nonlinear, but in the special case where

g0 ∈ H, which we write as h−1
0 , we have

g′ = h0gh
−1
0

where we have set h(αι) equal to the constant h0. This preserves the unitary gauge

as long as [Hι, Ti] ∼ Tj. (In particular, it preserves the “vacuum” g = I.) This

holds for semisimple groups (like conformal and superconformal groups), where to-

tal antisymmetry of the structure constants implies fικi = 0 ⇒ fιiκ = 0. But it

also holds for various other cosets of physical interest, such as Poincaré/Lorentz and

supersymmetry/Lorentz.

To get the most general irreducible representations of G as functions on a coset

space, we can use the following construction for semisimple groups (but there are

generalizations for some other Lie algebras): Divide up the generators GI into those of

a Cartan subalgebra G0, and with respect to it, “raising operators” G+ and “lowering

operators” G−. (We here take +, 0,− as multivalued indices in general. But a familiar

example is SU(2), which has just 1 of each.) The general procedure is to order all the

Cartan subalgebra generators, choose all the other generators as their “eigenvectors”

(with respect to commutators), and then look at their eigenvalues: For any generator,

if the first eigenvalue is positive, it goes in G+, if negative, G−. If it’s 0, go to the

next eigenvalue, and repeat the procedure, etc. Finally, after the last eigenvalue, if

all eigenvalues were 0, it should have been included in the Cartan subalgebra.

Then we choose

Hι = (G0, G−) , Ti = G+

Often G+ will be hermitian conjugates of G− (like for SU(2)); but sometimes G will

not be unitary (or will be pseudounitary), so their relation may be more complicated.

Now a convenient coordinate choice is

g = eiα
−G−eiα

0G0eiα
+G+
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(Again, reality conditions may be complicated.) Since G0 is Abelian, its exponen-

tial is easily evaluated as phase factors. In the defining (or any finite-dimensional)

representation for the generators, the expansions of the rest will terminate, leaving

polynomials. A related approach for classical groups is to work in the defining rep-

resentation, and then solve the constraints on the group matrices in terms of some

rational expression (see below).

However, it will often be the case that we’re only interested in a subset of the most

general representations. Then G0 will be replaced with some subgroup that includes

the Cartan subalgebra. As long as G0 includes an Abelian factor (some generators

that also commute with the rest of G0), the eigenvalues of that factor can be used to

separate the remainder into G− and G+.

For example, SO(D,2) has representations corresponding to the anti-de Sitter

group in D+1 dimensions (see subsection IXC2), but also to the conformal group in

D dimensions. In the former case we choose SO(D,1) for H (G0), so no separation of

G/H into G− and G+. (This is a Wick rotation of the sphere, treated below.) In the

latter case, G0 is Lorentz SO(D−1,1) and dilatations, so dilatations separate G− as

conformal boosts (“negative weight”), leaving G+ as translations (“positive weight”)

to define the coordinates. Another important example is the representation of the

Poincaré group on coordinate space: Then G is the Poincaré group, while H is the

Lorentz group, so G/H is translations, and again is not separated. (The Poincaré

group is a contraction of both the de Sitter and anti-de Sitter groups.)

G G0 G− G+

SO(D,2) conformal Lorentz ⊕ dilatations boosts translations

SO(D−1,2) anti-de Sitter Lorentz translations

ISO(D−1,1) Poincaré Lorentz translations

Exercise IC6.1

We now consider such coordinates for some simple cases of 2×2-matrix defin-

ing representations of classical “S” groups, writing

g−1 =

(
1 w

0 1

)(
u 0

0 u−1

)(
1 0

v 1

)
where w, u, v correspond to G+, G0, G−, respectively. (This parametrization

is convenient for the coset where H is generated by G0, G−. The advantage

of working with g−1 here will be explained later.)
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a Consider the case of SL(2,C), where w, u, v are complex (so really G+, G0, G−

each consist of 2 generators). Find the transformations of u, v, w under

g′−1 = g−1
0 g−1 , g−1

0 =

(
a b

c d

)
Show the result for w is (the SO(3,1) part of) the conformal group in 2

Euclidean dimensions as described in exercise IA6.6.

b Use the same representation for SU(2). Find w*, u*, v* in terms of w, u, v.

Once a coordinate representation has been chosen, we also want such a repre-

sentation for the action of the symmetry group on this space, i.e., a translation into

coordinate language of g′ = gg0. For many purposes it will be sufficient to evaluate

the infinitesimal symmetry transformation (using, e.g., the Baker-Campbell-Hausdorff

theorem)

δg ≡ giεIGI = g(α)(eiε
IGI − I) = iεIĜIg

where ĜI is a differential operator. (The above is essentially the definition of a

derivative, with a particular ordering and ε = δα.) Since it generates an infinitesimal

coordinate transformation, we can write

iĜI = RI
M(α)∂M , δαM = εIRI

M

where ∂M ≡ ∂/∂αM . (As usual, when expressing transformations in terms of coor-

dinates it’s often convenient to eliminate all i’s in the above equations by absorbing

them into the G’s and working with antihermitian operators.) Then a more useful

way to write this transformation is

iGI = ig−1ĜIg = RI
Mg−1∂Mg ⇒ g−1∂Mg = iRM

IGI

where RM
I is the matrix inverse of RI

M . Equivalently, we can write the “dual”

equation, in terms of differential forms instead of derivatives,

g−1dg ≡ g−1(α)[g(α + dα)− g(α)] = i dαMRM
IGI

The left-hand side can be evaluated by using a matrix representation of g, or for

abstract exponential parametrizations using the identity (see subsection IA3)

eABe−A = eLAB ⇒ (deA)e−A =
eLA − 1

LA
dA =

∫ 1

0

dτ eτA(dA)e−τA

(where LAB ≡ [A,B] for any A and B) as seen, e.g., by Taylor expansion. (Think of

d as any other operator, where [d,B] = (dB).) For general cases, this may be very

nonlinear; one way to evaluate is by Taylor expanding in LA.
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As an example, consider SU(2). (This is an easy nonabelian example, since each

of G+, G0, G− has only 1 generator.) We choose to use the coordinate system of the

3 exponential factors, which we’ll write as

g = eiα
−G−eiα

0G0eiα
+G+ = g−g0g+

(Cf. exercise IC6.1. Note in particular the unusual reality conditions.) Then

g−1dg = g−1
+ dg+ + g−1

+ (g−1
0 dg0)g+ + g−1

+ g−1
0 (g−1

− dg−)g0g+

The first term and factors in parentheses are easy to evaluate in this case, since they

involve only 1 generator and so are effectively Abelian (which would not be true in

general: see above): Clearly for an Abelian group g−1dg = i(dα)G. But for the latter

2 terms we still have to act with the remaining exponentials: Using the conventions

[G0, G±] = ±G± , [G+, G−] = G0

and evaluating the multiple commutators of the form eABe−A, we find

g−1
+ G0g+ = G0 + iα+G+

g−1
0 G−g0 = eiα

0

G−

g−1
+ G−g+ = G− − iα+G0 − 1

2(−iα+)2G+

Plugging in and picking off the coefficients of the 3 dαM and 3 GA,

RM
A =


+ 0 −

+ 1 0 0

0 iα+ 1 0

− 1
2(α+)2eiα

0 −iα+eiα
0

eiα
0


Inverting and multiplying by partial derivatives,

iĜ+ = ∂+

iĜ0 = ∂0 − iα+∂+

iĜ− = e−iα
0

∂− + iα+∂0 + 1
2(α+)2∂+

(General results for 3-exponential coordinates, e.g., the conformal group, take a sim-

ilar form except for their nonabelian nature.)

We thus have

gGI = ĜIg ⇒ gGIGJ = ĜIgGJ = ĜIĜJg
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[GI , GJ ] = −ifIJKGK ⇒ [ĜI , ĜJ ] = −ifIJKĜK

(Cf. subsection IC1, where we saw coordinate representations of the generators on

spaces other than the group space.)

Besides the differential operators ĜI generating symmetry transformations on the

wave functions, corresponding to right multiplication of the group, we also have those

corresponding to left multiplication, called “covariant derivatives” DI because they

commute with the symmetry generators. (Commutativity of left and right multipli-

cation is equivalent to associativity of multiplication.) From the same arguments as

above, we have

GIg = DIg, iDI = LI
M(α)∂M

(dg)g−1 = i dαMLM
IGI

[ĜI , DJ ] = 0

We now have

GIGJg = GIDJg = DJGIg = DJDIg ⇒ [DI , DJ ] = +ifIJ
KDK

so technically it’s −DI that’s a coordinate representation of GI . (Thus we may

sometimes use instead the convention Dg = −Gg.)

There are (at least) a couple of very simple relations between the symmetry

generators and covariant derivatives. For example, using the derivatives,

g−1GIg = g−1DIg = −iLIMg−1∂Mg = LI
MRM

JGJ

but we also have

g−1GIg = gI
JGJ ⇒ LI

MRM
J = gI

J

(The same result follows if we use instead the differentials.)

Exercise IC6.2

Show g−1GIg = gI
JGJ by evaluating its adjoint-representation matrix ele-

ment 〈J | |K〉, and using the group invariance of the structure constants.

Also, consider the coordinate transformation that switches each group element

with its inverse; then

g′ = hgg0 ⇒ (g−1)′ = g−1
0 g−1h−1

g ↔ g−1 ⇒ g0 ↔ h−1 ⇒ ĜI ↔ −DI

(For the sake of this argument we need not distinguish between global and local

groups, and h can be taken as in the full group.) This relation can also be seen
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from the explicit expressions for R and L as g−1dg ↔ −(dg)g−1. Thus, in the single-

exponential coordinate system, we have simply L(α) = R(−α) (with the extra “−”

canceling the sign change of ∂/∂α). On the other hand, for a 3-exponential coordinate

system, g ↔ g−1 means the exponents reverse order, so there is also a switch of indices

+↔ − (at least formally, depending on the relation between G+ and G−). But this

also produces a change in the structure constants, which can change coefficients. (In

the above example of SU(2), this just cancels all the sign changes from α→ −α.)

We can “integrate” the (symmetry) invariant differentials dαMLM
I to get finite

differences. But the result can be guessed directly:

g(α12) ≡ g(α1)g−1(α2) = g−1(α21)

(Not to be confused with some notation elsewhere, α12 = α1−α2 only in the Abelian

case.) Thus the group element g(α12), and hence α12 itself, is symmetry invariant.

α12 reduces to the above differential in the infinitesimal case. In coordinates where

g−1(α) = g(−α) (for example, parametrization with a single exponential), we have

also α21 = −α12. The action of the covariant derivatives on the symmetry invariants

is given by (using d(g−1) = −g−1(dg)g−1)

DI(α1)g(α12) = GIg(α12), DI(α2)g(α12) = −g(α12)GI

The invariant differentials can also be used to define a group-invariant (“Haar”)

measure: The wedge product of all the differentials dαMLM
i (i ranges over the coset)

is not only invariant under the symmetry group, but also under the gauge group,

since the determinant of the gauge group element is 1 for the coset representation

(even for GL(1), if we use the exponential parametrization).

To define a Hilbert space for wave functions, we begin with a vacuum state (the

“origin” of the Hilbert space) defined to be invariant under the gauge group:

〈0|Hι = 0

(In general, we don’t need a Hilbert space for this construction, but only a vector

space; the bras then form the dual space to the kets, as described in subsection IB1.)

A coordinate basis for the coset can then be defined as (cf. translations as in exercise

IC6.3)

〈α| ≡ 〈0|g(α)

(where g(0) = I) and is thus invariant under a gauge transformation

〈0|g′ ≡ 〈0|hg = 〈0|g
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The wave function is then defined with respect to this basis as

ψ(α) ≡ 〈α|ψ〉 = 〈0|g(α)|ψ〉

from which it follows that its covariant derivative with respect to the gauge group

vanishes:

Dιψ(α) = 〈0|Hιg(α)|ψ〉 = 0

Thus, requiring that some function on the group space satisfy the differential con-

straints Dιψ(α) = 0 guarantees that it depends only on the coset coordinates, the

covariant H-derivatives Dι killing dependence on the gauge coordinates. On the other

(right) hand, the symmetry generators act in the expected way:

ĜIψ(α) = 〈0|g(α)GI |ψ〉 = (GIψ)(α)

So far we have analyzed only coordinate representations. But usually in quantum

mechanics we want to consider more general representations by adding “spin” to

such “orbital” generators. This is accomplished by first introducing spin degrees of

freedom, and then tying them to the group by modifying the gauge-group constraints.

So we first introduce a basis 〈A| (and its dual |A〉) for a matrix representation H̃ι for

the gauge group (see subsection IB1 for matrix notation),

〈A|Hι = H̃ιA
B〈B|, Hι|A〉 = |B〉H̃ιB

A

then define a basis for the new Hilbert space by using this gauge group basis as our

new (degenerate) vacuum,

〈A, α| ≡ 〈A|g(α)

to get the generalizations of the previous

ψA(α) ≡ 〈A, α|ψ〉 ⇒ DιψA(α) = H̃ιA
BψB(α), ĜIψA(α) = (GIψ)A(α)

Thus our wave function now not only has a coordinate argument αM , but also carries

a discrete index A. Usually, nontrivial H̃ is defined only for G0, while the covariant

derivatives for G− still vanish to preserve their interpretation as lowering operators.

In particular, for the case where G is a compact group, all unitary representations

(of the matrices for the group) are finite dimensional. Then if we choose G0 to be

the Cartan subalgebra, H̃ must be nonzero for nonsinglet representations. When

G/H=ISO(D)/SO(D), the coset coordinates can be identified with those of the po-

sition of the center of mass of a rigid body, while the isotropy coordinates are the

angles of the orientation and rotation of its axis.
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Exercise IC6.3

Consider G = U(1): This is essentially translations in D=1.

a Evaluate (L,R, Ĝ,D, α12).

b For also H = U(1), fix H̃, and find ψ(α). (Note: Since representations of U(1)

have only 1 component, we drop the index on ψ.)

The wavefunction now depends also on the gauge-group coordinates, but this

dependence is fixed independent of the state (but dependent on the H representation):

For example, in the 2-exponential coordinate system

ψA(αI) = 〈A|eiα
ιHιeiα

iTi |ψ〉 = (eiα
ιH̃ι)A

B〈B|eiα
iTi |ψ〉 ≡ hA

B(αι)ψ̃B(αi)

where hA
B (the h part of g, not a gauge parameter) depends on only the gauge

coordinates and not the state, while ψ̃B depends on only the coset coordinates. (h

resembles a “vielbein”; however, LA
M is the “usual” vielbein of general relativity,

since it appears in the covariant derivatives DA of the group space, whose geometry

is completely fixed by the “Killing vectors” Ĝ.) Equivalently, imposing the constraints

D = H̃ on ψA forces it to have exactly this dependence on the gauge coordinates.

(Note that h is an H group element in some representation, so when a representation

can be built with direct products of other representations, e.g., using Young tableaux,

so can the corresponding h’s.) Conventionally the unitary gauge hA
B = δBA is chosen.

However, global H transformations (as a subgroup of global G) will clearly change

this gauge, since h isn’t invariant: Unlike the H gauge transformation, the global G

transformation of h and ψ̃B depends on our 2-exponential coordinate choice. This can

be better understood without reference to gauge choice as working with ψ̃B in place of

ψA. Thus ψA transforms as a “scalar” under G transformations, while ψ̃B transforms

as a “tensor”. Since h is a fixed function of the coordinates, its G transformation can

be determined straightforwardly: This then determines the transformation of ψ̃B. (In

the language of the unitary gauge, this extra transformation on the “B” index is called

a “compensating” gauge transformation to preserve the unitary gauge destroyed by

the global G transformation.) For example, for Poincaré/Lorentz, where the index

“A” represents the usual spin, Lorentz symmetry transformations on ψA act only as

coordinate transformations, with the orbital piece given by derivatives on the G/H

coordinates and the spin piece by derivatives on the H coordinates; but on ψ̃B the

spin piece acts as a matrix on the “B” index, since the h factor effectively converts

the operator Ĥ into the matrix H̃. More generally, all symmetry generators act

as infinitesimal coordinate transformations on ψA, while on ψ̃B, G+ still acts only as

coordinate transformations, G0 acts as orbital + spin, and G− has a more complicated

dependence on the spin matrices.
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Exercise IC6.4

Consider the coset describing 2D spacetime. For simplicity, start with Eu-

clidean space: Then the “Poincaré group” is ISO(2) (i.e., translations and

rotations in 2 spatial dimensions), which acts on the coset space defined by

modding out the “Lorentz group” SO(2). For a convenient representation,

use the 2-exponential parametrization given above for the group elements.

a How many generators does SO(2) have? What is its covering group? What

are the sizes of its irreducible representations? Use this to find a convenient

basis for all the ISO(2) generators. Write their commutation relations.

b Find explicit representations for all the DI and ĜI .

c Find explicitly the wave functions ψA and ψ̃B, and the “einbein” h, for arbi-

trary representations of H̃.

d What changes need to be made for Minkowski space? (Hint: What are the

reality properties of representations of GL(1) vs. those of U(1)?)

Since we know D in terms of derivatives, Dι = H̃ι can be solved to replace

partial derivatives with respect to gauge-group coordinates with matrices, in both

DI and ĜI . We’ll see applications of this to the conformal group (and thus also

the Poincaré group) later. For the construction given above for the most general

irreducible representations (with G0 the Cartan subalgebra), the covariant derivatives

for the lowering operators still vanish, while those for the Cartan subalgebra define

the representation by their eigenvalues. Thus the size of the Hilbert space need not

be enlarged beyond that of the coordinate space: The wave function carries only

“single-valued indices”. But for the specialized cases G0 is bigger than the Cartan

subalgebra, so the Hilbert space may be smaller because the coset space has fewer

coordinates: Even a single coordinate can give an infinite-dimensional Hilbert space,

in contrast to a finite-ranged index. However, the wave function may satisfy additional

constraints higher than first-order in the Di (covariant derivatives for G+): This is

true for unitary (finite-dimensional) representations of compact groups, and for the

usual quadratic equations of motion for noncompact groups in quantum mechanics

and field theory.

Remarks similar to these for wave functions apply to operators. For example,

(minus) the covariant derivatives themselves are a representation of the entire group.

This can be solved as a “constraint”:

[DI , DJ} = ifIJ
KDK ⇒ DI = gI

JĜJ , [D, Ĝ} = 0



C. REPRESENTATIONS 191

(where f takes the place of the adjoint representation matrix G̃). This result agrees

with our previous derivation of LI
MRM

I = gI
J .

Exercise IC6.5

Show that DI and ĜI for the Poincaré group in arbitrary dimensions take the

form, in the 2-exponential parametrization,

iĜa = ∂a , iĜab = x[a∂b] +Ra
mRb

n∂mn

iDa = ha
m∂m , iDab = La

mLb
n∂mn

where L and R are defined as usual, for just the Lorentz group, with ha
b =

La
mRm

b.

Note the many analogies to (super)gravity (chapters IX-X): The local symmetry

H is analogous to the tangent space gauge group (Lorentz for general relativity), and

the global symmetry G to the (linear part of) (super)spacetime coordinate transfor-

mations. The commutation relations of the G/H covariant derivatives

[Di, Dj} = fij
kDk + fij

κDκ

then identify fij
k as the “torsion”, while fij

κ is the “curvature”.

For simplifying symmetry transformations on coset spaces it’s useful to intro-

duce an identity that replaces exponential parametrizations with rational ones, thus

avoiding trigonometry. (This is just a choice of coordinate system: We know from

experience that some coordinate systems are more convenient than others for certain

applications. For example, one would never use spherical coordinates for flat space

when discussing translations.) The basic idea is to change the parametrization

g−1 = eA → 1 + A

1− A
=

(1 + A)2

1− A2
or its square root

1 + A√
1− A2

(but the latter has problems globally, needing 2 patches, one for each sign of the
√

).

Exercise IC6.6

Consider the case of U(1), where any of the above A’s is simply an imaginary

number. What are the explicit (trigonometric) relations between the different

A’s? What are the ranges of the A’s? Show the “square root” one covers only
1
2 of the circle (if only 1 branch of the

√
is used).

Then a “conjugation” (complex, quaternion, hermitian, or transposition, perhaps

multiplied by metric matrices: see subsection IB4) that takes

A → −A ⇒ g → g−1
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This is useful when A is the imaginary part of a complex number or quaternion, or

a block-off-diagonal matrix (whose square is block-diagonal), so that g is unitary or

orthogonal. In the matrix case, applied to coset spaces, the square root version is

convenient because A then realizes the global symmetry as fractional linear trans-

formations: If in some representation the gauge group appears as 2 diagonal blocks

(both square, but not necessarily equal in size), and the coset generators only in the

off-diagonal blocks (rectangles), then we can write

A =

(
0 w

v 0

)

⇒ g−1 =
1 + A√
1− A2

h̃ =

(
1 w

v 1

)(
(1− wv)−1/2 0

0 (1− vw)−1/2

)(
ũ 0

0 u

)
If there is a condition on g involving transposition (unitary, orthogonal, or symplec-

tic), v is fixed in terms of w. In that case, or when v is part of the gauge group (along

with u and ũ), then we need know only the transformation of the coordinates w that

define the entire coset. But the symmetry acts from the left, with each column in g−1

a representation. Then
(
w
1

)
times some matrix on the right is a representation, so w

itself (the ratio between the top part and the bottom square matrix) is a “projective”

realization:

g−1
0 =

(
a b

c d

)
⇒ w′ = (aw + b)(cw + d)−1

(Of course, we can also use a parametrization of g0 similar to that of g. This is useful

when the matrices a, b, c, d are constrained. We chose to use g−1 so that w transforms

with matrix multiplication from the left.) This is a simple expression for a finite,

nonlinear transformation, which is a consequence of our choices for both coset space

and coordinate system. However, such cosets appear in many applications, such as

the sphere (see below), (anti) de Sitter space (subsection IXC2), conformal symmetry

in flat space (subsection IA6), and superconformal symmetry in “flat” superspace

(subsection IIC4).

Exercise IC6.7

Consider unitary groups: For some metric Υ

g = Υg†−1Υ

Find the reality conditions on w, v, u, ũ above in the cases

a Υ = I

b Υ =
(

0
I
I
0

)
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A “projective” construction equivalent to the above coset would be to start with

the right “half” rectangle z as a representation of G, then use a gauge group that

eliminates the matrix factor on the right (i.e., the gauge group for u, ignoring that

for ũ):

z =

(
z+

z−

)
=

(
w

1

)
û, z′ =

(
a b

c d

)
zĥ

(for û ≡ z− square) so again ĥ (corresponding to a subgroup of that used for g−1)

can gauge away û (which includes the (1−vw)−1/2 factor), leading to the same global

transformation for w. For cases with spin, it’s also useful to have the transformation

û′ = (cw + d)ûĥ

In relevant cases, where w is an arbitrary rectangle (except perhaps for reality) we

can start with an unconstrained rectangle z, and ĥ in a GL group (even when the

original subgroup of H was constrained).

More generally, it may be convenient to introduce the complementary rectangle

from g: Using

g =

(
ũ−1 0

0 u−1

)(
(1− wv)−1/2 0

0 (1− vw)−1/2

)(
1 −w
−v 1

)
and g′ = hgg0, we can derive the same transformation law for w by considering the

rectangle

z̃ = ( z̃+ z̃− ) = ˆ̃u−1 ( 1 −w ) , z̃′ = ˆ̃hz̃g0

Note u and ũ are square matrices that may be of different size, so z and z̃ would

then also be of different size (and in any case z is more tall than wide while z̃ is the

opposite), but reduce after gauge fixing to the same rectangle w (i.e., z+(z−)−1 =

−(z̃+)−1z̃− = w), as a consequence of

gg−1 = I ⇒ z̃z = 0

The most useful examples of coset spaces as position spaces are those for space-

time symmetries: For example, if we want to describe rotations on a D-dimensional

sphere SD, we want to describe SO(D+1) in terms of D coordinates. Any point

on the sphere can be obtained by SO(D+1) rotation from a given initial point (the

“origin”), but we first “mod out” by initial rotations SO(D) about that point, since

they leave that point invariant. This sphere is then described by the coset space

SO(D+1)/SO(D). The coset generators give D translations, whose noncommutativ-

ity is less evident in infinitesimal transformations. Then in the defining (vector)

representation of SO(D+1)

A =

(
0 w

−wT 0

)
= −AT
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⇒ g−1 =
1 + A√
1− A2

h̃ =

(
1 w

−wT 1

)(
(1 + wwT )−1/2 0

0 (1 + wTw)−1/2

)(
ũ 0

0 1

)
Here w is a D-component column vector, A is antisymmetric (so g is orthogonal),

and ũ is an element of SO(D) (in the vector representation). It’s easy to see that

g is a general element of SO(D+1) at the infinitesimal level, and remains so (be-

cause it maintains its orthogonality) in general. We then find the above projective

transformation (with cw + d just a number). The projective construction is to start

with just a (D+1)-vector (corresponding to the rightmost column) and fix the bottom

component (to +1, in this patch) by a (continuous) scale invariance (with positive

scale factor): This is equivalent to defining SD from flat (D+1)-dimensional space by

identifying all points on a ray. (On the other hand, the (D+1)-vector above is a unit

vector, representing a point on the sphere embedded in this flat space.)

Exercise IC6.8

Apply this coset construction, and the corresponding projective one, to both

a SO(m+n)/SO(m)⊗SO(n) and

b U(m+n)/U(m)⊗U(n).

Exercise IC6.9

Do the same for (see IC1.2)

a SO(n,n)/GL(n), using the metric

η =

(
0 I

I 0

)
b How do the reality properties change for SO(2n)/U(n) (with the same metric)?

c What is the symmetry of the surviving coset matrices?

d Do the same for SO → Sp.

Exercise IC6.10

Compare these constructions for the cases SU(2)/U(1) (partly discussed in

exercise IC6.1) and SO(3)/SO(2), in the defining representations of each.

Exercise IC6.11

To better identify these coordinate systems for the sphere, calculate the met-

ric:

a First calculate the part of (dg)g−1 that’s the nonlinearization of (−)dw: the

part in the upper-right “corner”. Then “square” it (multiply it by its trans-

pose). The result is invariant under both the global and local groups: It can
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be identified with the metric

ds2 =
(dw)2

1 + w2
− (w · dw)2

(1 + w2)2

These coordinates cover only half the sphere, and are called “gnomonic” co-

ordinates.

b Do the same for the parametrization of (the coset part of) g that’s the square

of this one (i.e., the one with no square roots). Show that it gives the metric

ds2 =
4(dw)2

(1 + w2)2

These cover the whole sphere (if you consider w =∞ a point), and are called

“stereographic” coordinates.
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II. SPIN
Special relativity is simply the statement that the laws of nature are symmetric

under the Poincaré group. Free relativistic quantum mechanics or field theory is then

equivalent to a study of the representations of the Poincaré group. Since the con-

formal group is a classical group, while its subgroup the Poincaré group is not, it is

easier to first study the conformal group, which is sufficient for finding the massless

representations of the Poincaré group. The massive ones then can be found by di-

mensional reduction, which gives them in the same form as occurs in interacting field

theories. In four spacetime dimensions we use the covering group of the conformal

group, which is the easiest way to include spinors. These methods extend straight-

forwardly to supersymmetry, a symmetry between fermions and bosons that includes

the Poincaré group.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . A. TWO COMPONENTS . . . . . . . . . . . . . . . . . .

Although we have already specialized to spacetime symmetries, we have consid-

ered arbitrary spacetime dimensions. We have also noted that many of the lower-

dimensional Lie groups have special properties, especially with regard to covering

groups. In this section we will take advantage of those features; specifically, we ex-

amine the physical case D=4, where the rotation group is SO(3)=SU(2), the Lorentz

group is SO(3,1)=SL(2,C), and the conformal group is SO(4,2)=SU(2,2).

1. 3-vectors

The most important nontrivial Lie group in physics is the rotations in three

dimensions. It is also the simplest nontrivial example of a Lie group. This makes

it the ideal example to illustrate the properties discussed in the previous chapter,

as well as lay the groundwork for later discussions. We have already mentioned the

orbital part of rotations, i.e., the representation of rotations on spatial coordinates.

In this chapter we discuss the spin part; this is really the same as finding all (finite

dimensional, unitary) representations.

Since the earliest days of quantum mechanics, we know that half-integer spins

exist, in nature as well as group theory, e.g., the electron and proton. This might be

expected to complicate matters, but actually simplifies them, due to the well-known

inequality
1
2 < 1



198 II. SPIN

This means that a “spinor”, describing spin 1/2, has only 2 components, compared

to the 3 components of a vector, and its matrices (e.g., for rotations) are thus only

2×2 instead of 3×3.

We first consider spinors in matrix notation, then generalize to “spinor notation”

(spinor indices). The simplest way to understand why rotations can be represented

as 2×2 instead of 3×3 is to see why 3-vectors themselves can be understood as

2×2 matrices, which for some purposes is simpler. (This is equivalent to Hamilton’s

“quaternions”, which predated Gibbs’s vector notation, and were used by Maxwell for

his equations. This way also generalizes in a very simple way to relativity, in three

space and one time dimensions.) Consider such matrices to be hermitian, which

is natural from the quantum mechanical point of view. Then they have four real

components, one too many for a three-vector (but just right for a relativistic four-

vector), so we restrict them to also be traceless:

V = V †, tr V = 0

The simplest way to get a single number out of a matrix, besides taking the trace, is

to take the determinant. By expanding a general matrix identity to quadratic order

we find an identity for 2×2 matrices

det(I +M) = etr ln(I+M) ⇒ −2 det M = tr(M2)− (tr M)2

It is then clear that in our case −det V is positive definite, as well as quadratic, so

we can define the norm of this 3-vector as

|V |2 = −2 det V = tr(V 2)

This can be compared easily with conventional notation by picking a basis:

V = 1√
2

(
V 1 V 2 − iV 3

V 2 + iV 3 −V 1

)
= ~V · ~σ ⇒ det V = −1

2(V i)2

where ~σ are the Pauli σ matrices, up to normalization. (In practice, it’s usually more

convenient to work with each component of this matrix, rather than real combina-

tions. This is familiar from quantum mechanics courses when discussing SU(2), where

“raising” and “lowering” operators are used in place of the usual vector components

of angular momentum. Similar remarks apply to other groups, as seen in subsection

IB5.)

As usual, the inner product follows from the norm:

|V +W |2 = |V |2 + |W |2 + 2V ·W



A. TWO COMPONENTS 199

⇒ V ·W = det V + det W − det(V +W ) = tr(VW )

Applying our previous identities for determinants to 2×2 matrices, we have

MCMTC = I det M, M−1 = CMTC(det M)−1

where we now use the imaginary, hermitian matrix

C =
(

0
i
−i
0

)
If we make the replacement M → eM and expand to linear order in M , we find

M + CMTC = I tr M

This implies

tr V = 0 ⇔ (V C)T = V C

i.e., the tracelessness of V is equivalent to the symmetry of V C. Furthermore, the

combination of the trace and determinant identities tell us

M2 = M tr M − I det M ⇒ V 2 = −I det V = I 1
2 |V |

2

Here by “V 2” we mean the square of the matrix, while “|V |2”= (V i)2 is the square

of the norm (neither of which should be confused with the component V 2 = V iδ2
i .)

Again expressing the inner product in terms of the norm, we then find

{V,W} = (V ·W )I

Also, since the commutator of two finite matrices is traceless, and picks up a minus

sign under hermitian conjugation, we can define an outer product (vector×vector =

vector) by

[V,W ] =
√

2iV ×W

Combining these two results,

VW = 1
2(V ·W )I + 1√

2
iV ×W

In other words, the product of two traceless hermitian 2×2 matrices gives a real trace

piece, symmetric in the two matrices, plus an antihermitian traceless piece, antisym-

metric in the two. Thus, we have a simple relation between the matrix product, the

inner (“dot”) product and the outer (“cross”) product. Therefore, the cross product

is a special case of the Lie bracket, or commutator.

Exercise IIA1.1

Check this result in two ways:
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a Show the normalization agrees with the usual outer product. Using only the

above definition of V ×W , along with {V,W} = (V ·W )I, show

−I|V ×W |2 = ([V,W ])2 = −I[|V |2|W |2 − (V ·W )2]

b Use components, with the above basis.

Exercise IIA1.2

Write an arbitrary two-dimensional vector in terms of a complex number as

V = 1√
2
(vx − ivy).

a Show that the phase (U(1)) transformation V ′ = V eiθ generates the usual

rotation. Show that for any two vectors V1 and V2, V1*V2 is invariant, and

identify its real and imaginary parts in terms of well known vector prod-

ucts. What kind of transformation is V → V *, and how does it affect these

products?

b Consider two-dimensional functions in terms of z = 1√
2
(x + iy) and z* =

1√
2
(x − iy). Show by the chain rule that ∂z = 1√

2
(∂x − i∂y). Write the real

and imaginary parts of the equation ∂z*V = 0 in terms of the divergence and

curl. (Then V is a function of just z.)

c Consider the complex integral ∮
dz

2πi
V

where “
∮

” is a “contour integral”: an integral over a closed path in the

complex plane defined by parametrizing dz = du(dz/du) in terms of some

real parameter u. This is useful if V can be Laurent expanded as V (z) =∑∞
n=−∞ cn(z − z0)n inside the contour about a point z0 there, since by con-

sidering circles z = z0 + reiθ we find only the 1/(z − z0) term contributes.

Show that this integral contains as its real and imaginary parts the usual line

integral and “surface” integral. (In two dimensions a surface element differs

from a line element only by its direction.) Use this fact to solve Gauss’s law

in two dimensions for a unit point charge as E = 1/4πz.

Exercise IIA1.3

Consider electromagnetism in 2×2 matrix notation: Define the field strength

as a complex vector F =
√

2(E + iB). Write partial derivatives as the sum

of a (rotational) scalar plus a (3-)vector as ∂ = 1√
2
I∂t +∇, where ∂t = ∂/∂t

is the time derivative and ∇ is the partial space derivatives written as a

traceless matrix. Do the same for the charge density ρ and (3-)current j as
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J = − 1√
2
Iρ + j. Using the definition of dot and cross products in terms of

matrix multiplication as discussed in this section, show that the simple matrix

equation ∂F = −J , when separated into its trace and traceless pieces, and

its hermitian and antihermitian pieces, gives the usual Maxwell equations

∇ ·B = 0, ∇ · E = ρ, ∇× E + ∂tB = 0, ∇×B − ∂tE = j

(Note: Avoid the Pauli σ-matrices and explicit components.)

2. Rotations

One convenience of representing three-vectors as 2×2 instead of 3×1 is that rota-

tions are easier to write. Since vectors are hermitian, we expect their transformations

to be unitary:

V ′ = UV U †, U † = U−1

It is easily checked that this preserves the properties of these matrices:

(V ′)† = (UV U †)† = V ′, tr(V ′) = tr(UV U−1) = tr(U−1UV ) = tr(V ) = 0

Furthermore, it also preserves the norm (and thus the inner product):

det(V ′) = det(UV U−1) = det(U)det(V )(det U)−1 = det V

Unitary 2×2 matrices have 4 parameters; however, we can eliminate one by the

condition

det U = 1

This eliminates only the phase factor in U , which cancels out in the transformation

law anyway. Taking the product of two rotations now involves multiplying only 2×2

matrices, and not 3×3 matrices.

We can also write U in exponential notation, which is useful for going to the

infinitesimal limit:

U = eiG ⇒ G† = G, tr G = 0

This means that G itself can be considered a vector. Rotations can be parametrized

by a vector whose direction is the axis of rotation, and whose magnitude is (1/
√

2×)

the angle of rotation:

V ′ = eiGV e−iG ⇒ δV = i[G, V ] = −
√

2G× V

We also now see that the Lie bracket we previously identified as the cross product is

the bracket for the rotation group.
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Exercise IIA2.1

Evaluate the elements of the matrix eiG in closed form for a diagonal generator

G. Generalize this result to arbitrary G. (Hint: Use rotational invariance.)

The hermiticity condition on V can also be expressed as a reality condition:

V = V † and tr V = 0 ⇒ V * = −CV C, (V C)* = C(V C)C

where “ * ” is the usual complex conjugate. (Note that eiπC/2 = iC, and complex

conjugation just changes the sign of one component of a vector, that in the C direc-

tion, while iC is a rotation of the other 2 components into sign changes.) A similar

condition for U is

U † = U−1 and det U = 1 ⇒ U* = CUC

which is also a consequence of the fact that we can write U in terms of a vector as

U = eiV . As a result, the transformation law for the vector can be written in terms

of V C in a simple way, which manifestly preserves its symmetry:

(V C)′ = UV U−1C = U(V C)UT

Exercise IIA2.2

We return to our example of D=2:

a Write an arbitrary rotation in two dimensions in terms of the slope (dy/dx)

of the rotation (the slope to which the x-axis is rotated) rather than the

angle. (This is actually more convenient to measure if you happen to have

a ruler, which you need to measure lengths anyway, but not a protractor.)

This avoids trigonometry, but introduces ugly square roots: Compare Lorentz

transformations. Also note that this square root form covers only half of the

available angles.

b Show that the square roots can be eliminated by using the slope of half the

angle of transformation as the variable. Show the relation to the variables

used in writing 3D rotations in terms of 2×2 matrices, i.e., the use of complex

variables, as in exercise IIA1.2a. (Hint: Consider U and V C diagonal.)
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3. Spinors

Note that the mapping of SU(2) to SO(3) is two-to-one: This follows from the

fact V ′ = V when U is a phase factor. We eliminated continuous phase factors from

U by the condition det U = 1, which restricts U(2) to SU(2). However,

det(Ieiθ) = e2iθ = 1 ⇒ eiθ = ±1

for 2×2 matrices. More generally, for any SU(2) element U , −U is also an element of

SU(2), but acts the same way on a vector; i.e., these two SU(2) transformations give

the same SO(3) transformation. Thus SU(2) is called a “double covering” of SO(3).

However, this second transformation is not redundant, because it acts differently on

half-integral spins, which we discuss in the following subsections.

The other convenience of using 2×2 matrices is that it makes obvious how to

introduce spinors — Since a vector already transforms with two factors of U , we

define a “square root” of a vector that transforms with just one U :

ψ′ = Uψ ⇒ ψ†′ = ψ†U−1

where ψ is a two-component “vector”, i.e., a 2×1 matrix. The complex conjugate of

a spinor then transforms in essentially the same way:

(Cψ*)′ = CU*ψ* = U(Cψ*)

Note that the antisymmetry of C implies that ψ must be complex: We might think

that, since Cψ* transforms in the same way as ψ, we can identify the two consistently

with the transformation law. But then we would have

ψ = Cψ* = C(Cψ*)* = CC*ψ = −ψ

Thus the representation is pseudoreal. The fact that Cψ* transforms the same way

under rotations as ψ leads us to consider the transformation

ψ′ = Cψ*

Since a vector transforms the same way under rotations as ψψ†, under this transfor-

mation we have

V ′ = CV *C = −V

which identifies it as a reflection.

Another useful way to write rotations on ψ (like looking at V C instead of V ) is

(ψTC)′ = (ψTC)U−1
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This tells us how to take an invariant inner product of spinors:

ψ′ = Uψ, χ′ = Uχ ⇒ (ψTCχ)′ = (ψTCχ)

In other words, C is the “metric” in the space of spinors. An important difference of

this inner product from the familiar one for three-vectors is that it is antisymmetric.

Thus, if ψ and χ are anticommuting spinors,

ψTCχ = −χTCTψ = χTCψ

where one minus sign comes from anticommutativity and another is from the anti-

symmetry of C. Thus, it makes sense to take the norm of an anticommuting spinor

as ψTCψ, which would vanish if ψ were commuting. Of course, since rotations are

unitary, we also have the usual ψ†ψ as an invariant, positive definite, inner product.

Exercise IIA3.1

Consider a hermitian but not traceless 2×2 matrix M (M = M †, tr M 6= 0).

a Show

det M = 0 ⇒ M = ±ψ ⊗ ψ†

for some commuting spinor (column vector) ψ (and some sign ±).

b Define a vector by

V =
√

2(M − 1
2I tr M)

Show |V | (not |V |2) is simply ψ†ψ.

4. Indices

The best way to discuss general spins is to use index notation, rather than matrix

notation. Then a spinor rotates as

ψ′α = Uα
βψβ

with two-valued indices

α = ⊕,	

The inner product is defined by

ψαχα = ψαCβαχ
β = −ψαχα

where we have defined raising and lowering of indices by

ψα = ψβCβα, ψα = Cαβψβ
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Cαβ = −Cβα = −Cαβ = Cβα =
(

0
i
−i
0

)
paying careful attention to signs. (In general, we fix signs by using a convention of

contracting indices from upper-left to lower-right.) Then objects with many indices

transform as the product of spinors:

A′αβ...γ = Uα
δUβ

ε...Uγ
ζAδε...ζ

An infinitesimal transformation is then a sum:

−iδAαβ...γ = Gα
δAδβ...γ +Gβ

δAαδ...γ + ...+Gγ
δAαβ...δ

This is also true for Cαβ, even though it is an invariant constant:

C ′αβ = Uα
γUβ

δCγδ = Cαβ det U = Cαβ

A more interesting case is the vector: The transformation law is

V ′αβ = Uα
γUβ

δVγδ

where Vαβ is the symmetric V C considered earlier (in contrast to the antisymmetric

C).

There is basically only one identity in index notation, namely

0 = 1
2C[αβCγ]δ = CαβCγδ + CβγCαδ + CγαCβδ

The expression vanishes because it is antisymmetric in those indices, and thus the

indices must all have different values, but there are three two-valued indices. Another

way to write this identity is to use the definition of Cαβ as the inverse of Cαβ:

CαγC
βγ = δβα ⇒ CαβC

γδ = δγ[αδ
δ
β] ≡ δγαδ

δ
β − δ

γ
βδ

δ
α

This tells us that antisymmetrizing in any pair of indices automatically contracts

(sums over) them: Contracting this identity with an arbitrary tensor Aγδ,

A[αβ] = CαβC
γδAγδ = −CαβAγγ

That means that we need to consider only objects that are totally symmetric in their

free indices. This gives all spins: Such a field with 2s indices describes spin s; we have

already seen spins 0, 1/2, and 1.

We have defined the transformation law of all fields with lower indices by con-

sidering the direct product of spinors. Transformations for upper indices follow from

multiplication with Cαβ: They all follow from

ψ′α = ψβ(U−1)β
α
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Since the vertical position of the index indicates the form of the transformation law,

we define

ψ̄α ≡ (ψα)*

where the “ ” indicates complex conjugation. Thus, a hermitian matrix is written

as

Mα
β = (M †)α

β ≡ (Mβ
α)* ≡M

β
α ⇒ Mαβ = Mβα

So, for a vector we have

Vαβ = V αβ = Vβα

Spin s is usually formulated in terms of a (2s+1)-component “vector”. Then

one needs to calculate Clebsch-Gordan-Wigner coefficients to construct Hamiltonians

relating different spins. For example, to couple two spin-1/2 objects to a spin-1 object,

one might write something like ~V · ψ†~σχ. The matrix elements of the Pauli matrices

~σ are the CGW coefficients for the spin-1 piece of 1
2 ⊗

1
2 = 1 ⊕ 0. This method gets

progressively messier for higher spins. On the other hand, in spinor notation such a

term would be simply V αβψ̄αχβ; no special coefficients are necessary, only contraction

of indices. Similarly the decomposition of products of spins involves only the picking

out of the various symmetric and antisymmetric pieces: For example, for 1
2 ⊗

1
2 ,

ψαχβ = 1
2(ψ(αχβ) + ψ[αχβ]) = 1

2ψ(αχβ) − 1
2Cαβψ

γχγ = Vαβ + CαβS

where (αβ) means to symmetrize in those indices, by adding all permutations with

plus signs. We have thus explicitly separated out the spin-1 and spin-0 parts V and

S of the product. The square roots of various integers that appear in the CGW

coefficients come from permutation factors that appear in the normalizations of the

various fields/wave functions that appear in the products: For example,

AαβγĀαβγ = |A⊕⊕⊕|2 + 3|A⊕⊕	|2 + 3|A⊕		|2 + |A			|2

In the spinor index method, the square roots never appear explicitly, only their squares

appear in normalizations: For example, in calculating a probability for A⊗ B → C,

we evaluate
〈A⊗B|C〉〈C|A⊗B〉
〈A|A〉〈B|B〉〈C|C〉

where A, B, and C each have 2s indices for spin s, and 〈|〉 means contracting all

indices (with the usual complex conjugation). (Normalizing states to other than 1 is

often convenient and sometimes necessary: For example, plane waves are normalized

with δ functions.)
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Exercise IIA4.1

Redo exercise IIA3.1 in index notation: For ψαχβ above (both now bosonic),

show V αβVαβ = −2S2.

Exercise IIA4.2:

Spherical harmonics are simple in spinor notation.

a Write the unit position vector (position divided by radius) as a symmetric ma-

trix, in spherical coordinates (i.e., in terms of θ and φ). Show its components

are the spherical harmonics for angular momentum 1.

b Explain why the totally symmetric product of L such objects gives the spher-

ical harmonics for angular momentum L. Compare with known expressions

for L = 2 and 3.

Exercise IIA4.3:

In subsection IIB6 we’ll learn about “twistors” as square roots of 4D position.

Now we do 3D:

a Show the vector of the previous problem can be written in terms of

Xαβ = ζ(αζ̄β), ζα =
1√
r + z

(x+ iy, r + z)

b Compare exercise IIA3.1.

c Relate to g of SU(2)/U(1) discussed in subsection IC6.

5. Lorentz

Consider now a 2×2 matrix, whose elements we label as

(V )α
.
β =

(
V ⊕

.
⊕ V ⊕

.
	

V 	
.
⊕ V 	

.
	

)
=

(
V + V t*

V t V −

)

= 1√
2

(
V 0 + V 1 V 2 + iV 3

V 2 − iV 3 V 0 − V 1

)
= V a(σa)

α
.
β

which we choose to be hermitian,

V = V † ⇒ V α
.
β = (V †)α

.
β ≡ (V β

.
α)*

where we distinguish the right spinor index by a dot because it will be chosen to

transform differently from the left one: According to our discussion of subsection

IB5, this is the general labeling consistent with hermiticity, i.e., V ′ = gV g† (but

without the extra restriction of group unitarity of the previous subsections). For

comparison, lowering both spinor indices with the matrix C as for SU(2), and the
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vector indices with the Minkowski metric (in either the orthonormal or null basis, as

appropriate — see subsection IA4), we find another hermitian matrix

(V )
α
.
β

=

(
V+ Vt*

Vt V−

)
= 1√

2

(
V0 + V1 V2 − iV3

V2 + iV3 V0 − V1

)
= Va(σ

a)
α
.
β

In the orthonormal basis, σa are the Pauli matrices and the identity, up to normal-

ization. They are also the Clebsch-Gordan-Wigner coefficients for spinor⊗spinor =

vector. In the null basis, they are completely trivial: 1 for one element, 0 for the rest,

the usual basis for matrices. In other words, they are simply an arbitrary way (ac-

cording to choice of basis) to translate a 2×2 (hermitian) matrix into a 4-component

vector. We will sometimes treat a vector index “a” as an abbreviation for a spinor

index pair “α
.
α”:

V a = V α
.
α, a = α

.
α = (⊕ .⊕,⊕ .	,	 .⊕,	 .	) = (+, t̄, t,−)

where α and
.
α are understood to be independent indices (⊕ 6= .⊕, etc.). This is

essentially the same as using binary instead of decimal, so a=0,1,2,3 → 00,01,10,11.

Examining the determinant of (either version of) V , we find the correct Minkowski

norms:

−2 det V = −2V +V − + 2V tV t* = −(V 0)2 + (V 1)2 + (V 2)2 + (V 3)2 = V 2

Thus Lorentz transformations will be those that preserve the hermiticity of this matrix

and leave its determinant invariant:

V ′ = gV g†, det g = 1

(det g could also have a phase, but that would cancel in the transformation.) Thus g

is an element of SL(2,C). In terms of the representation of the Lie algebra,

g = eG, tr G = 0

Thus the group space is 6-dimensional (G has three independent complex compo-

nents), the same as SO(3,1) (where gηgT = η ⇒ (Gη)T = −Gη).

Exercise IIA5.1

SL(2,C) also can be seen (less conveniently) from vector notation:

a Consider the generators

J
(±)
ab = 1

2(Jab ± i1
2εabcdJ

cd)

of SO(3,1). Find their commutation relations, and in particular show

[J (+), J (−)] = 0. Express J
(±)
0i in terms of J

(±)
ij . Show J

(±)
ij have the same
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commutation relations as Jij. Finally, take a general infinitesimal Lorentz

transformation in terms of Jab and rewrite it in terms of J
(±)
ij , paying special

attention to the reality properties of the coefficients. This demonstrates that

the algebra of SO(3,1) is the same as that of SU(2)⊗SU(2), but Wick rotated

to SL(2,C).

b Apply the same procedure to SO(4) and SO(2,2) to derive their covering

groups.

Exercise IIA5.2

Consider relativity in two dimensions (one space, one time):

a Show that SO(1,1) is represented in lightcone coordinates by

x′+ = Λx+, x′− = Λ−1x−

for some (nonvanishing) real number Λ, and therefore SO(1,1) = GL(1). Write

this one Lorentz transformation, in analogy to exercise IIA1.2a on rotations

in two space dimensions, in terms of an analog of the angle (“rapidity”) for

those transformations that can be obtained continuously from the identity.

Do the relativistic analog of exercise IIA2.2.

b Still using lightcone coordinates, find the parity and time reversal transfor-

mations. Note that writing Λ as an exponential, so it can be obtained con-

tinuously from the identity, restricts it to be positive, yielding a subgroup of

GL(1). Explicitly, what are the transformations of O(1,1) missing from this

subgroup? Which of P, (C)T, and (C)PT are missing from these transforma-

tions, and which are missing from GL(1) itself?

In index notation, we write for this vector

V ′
α
.
β

= gα
γg*.

β

.
δV

γ
.
δ

while for a (“Weyl”) spinor we have

ψ′α = gα
βψβ

The metric of the group SL(2,C) is the two-index antisymmetric symbol, which is

also the metric for Sp(2,C): In our conventions,

Cαβ = −Cβα = −Cαβ = C .
α
.
β

=
(

0
i
−i
0

)
We also have the identities

det Lα
β = 1

2C
αβCγδLα

γLβ
δ = 1

2(tr L)2 − 1
2tr(L

2), (L−1)δ
β = CαβCγδLα

γ(det L)−1
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A[αβ] = CαβC
γδAγδ, A[αβγ] = 0

discussed earlier in this section. As there, we use the metric to raise, lower, and

contract indices:

ψα = ψβCβα, ψ .
α = ψ

.
βC.

β
.
α

V ·W =V α
.
βW

α
.
β

These results for SO(3,1) = SL(2,C) generalize to SO(4) = SU(2)⊗SU(2) (relevant

to the Standard Model: see subsection IVB2) and SO(2,2) = SL(2)⊗SL(2). As

described earlier, the reality conditions change, so now

SO(4) : (V αβ′)* = V γδ′CγαCδ′β′ , SO(2, 2) : (V αβ′)* = V αβ′

consistent with the (pseudo)reality properties of spinors for SU(2) and SL(2), where

we now use unprimed and primed indices for the two independent group factors

(V → gV g′).

Exercise IIA5.3

Take the explicit 2×2 representation for a vector given above, change the

factors of i to satisfy the new reality conditions for SO(4) and SO(2,2), and

show the determinant gives the right signatures for the metrics.

A common example of index manipulation is to use antisymmetry whenever pos-

sible to give vector products. For example, from the fact that V α
.
βV γ

.
δC.

δ
.
β

is antisym-

metric in αγ we have that

V α
.
βV

γ
.
β

= 1
2δ
α
γV

2

where the normalization follows from tracing both sides. Similarly,

V α
.
βW

γ
.
β

+Wα
.
βV

γ
.
β

= δαγV ·W

It then follows that

V α
.
βW

γ
.
β
V γ

.
δ = (δαγV ·W −Wα

.
βV

γ
.
β
)V γ

.
δ = V ·WV α

.
δ − 1

2V
2Wα

.
δ

Antisymmetry in vector indices also implies some antisymmetry in spinor indices.

For example, the antisymmetric Maxwell field strength Fab = −Fba, after translating

vector indices into spinor, can be separated into its parts symmetric and antisymmet-

ric in undotted indices; antisymmetry in vector indices (now spinor index pairs) then

implies the opposite symmetry in dotted indices:

F
α
.
γ,β

.
δ

= −F
β
.
δ,α

.
γ

= 1
4
(F

(αβ)[
.
γ
.
δ]

+ F
[αβ](

.
γ
.
δ)

) = C̄.
γ
.
δ
fαβ + Cαβ f̄.

γ
.
δ
, fαβ = 1

2Fα
.
γ,β

.
γ
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Thus, an antisymmetric tensor also can be written in terms of a (complex) 2×2

matrix. (However, our normalization of tensor vs. symmetric spinor matrix will vary

according to application.)

We also need to define complex (hermitian) conjugates carefully because C is

imaginary, and uses indices consistent with transformation properties:

ψ̄
.
α ≡ (ψα)* ⇒ ψ̄ .

α = −(ψα)*, (ψαψα)† = ψ̄
.
αψ̄ .

α

V
α
.
β ≡ (V †)α

.
β ≡ (V β

.
α)* ⇒ x̄α

.
β = xα

.
β

where we assume the spinor is fermionic (when re-ordering for hermitian conjugation),

and we have used the spacetime coordinates as an example of a real vector (hermitian

2×2 matrix). (Sometimes we will drop the “¯” on ψ̄
.
α, since it is redundant to the “

.
”.

Note that, unlike SU(2), ψ̄α 6= (ψα)*.) In general, hermitian conjugation properties

for any Lorentz representation are defined by the corresponding product of spinors:

For example,

(ψ(αχβ))† = χ̄(
.
αψ̄

.
β) = −ψ̄(

.
αχ̄

.
β) ⇒ f̄

.
α
.
β ≡ −(fαβ)*

More generally, we find

(T (α1...αj)(
.
β1...

.
βk))† ≡ (−1)j(j−1)/2+k(k−1)/2T̄ (β1...βk)(

.
α1...

.
αj)

As we’ll see later, most spinor algebra involves, besides spinors, just vectors and

antisymmetric tensors, which carry only two spinor indices, so matrix algebra is often

useful. When using bra-ket notation for 2-component spinors, it is often convenient

to distinguish undotted and dotted spinors. Furthermore, since spinor indices can

be raised and lowered, we can always choose the bras to carry upper indices and the

kets lower, consistent with our index-contraction conventions, to avoid extra signs

and factors of C. We therefore define (see subsection IB1)

〈ψ| = ψα〈α|, |ψ〉 = |α〉ψα; [ψ| = ψ
.
α[ .α|, |ψ] = |

.
α]ψ .

α

V = |α〉Vα
.
β[.
β
| ⇒ V * = −|

.
α]V β .

α〈β|; f = |α〉fαβ〈β| ⇒ f* = |
.
α]f .

α

.
β[.
β
|

where we now use “angle brackets” to denote the undotted spinor basis and “square

brackets” to denote the dotted. As a result, we also have

〈ψχ〉 = 〈χψ〉 = ψαχα, [ψχ] =ψ
.
αχ .

α; 〈ψχ〉† = [ψχ]

〈ψ|V |χ] = ψαVα
.
βχ.

β
, 〈ψ|f |χ〉 = ψαfα

βχβ

VW* +WV * =(V ·W )I
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where we have used the anticommutativity of the spinor fields. From now on, we use

this notation for the matrix representing a vector V (Vα
.
β), rather than the one with

which we started (V α
.
β). We also write

∂
α
.
β
≡ ∂

∂xα
.
β

Exercise IIA5.4

Consider the generators

Gα
β = xβ

.
γ∂α.

γ + |β〉〈α|

and their Hermitian conjugates. Show their algebra closes. What group do

they generate? Find a subset of these generators that can be identified with

(a representation of) the Lorentz group.

Since we have exhausted all possible linear transformations on spinors (except for

scale, which relates to conformal transformations), the only way to represent discrete

Lorentz transformations is as antilinear ones:

ψ′α =
√

2nα
.
βψ̄.

β
(ψ′ = −

√
2nψ*)

From its index structure we see that n is a vector, representing the direction of the

reflection. The product of two identical reflections is then, in matrix notation

ψ′′ = 2n(nψ*)* = n2ψ ⇒ n2 = ±1

where we have required closure on an SL(2,C) transformation (±1). Thus n is a unit

vector, either spacelike or timelike. Applying the same transformation to a vector,

where V α
.
β transforms like ψαχ

.
β, we write in matrix notation

V ′ = −2nV *n = n2V − 2(n · V )n

(The overall sign is ambiguous, and depends on whether it is a polar or axial vector.)

This transformation thus describes parity (actually CP, because of the complex con-

jugation). In particular, to describe purely CP without any additional rotation (i.e.,

exactly reflection of the 3 spatial axes), in our basis we must choose a unit vector in

the time direction,

√
2nα

.
β = δα

.
β ⇒ ψ′α = ψ̄ .

α (ψ̄′
.
α = −ψα)

⇒ V ′α
.
β = −Vβ .

α
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which corresponds to the usual in vector notation, since in our basis

σα
.
β

a = σaβ .
α

To describe time reversal, we need a transformation that does not preserve the com-

plex conjugation properties of spinors: For example, CPT is

ψ′α = ψα, ψ̄′
.
β = −ψ̄

.
β ⇒ V ′ = −V

(The overall sign on V is unambiguous. It might be better for some applications to

use instead ψ → iψ, ψ̄ → iψ̄. For example, this makes more sense in certain numbers

of dimensions where spinors are real, so ψ̄ = ψ. But we may need to also do things

like change the signs of masses.) With respect to spinors, especially, CPT can also

be considered as a type of π rotation (at least in Euclidean space).

In principle, whenever we work on a problem with both spinors and vectors we

could use a mixed vector-spinor notation, converting between the usual basis for

vectors and the spinor-index basis with identities such as

σa
α
.
β
σα

.
β

b = δba, σa
α
.
β
σγ

.
δ
a = δγαδ

.
δ.
β

However, in practice it’s much simpler to use spinor indices exclusively, since then

one needs no σ-matrix identities at all, but only the trivial identities for the matrix

C that follow from its antisymmetry. For example, converting the vector index on

the σ matrices themselves into spinor indices (a→ α
.
β), they become trivial:

(σα
.
β)
γ
.
δ

= δαγ δ
.
β.
δ

(This is the same as saying an orthonormal basis of vectors has the components

(V a)b = δab when the components are defined with respect to the same basis.)

Thus, the most general irreducible (finite-dimensional) representation of SL(2,C)

(and thus SO(3,1)) has an arbitrary number of dotted and undotted indices, and is

totally symmetric in each: A
(α1...αm)(

.
β1...

.
βn)

. Treating a vector index directly as a

dotted-undotted pair of indices (e.g., a = α
.
α, which is just a funny way of labeling

a 4-valued index), we can translate into spinor notation the two constant tensors of

SO(3,1): Since the only constant tensor of SL(2,C) is the antisymmetric symbol, they

can be expressed in terms of it:

η
α
.
α,β

.
β

= CαβC .
α
.
β
, ε

α
.
α,β

.
β,γ

.
γ,δ

.
δ

= i(CαβCγδC .
α
.
δ
C.
β
.
γ
− CαδCβγC .

α
.
β
C.
γ
.
δ
)

When we work with just vectors, these can be expressed in matrix language:

V ·W = tr(VW*)

εabcdV
aW bXcY d ≡ ε(V,W,X, Y ) = i tr(VW*XY *− Y *XW*V )
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(We have assumed real vectors; for complex vectors we should really write V ·W* = ...,

etc.)

Exercise IIA5.5

Prove this expression for the ε tensor (in either index or matrix version)

agrees with that defined in subsection IB3 (as modified in subsection IB5)

by (1) showing total antisymmetry, (2) explicitly evaluating a nonvanishing

component.

Exercise IIA5.6

Using the methods of subsection IC6, derive 4D conformal transformations

as projective transformations on 2×2 (hermitian) matrices. (Hint: What is

the covering group for SO(4,2)?)

6. Dirac

The Dirac spinor we encountered in subsection IC1 is a 4-component reducible

representation in D=4: in terms of two (“left” and “right”) two-component spinors,

Ψ = 2−1/4

(
ψLα

ψ̄R .
α

)
The Hermitian metric Υ that defines the (Lorentz-invariant) Dirac spinor inner prod-

uct √
2Ψ̄Ψ =

√
2Ψ †ΥΨ = ψαLψRα + h.c., Ψ̄ ≡ Ψ †Υ = 2−1/4(ψαR ψ̄

.
α
L)

takes the simple form

Υ =

(
0 C̄

.
α
.
β

Cαβ 0

)
= γ0

The Dirac matrices are given by

V/ ≡ γ · V =
√

2

(
0 Vα

.
β

V β .
α 0

)
=
√

2

(
0 V

−V * 0

)
where the indices have been chosen to insure that the γ matrices always take a Dirac

spinor to the same type of spinor. Since {V/ ,W/ } = −2V ·W , the γ matrices satisfy

{γa, γb} = −2ηab

The extra sign is the result of normalizing the γ’s to be pseudohermitian with respect

to the metric: Υγ†Υ−1 = +γ. This Dirac spinor can be made irreducible by imposing

a reality condition that relates ψL and ψR: The resulting “Majorana spinor” is then

Ψ = 2−1/4

(
ψα

ψ̄ .
α

)
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The product of all the γ’s is a pseudoscalar, and an additional γ-matrix:

γ−1 = i(D−1)(D−2)/2 1
4!
εabcdγ

aγbγcγd =

(
δβα 0

0 −δ
.
β.
α

)
⇒ {γ−1, γa} = 0, {γ−1, γ−1} = +2

(This is usually called “γ5” in the literature for D = 4, or “γD” for D 6= 4. We

have renamed it for consistency with dimensional reduction, where an extra factor of

“i” is then included for a spacelike dimension.) It can be used to project a Dirac or

Majorana spinor onto its two two-component spinors:

Π± = 1
2(I ± γ−1) =

(
I
0

0
0

)
,
(

0
0

0
I

)
Various identities for these matrices can be derived directly from the anticommu-

tation relations: For example,

γaγa = −4, γaa/γa = 2a/, γaa/b/γa = 4a · b, γaa/b/c/γa = 2c/b/a/

1
4
tr(I) = 1, 1

4
tr(a/b/) = −a · b, 1

4
tr(a/b/c/d/) = a · b c · d+ a · d b · c− a · c b · d

The trace identities follow from the fact that the only way to get a nonvanishing trace

out of a product of γ matrices is when there are terms proportional to the identity;

since {γa, γb} = −2ηab, this only happens when the indices are pairwise identical.

The above results then follow from examination of relevant special cases. (Traces of

odd numbers of γ matrices vanish. An exception is γ−1, until it is rewritten in terms

of its definition as the product of the other γ-matrices.)

Although use of the anticommutation relations is convenient for generalization of

such identities to arbitrary dimensions, 2-spinor bra-ket notation is easier for deriving

4D identities. Since a Dirac spinor is the direct sum of a Weyl spinor and its complex

conjugate, we write

21/4Ψ = |α〉ψLα + |
.
α]ψ̄R .

α, 21/4Ψ̄ = ψαR〈α|+ ψ̄
.
α
L[ .α|

In this notation, there is no need to use a spinor metric Υ , just as in Minkowski

4-vector bra-ket notation there is no need for an explicit matrix to represent the

Minkowski metric: It is included implicitly in the definition of the inner product

for the basis elements (〈a|b〉 = ηab or 〈α|β〉 = Cαβ). Thus hermitian conjugation is

automatically pseudohermitian conjugation, etc.: Ψ̄ is Ψ †, from the effect of hermitian

conjugating the basis vectors along with the components of the spinors they multiply.

(See subsections IB4-5.) We then have simply

2−1/2γ
α
.
β

= −|α〉[.β| − |.β]〈α|; Π+ = |α〉〈α|, Π− = |
.
α][ .α|
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where we have replaced the vector index a→ α
.
β on γa.

Exercise IIA6.1

Use this representation for the γ matrices and projection operators Π± for all

of the following:

a Derive

γα
.
βa/1 · · · a/2n+1γα

.
β

= 2a/2n+1 · · · a/1

γα
.
βa/1 · · · a/2nγα

.
β

= −I tr(a/1 · · · a/2n) + γ−1 tr(γ−1a/1 · · · a/2n)

b Rederive the trace identities above. (Hint: For the last identity, use the

identity C[αβCγ]δ = 0 repeatedly.)

c Show that

tr[(Π+ −Π−)γα .
αγβ

.
β
γγ .γγδ

.
δ
] = −4iε

α
.
α,β

.
β,γ

.
γ,δ

.
δ

by comparison with the expression of the previous subsection for ε.

Exercise IIA6.2

Again using this representation:

a Show that γ[aγb] (up to a proportionality constant) generates the usual Lorentz

transformations of SL(2,C) on the 2 2-component spinors in the Dirac spinor.

b Relate this representation of the γ matrices to the defining representation of

Sp(4) as given in subsection IB5, noting that Sp(4) is the covering group of

SO(3,2) (subsection IC5).

Exercise IIA6.3

Also using this representation, relate the results of exercise IA6.7 (in D=4)

to those of IIA5.6.

7. Chirality/duality

Π± are often called “chiral projectors”; 2-component spinors (not paired into

Dirac spinors) are often called “chiral spinors”, and appear in “chiral theories”; the

two 2-component spinors of a Dirac spinor are often labeled as having left and right

“chirality”; etc. When these two halves decouple, a theory can have a “chiral sym-

metry”

ψ′α = eiθψα

This clearly leaves invariant the free field equation for a massless Weyl spinor (“Weyl

equation”)

∂β .
γψβ = 0
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where again ∂
α
.
β

= ∂/∂xα
.
β. Since chirality is closely related to parity (chiral spinors

can represent CP, but need to be doubled to allow C, and thus P), Dirac spinors

are often used to describe theories where parity is preserved, or softly broken, or to

analyze parity violation specifically, using γ−1 to identify it.

A similar feature appears in electrodynamics. We first translate the theory into

spinor notation: The Maxwell field strength Fab is expressed in terms of the vector po-

tential (“gauge field”) Aa, with a “gauge invariance” in terms of a “gauge parameter”

λ with spacetime dependence. The gauge transformation δAa = −∂aλ becomes

A′
α
.
β

= A
α
.
β
− ∂

α
.
β
λ

It leaves invariant the field strength Fab = ∂[aAb]:

F
α
.
γ,β

.
δ

= ∂α.
γAβ

.
δ
− ∂

β
.
δ
Aα.

γ = 1
4
(F

(αβ)[
.
γ
.
δ]

+ F
[αβ](

.
γ
.
δ)

)

= C̄.
γ
.
δ
fαβ + Cαβ f̄.

γ
.
δ
, fαβ = 1

2∂(α
.
γAβ)

.
γ

Maxwell’s equations then also take the form of a Weyl equation:

∂β .
γfβα ∼ Jα.

γ

They include both the field equations (the hermitian part) and the “Bianchi identi-

ties” (the antihermitian part).

Exercise IIA7.1

We already saw VW* +WV * gave the dot product; show how VW*−WV *

is related to the “cross product” V[aWb].

Exercise IIA7.2

Write Maxwell’s equations, and the expression for the field strength in terms

of the gauge vector, in 2×2 matrix notation (no indices, as in the previous

problem), without using C’s. (Use the results from the page above.) Combine

them to derive the wave equation for A. (Hint: The notation is based on the

bracket notation of subsection IIA5.)

Maxwell’s equations now can be easily generalized to include magnetic charge by

allowing the current J to be complex. (However, the expression for F in terms of A is

no longer valid.) This is because the “duality transformation” that switches electric

and magnetic fields is much simpler in spinor notation: Using the expression given

above for the 4D Levi-Civita tensor using spinor indices,

F ′ab = 1
2εabcdF

cd ⇒ f ′αβ = −ifαβ
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More generally, Maxwell’s equations in free space (but not the expression for F in

terms of A) are invariant under the continuous duality transformation

f ′αβ = eiθfαβ

(and J ′
α
.
β

= eiθJ
α
.
β

in the presence of both electric and magnetic charges).

Exercise IIA7.3

Prove the relation between duality in vector and spinor notation. Show that

Fab + i1
2εabcdF

cd contains only fαβ and not f .
α
.
β
.

Exercise IIA7.4

How does complexifying J
α
.
β

modify Maxwell’s equations in vector notation?

In even time dimensions, Wick rotation kills the i (or −i) in the spinor-index

expression for εαβ′,γδ′,εζ′,ηθ′ . Since the (discrete and continuous) duality transformation

now contains no i, we can impose selfduality or anti-selfduality; i.e., that fαβ or fα′β′

vanishes, since they are now independent and real instead of complex conjugates.

(Similar remarks apply to a Weyl spinor ψα and its would-be complex conjugate ψα′ .)

These continuous chirality and duality symmetries on the field strengths generalize

to the free field equations for arbitrary massless fields in four dimensions. For reasons

to be explained in the following section, they distinguish the two polarizations of the

waves described by such fields. They are closely related to conformal invariance: In

higher dimensions, where not all free, massless theories are conformal (even on the

mass shell), these symmetries exist exactly for those that are conformal.
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The general procedure for finding arbitrary representations of the Poincaré group

relevant to physics is to:

(1) Describe spin 0. As we have seen, this means starting with the coordinate rep-

resentation, which is reducible, and apply the constraint p2 + m2 = 0 to get an

irreducible one.

(2) Find arbitrary, finite-dimensional, irreducible representations of the Lorentz

group. This we have done in the previous section.

(3) Take the direct product of these two representations of the Poincaré group, which

give the orbital and spin parts of the generators. (The spin part of translations

vanishes.) We then need a further constraint to pick out an irreducible unitary

piece of this product, which is the subject of this section.

1. Field equations

We have already constrained the momentum: The equation

p2 +m2 = 0

as an operator equation acting on a field or wave function is the “Klein-Gordon (or

relativistic Schrödinger) equation”. States or fields that satisfy their field equations

are called “on-(mass-)shell”, while those that don’t (or for which the equations haven’t

been imposed) are “off-shell”.

The next step is to constrain the “spin” (actually, its Lorentz generalization) Sab.

The basic idea of the extra constraint is very simple: The Lorentz group introduces

states of negative probability, since the Minkowski space metric is indefinite. For

example, if we write the naive Lorentz invariant Hilbert-space norm for a vector wave

function, the time component will have negative probability. (Similar remarks apply

to spinors, e.g., for the metric Υ ∼ γ0 for the Dirac spinor.) The solution to this

problem, in first-quantized operator language, is to constrain the spin to eliminate

the negative-metric component, in analogy to the way we have already constrained

the momentum by the Klein-Gordon equation. We thus impose

Sa
bpb + wpa = 0

to kill the part of the Lorentz generators in the direction of the momentum, where “w”

is a constant to be determined. (Its term can be attributed to ordering ambiguities.)
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This equation is the general field equation for all spins (acting on the field strength),

in addition to the Klein-Gordon equation (which is redundant except for spin 0).

We will see that this constraint is appropriate for massless particles. Massive

particles then follow from dimensional reduction: adding a further spatial dimension

and fixing its component of momentum to a constant, the mass, so p2 → p2 +m2.

Before examining this constraint, we first give an alternative “derivation” based

on the conformal group. The earlier derivation of the massless particle from the con-

formal particle for spin 0 can be generalized to all “spins”, i.e., all representations of

the Poincaré group in arbitrary dimensions. There is a way to do this in terms of

classical mechanics for all representations of the conformal group, by generalizing the

description of the classical spinning particle. However, by analyzing the conformal

particle quantum mechanically instead, applying a set of constraints, it will be clear

how to generalize from conformal particles to general massless particles by weakening

the constraints. The general idea is that the symmetry group for massive particles is

the Poincaré group, while that for massless particles includes also scale transforma-

tions, and finally conformal particles have also conformal boosts. So, starting with

the conformal group and dropping anything to do with conformal boosts will give

massless particles.

We begin with a general representation of the conformal group SO(D,2) in terms

of generators GAB, where A,B are D+2-component vector indices. We then im-

pose constraints that are the conformally covariant form of p2 = 0: Identifying (see

subsection IA6)

(G+a, Gab, G+−, G−a) = (P a, Jab, ∆,Ka)

(where A = (±, a)) as the generators for translations, Lorentz transformations, di-

latations, and conformal boosts, we see that

GAB = 1
2G

C(AGC
B) − 1

D+2
ηABGCDGCD = 0

is an irreducible piece of the product GG (symmetric and traceless) and includes:

(G++,G+a,Gab,G+−,G−a,G−−) = (P 2, 1
2{J

ab, Pb}+ 1
2{∆,P

a}, ...)

where “...” all have terms containing Ka.

Exercise IIB1.1

Work out all the G’s in terms of P , J , ∆, and K.

In general theories, even massless ones, it is not always possible to have invariance

under conformal boosts. (We’ll see examples of this in subsection IXA7.) However, all
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massless theories are scale invariant, at least at the free level. (In D=4, free massless

theories can always be made conformal on shell. However, the fact that even these

theories can have actions that are not invariant under conformal boosts proves that it

is sufficient to add just dilatations to the Poincaré group. Furthermore, the fact that

conformal boosts are not always an invariance in D>4 means that dropping them will

give results in a dimension-independent form.) Therefore, only G++ and G+a can be

defined in general massless theories, but we’ll see that these are sufficient to define

the kinematics. The former is just the masslessness condition, which we used to pick

the constraints in the first place.

As we saw earlier, ∆ just scales xa: We can therefore write the relevant generators

as

P a = ∂a, Jab = x[a∂b] + Sab, ∆ = 1
2{x

a, ∂a}+ w − 1 = xa∂a + w + D−2
2

(We have used the antihermitian form of the generators.) The “scale weight” w+ D−2
2

is the real “spin” part of ∆, just as Sab is the spin part of the angular momentum

Jab. To preserve the algebra it must commute with everything, and thus we can

set it equal to a constant on an irreducible representation. We’ll see shortly that

its value is actually determined by the spin Sab. It is the engineering dimension of

the corresponding field. It has been normalized for later convenience; the value of

w depends on the representation of Sab, but is independent of D. The dilatation

generator ∆ is not exactly antihermitian because the integration measure dDx isn’t

invariant under scaling. This is another reason w is determined, by the free action.

The form we have given preserves reality of fields. The commutation relations for the

spin parts, and the total generators, are the same as those for the orbital parts; e.g.,

[Sab, S
cd] = −δ[c

[aSb]
d]

(A convenient mnemonic for evaluating this commutator in general is to use Sab →
x[a∂b] instead.)

Exercise IIB1.2

We can also use this method to find the stronger conditions for the fully

conformal case:

a Find an expression for Ka in terms of x, ∂, S, and w that preserves the

commutation relations.

b Evaluate all the constraints G, and express the independent ones in terms of

just ∂, S, and w (no x).
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Substituting the explicit representation of the generators into the constraint G+a,

and using the former constraint P 2 = 0 (when acting on wave functions on the right),

we find that all x dependence drops out, leaving for G+a the condition

Sa
b∂b + w∂a = 0

(paying careful attention to quantum mechanical ordering).

Exercise IIB1.3

Define spin for the conformal group by starting in D+2 dimensions: In terms

of the (D+2)-dimensional coordinates yA and their derivatives ∂A,

GAB = y[A∂B] + SAB

Besides the previous conditions

y2 = ∂2 = {yA, ∂A} = 0

impose the constraints, in analogy to the D-dimensional field equations, and

taking into account the symmetry between y and ∂,

SA
ByB + wyA = SA

B∂B + w∂A = 0

a Show that the algebra of constraints closes, if we include the additional con-

straint
1
2S(A

CSB)C + w(w + D
2

)ηAB = 0

b Solve all the constraints with explicit y’s for everything with an upper “−”

index, reducing the manifest symmetry to SO(D−1,1), in analogy to the way

y2 = 0 was solved to find y−.

c Write all the conformal generators in terms of xa, ∂a, Sab, and w.

2. Examples

We now examine the constraints Sa
b∂b + w∂a = 0 in more detail. We begin by

looking at some simple (but useful) examples. The simplest case is spin 0:

Sab = 0 ⇒ w = 0

The next simplest case (for arbitrary dimension) is the Dirac spinor (see subsections

IC1 and IIA6):

Sab = −1
4
[γa, γb] ⇒ Sa

b∂b + w∂a = −1
2γaγ

b∂b + (w − 1
2)∂a
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⇒ γa∂a = 0, w = 1
2

where we have separated out the pieces of the constraint that are irreducible with

respect to the Lorentz group (e.g., by multiplying on the left with γa). This gives the

(massless) “Dirac equation”

∂/Ψ = 0

The next case is the vector: In terms of the basis |V 〉 = V a|a〉, the spin is (see

subsection IB5)

Sab = |[a〉〈b]|

However, the vector yields just another description of the scalar:

Exercise IIB2.1

Apply the field equations for general field strengths to the case of a vector

field strength.

a Find the independent field equations (assuming the field strength is not just

a constant)

∂[aFb] = 0, ∂aFa = 0, w = 1

Note that solving the first equation determines the vector in terms of a scalar,

while the second then gives the Klein-Gordon equation for that scalar, and

the third fixes the weight of the scalar to be the same as that found by starting

with a scalar field strength.

b Find a manifestly Lorentz covariant solution to the second equation first to

find a gauge field that is not a scalar.

All other representations can be built up from the spinor and vector. As our final

example, we consider the case where the field is a 2nd-rank antisymmetric tensor:

Using the direct product representation (applied as in subsection IB2 given the vector

representation)

F = F ab|a〉 ⊗ |b〉, Sab(|c〉 ⊗ |d〉) = (Sab|c〉)⊗ |d〉+ |c〉 ⊗ Sab|d〉

⇒ (SabF )cd = δ
[c
[aFb]

d]

we find the equations

(Sa
b∂b + w∂a)Fcd = 1

2∂[aFcd] − ηa[c∂
bFd]b + (w − 1)∂aFcd

⇒ ∂[aFbc] = ∂bFab = 0, w = 1

which are Maxwell’s equations, again separating out irreducible pieces (e.g., by tracing

and antisymmetrizing).
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Exercise IIB2.2

Verify the representation of Lorentz spin given above for Fab by finding the

commutation relations implied by this representation.

Exercise IIB2.3

Use the definition of the action of the Lorentz generators on a vector in vector

and spinor notations,

Sab = |[a〉〈b]|, |a〉 = |α〉 ⊗ | .α〉

Sαβ = |(α〉〈β)|, S .
α
.
β

= |( .α〉〈.β)
|,

to derive

S
α
.
α,β

.
β

= −1
2(CαβS̄ .

α
.
β

+ C̄ .
α
.
β
Sαβ)

Exercise IIB2.4

Consider the field equations in 4D spinor notation for a general field strength,

totally symmetric in its m undotted indices and n dotted indices,

Sα
β∂β .γ −m∂α.

γ = S̄ .
α

.
β∂

γ
.
β
− n∂γ .

α = 0, w = 1
2(m+ n)

a Show this implies the generalized Weyl equations

∂α
.
γψ

α...
.
β...

= ∂γ
.
βψ

α...
.
β...

= 0

b Translate the field equations into vector notation (in terms of Sab), finding

Sa
b∂b + w∂a = 0 and an axial vector equation.

c Show that the two equations are equivalent by deriving the equations of part

a from Sa
b∂b +w∂a = 0 alone, and from the axial equation alone (except that

the axial equation doesn’t work for the cases m = n).

Exercise IIB2.5

Let’s do a “nonrelativistic” analysis of the 4D field equations for cases where

the field strength has only undotted indices. As we saw in the previous

problem (or we can derive independently), the field strength satisfies

Sα
β∂β .γ − 2s∂α.

γ = 0 ⇔ ∂α
.
γψα1...α2s = 0

Decompose these equations into 3D notation, separating ∂ into space and

time components. Since the field strength has only undotted indices, S is

essentially the same as the SU(2) spin operator.
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a Separate the former equation into time and space components with respect to

the α
.
γ indices. Use the time component to define a “Hamiltonian operator”.

This gives the time development of the field strength.

b Use this “Schrödinger equation” to substitute for the time derivative in the

space component of this field equation, to find an equation that contains

only spatial parts of derivatives. This gives an initial condition on the field

strength.

c Analyze these results in detail for the cases of spins 1
2 (the spinor) and 1

(the 2nd-rank antisymmetric “Maxwell” tensor). Show that the spin-1
2 initial

condition vanishes identically. Show that the spin-1 equations give the “usual”

3D decomposition of Maxwell’s equations.

In each case, choosing the wrong scale weight w would imply the field was con-

stant. Note that we chose the field strength Fab to describe electromagnetism: The

arguments we used to derive field equations were based on physical degrees of free-

dom, and did not take gauge invariance into account. In chapter XII we use more

powerful methods to find the gauge covariant field equations for the gauge fields, and

their actions.

3. Solution

Free field equations can be solved easily in momentum space. Then the simplest

way to do the algebra is in the “lightcone frame”. This is a reference frame, obtained

by a Lorentz transformation, where a massless momentum takes the simple form

pa = δa+p
+

(using only rotations), or the even simpler form pa = ±δa+ (using also a Lorentz

boost), where again ± is the sign of the energy. In that frame the general field

equation Sa
b∂b + w∂a = 0 reduces to

S−i = 0, w = S+−

The constraint S−i = 0 determines S+− to take its maximum possible value within

that irreducible representation, since S−i is the raising operators for S+−: For any

eigenstate of S+−,

S+−|h〉 = h|h〉 ⇒ S+−(S−i|h〉) = (S−iS+− + [S+−, S−i])|h〉 = (h+ 1)(S−i|h〉)
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The remaining constraint then determines w: It is the maximum value of S+− for

that representation. By parity (+↔ −), −w is the minimum, so

w ≥ 0; w = 0 ⇔ Sab = 0

since if S+− = 0 for all states then Sab = 0 by Lorentz transformation. As we have

seen by other methods (but can easily be derived by this method), w = 1
2 for the

Dirac spinor and w = 1 for the vector; since general representations can be built from

reducing direct products of these, we see that w is an integer for bosons and half-

integer for fermions. If we describe a general irreducible representation by a Young

tableau for SO(D−1,1) (with tracelessness imposed), or a Young tableau times a

spinor (with also γ-tracelessness γaψa...b = 0), then it is easy to see from the results

for the spinor and vector, and antisymmetry in rows, that w is simply the number

of columns of the tableau (its “width”), counting a spinor index as half a column:

S+− just counts the maximum number of “−” indices that can be stuck in the boxes

describing the basis elements. (In fact, Dirac spinor ⊗ Dirac spinor gives just all

possible 1-column representations.)

This leaves undetermined only Sij and S+i. However, S+i (“creation operator”)

is canonically conjugate to S−i (“annihilation operator”), so its action has also been

fixed:

[S−i, S+j] = δijS+− + Sij

(Sij vanishes for i = j, so S+i and S−i are conjugate, though not “orthonormal”. The

constant S+− was fixed above to be nonvanishing, except for the trivial case of spin

0.) Equivalently, Sij preserves S−i = 0, while S+i doesn’t: Sij are the only nontrivial

spin operators acting within the subspace satisfying the constraint.

Thus only the “little group” SO(D−2) spin Sij remains nontrivial: The original

irreducible representation of SO(D−1,1) Lorentz spin Sab was a reducible representa-

tion of SO(D−2) spin Sij; the irreducible SO(D−2) representation with the highest

value of S+− is picked out of this SO(D−1,1) representation. This solution also gives

the field strength in terms of the gauge field: Working with just the highest-S+−-

weight states is equivalent to working with the gauge field, up to factors of ∂+.

As an explicit example, for spin 1/2 we have simply γ−Ψ = 0, which kills half the

components, leaving the half given by γ+Ψ .

Exercise IIB3.1

Using only the anticommutation relations {γa, γb} = −ηab, construct projec-

tion operators from γ±: These are operators ΠI that satisfy

ΠIΠJ = δIJΠI

(
no
∑)

,
∑

ΠI = 1
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Because of time reversal symmetry γ+ ↔ −γ− (or parity γ+ ↔ γ−), these

project onto two subspaces equal in size.

For spin 1, we find

pbFab = 0 ⇒ F−a = 0

p[aF bc] = 0 ⇒ only F+a 6= 0

}
⇒ only F+i 6= 0

In the “lightcone gauge” A+ = 0, we have F+i = ∂+Ai, so the highest-weight part of

F ab is the transverse part of the gauge field. The general pattern, in terms of field

strengths, is then to keep only pieces with as many as possible upper + indices and

no upper − indices (and thus highest S+− weight). In terms of the vector potential,

we have

F ab ∼ p[aAb] ⇒ only Ai 6= 0

The general rule for the gauge field is to drop ± indices, so the field becomes

an irreducible representation of SO(D−2). All + indices on the field strength are

picked up by the momenta. This means the Young tableau for the gauge field is given

by dropping the top row of that for the field strength. (This refers to the “on-shell

field strength”. For some theories, like gravity, there are also gauge-invariant field

strengths that vanish by the field equations.) In a general reference frame, the field

strength is then given in terms of the gauge field by taking a “curl” with respect to

each column, with a separate derivative for each column. This corresponds to a gauge

invariance given by replacing one box in the gauge field with a derivative. This also

accounts for the scale weight of the field strength: All gauge fields have w = 0 for

bosons and w = 1
2 for fermions.

Note that there is an ambiguity in interpreting this solution: For SO(D−2), any

column of height n can be replaced by one of height D−2−n, and still describes

the same representation: The resulting representations of SO(D−1,1) differ for the

covariant gauge field and its gauge parameter. However, the field strengths are the

same representation as before, since there replacing a column of height n+1 with one

of height D−1−n gives the same representation. The effect is to switch the “Bianchi

identity” (which is identically satisfied by expressing field strength in terms of gauge

field) with the field equation for the gauge field. Since this includes the case n=0,

there are an infinite number of such possibilities; however, the simplest case tends to

allow the most general interactions.

A method equivalent to using the lightcone frame is to perform a unitary trans-

formation U on the spin that is the inverse of the transformation on the coordi-

nates/momentum that would take us to the lightcone frame: We want a Lorentz
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transformation Λa
b on the field equations, which are of the form

Oabpb = 0, Oab = Sa
b + wδba

that has the effect

UOabU−1 = Λa
cOcdΛbd, Λbapb = p′a, p′a = δa+p

+ ⇒

0 = UOabpbU−1 = Λa
cOcdΛbdpb = Λa

cOcdp′d ⇒ Oabp′b = 0

If |ψ〉 satisfies the original constraint, then U |ψ〉 will satisfy the new one. If we like,

we can always transform back at the end. This is equivalent to a gauge transformation

in the field theory.

It is easy to check that the appropriate operator is

U = eS
+ipi/p+

Any operator V a that transforms as a vector under Sab,

[Sab, V c] = V [aηb]c

but commutes with p, is transformed by U into UV U−1 = V ′ as

V ′+ = V +, V ′i = V i + V + pi

p+
, V ′− = V − + V i p

i

p+
+ V + (pi)2

2(p+)2

as follows from explicit Taylor expansion, which terminates because S+i act as low-

ering operators (as for conformal boosts in subsection IA6). This yields the desired

result

V ′apa = V ap′a +
V +

2p+
p2

when we impose the field equation p2 = 0.

Exercise IIB3.2

Check this result by performing the transformation explicitly on the con-

straint. Before the transformation, the lightcone decomposition of the con-

straint is

(−S+− + w)p+ + S+ipi = 0

−Si−p+ + Sijpj + wpi − Si+p− = 0

S−ipi + (−S−+ + w)p− = 0

Show that after this transformation, the constraint becomes

(−S+− + w)p+ = 0
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−Si−p+ + (−S+− + w)pi − 1
2S

+i p
2

p+
= 0

S−ipi + (−S+− + w)p− − S+− p
2

p+
− 1

2S
+ipi

p2

p+2
= 0

Clearly these imply

w = S+−, S−i = 0

with p2 = 0.

On the other hand, if instead of using the lightcone identification of x+ as “time”,

we choose to use the usual x0 for purposes of finding the evolution of the system, then

we want to consider transformations that do not involve p0, instead of not involving

the “energy” p−. Thus, by p0-independent rotations alone, the best we can do is to

choose

pi = 0, p1 = ω

i.e., we can fix the value of the spatial momentum, but not in a way that relates to

the sign of the energy. The result is then

p0 > 0 : pa = δa+p
+

p0 < 0 : pa = δa−p
−

The result is similar to before, but now the positive and negative energy solutions are

separated: In this frame the field equations reduce to

p0 > 0 : S−i = 0, S+− = w

p0 < 0 : S+i = 0, S+− = −w

Thus, while w takes the same value as before, now the positive-energy states are

associated with the highest weight of S+−, while the negative-energy ones go with

the lowest weight (and nothing between). The unitary transformation that achieves

this result is a spin rotation that rotates Sab in the field equations with the same

effect as an orbital transformation that would rotate (p1, pi)→ (ω, 0). By looking at

the special case D = 3 (where there is only one rotation generator), we easily find

the explicit transformation

U = exp

[
tan−1

(
|pi|
p1

)
S1i p

i

|pi|

]
Exercise IIB3.3

Perform this transformation:
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a Find the action of the above transformation on an arbitrary vector V a. (Hint:

Look at D = 3 to get the transformation on the “longitudinal” part of the

vector.) In particular, show that

V ′apa = V ap′a, p′a = δa0p
0 + δa1ω

b Show the field equations are transformed as

S0apa + wp0 ⇒ −ωS10 + wp0 = p0(w − p0

ω
S10)− 1

ω
S10p2

S1apa + wp1 ⇒ 1
ω
pi(ωS1i − p0S0i) + p1(w − p0

ω
S10)

Siapa + wpi ⇒ −[δij − 1
ω(ω+p1)

pipj](ωS1j − p0S0j) + pi(w − p0

ω
S10)

Note that the first equation gives the time-dependent Schrödinger equation,

with Hamiltonian

H = 1
w

(S10p1 − S0ipi) → 1
w
S10ω

This diagonalizes the Hamiltonian H (in a representation where S10 is diag-

onal). Thus the only independent equations are

p2 = 0, S10 = ε(p0)w, S1i − ε(p0)S0i = 0

leading to the advertised result.

c Find the transformation that rotates to the pi direction instead of the 1 di-

rection, so

H → − 1
w
S0i pi
|pj|

ω

4. Mass

So far we have considered only massless theories. We now introduce masses

by “dimensional reduction”, identifying mass with the component of momentum in

an extra dimension. As with the extra dimensions used for describing conformal

symmetry, this extra dimension is just a mathematical construct used to give a simple

derivation. (Theories have been postulated with extra, unseen dimensions that are

hidden by “compactification”: Space curls up in those directions to a size too small

to detect with present experiments. However, no compelling reason has been given

for why the extra dimensions should want to compactify.)

The method is to:
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(1) extend the range of vector indices by one additional spatial direction, which we

call “−1”;

(2) set the corresponding component of momentum to equal the mass,

p−1 = m

and

(3) introduce extra factors of i to restore reality, since ∂−1 = ip−1 = im, by a unitary

transformation.

Since all representations can be constructed by direct products of the vector and

spinor, it’s sufficient to define this last step on them. For the scalar this method is

trivial, since then simply p2 → p2 +m2. Except for the last step, the other constraint

becomes

Sa
b∂b + Sa,−1im+ w∂a = 0, S−1

a∂a + wim = 0

For the spinor, since any transformation on the spinor index can be written in

terms of the gamma matrices, and the transformation must affect only the −1 direc-

tion, we can use only γ−1. (For even dimensions, we can identify the γ−1 of dimensional

reduction, up to a factor of i, with the one coming from the product of all the other

γ’s, since in odd dimensions the product of all the γ’s is proportional to the identity.)

We find

U = exp(1
4
iπγ−1) : γ−1 → γ−1, γa → iγ−1γa

We perform this transformation directly on the spin operators appearing in the con-

straints, or the inverse transformation on the states. Dimensional reduction (with

−iγ−1 as the extra γ), followed by this transformation, then modifies the massless

equation of motion as

i∂/ → i∂/ + imγ−1 → iγ−1(i∂/ +m)

so i∂/Ψ = 0→ (i∂/ +m)Ψ = 0.

The prescription for the vector is

U = exp(1
2iπ|

−1〉〈−1|) : |−1〉 → i|−1〉, 〈−1| → −i〈−1| (〈−1|−1〉 = 1)

with the other basis states unchanged. This has the effect of giving each field a −i
for each (−1)-index. For example, for Maxwell’s equations

∂[aFbc] →
{
∂[aFbc]

∂[aFb]−1 + imFab
→
{
∂[aFbc] (redundant)

−i(∂[aFb]−1 −mFab)
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∂bFab →
{
∂bFab + imFa−1

∂aF−1a

→
{
∂bFab +mFa−1

−i∂aF−1a (redundant)

Note that only the mass-independent equations are redundant. Also, Fa−1 appears

explicitly as the potential for Fab, but without gauge invariance. Alternatively, we

can keep the gauge potential:

Fab = ∂[aAb] →
{
Fab = ∂[aAb]

Fa−1 = ∂aA−1 − imAa
→
{
Fab = ∂[aAb]

−iFa−1 = −i(∂aA−1 +mAa)

This is known as the “Stückelberg formalism” for a massive vector, which maintains

gauge invariance by having a scalar A−1 in addition to the vector: The gauge trans-

formations are now

δAa = −∂aλ→
{
δAa = −∂aλ
δA−1 = −imλ

→
{
δAa = −∂aλ
−iδA−1 = −imλ

Exercise IIB4.1

Consider the general massive field equations that follow from the general

massless ones by dimensional reduction. One of these is

S−1
a∂a + wim = 0

(before restoring reality). This scalar equation alone gives the complete field

equations for w=1/2 and 1 (antisymmetric tensors), 0 being trivial.

a Show that for w=1/2 it gives the (massive) Dirac equation.

b Expanding the state over explicit fields, find the covariant field equations it

implies for w=1. Show these are sufficient to describe spins 0 (vector field

strength: see exercise IIB2.1) and 1 (Fab and Fa−1). Note that S−1a act as

generalized γ matrices (the Dirac matrices for spin 1/2, the “Duffin-Kemmer

matrices” for w=1), where

Sab = −[S−1a, S−1b]

c Show that these covariant field equations imply the Klein-Gordon equation

for arbitrary antisymmetric tensors. Show that in D=4 all antisymmetric

tensors (coming from 0-5 indices in D=5) are equivalent to either spin 0 or

spin 1, or trivial. (Hint: Use εabcd.)

d Consider the reducible representation coming from the direct product of two

Dirac spinors, and represent the wave function itself as a matrix:

SijΨ = S̃ijΨ − ΨS̃ij = [S̃ij, Ψ ]
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where i = (−1, a) and S̃ij is the usual Dirac-spinor representation. (The “−”

for right multiplication is from the opposite ordering in [S, S].) Using the

fact that any 4×4 (in D=4) matrix can be written as a linear combination of

products of γ-matrices (antisymmetric products, since symmetrization yields

anticommutators), find the irreducible representations of SO(4,1) in Ψ , and

relate to part c.

Exercise IIB4.2

Solve the field equations for massive spins 1/2 and 1 in momentum space by

going to the rest frame.

The solution to the general massive field equations can also be found by going to

the rest frame (p0 = m): The combination of that and dimensional reduction is, in

terms of the massive analog of lightcone components,

p+ = 1√
2
(p0 + p−1) =

√
2m, p− = 1√

2
(p0 − p−1) = 0, pi = 0

where pi are now the other D−1 (spatial) components. This fixing of the momentum

is the same as the lightcone frame except that p1 has been replaced by p−1, and

thus pi now has D−1 components instead of D−2. The solution to the constraints is

thus also the same, except that we are left with an irreducible representation of the

“little group” SO(D−1) as found in the rest frame for the massive particle, vs. one

of SO(D−2) found in the lightcone frame for the massless case.

5. Foldy-Wouthuysen

The other frame we used for the massless analysis, which involved only energy-

independent rotations, can also be applied to the massive case by dimensional reduc-

tion. The result is known as the “Foldy-Wouthuysen transformation”, and is useful for

analyzing interacting massive field equations in the nonrelativistic limit. Replacing

p1 → p−1 = m in our previous result, we have for the free case

U = exp

[
tan−1

(
|~p |
m

)
S−1i p

i

|~p |

]
, UHU−1 = 1

w
S−10ω

For purposes of generalization to interactions, it was important that in the free trans-

formation (1) we used only the spin part of a rotation, since the orbital part could

introduce explicit x dependence, and (2) we used only rotations, since a Lorentz

boost would introduce p0 dependence in the “parameters” of the transformation,

which could generate additional p0 (time derivative) terms in the field equation.
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Exercise IIB5.1

Perform this transformation for the Dirac spinor, and then apply the reality-

restoring transformation to obtain

H → γ0ω

We then can use the diagonal representation γ0 =
(
I
0

0
−I

)
. (We can define

this representation by switching γ0 and γ−1 of the usual representation.) In

general the reality-restoring transformation will be unnecessary for any spin,

since applying the field equation S−10 = ±w picks out a representation of the

“little group” SO(D−1).

In the interacting case the result generally can’t be obtained in closed form, so it is

derived perturbatively in 1/m. The goal is again a Hamiltonian diagonal with respect

to S−10, to preserve the separation of positive and negative energies; we then can set

S−10 = w to describe just positive energies. We thus choose the transformation to

cancel any terms in H that are off-diagonal, which come from odd total numbers of

“−1” and “0” indices from the spin factors in any term: i.e., odd numbers of S0i

and S−1i (e.g., the S0ipi term in the original H). For example, for coupling to an

electromagnetic field, the exponent of U is generalized by covariantizing derivatives

(minimal coupling ∂ → ∇ = ∂+ iA), but also requires field-strength (E and B) terms

to cancel certain ones of those generated from commutators of these derivatives in

the transformation:

∇a = ∂a + iAa ⇒ [∇a,∇b] = iF ab

Before performing this transformation explicitly for the first few orders, we con-

sider some general properties that will allow us to collect similar terms in advance.

(Few duplicate terms would appear to the order we consider, but they breed like

rabbits at higher orders.) We start with a field equation F that can be separated into

“even” terms E and “odd” ones O, each of which can be expanded in powers of 1/m:

F = E +O : E =
∞∑

n=−1

m−nEn, O =
∞∑
n=0

m−nOn

Note that the leading (m+1) term is even; thus we choose only odd generators to

transform away the odd terms in F , perturbatively from this leading term:

F ′ = eGFe−G, G =
∞∑
n=1

m−nGn
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Since F ′ is even while G is odd, we can separate this equation into its even and odd

parts as

F ′ = cosh(LG)E + sinh(LG)O

0 = sinh(LG)E + cosh(LG)O

(with LG = [G, ] as in subsection IA3). Since we can perturbatively invert any

Taylor-expandable function of LG that begins with 1, we can use the second equation

to give a recursion relation for Gn: Separating the leading term of F ,

E = mE−1 +∆E , −m[G, E−1] = [G,∆E ] + LG coth(LG)O

which we can expand in 1/m [after Taylor expanding LG coth(LG)] to give an expres-

sion for [Gn, E−1] to solve for Gn. We can also use the implicit solution for [G, E ]

directly to simplify the expression for F ′:

F ′ = E + tanh(1
2LG)O

For example, to order 1/m2 we have for F ′

F ′−1 = E−1, F ′0 = E0, F ′1 = E1 + 1
2 [G1,O0]

F ′2 = E2 + 1
2 [G2,O0] + 1

2 [G1,O1]

To this order we therefore need to solve

−[G1, E−1] = O0, −[G2, E−1] = O1 + [G1, E0]

For our applications we will always have

E−1 = − 1
w
S−10

unchanged by interactions. We have oversimplified things a bit in the above deriva-

tion: For general spin we need to consider more than just even and odd terms; we

need to consider all eigenvalues of S−10:

[S−10,Fs] = sFs

and find the transformation that makes F ′ commute with it (s = 0). The procedure

is to first divide into even and odd values of s, as above, then to divide the remaining

even terms in F ′ into twice even values of s (multiples of 4) as the new E ′ and twice

odd as the new O′, which are transformed away with the new twice odd G′, and so

on. This very rapidly removes the lower nonzero values of |s| (1 → 2 → 4 → ...),
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which has a maximum value of 2w (from the operators that mix the maximum value

S−10 = w with the minimum S−10 = −w). For example, for the case of most interest,

the Dirac spinor, the only eigenvalues (for operators) are 0 and ±1, so the original

even part does commute with S−10, and the procedure need be applied only once.

Furthermore, terms in F of eigenvalue s can be generated only at order m1−s or

higher; so at any given order the procedure rapidly removes all undesired terms for

any spin.

Since the terms we want to cancel are exactly the ones with nonvanishing eigen-

values of S−10, they can always be written as [G,S−10] for some G, so we can always

find a transformation to eliminate them:

[S−10, Gsn] = sGsn ⇒ Gsn = −w
s
{[G,∆E ] + LG coth(LG)O}sn

(This is just diagonalization of a Hermitian matrix in operator language.) In partic-

ular for the Dirac spinor, since E−1 has only ±1 eigenvalues, it’s easy to see that not

only do all even operators commute with it, but all odd operators anticommute with

it. (Consider the diagonal representation of E−1: {
(

1
0

0
−1

)
,
(

0
a
b
0

)
} = 0.) We then have

simply

w = 1
2 ⇒ (E−1)2 = 1 ⇒ [E−1, ∆E ] = {E−1,O} = {E−1, G} = 0

⇒ mG = −1
2{[G,∆E ] + LG coth(LG)O}E−1

As a final step, we can apply the usual transformation

U0 = eimtS
−10/w

which commutes with all but the p0 term in E0 to have the sole effect of canceling

E−1, eliminating the rest-mass term from the nonrelativistic-style expression for the

energy.

For the minimal electromagnetic coupling described above, we have besides E−1

E0 = π0, O0 = 1
w
S0iπi

where we have written πa = pa +Aa (instead of πa = −i∇a, to save some i’s). There

are no additional terms in F for minimal coupling for spin 1/2, but later we’ll need to

include nonminimal effective couplings coming from quantum (field theoretic) effects.

There are also extra terms for spins 0 and 1 because the field strength is not the same

as the fundamental field, so we’ll treat only spin 1/2 here, but we’ll continue to use
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the general notation to illustrate the procedure. Using the above results, we find to

order 1/m2 for F ′

G1 = S−1iπi, G2 = wS0iiF 0i

in agreement with with the free case up to field strength terms. The diagonalized

Schrödinger equation is then to this order, including the effect of U0,

F ′−1 = 0, F ′0 = π0, F ′1 = − 1
2w

[1
2{S

−1i, S0j}iF ij + S−10(πi)2]

F ′2 = −1
4
[{S0i, S0j}(∂iF 0j)− Sij{iF 0i, πj}]

For spin 1/2 we are done, but for other spins we would need a further transformation

(before U0) to pick out the part of F ′2 that commutes with S−10 (by eliminating the

twice odd part); the final result is

F ′2 = 1
4
[1
2({S−1i, S−1j} − {S0i, S0j})(∂iF 0j) + Sij{iF 0i, πj}]

It can also be convenient to translate into ± notation (as for the massless case, but

with index 1→ −1): We then write

F ′−1 = 0, F ′0 = π0, F ′1 = − 1
2w

[1
2{S

+i, S−j}iF ij + S+−(πi)2]

F ′2 = −1
4
[1
2{S

+(i, S−j)}(∂iF 0j)− Sij{iF 0i, πj}]

In this notation the eigenvalue of S+− = S−10 for any combination of spin operators

can be simply read off as the number of − indices minus the number of +.

Exercise IIB5.2

Find the Hamiltonian for spin 1/2 in background electromagnetism, expanded

nonrelativistically to this order, by substituting the appropriate expressions

for the spin operators in terms of γ matrices, and applying S+− = ±w on

the right for positive/negative energy. (Ignore the reality-restoring transfor-

mation.) γ-matrix algebra can be performed directly with the spin operators:

For the Dirac spinor we have the identities

S(a
(bSc)

d) = 1
2δ
b
(aδ

d
c) − ηacηbd ⇒ {S+i, S−j} = 1

2δ
ij − 2SijS+−
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6. Twistors

Besides describing spin 1/2, spinors provide a convenient way to solve the condi-

tion p2 = 0 covariantly: Any hermitian matrix with vanishing determinant must have

a zero eigenvalue (consider the diagonalized matrix), and so such a 2×2 matrix can

be simply expressed in terms of its other eigenvector. Absorbing all but the sign of

the nontrivial eigenvalue into the normalization of the eigenvector, we have

p2 = 0 ⇒ pα
.
β = ±pαp

.
β

for some spinor pα (where p
.
α ≡ (pα)*). Since p0 is the (canonical) energy, the ± is

the sign of the energy. This explains why time reversal (actually CT in the usual

terminology) is not a linear transformation. We can hide these signs to some extent

by defining always

pα
.
β ≡ +pαp

.
β, p

.
β = ±(pβ)*

This allows us to do all algebra without the signs (e.g., in scattering amplitudes), until

we need complex conjugation (e.g., in cross sections). Note that pα is a commuting

object, while most spinors are fermionic, and thus anticommuting (at least in quantum

theory). Such commuting spinors are called “twistors”.

Note that the definition of the twistor in terms of the momentum (by taking a

“square root”) leaves an arbitrary overall phase for the twistor. This will be important

later when considering spin.

Exercise IIB6.1

Show that, in terms of its energy E and the angular direction (θ, φ) (with

respect to the “1” axis) of its velocity, a massless particle can be described

by the twistor

pα = 21/4
√
|E|(cos θ

2
eiφ/2, sin θ

2
e−iφ/2)

Exercise IIB6.2

Show we can instead choose

pα =
1√
p+

(p+, pt)

One useful way to think of twistors is in terms of the lightcone frame. In spinor

notation, the momentum is

pα
.
β = ±

(
1
0

0
0

)
If we write an arbitrary massless momentum as a Lorentz transformation from this

lightcone frame, then the twistor is just the part of the SL(2,C) matrix that con-

tributes:

p′α
.
β = pγ

.
δgγ

αḡ.
δ

.
β = ±δγ⊕δ

.
δ.
⊕gγ

αḡ.
δ

.
β = ±g⊕αḡ .

⊕

.
β = ±pα(pβ)*
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For this reason, the twistor formalism can be understood as a Lorentz covariant form

of the lightcone formalism. This is a coset way of defining twistors (see subsection

IC6): The symmetry group is the Lorentz group, while the “little group” is the one

that leaves the momentum of the lightcone frame invariant.

Exercise IIB6.3

What subgroup of the Lorentz group is this little group? Explain it in terms of

rotations and Lorentz boosts. (Don’t forget the residual phase transformation

on the twistor that leaves the arbitrary massless momentum invariant.)

The twistor construction thus gives a covariant way of constructing wave functions

satisfying the mass-shell condition (Klein-Gordon equation) for the massless case,

ψ = 0, where = ∂2 = −p2. We simply Fourier transform, and use the twistor

expression for the momentum, writing the momentum-space wave function in terms

of twistor variables (“Penrose transform”):

ψ(x) =

∫
d2pαd

2p̄ .
α[exp(ixα

.
βpαp̄.

β
)χ+(pα, p .

α) + exp(−ixα
.
βpαp̄.

β
)χ−(pα, p̄ .

α)]

where χ± describe the positive- and negative-energy states, respectively. (The integral

over p̄ .
α can be performed also, effectively taking the Fourier transform with respect

to that variable only, treating ±xα
.
βpα as the conjugate.)

We can extend the matrix notation of subsection IIA5-6 to twistors:

〈p| = pα〈α|, |p〉 = |α〉pα; [p| = p
.
α[ .α|, |p] = |

.
α]p .

α

P = |p〉[p|, − P* = |p]〈p|

As a result, we also have for twistors

〈pq〉 =− 〈qp〉, [pq] = −[qp]; 〈pq〉* = ε(p0)ε(q0)[qp]

〈pq〉〈rs〉+ 〈qr〉〈ps〉+ 〈rp〉〈qs〉 = 0

These properties do not apply to physical, anticommuting spinors, where 〈ψχ〉 =

+〈χψ〉, and 〈ψψ〉 6= 0.

Another natural way to understand twistors is through the conformal group. We

have already seen that the conformal group in D dimensions is SO(D,2). Since this

group in four dimensions is the same as SU(2,2), it’s simpler to describe its general

representations (and in particular spinors) in SU(2,2) spinor notation. Then the

simplest way to generate representations of this group is to use spinor coordinates:

We therefore write the generators as (see subsection IC1)

GA
B = ζBζ̄A − 1

4
δBAζ

C ζ̄C
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where we have subtracted out the trace piece to reduce U(2,2) to SU(2,2) and, consis-

tently with the group transformation properties under complex conjugation, we have

chosen the complex conjugate of the spinor to also be the canonical conjugate: The

Poisson bracket is defined by

[ζ̄A, ζ
B] = δBA

To compare with four-dimensional notation, we reduce this four-component spinor by

recognizing it as a particular use of the Dirac spinor. Using the same representation

as in subsection IIA6, we write

ζA = (pα, ω̄
.
α), ζ̄A = (ωα, p̄ .

α); Υ
.
AB =

(
0 C̄

.
α
.
β

Cαβ 0

)
Now the Poisson brackets are

[ωα, p
β] = δβα, [ω̄ .

α, p̄
.
β] = δ

.
β.
α

The group generators themselves reduce to

pαp̄.
β
, ωαω̄.

β
, p(αωβ), p̄(

.
αω̄.

β)
, pαωα + p̄

.
αω̄ .

α − 2

(for E > 0, with an overall − for E < 0), which are translations, conformal boosts,

SL(2,C) generators and their complex conjugates, and dilatations.

This construction is a special case of the coset/projective construction of subsec-

tion IC6, applied to the defining representation of SU(2,2): It corresponds to choosing

the rectangle of the projective construction as having a single column, as in the case

of a sphere. For this reason, twistor space is sometimes referred to as a “complex

projective space” (vs. the real projective space description of the sphere). The fact

that the Lorentz coset definition of twistors extended to a conformal coset is related

to the property of 4 dimensions that all free, on-shell, massless representations of the

Poincaré group are also conformal.

Another kind of twistor, related to position space instead of momentum space,

and off shell rather than on (so effectively in 1 higher dimension), follows from this

(D+2)-coordinate description of conformal symmetry for D=4 (see subsection IA6;

see exercise IIA4.3 for 3D position twistors). In practice, it’s more convenient to work

with invariances than constraints. In this case, we can solve the lightcone constraint

on a 6D space with signature 4+2 (or 3+3 or 5+1 by Wick rotation), replacing 6-

component conformal vector indices with 4-component conformal spinor indices, with

a position-space twistor:

y2 = 1
4
εMNPQyMNyPQ = 0 ⇒ yMN = zM

.
αzN .

α
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whereM is an SU(2,2) index (or Wick rotation) and
.
α is an SL(2,C) (or Wick rota-

tion) index. (We now use indices from the middle of the alphabet for global indices

and from the beginning for local.) zM
.
α can directly satisfy a reality condition only

for signatures 3+3 or 5+1; for 4+2 reality follows from orthogonality to the “com-

plementary rectangle” z̃ (see subsection IC6). Whereas y had 6− 1 = 5 components

due to the constraint, z has 4 · 2 − 3 = 5 components due to the SL(2,C) gauge

invariance of the above relation to y. These coordinates reduce to the usual by an

SL(2,C) transformation:

M = (µ,
.
µ), zM

.
α = (xµ

.
ν , δ

.
ν.
µ)λ.

ν

.
α ⇒ SL(2) gauge λ.

ν

.
α = λδ

.
α.
ν

where e = λ2.

This construction can then be recognized as another projective one, now taking

2 columns, namely that of exercise IIA5.6. (Taking 3 columns gives the same result

as taking 1 after gauge fixing, taking 4 leaves nothing. See also exercise IA6.7.)

Exercise IIB6.4

Substitute this spinor-notation z(λ, x) into y ∼ z2 and compare with the

vector-notation y(e, x) of subsection IA6.

We can now take advantage of these 2 coset spaces, 1 for off-shell position space

and the other for on-shell momentum space, to rewrite the Penrose transform in a

manifestly conformal form:

ψ(zM
.
α) =

∫
dζM δ(ζMzM

.
α)χ(ζM)

The λ.
ν

.
α factors out as its determinant in the Jacobian from the δ function. (The scalar

factor of λ can be set to 1, or treated as an auxiliary coordinate.) Since ζM = (pµ, ω̄
.
µ),

the δ then equates ω̄
.
µ with pµxµ

.
µ. To relate to the previous, we Fourier transform

in ω̄
.
µ to get p̄

.
µ, reproducing the xpp̄ of the previous Penrose transform from the ω̄p̄

of the Fourier transform. This gives only the positive-energy part of the field/wave

function; the negative-energy part has a complex-conjugate type of expression, using

instead the complementary rectangle z̃α
M and canonically conjugate twistor ζ̄M.

Exercise IIB6.5

On-shell conformal invariance is notorious for automatically separating pos-

itive and negative energies. The previous Penrose transform is a bit better,

since it manifests only Poincaré and masslessness.

a Write the negative-energy part in manifestly conformal form.

b Find the expansion for z̃, relate to the previous Penrose transform ψ(x), and

combine with the positive-energy part.
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7. Helicity

A sometimes-useful way to treat the transverse spin operators Sij is in terms of

Wabc = 1
2P[aJbc] = 1

2P[aSbc]

which (like the field equations) can be written in terms of just the Poincaré generators.

This is the part of Sab whose commutator with the field equations is proportional to

the field equations (i.e., it preserves the constraints). For the massive case, it reduces

to Sij for SO(D−1) in the rest frame; for the massless case in the lightcone frame,

using the field equations it again reduces to Sij, but now for just SO(D−2). In D=4

this is the “Pauli-Lubański (axial) vector”

Wa = 1
6
W bcdεbcda

We can choose our states to be eigenstates of a component of it: For example, for

massless states W 0/P 0 is called the “helicity”. For massive states the helicity is

defined as W 0/|~P |, but is less useful, especially since it is undefined (0/0) in the rest

frame. In that case one instead chooses a component in terms of a (momentum-

dependent axial) vector sa as saWa, where saPa = 0 and s2 = 1/m2.

Exercise IIB7.1

Show in both the massless and massive cases that Wabc reduces to the little

group generators on shell by going to the appropriate reference frame.

The twistor representation of the conformal group does not give the most general

representation, but it does give all the (free) massless ones. The reason it gives

massless ones is that this representation satisfies the constraint (see subsection IIB1)

G[AB]
[CD] = G[A

[CGB]
D] − traces = 0

which includes p2 = 0 as well as all the equations that follow from p2 = 0 by conformal

transformations. As a consequence, this representation also satisfies

GA
CGC

B − trace = hGA
B

where h is the helicity. This equation may be more recognizable in SO(4,2) notation,

as
1
8
εABCDEFGCDGEF = ihGAB

This equation includes, as its lowest mass-dimension part (as defined by dilatations),

the Pauli-Lubański vector

W a = 1
2ε
bcdaPbJcd = ihP a
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(The “i” appears in the last two equations only when we use the antihermitian form of

the generators GAB and Jab.) Although any massless representation of the conformal

group satisfies the above conditions (see exercise IIB2.4), the twistor representation

satisfies the unusual property that helicity is realized as a linear transformation on the

coordinates: For the twistors the implicit definition of helicity can be solved explicitly

to give

h = 1
4
{ζ̄A, ζA} = 1

2 ζ̄
AζA + 1 = 1

2(pαωα − p̄
.
αω̄ .

α)

(also for E > 0), which is exactly the U(1) transformation of U(2,2)=SU(2,2)⊗U(1).

(This is similar to SU(2) in terms of “twistors”: See exercise IC1.1.) On functions of

pα and p̄ .
α, it effectively just counts half the number of pα’s minus p̄ .

α’s.

Exercise IIB7.2

These results are pretty clear from symmetry, but we should do some algebra

to check coefficients: Express Jab and Pa in terms of the twistors pα, p̄ .
α, ωα, ω̄ .

α

(see also exercise IIB2.3 for normalization), and plug into εPJ = ihP to derive

the above expression of h in terms of twistors.

The simple form of the helicity in the twistor formalism is another consequence

of it being a covariantized lightcone formalism. In the lightcone frame, there is still

a residual Lorentz invariance; in particular, a rotation about the spatial direction in

which the momentum points leaves the momentum invariant. This is another defini-

tion of the helicity, as the part of the angular momentum performing that rotation.

(Only spin contributes, since by definition the momentum is not rotated.) Since the

product of two Lorentz transformations is another one, this rotation can be inter-

preted as a transformation acting on the Lorentz transformation to the lightcone

frame, i.e., on the twistor, such that the momentum is invariant. This is simply a

phase transformation:

g′α
β =

(
eiθ 0

0 e−iθ

) γ

α

gγ
β ⇒ p′α = eiθpα

We can generalize the Penrose transform in a simple way to wave functions car-

rying indices to describe spin:

ψ
α1...αm

.
β1...

.
βn

(x) =

∫
d2pαd

2p̄ .
α pα1 · · · pαm p̄.

β1
· · · p̄.

βn

× [exp(ixα
.
βpαp̄.

β
)χ+(pα, p .

α) + exp(−ixα
.
βpαp̄.

β
)χ−(pα, p .

α)]

For the integral to give a nonvanishing result, the integrand must be invariant under

the U(1) transformation generated by the helicity operator h: In other words, χ± must

have a transformation under h, i.e., a certain helicity, that is exactly the opposite that
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of the explicit p factors that carry the external indices to give a contribution to the

integral, since otherwise integrating over the phase of pα would average it to zero.

(Explicitly, if we derive the helicity by acting on the Penrose transform, this minus

sign comes from integration by parts.) This means that ψ(x) automatically has a

certain helicity, half the number of dotted minus undotted indices:

h = 1
2(n−m) [w = 1

2(m+ n)]

(also for E > 0), as given by the above twistor operator expression acting on χ±.

(Alternatively, comparing the x-space form of the Pauli-Lubański vector, its action

plus that of the twistor-space one must vanish on |α〉pα, so the helicity is again minus

the twistor-space helicity operator acting on the prefactor.)

If we work in momentum space, then we use implicitly the relation between mo-

mentum and twistors. Then we can use the abbreviated form of the above relation,

ψ̃
α1...αm

.
β1...

.
βn

(p) = pα1 · · · pαm p̄.
β1
· · · p̄.

βn
χ(pα, p .

α)

using χ+ or χ− as appropriate to the sign of energy.

The above transform is just for field strengths : The generalization to on-shell

gauge fields is straightforward, though not as simple, since gauge fields contain more

than just 2 physical helicities, but also unphysical degrees of freedom. For example,

for the 4-vector potential of electromagnetism, we have

A
γ
.
δ
(x) =

∫
d2pαd

2p̄ .
α {p̄.δ[exp(ix

α
.
βpαp̄.

β
)A+γ(pα, p .

α)

+ exp(−ixα
.
βpαp̄.

β
)A−γ(pα, p .

α)] + h.c.}

Exercise IIB7.3

Look at the Maxwell field strength in spinor notation fαβ (and its complex

conjugate) defined in subsection IIA7, in terms of the above gauge field. Show

it reduces to a special case of the previous general expression, and express χ±

in terms of A±α and Ā± .
α.

Since, after restricting to the appropriate helicity, the integral over this phase is

trivial, we can also eliminate it by replacing the “volume” integral over the twistor

or its complex conjugate (but not both) with a “surface” (boundary) integral:∫
d2pα →

∮
pαdpα

(Alternatively, we can insert a δ-function in the helicity.) The result is equivalent to

the usual integral over the three independent components of the momentum.
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This generalization of the Penrose transform implies that ψ(x) satisfies some

equations of motion besides p2 = 0, namely

pα
.
αψ

α...β
.
γ...

.
δ

= pγ
.
γψ

α...β
.
γ...

.
δ

= 0

which are also implied by Sa
b∂b + w∂a = 0 (see exercise IIB2.4). Besides Poincaré

invariance, these equations are invariant under the phase transformation

ψ′
α...β

.
γ...

.
δ

= ei2hθψ
α...β

.
γ...

.
δ

that generalizes duality and chiral transformations. We also see that (anti-)selfduality

and chirality are related to helicity. Another way to understand the twistor result

is to remember its interpretation as a Lorentz transformation from the light cone:

In the light cone frame, where p⊕
.
⊕ is the only nonvanishing component of pα

.
α, the

above equations of motion imply the only nonvanishing component of ψα1...αm
.
β1...

.
βn is

ψ⊕...⊕
.
⊕...

.
⊕, which can be identified with χ+ (for p⊕

.
⊕ > 0) or χ− (for p⊕

.
⊕ < 0).
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. . . . . . . . . . . . . . . . . . . . C. SUPERSYMMETRY . . . . . . . . . . . . . . . . . . . .

Supersymmetry is a symmetry that relates fermions to bosons. It includes the

Poincaré group as a subgroup. We’ll see later that quantum field theory requires par-

ticles with integer spin to be bosons, and those with half-integer spin to be fermions.

This means that any symmetry that relates bosonic wave functions/fields to fermionic

ones must be generated by operators with half-integer spin. The simplest (but also

the most general, at least of those that preserve the vacuum) is spin 1/2. In this

section we look at representations, generalizing the results of the previous sections

for Poincaré symmetry.

Although supersymmetry has not been experimentally verified yet, it is a major

ingredient in the most promising generalizations of the Standard Model:

(1) The fact that it enlarges the symmetry of nature means that it further restricts

the allowed models, and thus makes stronger predictions.

(2) The greater symmetry also simplifies quantum calculations in many ways, es-

pecially through the use of the concept of “superspace”. The results of these

calculations are also often simplified.

(3) Because supersymmetric calculations are simpler, they can be used to simplify

nonsupersymmetric calculations, at both the classical and quantum levels.

(4) This simplification in quantum rules results in improved high-energy behavior. In

some cases it even results in the absence of the infinities in momentum integration

that occur in all nonsupersymmetric theories. Although these infinities can be

removed in perturbation theory, their effects reappear upon summation of the

expansion. An analogy can be drawn with the Higgs boson: It was difficult to

find, but is needed to remove certain infinities.

(5) This improvement at high energies also improves the experimental agreement of

Grand Unified Theories of the strong, electromagnetic, and weak interactions.

1. Algebra

From quantum mechanics we know that for any operator A

〈ψ|{A,A†}|ψ〉 =
∑
n

(〈ψ|A|n〉〈n|A†|ψ〉+ 〈ψ|A†|n〉〈n|A|ψ〉)

=
∑
n

(|〈n|A†|ψ〉|2 + |〈n|A|ψ〉|2) ≥ 0
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from inserting a complete set of states. In particular,

{A,A†} = 0 ⇒ A = 0

from examining the matrix element for all states |ψ〉. This means the anticommuta-

tion relations of the supersymmetry generators must be nontrivial.

We are then led to anticommutation relations of the form, in Dirac (Majorana)

notation to describe the most general case,

{q, q̄} = 2p/ or {q, q†} = 2paγaγ0 ([p, q] = 0)

(We use translations instead of internal symmetry or Lorentz generators because of

dimensional analysis: Bosonic fields differ in dimension from fermionic ones by half

integers.) Note that this implies the positivity of the energy:

tr{q, q†} = 2pa tr(γaγ0) = 2pa tr(1
2{γa, γ0}) = 2p0 tr I

(This is the true, quantum energy, not the indefinite-sign “canonical energy” conju-

gate to x0 for a single particle discussed in subsections IA4-5: For the relation, see

subsections IIIB4 and VC3.)

Similar arguments imply that for single particles the supersymmetry generators

are constrained, just as the momentum is constrained by the mass-shell condition.

For example, in the massless case,

{p/q, q̄p/} = 2p/p/p/ = −2p2p/ = 0 ⇒ p/q = 0

In four dimensions the commutation relations can be written in terms of irre-

ducible spinors as (with the special 4D conventions q = 23/4(qα, q̄ .α), and the γ-matrix

conventions of subsection IIA6)

{qα, q̄
.
β} = pα

.
β, {q, q} = {q̄, q̄} = 0

This generalizes straightforwardly to multiple spinors, carrying a (“R-symmetry”)

U(N) index:

{qiα, q̄j
.
β} = δji p

α
.
β

Exercise IIC1.1

Show positivity of energy in 2-component spinor notation for 4D U(N) super-

symmetry.

Exercise IIC1.2

Consider “tachyons”, particles that satisfy p2 + m2 = 0 with m2 < 0. Give



C. SUPERSYMMETRY 249

the general solution of this equation (for real p), and show there is always a

Lorentz frame where the energy is positive and another where it’s negative.

Thus, tachyons are incompatible with supersymmetry. (We’ll see this in field

theory language in subsection IVC2.)

2. Supercoordinates

Since the momentum is usually represented as coordinate derivatives, we natu-

rally look for a similar representation for supersymmetry. We therefore introduce

an anticommuting spinor coordinate θα. Because of the anticommutation relations q

can’t be simply ∂/∂θ, but the modification is obvious:

qα = −i ∂
∂θα

+ 1
2 θ̄

.
β ∂

∂xα
.
β
, q̄ .α = −i ∂

∂θ̄
.
α

+ 1
2θ

β ∂

∂xβ
.
α

We can also express supersymmetry in terms of its action on the “supercoordinates”:

Using the hermitian infinitesimal generator εαqα + ε̄
.
αq .α,

δθα = εα, δθ̄
.
α = ε̄

.
α, δxα

.
β = 1

2i(ε
αθ̄

.
β + ε̄

.
βθα)

Note that (qα)† = q̄
.
α, (qα)† = −q̄ .α.

We can also define “covariant derivatives”: derivatives that (anti)commute with

(are invariant under) supersymmetry:

{q, d} = {q, d̄} = {q̄, d} = {q̄, d̄} = 0

These are easily found to be

dα =
∂

∂θα
+ 1

2 θ̄
.
βp

α
.
β
, d̄ .

α =
∂

∂θ̄
.
α

+ 1
2θ

βpβ .
α

Besides overall normalization factors of i, leading to the opposite hermiticity condition

(dα)† = −d̄
.
α, these differ from the q’s by the relative sign of the two terms. These

changes combine to preserve

{dα, d̄
.
β} = pα

.
β, {d, d} = {d̄, d̄} = 0

as a result of which p is also a covariant derivative as well as being a symmetry

generator (as for the Poincaré group), but now (dα)† = +d̄ .
α. Thus we see that, while

tr(qq†) ∼ +p0, we instead have tr(dd†) ∼ −p0. This tells us the covariant spinor

derivatives generate unphysical states (having negative Hilbert space norm). We’ll

see in subsection IIC4 the resulting requirement that some pieces of these derivatives

vanish by the equations of motion (really constraints).
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In classical mechanics, the fact that ∂/∂x commutes with translations is “dual” to

the fact that the infinitesimal change dx, or the finite change x− x′, is also invariant

under translations. Furthermore, the d’Alembertian = (∂/∂x)2 being Poincaré

invariant is dual to the line element ds2 = −(dx)2 being invariant. This allows the

construction of the action from
.
x2. In the supersymmetric case the infinitesimal

invariants under the q’s (and therefore p) are

dθα, dθ̄
.
α, dxα

.
β + 1

2i(dθ
α)θ̄

.
β + 1

2i(dθ̄
.
β)θα

and the corresponding finite ones (by integration) are

θα − θ′α, θ̄
.
α − θ̄′

.
α, xα

.
β − x′α

.
β + 1

2iθ
αθ̄′

.
β + 1

2iθ̄
.
βθ′α

Although these can be used to construct classical mechanics actions, their quantiza-

tion is rather complicated. Just as for particles of one particular spin, direct treatment

of the quantum mechanics has proven much simpler than deriving it by quantization

of a classical system.

Exercise IIC2.1

Check explicitly the invariance of the above infinitesimal and finite differences

under supersymmetry.

Exercise IIC2.2

Construct these symmetry generators, covariant derivatives, and invariant in-

finitesimals by the method described for general groups in subsection IC6.

For the group generators, it’s sufficient to use just supersymmetry and trans-

lations, with no gauge group. (If we also want Lorentz, we can include it in

both G and H.)

Now that we have a (super)coordinate representation of the supersymmetry gen-

erators, we can examine the wave functions/fields that carry this representation. Such

“superfields” can be Taylor expanded in the θ’s with a finite number of terms, with

ordinary fields as the coefficients. For example, if we expand a real (hermitian) scalar

superfield

Φ(x, θ, θ̄) = φ(x) + θαψα(x) + θ̄
.
αψ̄ .

α(x) + ...

and also expand its supersymmetry transformation

δΦ = εαψα + ε̄
.
αψ̄ .

α + 1
2iε

αθ̄
.
β∂

α
.
β
φ+ 1

2iε
.
αθβ∂β .

αφ+ ...

we find the component field transformations

δφ = εαψα + ε̄
.
αψ̄ .

α, δψα = −1
2iε̄

.
β∂

α
.
β
φ+ ..., δψ̄ .

α = −1
2iε

β∂β .
αφ+ ..., ...



C. SUPERSYMMETRY 251

which mix the different spins.

An alternative, and more convenient, way to define the θ expansion is by use of

the covariant derivatives. Using “|” to mean “|θ=0”, we can define

φ = Φ|, ψα = (dαΦ)|, ψ̄ .
α = (d̄ .

αΦ)|, ...

There is some ambiguity at higher orders in θ because the d’s don’t anticommute, and

this can be resolved according to whatever is convenient for the particular problem,

avoiding field redefinitions in terms of fields appearing at lower order in θ: Since

the field equations must be covariant under supersymmetry (otherwise there is no

advantage to using superfields), they must be written with the covariant derivatives.

Then one defines the component expansions by choosing the same ordering of d’s as

appear in the field equations (where relevant), which gives the component expansion

of the field equations the simplest form. It also gives a convenient method for deriving

supersymmetry transformations, since the d’s anticommute with the q’s:

δ[(d...dΦ)|] = [d...d(δΦ)]| = [d...d(iεqΦ)]| = [(iεq)d...dΦ]| = [(εd)d...dΦ]|

where we have used the fact that q = −id + θ-stuff, where the θ-stuff is killed by

evaluating at θ = 0, once it has been pulled in front of all the θ-derivatives. Covariant

derivatives can also be used for integration, since
∫
dθ = ∂/∂θ = d up to an x-

derivative, which can be dropped when also integrating
∫
dx.

3. Supergroups

We saw certain relations between the lower-dimensional classical groups that

turned out to be useful for just the cases of physical interest of rotational (SO(D−1)),

Lorentz (SO(D−1,1)), and conformal (SO(D,2)) groups. In particular, the Poincaré

group, though not a classical group, is a certain limit (“contraction”) of the groups

SO(D,1) and SO(D−1,2) (see exercise IA4.1), and a subgroup of the conformal group.

Similar remarks apply to supersymmetry, but because of its relation to spinors, these

classical “supergroups” (or “graded” classical groups) exist only for certain lower di-

mensions, the same as those where covering groups for the orthogonal groups exist.

In higher dimensions the supergroups do not correspond to supersymmetry, at least

not in any way that can be represented on physical states.

We’ll consider only the graded generalization of the classical groups that appear

in the bosonic case. The basic idea is then to take the group metrics and combine

them in ways that take into account the difference in symmetry between bosons and

fermions:
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Unitary: Υ
.
AB

OrthoSymplectic: MAB

Real: η .
A
B

pseudoreal (*): Ω .
A
B

where η is symmetric and Ω antisymmetric, as before, while M is graded symmetric:

For A = (a, α) with bosonic indices a and fermionic ones α,

M [AB) ≡MAB − (−1)ABMBA = 0 : Mab −M ba = Maβ −Mβa = Mαβ +Mβα = 0

However, since metrics have components that are numerical constants, their fermionic

pieces vanish, Maβ = Mαb = 0. For this reason there is an ambiguity which index is

considered “fermionic” and which “bosonic”. We’ll generally use the notation stated

above, with a bosonic for “physical” variables, but then we may instead take M as

graded anti symmetric:

M (AB] ≡MAB + (−1)ABMBA = 0

Note that there is a difference in statistics between abstract elements of super-

groups/superalgebras and their matrix representations. For the abstract algebra el-

ements G = εIGI , the statistics of any parameter component εI matches that of the

corresponding generator GI , so the combination G, and the group element eiG, are

always treated as bosonic. This is also true for coordinate representations of su-

pergroups (superspace). But for the representation vector space ψA, ψa is treated

as bosonic and ψα as fermionic, so necessarily the matrix representation gA
B must

have mixed statistics to preserve statistics for ψ′A = gA
BψB. This is because the

matrix representation of a fermionic generator GI must by definition be purely or-

dinary numbers, so εIGI might not be. (Consider, e.g., the matrix representation

of Dirac γ-matrices, which satisfy anticommutation relations.) Thus supersymmetry

generators represented on a “vector” of component fields (functions of x) will always

consist of ordinary matrices (with some x-derivatives), their statistics coming from

being off-diagonal in terms of boson vs. fermion components.

We have previously defined indices for matrices MA
B for matrix multiplication

(unlike metrics, which by definition change indices on “vectors”) with the first index

on a matrix down, second index up, so that consecutive indices can be contracted as

MA
BNBC , MA

BVB, WAVA, etc., with the first of the contracted indices up, second
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down. If we consider matrices, or general tensors, in terms of bases of direct products

of vectorsMA
B = VAW

B, then statistics imply that if we have different index ordering

in different terms or sides of an equation, then there are signs due to relative reordering

of indices. (Examples of this are the graded commutator defined in subsection IA3,

graded (anti)symmetry defined above, and the rule for complex conjugation with

spinor indices given in subsection IIA5.) Every time an index A has to be “pushed”

past an index B to achieve the same ordering, there is the same sign that would be

needed for pushing the corresponding vector in the direct-product basis. This factor

is written as “(−1)AB ”, where each index in the exponent is assigned a value of 0 if

the corresponding index on the tensor is bosonic, 1 if it’s fermionic. We will often

leave these sign factors implicit, and write them explicitly only for emphasis or when

first introducing them.

Again we have inverse metrics, e.g.,

MCAMCB = δAB

With respect to the usual index-contraction convention (no extra grading signs when

superscript is contracted with subscript immediately following), we should take the

ordering of indices on δ as δB
A as for matrices in matrix multiplication.

Exercise IIC3.1

Show that with this ordering of the indices on δ there is no implicit relative

sign factor in this definition of the inverse of a graded metric.

There is no analog of the ε tensor, at least for finite-dimensional groups, since it

would have an infinite number of indices when totally symmetric. However, “special”

supergroups can still be defined by generalizing the definition of trace and determinant

to supermatrices. One convenient way to do this is by using Gaussian integrals, since

this is a common way that such expressions will arise. As a generalization of the

bosonic and fermionic identities we therefore define the “superdeterminant” of an

arbitrary supermatrix M

(sdetM)−1 = N
∫
dz† dz e−z

†Mz

where “N ” is a normalization factor defined so sdet I = 1. The fact that a is a

“bosonic index” means za is bosonic; likewise, zα is fermionic. By explicitly evaluating

the integral, separating out the commuting and anticommuting parts, we find (see

exercise IB3.5)

sdet

(
A B

C D

)
=

det A

det(D − CA−1B)
=
det(A−BD−1C)

det D
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where here A and D contain only bosonic elements, while B and C are completely

fermionic.

Exercise IIC3.2

Generalize exercise IB3.5 to superdeterminants: Divide up the range of a

square matrix into two (not necessarily equal) parts, where each of the two

parts may include indices of both fermionic and bosonic grading, so the four

resulting blocks in the matrix may each include both commuting and anti-

commuting elements. Show that

sdet

(
A B

C D

)
= sdet D · sdet(A−BD−1C) = sdet A · sdet(D − CA−1B)

by integration.

The “supertrace” (see also exercise IA2.4c) then can be defined by generalizing

the bosonic identity det(eM) = etrM:

sdet(eM) = estrM

str(MA
B) = (−1)AMA

A =Ma
a −Mα

α = tr A− tr D

where (in the notation introduced in subsection IA2)

(−1)A ≡ (−1)AA

follows, as in the bosonic case, from δ ln sdetM = str(M−1δM), which is derived by

varying the Gaussian definition (see exercise IB3.4). This definition is also consistent

with our 2 previous conventions, for contracting indices and for implied statistics sign

factors. (For example, consider str(VAW
B) vs. WAVA.)

Exercise IIC3.3

Show that for arbitrary graded matrices M and N we need to use str (and

not tr) for the identity

str(MN ) = str(NM)

A useful identity for superdeterminants can be derived by starting with the fol-

lowing identity for the inverse of a matrix for which the range of the indices has been

divided into two pieces:(
a b

c d

)−1

=

(
(a− bd−1c)−1 (c− db−1a)−1

(b− ac−1d)−1 (d− ca−1b)−1

)
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We have assumed all the submatrices are square and invertible; equivalent expressions,

which are more useful in other cases, can be derived easily by multiplying and dividing

by the submatrices: For example,(
a b

c d

)−1

=

(
(a− bd−1c)−1 −a−1b(d− ca−1b)−1

−d−1c(a− bd−1c)−1 (d− ca−1b)−1

)
From either of these we immediately see(

A B

C D

)−1

=

(
Ã B̃

C̃ D̃

)
⇒ sdet

(
A B

C D

)
= det A det D̃ =

1

det D det Ã

A more convenient parametrization when inverses or (super)determinants are in-

volved is the factorized form(
1 w

0 1

)(
u 0

0 t

)(
1 0

v 1

)
or a similar form with the first and last factors reversed. Such forms are easy to

invert and take determinants of, and the above results are easily derived from them

by simple redefinitions. (See exercise IB3.5b, which is good for inversions as well as

determinants.) These forms have been used in subsection IC6: They correspond to

factorization of group elements into elements of the block-diagonal subgroup, and the

raising and lowering operators with respect to it.

The graded generalizations of the classical groups are then

GL(m|n,C) [SL(m|n,C),PSL(n|n,C)]

U: [S]U(m+,m−|n) [PSU(n+,n−|n++n−)]

OSp: OSp(m|2n,C)

R: GL(m|n) [SL(m|n),PSL(n|n)]

*: [S]U*(2m|2n) [PSU*(2n|2n)]

U & OSp

R: OSp(m+,m−|2n)
*: OSp*(2m|2n+,2n−)

where “(m|n)” refers to m bosonic and n fermionic indices, or vice versa.

When the commuting and anticommuting dimensions are equal, str(I) = 0 for

“S”, applied to a generator G, allows a gauge invariance δG ∼ I. (This Abelian

gauge invariance should really be included in the isotropy group, but conventionally is

included in the definition of the group.) We can then impose tracelessness conditions

on both bosonic parts of the generators separately, as a gauge choice, “PS” (also

called “SS”: tr A = tr D = 0). Another way to understand P, and its relation to
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S, is in terms of the commutation relations when the S and P generators are left in:

Since str[ , } = 0, S can only appear on the left-hand side of the relations, in 1 of the

G’s. On the other hand, since [I, ] = 0, P can appear only on the right-hand side of

a nontrivial commutator.

In the matrices of the defining representation, the elements with one bosonic

index and one fermionic are anticommuting numbers, while those with both indices

of the same kind are commuting. In particular, the commuting parts give the bosonic

subgroups:

GL(m|n,C) ⊃ GL(m,C)⊗GL(n,C)

SL(m|n,C) ⊃ GL(m,C)⊗SL(n,C)

PSL(n|n,C) ⊃ SL(n,C)⊗SL(n,C)

U(m+,m−|n) ⊃ U(m+,m−)⊗U(n)

SU(m+,m−|n) ⊃ U(m+,m−)⊗SU(n)

PSU(n+,n−|n++n−) ⊃ SU(n+,n−)⊗SU(n++n−)

OSp(m|2n,C) ⊃ SO(m,C)⊗Sp(2n,C)

GL(m|n) ⊃ GL(m)⊗GL(n)

SL(m|n) ⊃ GL(m)⊗SL(n)

PSL(n|n) ⊃ SL(n)⊗SL(n)

U*(2m|2n) ⊃ U*(2m)⊗U*(2n)

SU*(2m|2n) ⊃ U*(2m)⊗SU*(2n)

PSU*(2n|2n) ⊃ SU*(2n)⊗SU*(2n)

OSp(m+,m−|2n) ⊃ SO(m+,m−)⊗Sp(2n)

OSp*(2m|2n+,2n−) ⊃ SO*(2m)⊗USp(2n+,2n−)

4. Superconformal

For similar reasons to the conformal group with the Poincaré group (see subsec-

tion IA6), the superconformal group is useful for understanding supersymmetry. Since

the conformal group is a classical group, its supersymmetric generalization should be

a classical supergroup. Because the fermionic generators must include the supersym-

metry generators, which are spinors, the representation of the conformal group that

appears in the defining representation of the supergroup must be the spinor repre-

sentation. However, we have seen that only for n≤6 (where covering groups exist)
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and n=8 (where the spinor of SO(8) is another of its defining representations) can

the spinor representation of SO(n) be defined by classical group restrictions. This

implies that the superconformal group exists only in D≤4 and D=6.

The relevant supergroups can be identified easily by looking at the bosonic sub-

groups:
D = 3 : OSp(N|4)

4 : SU(2,2|N) (or PSU(2,2|4))

6 : OSp*(8|2N)

(We consider only D>2, since the conformal group is infinite-dimensional in D≤2.)

These three cases of D=3,4,6 are special for a number of reasons: In particular,

these three supergroups can be related to SU(N|4) over the division algebras: the

real numbers, complex numbers, and quaternions, respectively. (Similar remarks

apply to their important classical bosonic subgroups: the conformal, Lorentz, and

rotation groups. Attempts have been made to extend these results to the octonions

for D=10, but with less success, and there seems to be no superconformal group for

that case.) However, just as in the case of the Hilbert space of quantum mechanics,

the complex numbers seems to be the best of these “division algebras”, having the

analytic properties the real numbers lack, while avoiding the noncommutativity of

the quaternions. We’ll see later that nontrivial interacting (local, classical) conformal

field theories exist only in D≤4.

For the rest of this subsection, we concentrate on D=4. There we find that the

bosonic generators are the conformal group and the internal R-symmetry group U(N)

(or SU(4) for N=4), while the fermionic generators include supersymmetry (N spinors)

and its fraternal twin, “S-supersymmetry”. As supersymmetry is the “square root”

of translations, so S-supersymmetry is the square-root of conformal boosts. (They

are also related by inversion, which relates translations to conformal boosts.)

Exercise IIC4.1

For D=4, start with the (graded) commutation relations of the superconformal

generators, written with just “superindices” A,B, ... . These are essentially

the same as for SL, except for implicit signs from index ordering, and the

gauge invariance for “P” for the N=4 case. (Use the defining representation

as in subsection IB5, as applied in exercise IB5.2.)

a Decompose these into bosons and fermions, as A = (a, α).

b Further reduce their commutation relations into representations of the Lorentz

group and dilatations. (Remember SL(2,C) ⊂ SU(2,2), so decompose the

SU(2,2) “spinor” index as α = (α,
.
α).)



258 II. SPIN

By the methods of subsection IC6, various superspace representations of these su-

perconformal groups can be found. The Cartan subalgebra is bosonic (since numerical

eigenvalues are), and we can identify it with the usual one for the Lorentz, dilatation,

and internal symmetries. But usually we just include the rest of the Lorentz group

in H: Now its covariant derivatives define “superspin” instead of spin. Then, as usual

for the (bosonic) conformal subgroup, conformal boosts can be identified as lowering

operators, while translations are raising (because we want the conjugate coordinates).

S-supersymmetry can then be identified as the half of the fermionic generators that

are automatically included as lowering operators by this construction.

There are then ambiguities as to which supersymmetry and internal symmetry

generators are included in H, or instead become coordinates. If we choose for G0 not

only all of Lorentz but analogously also all of R-symmetry, we would keep all the 4N

coordinates for ordinary supersymmetry, giving the usual superspace. Then we could

treat internal symmetry in the same way as Lorentz and dilatations, specifying its

matrix value as “superisospin”.

However, the most interesting supermultiplets tend to be ones that are smallest,

due to living in superspaces with fewer than the usual number of fermionic coordi-

nates. (As a consequence, they sometimes require internal coordinates.) 2N is the

maximal number of supersymmetries that anticommute with each other (without gen-

erating translations); imposing their covariant derivatives as constraints, their com-

plement gives the same as the minimal number of supersymmetry coordinates. This

corresponds to a coset with H consisting of 2 diagonal (square) blocks A = (A,A′) of

size A = (α, a) = (2|n) and A′ = (
.
α, a′) = (2|N−n) for some n, plus the correspond-

ing “lowering operators” (1 off-diagonal rectangle). This leaves for coordinates (in a

unitary gauge for H) the other rectangle (“raising operators”) of size (2|n)×(2|N−n):

gA
B =

( B B′

A δBA wA
B′

A′ 0 δB
′

A′

)
, wA

B′ =

( .
β b′

α xα
.
β θα

b′

a θ̄a
.
β ya

b′

)

There are thus 4 spacetime coordinates x, n(N−n) internal coordinates y, and 2N

fermionic, of which 2n are one chirality (θ̄) and 2(N−n) the other (θ). So we have the

2 extreme cases of chiral (θ only) and antichiral (θ̄ only); the rest are called “twisted

chiral”.

The most interesting cases are the (anti)chiral superspace of n=0(N), and the



C. SUPERSYMMETRY 259

“real” superspace for n=N/2 (so N even).

n x y θ θ̄

general n 4 n(N − n) 2(N − n) 2n

chiral 0 4 0 2N 0

real N/2 4 N2/4 N N

antichiral N 4 0 0 2N

For example, for N=1 all the “physical” on-shell field strengths are (anti)chiral; for

N=2 they are either (anti)chiral or real (projective). Especially interesting is the

maximal (for super Yang-Mills) case N=4, where the numbers of internal and space-

time coordinates are equal: Its superspace is real, which is related to the fact that

it’s maximal. (See subsection IIC5.) For the nonchiral cases, using Abelian factors

in H to define G0 and G−, one also uses a U(1) of the R-symmetry, analogous to the

way dilatations of conformal are used to assign conformal boosts to G−.

These transform under the superconformal group by fractional linear transforma-

tions, as described in subsection IC6: Decomposing the group element g0 of global

superconformal symmetry into the same blocks,

g0 =

(
a b

c d

)
⇒ w′ = (aw + b)(cw + d)−1

(a and d are squares of the appropriate sizes, b is a rectangle like w, and c like its

transpose.) Of particular interest are the “supertranslations” of all these coordinates

(given by b for a = I = d and c = 0), which all (anti)commute with each other. (For

most purposes, some steps can be saved by using the projective construction instead

of the full coset: See also exercise IIA5.6.)

For purposes of such constraints and for field equations, covariant derivatives DA
B

(and invariants and symmetry derivatives Ĝ) can also be constructed as described

in subsection IC6, and reproduce the results of subsection IIC2, which can also be

applied in general to supersymmetry without superconformal invariance. However, as

usual the results are coordinate dependent: If using the projective coordinates defined

above, they will differ by a coordinate transformation that is complex , because of the

way we treated reality conditions. (E.g., we saw half of the supersymmetry generators

q are simply translations, and thus have no θp terms.)

The covariant derivatives for supersymmetry (like those for translations) never

have “spin” pieces. So if any of them are in the coset gauge group, they vanish

identically, not up to a matrix representation. This implies that twisted chiral su-

perspaces have no (Lorentz) spin, and chiral superspaces lack antichiral spin (dotted
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spinor indices), and the reverse for antichiral superspaces, since they are in the same

G0 subgroups. Similar remarks apply to parts of R-symmetry. These results also

follow from the fact these subgroups also contain some S-supersymmetry. On the

other hand, in cases with super(iso)spin, these spin operators contribute to the field

equations, as in the bosonic case (see subsection IIB1).

In the case of projective representations, the free field equations are particularly

simple, since after H-gauge fixing the covariant derivatives for w are just partial

derivatives (because they are Abelian): As generalized from the bosonic case (see

subsection IIB7), they are (∂A′
B = ∂/∂wB

A′)

D(A
(CDB]

D] − δ terms = 0 ⇒ ∂(A′
(C∂B′]

D] = 0

(for the latter, 1 symmetrization is redundant, since partial derivatives graded com-

mute) after dropping equations containing the isotropy constraints (with implicit signs

for ordering; internal indices are taken as bosonic, spacetime spinor as fermionic).

This includes the usual massless Klein-Gordon equation = 0, from the piece with

2 derivatives ∂.
β
α = ∂/∂xα

.
β, where in that case graded symmetrization means an-

tisymmetrization, which effectively contracts 2-valued indices. (On the other hand,

contracting upper with lower indices in the usual way would contract P.
β
α with con-

formal boosts Kα

.
β, not another P .) It also includes the usual p/q = 0 (see subsection

IIC1). For the internal coordinates, it terminates the otherwise infinite dimensional

representations of the internal symmetry group to finite ones on shell.

As an example, the (free) on-shell field strength for 4D N=4 super Yang-Mills

(see subsections IIC5 and IVC7) in real projective superspace looks like

Φ(w) = (φ+ ym
m′φm′

m + 1
2y

2φ̄) + θµ
m′(ψm′

µ + ym′
mψm

µ) + θ̄m
.
µ(ψ̄.

µ
m + ym′

mψ̄.
µ
m′)

+(θ2
µνf

µν + θ̄2
.
µ
.
ν f̄.
µ
.
ν)− iθµm

′
θ̄m

.
µ∂.

µ
µ(φm′

m + ym′
mφ̄)

−iθ2
µν θ̄m

.
µ∂.

µ
µψmν − iθ̄2

.
µ
.
νθµ

m′∂.
µ
µψ̄.

νm′ − θ2
µν θ̄

2
.
µ
.
ν∂.

µ
µ∂.

ν
νφ̄

where we have used the internal SL(2)2 metrics to raise, lower, and contract indices.

Because of the coset space used for R-symmetry, the fields appear as representations

of SO(4)⊗SO(2) = SU(2)⊗SU(2)⊗U(1): scalars as 6 = (1,1,1)⊕(2,2,0)⊕(1,1,−1),

and the spinors as 4 = (2,1,1
2)⊕(1,2,−1

2). Each component field, as a function of

x, satisfies the Klein-Gordon equation, and each non-scalar satisfies a Weyl equation

(which for f is the combination of the usual field equation and Bianchi identity for

the Yang-Mills field strength: see subsection IIA7). Note that all component fields

appear at y = 0, but some only with x derivatives; this is a general feature, following

from the equation ∂θ̄∂θ + ∂y∂x = 0; the same is not true off shell.
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Exercise IIC4.2

Solve all the free field equations for the 4D N=4 super Yang-Mills field

strength to find the shown

a termination of y and θ dependence,

b explicit derivatives ∂, and

c Weyl equations for non-scalars.

Because of a nontrivial weight for scale and the related U(1) of SU(4), Φ isn’t

really a scalar: In terms of the corresponding gauge coordinate “x−”, it has the form

Φ(x−, w) = x−Φ(w)

where x− is related to the sdet of the 2 diagonal PSU(1,1|2)2 blocks in PSU(2,2|4),

whose product is fixed by the “S” condition. (It comes from setting the D’s for

those 2 blocks proportional to the identity, thus keeping Φ a “scalar density”.) In

the language of subsection IC6, Φ(x−, w) is “ψA”, where the index “A” takes a single

value, while Φ(w) is “ψ̃B”, and the x− factor relating the 2 is the “vielbein (h−1)A
B”

(in this case, an “einbein”, as for the mechanics of a relativistic particle), with the

fact that x− is to the power 1 defines what representation we have of the isotropy

group. Then from the transformation law

(x−)′ = sdet(cw + d)x−

we have

Φ′(w) = sdet(cw + d)Φ[(aw + b)(cw + d)−1]

Also, reality properties of Φ are unusual, since those of w are: This is because

the coset for SU(4) = SO(6) (y) has been treated the same way as that for SU(2,2) =

SO(4,2) (x), which requires Wick rotation. (See subsection IC5.) The result is that

reality of Φ requires an inversion for the y coordinates (which affects also the other

coordinates), and a corresponding overall factor of y2 coming from the x−.

5. Supertwistors

We saw that a simple way to find representations of SO(4,2) was to use the

coordinate representation for SU(2,2): The resulting twistors gave all massless rep-

resentations (p2 = 0 for all helicities). This method generalizes straightforwardly to

the superconformal groups: The generators

GA
B = ζ̄Aζ

B ⇒ G(A
(CGB]

D] = 0
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are automatically on shell, since GG ↔ DD after multiplying by g( )g−1. (For the

SU case we should also subtract out the trace, but that generator commutes with the

rest anyway.) The coordinates and their conjugate momenta satisfy

[ζ̄A, ζ
B} = δBA

ζA is then in the defining representation of the supergroup, while the wave function,

which is a function of ζ, contains more general representations.

According to scale weight and Lorentz representations, the superconformal gen-

erators can be divided up as

GA
B β b

.
β

α(2) J +∆ S K

a(N) Q R S̄
.
α(2) P Q̄ J̄ −∆

Depending on which 2 diagonal squares are chosen for G0, we get supertwistor,

(anti)chiral superspace, or twisted projective superspace.

For D=3, the reality condition sets ζ = ζ̄, so the ζ’s are the graded generalization

of Dirac γ matrices. In fact, the anticommuting ζ’s are the γ matrices of the SO(N)

subgroup of the OSp(N|4). On the other hand, the commuting ζ’s carry the index of

the defining representation of Sp(4), so they are a spinor of SO(3,2), the 3D conformal

group: They are the bosonic twistor, and can be used in a similar way to the 4D

twistors discussed earlier.

For D=4, there is a U(1) symmetry acting on ζ under which GA
B is invariant,

generated by (−1)AGA
A, as in the bosonic case: This is the “superhelicity”.

For D=6, ζ is pseudoreal. In general, for pseudoreal representations of groups it is

often convenient to introduce a new SU(2) under which the pseudoreal representation

ζA and its equivalent complex conjugate representation ζ̄
.
BΩ .

B
A transform as a doublet

(SU(2) spinor). This is also obvious from construction, since half of the components

are related to the complex conjugate of the other half. We then can write

ζAi = (ζA, iζ̄
.
BΩ .

B
A) = ζ̄

.
B
.
kΩ .

B
.
k
Ai; Ω .

B
.
k
Ai = Ω .

B
ACki, MAi,Bk = MABCik

GA
B = ζAiζ

Bi

(Thus, OSp*(2m|2n)⊂OSp(4n|4m), and SO*(2m)⊂Sp(4m), USp(2n)⊂SO(4n).) This

means there is now an SU(2) symmetry on ζ, generated by

Gij = ζA(iζAj)
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under which GA
B is invariant. This is the 6D version of superhelicity. In the D=6

light cone, the manifest part of Lorentz invariance is SO(D−2)=SO(4)=SU(2)⊗SU(2).

This is one of those SU(2)’s.

The “reverse” statistics for (super)twistors can be explained by noting that they

always carry a second spinor index, associated with the little Lorentz group. This is

obvious in D=6, but not in lower dimensions. From subsection IIB6, where twistors

were introduced as group/coset/projective elements, we recognize the SU(2) index i

as being acted on by the gauge group; thus the 6D SU(2) superhelicity operators,

as well that of the 4D U(1), are actually covariant derivatives rather than symmetry

generators, and so define the representation as described in subsection IC6.

Remember how twistors relate to the lightcone frame (subsection IIB6): The same

is true for supertwistors. In a lightcone frame for on-shell, massless (super)particles,

where the only nonvanishing component of momentum is p+ = ±1 (+1 for particles,

−1 for antiparticles), we have in arbitrary dimensions, in Dirac notation (subsection

IIC1),

{q, q̄} = ±2γ+ ⇒ {γ+q, γ+q̄} = ±2γ+ , {γ+q, γ−q̄} = 0 , {γ−q, γ−q̄} = 0

so p/q ∼ γ−q vanishes, while γ+q gives just a γ-matrix (Clifford) algebra (with γ+

acting as a projection operator: see exercise IIB3.1). Explicitly, we can write

q = ∂θ ± γ+θ

so half the q’s are just partial derivatives, while the other half are the standard

construction of creation and annihilation operators from coordinates and momenta.

We now concentrate on D=4 (although our methods generalize straightforwardly

to D=3 and 6). The simplest way to find (massless) representations of 4D supersym-

metry is to generalize the Penrose transform. Just as twistors automatically satisfy

the massless field equations in D=4, supertwistors automatically satisfy their super-

symmetric generalization, given in the previous subsection. The supertwistor is the

defining representation of SU(2,2|N). The SU(2,2) part is the usual twistor, while

the SU(N) part is the usual fermionic creation and annihilation operators for SU(N).

Thus, to relate superspace to supertwistors, we write

p
α
.
β

= −i∂
α
.
β
→ ±pαp̄.

β

qaα = −i∂aα + 1
2 θ̄

.
β
a∂α

.
β
→ ±aapα, q̄a.α = −i∂̄a.α + 1

2θ
aβ∂β .

α → ±a†ap̄ .
α

This determines the Penrose transform from superspace to supertwistors:
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φ
α...

.
β...

(x, θ, θ̄) =

∫
d2pαd

2p̄ .
αd

Naa pα · · · p̄.
β
· · · [eiϕχ+(pα, p̄ .

α, aa) + e−iϕχ−(pα, p̄ .
α, aa)]

ϕ = (xα
.
β − i1

2θ
aαθ̄

.
β
a )pαp̄.

β
+ θaαaapα

where we have used “chiral superfields” (trivial dependence on θ̄, via the constraint

d̄a.αφ = 0) without loss of generality. By a complex coordinate transformation, xα
.
β −

i1
2θ

aαθ̄
.
β
a can be replaced with just x; in this “chiral representation”, the coordinates

are just x and θ.

Similar expressions can be found for any of the projective representations defined

in the previous subsection by treating some of the a†’s as coordinates in place of a’s.

(Instead of treating aa as coordinates to be integrated, we can also treat them as

operators; we then make the χ’s functions of a†, and replace the integration with

vacuum evaluation 〈0| |0〉.) As for ordinary twistors, this result can be related to

the lightcone: For given momentum, we can choose the lightcone frame pα = δα⊕;

then q⊕a = ±aa, while q	a = 0 is a result of the supertwistor formalism automatically

incorporating p/q = 0. The net result is to work with

φ...(wA
B′) , χ±(ζA, ζ̄B′) , ϕ = ζAwA

B′ ζ̄B′

(in a “projective representation” where φ(w) satisfies a modified reality condition).

Exercise IIC5.1

Modify the above Penrose transform for real projective superspace. Apply

it to an N=4 scalar. Expand in θ and y by expanding in the a’s and a†’s.

Compare with the Yang-Mills field strength of the previous subsection.

Exercise IIC5.2

Find the Penrose transform for D=3. (Warning: The anticommuting part

of the twistor is now like Dirac matrices rather than creation/annihilation

operators.)

Taylor expanding the chiral case (to avoid y) in aa (and thus θaα, producing terms

antisymmetric in a...b and symmetric in α...β), the states then carry the index struc-

ture φ, φa, φab, ..., φ̃
a, φ̃, totally antisymmetric, and terminating with another singlet,

where

φ̃ = 1
N !
εa1···aNφa1···aN , φ̃a1 = 1

(N−1)!
εa1···aNφa2···aN , ...

From our discussion of helicity in subsection IIB7, we see that the states also decrease

in helicity by 1/2 for each aa (i.e., ignoring θ̄, each θaα comes with a pα, simply because

it adds an undotted index). Taking the direct product with any helicity (coming from
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the explicit pα’s and p̄ .
α’s carrying the external Lorentz indices), we see that the states

have helicity h, h− 1/2, h− 1, ..., h−N/2, with multiplicty
(
N
n

)
for helicity h− n/2:

state helicity (Poincaré) multiplicity [SU(N)]

φ h 1

φa h− 1
2 N

φab h− 1 N(N−1)
2

...
...

...

φa1···an h− n
2

(
N
n

)
...

...
...

φ̃a h− N
2

+ 1
2 N

φ̃ h− N
2

1

This multiplet structure is carried separately by χ+ and by χ−, which are related

by charge (complex) conjugation, one describing the antiparticles of the other, as for

ordinary twistors. (The existence of both multiplets also follows from CPT invariance,

which is required for local actions, to be discussed in subsection IVB1. Here we

generalized from the Penrose transform, which contained both terms as a consequence

of being the most general solution to Sabpb + wpa = 0, which is CPT invariant.)

Because of the values of the helicities, we can impose a reality condition, identifying

all states with helicity j as the complex conjugates of those with −j, only for −h =

h − N/2 → h = N/4, when N is a multiple of 4. For twice-odd N , the scalars are

pseudoreal representations of SU(N) (the ε tensor is antisymmetric in its pair of N/2

indices), so CPT self-conjugacy isn’t possible. We can also get larger representations

by taking the direct product of these smallest representations of supersymmetry with

representations of U(N), in which case the fields will carry those additional SU(N)

indices.

Exercise IIC5.3

Let’s examine these 4D multiplets in detail:

a List the SU(N) representations for each allowed value of N for each of the

cases where the helicity |h| ≤ 1/2 (“scalar multiplets”), 1 (“vector multi-

plets”), 3/2 (“gravitino multiplets”), or 2 (“graviton multiplets”), assuming

the maximum-helicity state is a singlet.

b Show that “supergravity” (graviton multiplets) can exist only for N≤8. Show

that the relevant representation for N=8, if real, is the same as the one (com-

plex) for N=7.
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c Find the analogous statements for “super Yang-Mills” (vector multiplets).

d For the case N=4, relate to the components of the projective superspace on-

shell Yang-Mills field strength of the previous subsection.

The explicit form of the reality condition is somewhat complicated in terms of

the chiral superfields, because they are really field strengths of real gauge fields.

(Consider, for example, expressing reality of A
α
.
β

in terms of fαβ in the case of elec-

tromagnetism.) However, in terms of the twistor variables, charge conjugation can

be expressed as

C : χ± → χ∓*, aa → (aa)
†

where the transformation on aa is required because it carries the SU(N) “charge”.

Since this violates “chirality” in these variables (dependence on a and not a†), it is

accomplished by Fourier transformation:

C : χ±(aa)→ C

∫
dã†a eã

†aaa [χ∓(ãa)]*C
−1

for some “charge conjugation matrix” C (in case the field carries an additional index).
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III. LOCAL
In the previous chapters we considered symmetries acting on coordinates or wave

functions. For the most part, the transformations we considered had constant param-

eters: They were “global” transformations. In this chapter we will consider mostly

field theory. Since fields are functions of spacetime, it will be natural to consider

transformations whose parameters are also functions of spacetime, especially those

that are localized in some small region. Such “local” or “gauge” transformations are

fundamental in defining the theories that describe the fundamental interactions.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . A. ACTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A fundamental concept in physics, of as great importance as symmetry, is the

action principle. In quantum physics the dynamics is necessarily formulated in terms

of an action (in the path-integral approach), or an equivalent Hamiltonian (in the

Heisenberg and Schrödinger approaches). Action principles are also convenient and

powerful for classical physics, allowing all field equations to be derived from a single

function, and making symmetries simpler to check.

1. General

We begin with some general properties of actions. (For this subsection we’ll re-

strict ourselves to bosonic variables; however, in the following subsection we’ll find

that the only modification for fermions is a more careful treatment of signs.) Gen-

erally, equations of motion are derived from actions by setting their variation with

respect to their arguments to vanish:

δS[φ] ≡ S[φ+ δφ]− S[φ] = 0

The solutions to this equation (find φ, given S) are “extrema” of the action; generally

we want them to be minima, corresponding to minima of the energy, so that they will

be stable under small perturbations.

Exercise IIIA1.1

Often continuous coordinates are replaced with discrete ones, for calculational

or conceptual purposes. Consider

S = −
∞∑

n=−∞

1
2(qn+1 − qn)2

The integer n is interpreted as a discrete time, in terms of some “small” unit.



A. ACTIONS 269

a Show that

δS = 0 ⇒ qn+1 − 2qn + qn−1 = 0

b Examine the continuum limit of the action and equations of motion: Introduce

appropriate factors of ε, with t = nε, and take the limit ε→ 0.

Now we take the variables φ to be functions of time; thus, S is a function of

functions, a “functional”. It just means that S is a function of an infinite set of

variables. We can generalize properties of ordinary functions (derivatives, etc.) as

usual by considering discrete time and taking a continuum limit:

i = 1, 2, ... → t ∈ [−∞,∞]

φi → φ(t)∑
i

→
∫
dt

δij → δ(t− t′)
∂

∂φi
→ δ

δφ(t)∫
dφi →

∫
Dφ(t)

(the last, a “functional integral”, will appear in quantum theory) where δij is the

usual Kronecker delta function, while δ(t− t′) is the “Dirac delta function”. It’s not

really a function, since it takes only the values 0 or∞, but a “distribution”, meaning

it’s defined only by integration:∫
dt′ f(t′)δ(t− t′) ≡ f(t)

Of course, the variable φ(t) can also carry an index (or indices). In field theory, it

will also be a function of more coordinates, those of space.

For example, making these substitutions into the definition of a (partial) deriva-

tive to get a “functional derivative”,

∂f(φi)

∂φj
= lim

ε→0

f(φi + εδij)− f(φi)

ε
⇒ δf [φ(t)]

δφ(t′)
= lim

ε→0

f [φ(t) + εδ(t− t′)]− f [φ(t)]

ε

Sometimes the functional derivative is defined in terms of that of the variable itself:

δφ(t)

δφ(t′)
= δ(t− t′)

If we apply this definition of the Dirac δ to δφ/δφ, we obtain the previous definition of

the functional derivative. (Consider, e.g., varying S =
∫
dt f(t)φ(t) for a fixed func-

tion f .) However, in practice we never need to use these definitions of the functional
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derivative: The only thing for which we need a functional derivative is the action,

whose functional derivative is defined by its variation,

δS[φ] ≡ S[φ+ δφ]− S[φ] ≡
∫
dt δφ(t)

δS

δφ(t)

(The fact that the variation can always be written in this form is just the statement

that it is linear in δφ, since δφ is “infinitesimal”.)

A general principle of mechanics is “locality”, that events at one time directly

affect only those events an infinitesimal time away. (In field theory these events can

be also only an infinitesimal distance away in space.) This means that the action can

be expressed in terms of a Lagrangian:

S[φ] =

∫
dt L[φ(t)]

where L at time t is a function of only φ(t) and a finite number of its derivatives. For

more subtle reasons, this number of time derivatives is restricted to be no more than

two for any term in L; after integration by parts, each derivative acts on a different

factor of φ. The general form of the action is then

L(φ) = −1
2

.
φm

.
φngmn(φ) +

.
φmAm(φ) + V (φ)

where “
.
” means ∂/∂t, and the “metric” g, “vector potential” A, and “scalar poten-

tial” V are not to be varied independently when deriving the equations of motion.

(Specifically, δV = (δφm)(∂V/∂φm), etc. Note that our definition of the Lagrangian

differs in sign from the usual: Thus, for a particle with kinetic energy T in a potential

V with energy H = T +V we have L = −T +V .) The equations of motion following

from varying an action that can be written in terms of a Lagrangian are

0 = δS ≡
∫
dt δφm

δS

δφm
⇒ δS

δφm
= 0

where we have eliminated δ
.
φm terms by integration by parts (assuming δφ = 0 at

the boundaries in t), and used the fact that δφ(t) is arbitrary at each value of t. For

example,

S = −
∫
dt 1

2
.
q2 ⇒ 0 = δS = −

∫
dt

.
qδ

.
q =

∫
dt (δq)

..
q ⇒ δS

δq
=

..
q = 0

Exercise IIIA1.2

Find the equations of motion from the Lagrangian

L = aq2 + b
.
q2 + c

..
q 2
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(for constants a, b, c).

Exercise IIIA1.3

Find the equations of motion for φm from the above general action in terms

of the external fields g, A, and V (and their partial derivatives with respect

to φ).

Exercise IIIA1.4

Consider a Lagrangian of the form (where ∂ ≡ ∂/∂t)

L1 = m2q−(∂2 −m2)q− −m2q+(∂2 +m2)q+

a Show the energy can be arbitrarily positive or negative.

b Make the field redefinition

q± = 1√
2
(q0 ± q1)

Show that q1 can then be eliminated by its local field equation (no inverting

of time derivatives) of the form

q1 = f(q0)

resulting in the Lagrangian

L2 = q0(∂4 −m4)q0

This is an example of the general result that Lagrangians higher than second

order in time derivatives result in solutions with arbitrarily negative energy,

i.e., no vacuum. (Note that changing the overall sign of L2, and thus of L1,

wouldn’t help.)

Locality applies only to the classical action; in quantum field theory we will also

find “effective actions” that include nonlocal contributions from quantum effects.

Similar effects can appear in classical theories; for example, electrodynamics in the

Coulomb gauge includes a (spatially) nonlocal Coulomb interaction term. The in-

terpretation is always that some quantity has been eliminated, which would return

locality (e.g., the “longitudinal photon” in the Coulomb gauge). Such actions can still

be varied by the same methods as above. However, one should always avoid the rule

∂L/∂φ = ∂t(∂L/∂(∂tφ)), since (1) it applies only to actions that can be expressed

in terms of just φ and
.
φ (and not higher derivatives nor nonlocalities), and (2) it

arbitrarily separates terms into two sets.



272 III. LOCAL

Such actions can be reduced to ones that are only linear in time derivatives

by introducing additional variables. First, separate out the subspace where g is

invertible, with coordinates q (φm = (qi, rµ)); the Lagrangian is then written as

L(q, r) = −1
2
.
qi

.
qjgij(q, r) +

.
qiAi(q, r) +

.
rµAµ(q, r) + V (q, r)

This Lagrangian gives equivalent equations of motion to

L′(q, p, r) = [− .
qipi +

.
rµAµ] + [1

2g
ij(pi + Ai)(pj + Aj) + V ]

where gij is the inverse of gij. (Many other forms are possible by redefinitions of p.)

Eliminating the new variables p by their equations of motion gives back L(q, r). Note

that this works only because p’s equations of motion are algebraic: For example,

eliminating x from the Lagrangian − .
xp + 1

2p
2 by the equation of motion

.
x = p is

illegal (it would give the trivial action S = −
∫
dt 1

2p
2), since it would require solving

for the time dependence of x. On the other hand, p is given explicitly in terms of

the other variables by its equations of motion without inverting time derivatives, so

eliminating it does not lose any of the dynamics. (It is an “auxiliary variable”.)

The result is a Hamiltonian form of the Lagrangian:

LH(Φ) = i
.
ΦMAM(Φ) +H(Φ)

in terms of the Hamiltonian H, where Φ = (q, p, r). It has the “gauge invariance”

δAM = ∂MΛ(Φ)

(where ∂M = ∂/∂ΦM), since that adds only a total derivative term i
.
Λ. Clearly A

will introduce a modification of the Poisson bracket if it is not linear in Φ (e.g., as

when we make independent nonlinear redefinitions of coordinates and momenta on

the usual form of the Lagrangian). To determine this modification we compare the

equation of motion as defined by a Poisson bracket,

.
ΦM = −i[ΦM , H] = −i[ΦM , ΦN ]∂NH

with that following from varying the action,

−i
.
ΦNFNM + ∂MH = 0, FMN = ∂[MAN ]

to find

[ΦM , ΦN ] = (F−1)NM

where “F−1” is the inverse on the maximal subspace where F is invertible. The

variables in the directions where F vanishes are “auxiliary”, since they appear without



A. ACTIONS 273

time derivatives: Their equations of motion are not described by the Poisson bracket.

In particular, if they appear linearly in H they are “Lagrange multipliers”, whose

variation imposes algebraic constraints on the rest of Φ.

Finally, we can make redefinitions of the part of Φ describing the invertible sub-

space so that A is linear:

AM = 1
2Φ

NΩNM ⇒ LH(Φ) = 1
2i

.
ΦMΦNΩNM +H(Φ)

where Ω is a constant, hermitian, antisymmetric (and thus imaginary) matrix. For

some purposes it is more convenient to assume this Hamiltonian form of the action

as a starting point. We now have the canonical commutation relations as

[ΦM , ΦN ] = ΩMN

where ΩMN is the inverse of ΩNM on the maximal subspace:

ΩMNΩPN = ΠP
M

for the projection operator Π for that subspace.

Exercise IIIA1.5

For electromagnetism, define ~ψ = ~E + i ~B.

a Show that Maxwell’s equations (in empty space) can be written as two equa-

tions in terms of ~ψ.

b Interpret the equation involving the time derivative as a Schrödinger equation

for the wave function ~ψ, and find the Hamiltonian operator. (This relates to

exercise IIB2.5.)

c Define the obvious inner product
∫
d3x ~ψ* · ~ψ: What physical conserved

quantity does this represent? (Note that, unlike electrons, the number of

photons is not conserved.)

Note that the requirement of the existence of a Hamiltonian formulation deter-

mines that the kinetic term for a particle in the Lagrangian formulation go as
.
x2

and not x
..
x. Although such terms give the same equations of motion, they are not

equivalent quantum mechanically, where boundary terms (dropped when using inte-

gration by parts for deriving the equations of motion) contribute. Furthermore, the

Hamiltonian form of the action

S =

∫
dt H − dxipi

shows that the energy H relates to the time in the same way the momentum relates to

the coordinates, except for an interesting minus sign that is explained only by special

relativity.
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2. Fermions

In nonrelativistic quantum mechanics, spin is usually treated as a quantum effect,

rather than being derived from classical mechanics. Although it is possible to derive

spin from classical mechanics, in general it is rather cumbersome, and involves first

introducing a large number of spins and then constraining away all the undesired ones,

whereas in the quantum mechanics one can just directly introduce some particular

representation of the spin angular momentum operators. The one nontrivial exception

is spin 1/2.

We know from quantum mechanics that the spin variables for spin 1/2 are de-

scribed by the Pauli σ matrices. Since they satisfy anticommutation relations, and

are represented by finite-dimensional matrices, they are interpreted as fermionic. We

have already seen that classical fermions are described by anticommuting numbers,

so we begin by considering general quantization of such objects.

We can now consider actions that depend on both commuting and anticommuting

classical variables, ΦM = (φm, ψµ), where now φ refers to the bosonic variables and ψ

to the fermionic ones. The Hamiltonian form of the Lagrangian can again be written

as

LH(Φ) = 1
2i

.
ΦMΦNΩNM +H(Φ)

When Ω is invertible, the graded bracket is defined by (see subsection IA2)

[ΦM , ΦN} = h̄ΩMN , ΩMNΩPN = δMP

To describe spin 1/2, we therefore look for particle actions of the form

SH =

∫
dt[− .

xipi + 1
2i

.
ψiψi +H(x, p, ψ)]

This corresponds to using

ΦM = (φm;ψµ) = (φiα;ψi) = (xi, pi;ψi)

Ωmn = Ωiα,jβ = δijCαβ, Ωµν = Ωij = δij, Ωmν = Ωµn = 0

The fundamental commutation relations are then

[xi, pj] = ih̄δij, {ψi, ψj} = h̄δij ([x, x] = [p, p] = [x, ψ] = [p, ψ] = 0)

We recognize ψi as the Pauli σ matrices (subsection IIA1; the Dirac matrices of

subsection IC1 for the special case of SO(3), normalized as ψ there), ψi =
√
h̄σi. The

free Hamiltonian is just

H =
p2

2m
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as for spin 0: Spin does not affect the motion of free particles.

A more interesting case is coupling to electromagnetism: Quantum mechanically,

the Hamiltonian can be written in the simple form

H =
{ψi[pi + qAi(x)]}2

mh̄
− qA0(x)

in terms of the vector and scalar potentials Ai and A0. The classical expression is not

as simple, because the commutation relations must be used to cancel the 1/h̄ before

taking the classical limit. This is an example of “minimal coupling”,

H(pi)→ H(pi + qAi)− qA0

However, this prescription works only if H for spin 1/2 is written in the above form:

Using the commutation relations before or after minimal coupling gives different re-

sults. The form we have used is justified only by considering the nonrelativistic limit

of the relativistic theory.

Exercise IIIA2.1

Use the multiplication rules of the σ matrices to show that the quantum

mechanical Hamiltonian for spin 1/2 in an electromagnetic field can be written

as a spin-independent piece, identical to the spin-0 Hamiltonian, plus a term

coupling the spin to the magnetic field.

3. Fields

Actions for field theories are just a special case (not a generalization) of the

actions we have just considered: We just treat spatial coordinates ~x as part of the

indices carried by the variables appearing in the action. In the notation used above,

M → (i, ~x)

ΦM(t)→ Φi(t, ~x)

Then spatial derivatives are just certain matrices with respect to the M index,
∫
d~x

comes from summation over M , etc.

The field equations for all field theories (e.g., electromagnetism) are wave equa-

tions. Wave equations also follow from mechanics upon quantization. Although

classical field theory and quantum mechanics are not equivalent in their physical in-

terpretation, they are mathematically equivalent in that they have identical wave

equations. This is true not only for the free theories, but also for particles in external

fields, and without direct self-interactions. This is no accident: Classical field theory
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and classical mechanics are two different limits of quantum field theory. They are

both called classical limits, and written as h̄ → 0, but since h̄ is really 1, this limit

depends on how one inserts h̄’s into the quantum field theory action.

The wave equation in quantum mechanics is the Schrödinger equation. The cor-

responding field theory action is then simply the one that gives this wave equation

as the equation of motion, where the wave function is replaced with the field:

Sft =

∫
d4x ψ*(−i∂t +H)ψ

As usual (cf. electromagnetism), the field is a function of space and time; thus, we

integrate d4x = dt d3x over the three space and one time dimensions. The Hamilto-

nian is some function of coordinates and momenta, with the replacement pi → −i∂i,
where ∂i = ∂/∂xi are the space derivatives and ∂t = ∂/∂t is the time derivative.

The Hamiltonian can contain coupling to other fields. For a general Hamilto-

nian quadratic in momenta, in a notation implied by the corresponding Lagrangian

quadratic in time derivatives,

H = 1
2g

ij(−i∂i + Ai)(−i∂j + Aj) + V

where gij, Ai, and V are now interpreted as fields, and thus depend on both xi

and t, as does ψ. In the case gij = δij, we can identify Ai and V as the three-

vector and scalar potentials of electromagnetism, and we can add the usual action

for electromagnetism to the action for ψ. The action then can be varied also with

respect to A and V to obtain Maxwell’s equations with a current in terms of ψ and

ψ*. We can also treat gij as a field, in which case it and parts of A and V are the

components of the gravitational field.

Field theory actions can be quantized in the same ways as mechanics ones. In

this case, we recognize the ψ*
.
ψ term as a special case of the

.
ΦΦΩ term in the

generic Hamiltonian form of the action discussed earlier. Thus, ψ(xi) and ψ*(xi)

have replaced xi and pi as the variables; xi is now just an index (label) on ψ and ψ*,

just as i was an index on xi and pi. The field-theory Hamiltonian is then identified

as

Hft[ψ, ψ*] =

∫
d3x H, H = ψ*Hψ

In field theory the Hamiltonian will always be a space integral of a “Hamiltonian

density” H.

The classical limit of a quantum theory defined by a classical action S can be

defined as follows: Introduce h̄ into the theory by replacing

S → h̄−1S
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This has no effect on the classical equations of motion, but it introduces h̄ into the

Poisson bracket:

− .
qp+H → −1

h̄
.
qp+

1

h̄
H

⇒ 1

h̄
[q, p] = i,

d

dt
=

∂

∂t
+ i

1

h̄
[H, ]

We can then recognize the limit h̄→ 0 as the classical limit. In the quantum theory,

it is equivalent to replacing

p→ −ih̄∂q, i∂t −H → ih̄∂t −H

i.e., all derivatives get a factor of h̄. (More details will be possible when we consider

quantization in subsection VA2.) However, a quantum theory can often be described

by more than one classical action: This is known as “duality” (between any two such

actions).

In particular, any free quantum field theory, and many interacting ones, can be

described by both a classical mechanics action and by a classical field theory action:

This is the well-known “wave-particle duality”. We have just seen the standard

nonrelativistic example. Furthermore, since we know the direct relation between the

two actions in terms of the mechanics Hamiltonian H, we can describe both classical

limits directly in terms of just the field theory action. The classical field theory limit

is defined by inserting h̄ only as

Sft → h̄−1Sft

On the other hand, if we put in h̄’s only as

∂i → h̄∂i, ∂t → h̄∂t

which gives the usual h̄ dependence associated with the Schrödinger equation, then

the classical limit h̄ → 0 gives classical mechanics. This defines classical mechanics

as the macroscopic limit, the limit of large distances and times.

A convenient way to implement this limit is to introduce the mechanics action

S =
∫
dt(− .

xipi + H) into the field theory, and then take the limit h̄ → 0 after the

replacement

S → h̄−1S

on the mechanics action instead of on the derivatives. The mechanics action can be

introduced when solving the field equations: The solution to the wave equation can

be expressed in terms of the propagator, which in turn can be written in terms of the

mechanics action or Hamiltonian.
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Usually h̄ is introduced through dimensional analysis; it has dimensions of action,

whose dimension is defined by conservation laws vs. symmetries (see subsection IIB4)

as energy × time or momentum × length. But the various parameters in the action

may be assigned different dimensions in mechanics and field theory; for example, in

classical mechanics one has p2+m2, while in classical field theory one has− +m2, and

these m’s differ by a factor of h̄ in quantum field theory, but are unrelated classically,

where one has dimensions of mass and the other of inverse length. (Consider, e.g.,

coupling a classical, massive particle to a classical, massive field.) So it’s only how

you scale these constants (mass, charge, etc.) as h̄ → 0 that gives different classical

limits. Since field theory actions can have fields rescaled to put the inverse coupling

in front of the action (see the following subsection), the classical field theory limit is

generally the limit of weak coupling. (However, if the couplings aren’t rescaled, e.g.,

using −i∂+ eA, then the weak coupling limit becomes the free theory.) On the other

hand, the classical mechanics limit, being macroscopic, is the limit of large mass; it’s

also a strong coupling limit, as the action coming from a force between particles is

proportional to the coupling, and gets a 1/h̄. (For example, the familiar fine structure

constant e2/h̄ of quantum mechanics is e2h̄ in quantum field theory.)

More generally, we can define actions that are not restricted to be quadratic in

any field. The Hamiltonian density H(t, xi) or Lagrangian density L(t, xi),

S[φ] =

∫
dt d3x L[φ(t, xi)]

should be a function of fields at that point, with only a finite number (usually no

more than two) spacetime derivatives. This is the definition of locality used for gen-

eral quantum systems in subsection IIIA1, but extended from derivatives in time to

also those in space. Although this condition is not always used in nonrelativistic

field theory (for example, when long-range interactions, such as Coulomb or gravita-

tional, are described without attributing them to fields), it is crucial in relativistic

field theory. For example, global symmetries lead by locality to local (current) conser-

vation laws. Locality is also the reason that spacetime coordinates are so important:

Translation invariance says that the position of the origin is an unphysical, redundant

variable; however, locality is most easily used with this redundancy.

Field equations are derived by the straightforward generalization of the variation

of actions defined in subsection IIIA1: As follows from treating the spatial coordinates

in the same way as discrete indices,

δS ≡
∫
dt d3x δφm(t, xi)

δS

δφm(t, xi)
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For example,

S = −
∫
dt d3x 1

2

.
φ2 ⇒ δS

δφ
=

..
φ

Exercise IIIA3.1

Consider the action

S[φ] =

∫
dt dD−1x [−1

2

.
φ2 + V (φ)]

for potential V (φ) (a function, not a functional).

a Find the field equations.

b Assume V (φ) = λφn for some positive integer n and constant, dimensionless

λ, in units h̄ = c = 1. Use dimensional analysis to relate n and D (of course,

also a positive integer), and list all paired possibilities of (n,D).

4. Relativity

Generalization to relativistic theories is straightforward, except for the fact that

the Klein-Gordon equation is second-order in time derivatives; however, we are fa-

miliar with such actions from nonrelativistic quantum mechanics. As usual, we need

to check the sign of the terms in the action: Checking the positivity of the Hamil-

tonian (i.e., the energy), we see from the general relation between the Lagrangian

and Hamiltonian (subsection IIIA1) that the terms without time derivatives must be

positive; the time-derivative terms are then determined by Lorentz covariance.

At this point we introduce some normalizations and conventions that will prove

convenient for Fourier transformation and other reasons to be explained later. When-

ever D-dimensional integrations are involved (as should be clear from context), we

use ∫
dx ≡

∫
dDx

(2π)D/2
,

∫
dp ≡

∫
dDp

(2π)D/2

δ(x− x′) ≡ (2π)D/2δD(x− x′), δ(p− p′) ≡ (2π)D/2δD(p− p′)

In particular, this normalization will be used in Green functions and actions. For

example, these implicit 2π’s appear in functional variations:

δS ≡
∫
dx δφ

δS

δφ
⇒ δ

δφ(x)
φ(x′) = δ(x− x′)

The action for a real scalar is then

S =

∫
dx L, L = 1

4
(∂φ)2 + V (φ)
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where V (φ) ≥ 0, and we now write L for the Lagrange density. In particular, V =
1
4
m2φ2 for the free theory. The free field equation is then p2 + m2 = − + m2 = 0,

replacing the nonrelativistic−i∂t+H = 0. For a complex scalar, we replace 1
2φφ→ χ̄χ

in both terms.

We know from previous considerations (subsection IIB2) that the field equation

for a free, massless, Dirac spinor is γ ·∂Ψ = 0. The generalization to the massive case

(subsection IIB4) is obvious from various considerations, e.g., dimensional analysis;

the action is

S =

∫
dx Ψ̄(i∂/ +m)Ψ

in arbitrary dimensions, again using the notation ∂/ = γ · ∂. In four dimensions, we

can decompose the Dirac spinor into its two Weyl spinors (see subsection IIA6):

L = Ψ̄(i∂/ +m)Ψ = (ψ̄
.
α
Li∂

α .
αψLα + ψ̄

.
α
Ri∂

α .
αψRα) + m√

2
(ψαLψRα + ψ̄

.
α
Lψ̄R .

α)

For the case of the Majorana spinor (where reality implies the Dirac action gets an

extra factor of 1
2), the 4D action reduces to that for a single Weyl spinor,

S =

∫
dx [−iψ̄

.
β∂

α
.
β
ψα + m√

2
1
2(ψαψα + ψ̄

.
αψ̄ .

α)]

Note that in our conventions σ0

α
.
β

= 1√
2
δαβ (and similarly for the opposite indices, since

σa
α
.
β

= σβ
.
α

a ), so that the time derivative term is always proportional to ψ†(−i∂0)ψ, as

nonrelativistically (previous subsection).

Exercise IIIA4.1

Show that hermiticity of the action requires that m is real for Dirac and Weyl

spinors. By “squaring” the field equation to get the Klein-Gordon equation

p2 +m2 = 0, show this implies m2 > 0 (no “tachyons”).

A scalar field must be complex to be charged (i.e., a representation of U(1)):

From the gauge transformation

χ′ = eiλχ

we find the minimal coupling (for q = 1)

Sχ =

∫
dx [1

2 |(∂ + iA)χ|2 + 1
2m

2|χ|2]

The electromagnetic current is then defined by varying the matter action with respect

to the gauge field:

J ≡ δS

δA
= χ̄(−i1

2

↔
∂ + A)χ

where

A
↔
∂B ≡ A∂B − (∂A)B
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This action is also invariant under charge conjugation

C : χ→ χ*, A→ −A

which changes the sign of the charge, since χ*′ = e−iλχ*.

Exercise IIIA4.2

Let’s consider the semiclassical interpretation of a charged particle as de-

scribed by a complex scalar field ψ, with Lagrangian

L = 1
2(|∇ψ|2 +m2|ψ|2)

a Use the semiclassical expansion in h̄ defined by

∇ → h̄∂ + iqA, ψ → √ρe−iS/h̄

Find the Lagrangian in terms of ρ and S (and the background field A), order-

by-order in h̄ (in this case, just h̄0 and h̄2).

b Take the semiclassical limit by dropping the h̄2 term in L, to find

L→ ρ1
2 [(−∂S + qA)2 +m2]

Vary with respect to S and ρ to find the equations of motion. Defining

p ≡ −∂S

show that these field equations can be interpreted as the mass-shell condition

and current conservation. Show that A couples to this current by varying L

with respect to A.

The spinor field also needs doubling for charge. (Actually, the doubling can be

avoided in the massless case; however, problems show up at the quantum level, related

to the fact that there is no charge conjugation transformation without doubling.) The

gauge transformations are similar to the scalar case, and the action again follows from

minimal coupling, to an action that has the global invariance (λ = constant in the

absence of A):

ψ′αL = eiλψαL, ψ′αR = e−iλψαR

Se =

∫
dx [ψ̄

.
β
L(−i∂

α
.
β

+ A
α
.
β
)ψαL + ψ̄

.
β
R(−i∂

α
.
β
− A

α
.
β
)ψαR + m√

2
(ψαLψRα + ψ̄

.
α
Lψ̄R .

α)]

The current is found from varying with respect to A:

Jα
.
β = ψ̄

.
β
Lψ

α
L − ψ̄

.
β
Rψ

α
R
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Charge conjugation

C : ψαL ↔ ψαR, A→ −A

(which commutes with Poincaré transformations) changes the sign of the charge and

current.

Exercise IIIA4.3

Show that this action can be rewritten in Dirac notation as

Se =

∫
dx Ψ̄(i∂/ − A/ + m√

2
)Ψ

and find the action of the gauge transformation and charge conjugation on

the Dirac spinor.

As a last example, we consider the action for electromagnetism itself. As before,

we have the gauge invariance and field strength

A′
α
.
β

= A
α
.
β
− ∂

α
.
β
λ

F
α
.
γ,β

.
δ

= ∂α.
γAβ

.
δ
− ∂

β
.
δ
Aα.

γ = Cαβ f̄.
γ
.
δ

+ C̄.
γ
.
δ
fαβ, fαβ = 1

2∂(α
.
γAβ)

.
γ

We can write the action for pure electromagnetism as

SA =

∫
dx 1

2e2
fαβfαβ =

∫
dx 1

2e2
f̄

.
α
.
β f̄ .

α
.
β

=

∫
dx 1

8e2
F abFab

dropping boundary terms, with the overall sign again determined by positivity of the

Hamiltonian, where e is the electromagnetic coupling constant, i.e., the charge of the

proton. (Other normalizations can be used by rescaling A
α
.
β
.) Maxwell’s equations

follow from varying the matter action with coupling to the gauge field:

S = SA + SM , J
α
.
β
≡ δSM

δAα
.
β
⇒ 1

e2
∂β .

γfβα = Jα.
γ

Exercise IIIA4.4

By plugging in the appropriate expressions in terms of Aa (and repeatedly

integrating by parts), show that all of the above expressions for the electro-

magnetism action can be written as

SA = −
∫
dx 1

4e2
[A · A+ (∂ · A)2]

Exercise IIIA4.5

Find all the field equations for all the fields, found from adding to SA all the

minimally coupled matter actions above.
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Having seen many of the standard examples of relativistic field theory actions,

we now introduce one of the most important principles in field theory.

Good ultraviolet behavior: All quantum field theories should have only couplings with

nonnegative mass (engineering) dimension.

(Here “couplings” means the coefficients of arbitrary terms, when the fields have been

defined so that the massless parts of the kinetic terms have no coupling dependence.)

The main problem classically with “bad” high-energy behavior is the breakdown of

perturbation in such couplings, which is the only known method of detailed calculation

in the quantum theory: They are associated (by dimensional analysis) with higher

derivatives in the action. One can only expand in dimensionless quantities (to have

unit-free comparisons of different orders), which in this case would be the coupling

constant times a positive power of the energy. This means the perturbation expansion

would necessarily diverge at energies above the mass scale set by the dimensionful

coupling.

Exercise IIIA4.6

Show in D=4 using dimensional analysis that this restriction on bosons φ and

fermions ψ restricts terms in the action to be of the form

φ, φ2, φ3, φ4, φ∂φ, φ2∂φ, φ∂∂φ;ψ2, ψ∂ψ;φψ2

and find the dimensions of all the corresponding coupling constants.

The energy-momentum tensor for electromagnetism is much simpler in this spinor

notation, and follows (up to normalization) from gauge invariance, dimensional anal-

ysis, Lorentz invariance, and the vanishing of its trace. It has a form similar to that

of the current in electrodynamics:

T
αβ

.
γ
.
δ

= − 1
e2
fαβ f̄.

γ
.
δ

Note that it is invariant under the duality transformations of subsection IIA7 (as is

the electrodynamic current under chirality).

We have used conventions where e appears multiplying only the action SA, and

not in the “covariant derivative”

∇ = ∂ + iqA

where q is the charge in units of e: e.g., q = 1 for the proton, q = −1 for the electron.

Alternatively, we can scale A, as a field redefinition, to produce the opposite situation:

A→ eA : SA →
∫
dx 1

8
F 2, ∇ → ∂ + iqeA
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The former form, which we use unless noted otherwise, has the advantage that the

coupling appears only in the one term SA, while the latter has the advantage that the

kinetic (free) term for A is normalized the same way as for scalars. The former form

has the further advantage that e appears in the gauge transformations of none of the

fields, making it clear that the group theory does not depend on the value of e. (This

will be more important when generalizing to nonabelian groups in section IIIC.)

Note that the massless parts of the kinetic (free) terms in these actions are scale

invariant (in arbitrary dimensions, when the dimension-independent forms are used),

when the fields are assigned the scale weights found from conformal arguments in

subsection IIB2.

Exercise IIIA4.7

Using vector notation, minimal coupling, and dimensional analysis, find the

mass dimensions of the electric charge e in arbitrary spacetime dimensions,

and show it is dimensionless only in D = 4.

An interesting distinction between gravity and electromagnetism is that static

bodies always attract gravitationally, whereas electrically they repel if they are like

and attract if they are opposite. This is a direct consequence of the fact that the

graviton has spin 2 while the photon has spin 1: The Lagrangian for a field of integer

spin s coupled to a current, in an appropriate gauge and the weak-field approximation,

is

L = − 1
4s!
φa1...as φa1...as + 1

s!
gφa1...asJ

a1...as

for some coupling g, where the sign of the first term is fixed by unitarity in quantum

field theory, or by positivity of the energy in classical field theory:

L0 = − 1
4s!
φa1...as φa1...as ⇔ H0 = 1

4s!
[
.
φa1...as

.
φa1...as + (∂iφ)a1...as(∂iφ)a1...as ]

(Time components of φ are unphysical, arising from gauge fixing, and so should be

ignored as far as arguments of unitarity or positivity of energy are concerned.) From

a scalar field in the semiclassical approximation (see exercise IIIA4.2 above), starting

with

Ja1...as = ψ*(−1
2i
↔
∂ a1) · · · (−1

2i
↔
∂ as)ψ

we see that the current will be of the form

Ja1...as = ρpa1 · · · pas

for a scalar particle, with “density” ρ. (The same follows from comparing the ex-

pressions for currents and energy-momentum tensors for particles as in subsection
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IIIB4 below. The only way to get vector indices out of a scalar particle, to couple to

the vector indices for the spin of the force field, is from momentum.) In the static

approximation, only time components contribute: We then can write this Lagrangian

as, taking into account η00 = −1,

L = −(−1)s 1
4s!
φ0...0 φ0...0 + 1

s!
gφ0...0ρ(p0)s

where E = p0 > 0 for a particle and < 0 for an antiparticle. Solving for φ by its field

equation and plugging back in, we have

L = (−1)s 1
s!
g2ρEs 1

ρEs

Since we’re looking at the static case, can be replaced with the Laplacian ∆, and

the Lagrangian (density) is the same as the Hamiltonian (density), so the “potential

energy” V produced by this interaction (we have neglected the “kinetic energy”, or

pure ψ terms in the action) is, in D=4,

V = −(−1)s 1
s!

(2πg2)1
2

∫
d3x

(2π)2

d3x′

(2π)2
(ρEs)(x)

1

|x− x′|
(ρEs)(x′)

where we have used
1

∆
δ3(x− x′) = − 1

4π|x− x′|

in terms of the 3D distance |x− x′|. Thus the spin-dependence of the potential/force

between two particles goes as −(−E1E2)s. It then follows that all particles attract by

forces mediated by even-spin particles, and a particle and its antiparticle attract under

all forces, while repulsion will occur for odd-spin forces between two identical particles.

(We can substitute “particles of the same-sign charge” for “identical particles”, and

“particles of opposite-sign charge” for “particle and its antiparticle”, where the charge

is the coupling constant appropriate for that force.)

Exercise IIIA4.8

Show that the above current is conserved,

∂a1J
a1···as = 0

(and the same for the other indices, by symmetry) if ψ satisfies the free Klein-

Gordon equation (massless or massive).
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5. Constrained systems

Constraints not only frequently appear in nonrelativistic physics, but are a general

feature of relativistic particles, so we now give a brief description of how they are

incorporated into actions. Consider a general action, with constraints, in Hamiltonian

form:

S =

∫
dt(− .

qmpm +H), H = Hgi(q, p) + λiGi(q, p)

(For simplicity, we consider all physical variables to be bosonic for this subsection,

but the method generalizes straightforwardly paying careful attention to signs.) This

action is a functional of qm, pm, λ
i, which are in turn functions of t, where m and i run

over any number of values. We can think of this as describing a nonrelativistic particle

with coordinates q and momenta p in terms of time t, but the form is general enough to

apply to relativistic theories. The
.
qp term tells us p is canonically conjugate to q; the

rest of the action gives the Hamiltonian, usually quadratic in momenta. The variables

λi are “Lagrange multipliers”, whose variation in the action implies the constraints

Gi = 0. We then can interpret Hgi as the usual (“gauge invariant”) Hamiltonian. We

also require that the transformations generated by the constraints close, and that the

Hamiltonian be invariant:

[Gi, Gj] = −ifijkGk, [Gi, Hgi] = 0

(More generally, we can allow [Gi, Hgi] = −ifijGj.) This says that the constraints

don’t imply any new constraints that we might have missed, and that the “energy”

represented by Hgi is invariant under these transformations. In general, not all con-

straints commute with the Hamiltonian, and thus those constraints are not time

independent; we are considering here just the ones that do. The ones that don’t,

including their Lagrange multipliers, are implicitly included in the gauge invariant

Hamiltonian. (Thus, the time-dependent constraints must commute with the time-

independent ones.)

We then find that the action is invariant under the canonical transformations

δ(q, p) = i[ζ iGi, (q, p)] ⇒ δqm = ζ i
∂Gi

∂pm
, δpm = −ζ i ∂Gi

∂qm

0 = δ

(
d

dt

)
= δ

(
∂

∂t
+ iH

)
= i(δλi)Gi − i

.
ζ iGi + [λjGj, ζ

iGi]

⇒ δλi =
.
ζ i + ζjλkfkj

i
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(with δ(d/dt) defined as in subsection IA1), where ∂/∂t acts on the “explicit” t

dependence (that in everything except q and p): For general expressions, the total

time derivative and total variation are given by commutators as

d

dt
A =

∂

∂t
A+ i[H,A], δA = δ0A+ i[ζ iGi, A]

where δ0 acts on just λ. The action then varies under these transformations as the

integral of a total derivative, which vanishes under appropriate boundary conditions:

δSH =

∫
dt
d

dt
[−(δqm)pm + ζ iGi] = 0

(When quantized, the boundary terms generate the corresponding transformations

on the initial and final wave functions.)

The simplest example is the case with one constraint, which is linear in the

variables: If the constraint is p, the gauge transformation is δq = ζ, so we gauge

q = 0 and use the constraint p = 0. In general, this means that for every degree of

freedom we can gauge away, the conjugate variable can be fixed by the constraint.

Thus, for each constraint we eliminate 3 variables: the variable fixed by the constraint,

its conjugate, and the Lagrange multiplier that enforced the constraint, which has

no conjugate. (In the Lagrangian form of the action the conjugate may not appear

explicitly, so only 2 variables are eliminated.) As an example of a constraint that does

not generate a gauge invariance (“second-class”, as opposed to the previous “first-

class”), consider a nonrelativistic particle constrained to a sphere by G = (xi)2 − 1:

We can change to spherical coordinates, apply the constraint to eliminate the radial

coordinate, and then eliminate the radial component of the momentum as an auxiliary

variable (not appearing with time derivatives), leaving an unconstrained theory in

terms of angles and their conjugates. In most cases in field theory a similar procedure

can be applied, eliminating both gauge and auxiliary variables: The result is called a

“unitary gauge”.

Exercise IIIA5.1

Let’s look closer at this example:

a Perform quantization of a nonrelativistic particle on a sphere (G = (xi)2 − 1

for i = 1, 2, 3), reducing to an action in terms of just the angles θ and φ, and

their conjugates.

b Repeat this procedure using instead the gauge invariant Hamiltonian Hgi =

(xi)2(pj)2/2m and the time-independent constraint G′ = xipi, and compare.

Show the relation of what’s left of the Hamiltonian to the angular momentum.
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The standard example of a relativistic constrained system is in field theory —

electromagnetism. Its action can be written in “first-order (in derivatives) formalism”

by introducing an auxiliary field Gab:

F 2 → F 2 −G2 → F 2 − (G− F )2 = 2GF −G2

where in the first step we added a trivial term for G and in the second step made

a trivial redefinition of G, so elimination of G by its algebraic equation of motion

returns the original Lagrangian. The Hamiltonian form comes from eliminating only

Gij by its field equation, since only F0i contains time derivatives:

2GF −G2 → (Fij)
2 − 4G0iF0i + 2(G0i)

2

= −4
.
AiG0i + [2(G0i)

2 + (Fij)
2]− 4A0∂iG0i

which we recognize as the three generic terms for the action in Hamiltonian form,

with G0i as the canonical momenta for Ai, and A0 as the Lagrange multiplier. The

constraint is Gauss’s law, and it generates the usual gauge transformations.

Thus λi are also gauge fields for the gauge (time-dependent) transformations ζ i(t).

They allow construction of the gauge-covariant time derivative

∇ = ∂t + iλiGi,
d

dt
= ∇+ iHgi ⇒ 0 = δ∇ = δ0∇+ i[ζ iGi,∇]

It is convenient to transform the gauge fields away using these gauge transformations,

so H = Hgi. However, with the usual boundary conditions
∫∞
−∞ dt λ

i is gauge invariant

under the linearized transformations, so the most we could expect is to gauge λi to

constants. More precisely, the group element

T
[
exp

(
−i
∫ ∞
−∞

dt λi(t)Gi

)]
is gauge invariant, where “ T ” is time ordering, meaning we write the exponential of

the integral as the product of exponentials of infinitesimal integrals, and order them

with respect to time, later time intervals going to the left of earlier ones. (We treat

Gi quantum mechanically or use Poisson brackets when combining the exponentials.)

This is the quantum mechanical version of the time development resulting from the

corresponding term in the classical action. It is also the phase factor coming from

the infinite limit of the covariant time translation

e−k∇(t) = T
[
exp

(
−i
∫ t

t−k
dt′ λi(t′)Gi

)]
e−k∂t
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as seen from reordering the time derivatives when writing e−k∇(t) as the product of

exponentials of infinitesimal exponents. This allows us to write the explicit gauge

transformation

e−iΛ(t) = T
[
exp

(
−i
∫ t

t0

dt′ λi(t′)Gi

)]
= e−(∆t)∇(t)e(∆t)∂t , ∆t = t− t0

⇒ ∇′(t) = eiΛ(t)∇(t)e−iΛ(t) = e−(∆t)∂t∇(t)e(∆t)∂t = ∇(t0) = ∂t + iλi(t0)Gi

(where we define ∂t to vary t while keeping t − t0 fixed). Thus, we can gauge λ to

its value at a fixed time t0. Another way to see this is that varying λi in the action

at a fixed time gives Gi = 0 at that time, but the remaining field equations imply
.
Gi = 0, so Gi = 0 always, and λi is redundant at other times. This means that if we

carelessly impose λi = 0 at all times, we must also impose Gi = 0 at some fixed time.

Note that this special gauge transformation itself has a very simple gauge trans-

formation: Transforming the λ in Λ by an arbitrary finite transformation ζ i(t),

e−iΛ
′(t) = e−iζ

i(t)Gie−iΛ(t)eiζ
i(t0)Gi

consistent with the transformation law of ∇′(t) above. Thus, applying the trans-

formation Λ to any gauge-dependent quantity φ gives a gauge-independent quantity

φ′(φ, λ), which is invariant under the local transformations ζ(t) and transforms only

under the “global” transformations ζ(t0). Thus, fixing the gauge λ(t) = 0 is equivalent

to working with gauge-invariant quantities.

Fixing an invariance of the action is not unique to gauge invariances: Global

invariances also need to be fixed, although the procedure is so trivial we seldom

discuss it. For example, even in nonrelativistic systems Galilean invariance needs to

be fixed: When analyzing a specific problem, we often choose some object to be at

rest (velocity transformations), choose another to be oriented or moving in a specific

direction (rotations), and choose a specific event to happen at the origin of space and

time (translations). Alternatively, we can work with Galilean invariants, just as in

gauge theories we can work with gauge invariants; however, in practice, for explicit

calculations (as opposed to discussing general properties), it is more convenient to fix

the invariance, as this allows simplification of the equations.
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The simplest relativistic actions are those for the mechanics (as opposed to field

theory) of particles. These also give the simplest examples of gauge invariance in rela-

tivistic theories. Later we will find that various properties of the quantum mechanics

of these actions help to explain some features of quantum field theory.

1. Free

For nonrelativistic mechanics, the fact that the energy is expressed as a function of

the three-momentum is conjugate to the fact that the spatial coordinates are expressed

as functions of the time coordinate. In the relativistic generalization, all the spacetime

coordinates are expressed as functions of a parameter τ : All the points that a particle

occupies in spacetime form a curve, or “worldline”, and we can parametrize this curve

in an arbitrary way. Such parameters generally can be useful to describe curves: A

circle is better described by x(θ), y(θ) than y(x) (avoiding ambiguities in square roots),

and a cycloid can be described explicitly only this way.

The action for a free, spinless particle then can be written in relativistic Hamil-

tonian form as

SH =

∫
dτ [− .

xmpm + v 1
2(p2 +m2)]

where v is a Lagrange multiplier enforcing the constraint p2 + m2 = 0. This ac-

tion is very similar to nonrelativistic ones, but instead of xi(t), pi(t) we now have

xm(τ), pm(τ), v(τ) (where “. ” now means d/dτ). The gauge invariance generated by

p2 +m2 is

δx = ζp, δp = 0, δv =
.
ζ

Exercise IIIB1.1

Consider the action

S =

∫
dτ {(

.
tE − .

xipi)− v 1
2 [ε(x)E2 − (pi)2 −m2]}

describing propagation of a particle in a medium with a “dielectric constant”

ε(x). Using its equations of motion,

a Show that the “group velocity” dE/dpi is just the usual velocity dxi/dt. (This

agrees with the usual interpretation of group velocity as the velocity of infor-

mation.)
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b Show that the components of the “wave velocity” pi/E are conserved, for

time-independent ε, in directions in which ε doesn’t change. If ε is a func-

tion of only one spatial dimension (as in the usual light refraction problems),

these conservation laws, together with the energy-momentum relation, allow

all components of the wave velocity (and thus the group velocity) to be de-

termined from initial values.

c Show that for a massive particle neither of these is the same as the “phase

velocity” vi = δxi/δt, defined by

0 = δ(phase) = (δxm)pm ∼ vipi − E

even in empty space. (Since this is only 1 equation for 3 unknowns, it is really

more of a “phase speed”.) Examine phase velocity in the rest frame.

A more recognizable form of this invariance can be obtained by noting that any

action S(φA) has invariances of the form

δφA = εAB
δS

δφB
, εAB = −εBA

which have no physical significance, since they vanish by the equations of motion. In

this case we can add

δx = ε(
.
x− vp), δp = ε

.
p, δv = 0

and set ζ = vε to get

δx = ε
.
x, δp = ε

.
p, δv = (

.
εv)

We then can recognize this as a (infinitesimal) coordinate transformation for τ :

x′(τ ′) = x(τ), p′(τ ′) = p(τ), dτ ′v′(τ ′) = dτ v(τ); τ ′ = τ − ε(τ)

The transformation laws for x and p identify them as “scalars” with respect to these

“one-dimensional” (worldline) coordinate transformations (but they are vectors with

respect to D-dimensional spacetime). On the other hand, v transforms as a “density”:

The “volume element” dτ v of the world line transforms as a scalar. This gives us

a way to measure length on the worldline in a way independent of the choice of τ

parametrization. Because of this geometric interpretation, we are led to constrain

v > 0

so that any segment of the worldline will have positive length. Because of this re-

striction, v is not a Lagrange multiplier in the usual sense. This has significant
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physical consequences: p2 + m2 is treated neither as a constraint nor as the Hamil-

tonian. While in nonrelativistic theories the Schrödinger equation is (E − H)ψ = 0

and Giψ = 0 is imposed on the initial states, in relativistic theories (p2 + m2)ψ = 0

is the Schrödinger equation: This is more like Hψ = 0, since p2 already contains the

necessary E dependence.

The Lagrangian form of the free particle action follows from eliminating p by its

equation of motion vp =
.
x:

SL =

∫
dτ 1

2(vm2 − v−1 .
x2)

For m 6= 0, we can also eliminate v by its equation of motion v−2 .
x2 +m2 = 0:

S = m

∫
dτ
√
− .
x2 = m

∫ √
−dx2 = m

∫
ds = ms

The action then has the purely geometrical interpretation as the proper time; how-

ever, this last form of the action is awkward to use because of the square root, and

doesn’t apply to the massless case. Note that the v equation implies ds = m(dτ v),

relating the “intrinsic” length of the worldline (as measured with the worldline vol-

ume element) to its “extrinsic” length (as measured by the spacetime metric). As a

consequence, in the massive case we also have the usual relation between momentum

and “velocity”

pm = m
dxm

ds

(Note that p0 is the energy, not p0.)

Exercise IIIB1.2

Take the nonrelativistic limit (a group contraction) of the Poincaré algebra:

a Insert the speed of light c in appropriate places for the structure constants of

the Poincaré group (guided by dimensional analysis) and take the limit c→ 0

to find the algebra of the Galilean group.

b Do the same for the representation of the Poincaré group generators in terms

of coordinates and momenta. In particular, take the limit of the Lorentz

boosts to find the Galilean boosts.

c Take the nonrelativistic limit of the spinless particle action, in the form ms.

(Note that, while the relativistic action is positive, the nonrelativistic one is

negative.)

Exercise IIIB1.3

Consider the following action for a particle with additional fermionic variables
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ψ and additional fermionic constraint ψ · p (the “spinning particle”):

SH =

∫
dτ(− .

xmpm − 1
2i

.
ψmψm + 1

2vp
2 + iλψ · p)

where λ is also anticommuting so that each term in the action is bosonic.

a Find the algebra of the constraints, and the transformations they generate on

the variables appearing in the action.

b Show that the “Dirac equation” ψ · p|Ψ〉 = 0 implies p2|Ψ〉 = 0.

c Find the Lagrangian form of the action as usual by eliminating p by its equa-

tion of motion. (Note λ2 = 0.)

Exercise IIIB1.4

Consider a “supercoordinate” Xm that is a function of both a fermionic vari-

able ζ and the usual τ :

Xm(τ, ζ) = xm(τ) + iζψm(τ)

where the Taylor expansion in ζ terminates because ζ2 = 0. Identify x with

the usual x, and ψ with its fermionic partner introduced in the previous

problem. In analogy to the way ψ · p was the square root of the τ -translation

generator 1
2p

2, we can define a square root of ∂/∂τ by the “covariant fermionic

derivative”

D =
∂

∂ζ
+ iζ

∂

∂τ
⇒ D2 = i

∂

∂τ

We also want to generalize v in the same way as x, to make the action inde-

pendent of coordinate choice for both τ and ζ. This suggests defining

E = v−1 + iζλ

and the gauge invariant action

SL =

∫
dτdζ 1

2E(D2Xm)DXm

Integrate this action over ζ, and show this agrees with the action of the

previous problem after suitable redefinitions (including the normalization of∫
dζ). This demonstrates that Dirac γ-matrices (ψ) and the Dirac equation

(ψ · p) can be derived from 1-dimensional supersymmetry.

The (D+2)-dimensional (conformal) representation of the massless particle (sub-

section IA6) can be derived from the action

S =

∫
dτ 1

2(− .
y2 + λy2)
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where λ is a Lagrange multiplier. This action is gauge invariant under

δy = ε
.
y − 1

2
.
εy, δλ = ε

.
λ+ 2

.
ελ+ 1

2
...
ε

If we vary λ to eliminate it and y− as in subsection IA6, the action becomes

S = −
∫
dτ 1

2e
2 .
x2

which agrees with the previous result, identifying v = e−2, which also guarantees

v > 0.

Exercise IIIB1.5

Find the Hamiltonian form of the action for y: The constraints are now y2,

r2, and y · r, in terms of the conjugate r to y (see exercise IA6.2). Find

the gauge transformations in the standard way (see subsection IIIA5). Show

how the above Lagrangian form can be obtained from it, including the gauge

transformations.

Using instead the corresponding twistor (subsection IIB6) to satisfy y2 = 0, the

massless, spinless particle now has a single term for its mechanics action:

S =

∫
dτ 1

4
εABCD

.
zAα

.
zBαz

CβzDβ

Unlike all other relativistic mechanics actions, all variables have been unified into just

z, without the introduction of square roots.

Exercise IIIB1.6

Expressing z in terms of λα
µ and xµ

.
µ as in subsection IIB6, show this action

reduces to the previous one.

2. Gauges

Rather than use the equation of motion to eliminate v it’s more convenient to use

a gauge choice: The gauge v = 1 is called “affine parametrization” of the worldline.

Note that the gauge transformation of v, δv =
.
ζ, has no dependence on the coordi-

nates x and momenta p, so that choosing the gauge v = 1 avoids any extraneous x

or p dependence that could arise from the gauge fixing. (The appearance of such de-

pendence will be discussed in later chapters.) Since T =
∫
dτ v, the intrinsic length,

is gauge invariant, that part of v still remains when the length is finite, but it can be

incorporated into the limits of integration: The gauge v = 1 is maintained by
.
ζ = 0,

and this constant ζ can be used to gauge one limit of integration to zero, completely

fixing the gauge (i.e., the choice of τ). We then integrate
∫ T

0
, where T ≥ 0 (since



296 III. LOCAL

originally v > 0), and T is a variable to vary in the action. The gauge-fixed action is

then

SH,AP =

∫ T

0

dτ [− .
xmpm + 1

2(p2 +m2)]

In the massive case, we can instead choose the gauge v = 1/m; then the equations

of motion imply that τ is the proper time. The Hamiltonian p2/2m + constant then

resembles the nonrelativistic one.

Another useful gauge is the “lightcone gauge”

τ =
x+

p+

which, unlike the Poincaré covariant gauge v = 1, fixes τ completely; since the gauge

variation δ(x+/p+) = ζ, we must set ζ = 0 to maintain the gauge. Also, the gauge

transformation is again x and p independent. In lightcone gauges we always assume

p+ 6= 0, since we often divide by it. This is usually not too dangerous an assumption,

since we can treat p+ = 0 as a limiting case (in D>2).

We saw from our study of constrained systems that, for every degree of freedom we

can gauge away, the conjugate variable can be fixed by the constraint that generates

that gauge invariance: In the case where the constraint is p, the gauge transformation

is δq = ζ, so we gauge q = 0 and use the constraint p = 0. In lightcone gauges the

constraints are almost linear: The gauge condition is x+ = p+τ and the constraint is

p− = ..., so the Lagrange multiplier v is varied to determine p−. On the other hand,

varying p− gives

δp− ⇒ v = 1

so this gauge is a special case of the gauge v = 1. An important point is that we used

only “auxiliary” equations of motion: those not involving time derivatives. (A slight

trick involves the factor of p+: This is a constant by the equations of motion, so we

can ignore
.
p+ terms. However, technically we should not use that equation of motion;

instead, we can redefine x− → x− + p−τ temporarily, which will generate terms to

cancel any
.
p+ terms.) The net result of gauge fixing and the auxiliary equation on

the action is

SH,LC =

∫ τf

τi

dτ [
.
x−p+ − .

xipi + 1
2(pi2 +m2)]

where xa = (x+, x−, xi), etc. In particular, since we have fixed one more gauge degree

of freedom (corresponding to constant ζ), we have also eliminated one more constraint

variable (T , the constant part of v). This is one of the main advantages of lightcone

gauges: They are “unitary”, eliminating all unphysical degrees of freedom.
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Exercise IIIB2.1

Another obvious gauge is τ = x0, which works as well as the lightcone gauge

as far as eliminating worldline coordinate invariance is concerned. (The same

is true for τ = n · x for any constant vector n.)

a Consider the auxiliary equations of motion: Apply this gauge condition; then

p0 appears without time derivatives, so eliminate it and v by their equations

of motion. Show this gauge is consistent only for p0 > 0.

b The resulting square root is awkward except in the nonrelativistic limit: Take

it, and compare with the usual nonrelativistic mechanics.

c A better type of gauge is τ = n · x/n · p, what we actually used for the

lightcone. Compare the value of v that results from the field equations in this

case to that of the case τ = n ·x. Discuss the consistency of this case in terms

of the allowed signs of n · x and n · p vs. those of τ and v.

We have seen that the lightcone gauge is a special case of the covariant (affine)

gauge, where more components are eliminated (a unitary gauge). In other textbooks,

gauge fixing to a unitary gauge is always performed in two steps, by first going to a

covariant gauge, and then using the “residual” gauge invariance to completely fix the

gauge. (This has been done for particles, strings, gauge theories, and even general

relativity.) When this procedure is explicitly performed, the result can be seen to be

a lightcone gauge. Clearly it is easier to perform all the gauge fixing in one step.

3. Coupling

One way to introduce external fields into the mechanics action is by considering

the most general Lagrangian quadratic in τ derivatives:

SL =

∫
dτ [−1

2v
−1gmn(x)

.
xm

.
xn + Am(x)

.
xm + vφ(x)]

In the free case we have constant fields gmn = ηmn, Am = 0, and φ = 1
2m

2. The v

dependence has been assigned consistent with worldline coordinate invariance. The

curved-space metric tensor gmn describes gravity, the D-vector potential Am describes

electromagnetism, and φ is a scalar field that can be used to introduce mass by

interaction.

Exercise IIIB3.1

Use the method of the problem IIIB1.4 to write the nonrelativistic action

for a spinning particle in terms of a 3-vector (or (D−1)-vector) X i(τ, ζ) and

the fermionic derivative D. Find the coupling to a magnetic field, in terms
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of the 3-vector potential Ai(X). Integrate the Lagrangian over ζ. Show

that the quantum mechanical square of ψi[pi + Ai(x)] is proportional to the

Hamiltonian.

Exercise IIIB3.2

Derive the relativistic Lorentz force law

∂τ (v
−1 .
xm) + Fmn

.
xn = 0

by varying the Lagrangian form of the action for the relativistic particle, in

an external electromagnetic field (but flat metric and φ = 1
2m

2), with respect

to x.

This action also has very simple transformation properties under D-dimensional

gauge transformations on the external fields:

δgmn = εp∂pgmn + gp(m∂n)ε
p, δAm = εp∂pAm + Ap∂mε

p − ∂mλ, δφ = εp∂pφ

⇒ SL[x] + δSL[x] = SL[x+ ε]− λ(xf ) + λ(xi)

where we have integrated the action
∫ τf
τi
dτ and set x(τi) = xi, x(τf ) = xf . These

transformations have a very natural interpretation in the quantum theory, where∫
Dx e−iS = 〈xf |xi〉

Then the λ transformation of A is canceled by the U(1) (phase) transformation

ψ′(x) = eiλ(x)ψ(x)

in the inner product

〈ψf |ψi〉 =

∫
dxfdxi 〈ψf |xf〉〈xf |xi〉〈xi|ψi〉 =

∫
dxfdxi ψf*(xf )〈xf |xi〉ψi(xi)

while the ε transformation associated with gmn is canceled by the D-dimensional

coordinate transformation

ψ′(x) = ψ(x+ ε)

(This background field analysis for the particle can be considered a way to derive

gauge transformations for the background fields before considering their field theory

actions.)
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4. Conservation

There are two types of conservation laws generally found in physics: In mechanics

we usually have global conservation laws, of the form
.
Q = 0, associated with a

symmetry of the Hamiltonian H generated by a conserved quantity Q:

0 = δH = i[Q,H] = −
.
Q

On the other hand, in field theory we have local conservation laws, since the action

for a field is written as an integral
∫
dDx of a Lagrangian density that depends only

on fields at x, and a finite number of their derivatives. The local conservation law

implies a global one, since

∂mJ
m = 0 ⇒ 0 =

∫
dDx

(2π)D/2
∂mJ

m ∼ d

dt

∫
dD−1x

(2π)D/2
J0 =

.
Q = 0

where we have integrated over a volume whose boundaries in space are at infin-

ity (where J vanishes), and whose boundaries in time are infinitesimally separated.

Equivalently, the global symmetry is a special case of the local one.

A simple way to derive the local conservation laws is by coupling gauge fields: We

couple the electromagnetic field Am to arbitrary charged matter fields ψ and demand

gauge invariance of the matter part of the action, the matter-free part of the action

being separately invariant. We then have

0 = δSM =

∫
dx

[
(δAm)

δSM
δAm

+ (δψ)
δSM
δψ

]
using just the definition of the functional derivative δ/δ. Applying the matter field

equations δSM/δψ = 0, integration by parts, and the gauge transformation δAm =

−∂mλ, we find

0 =

∫
dx λ

(
∂m

δSM
δAm

)
⇒ Jm =

δSM
δAm

, ∂mJ
m = 0

Similar remarks apply to gravity, but only if we evaluate the “current”, in this case the

energy-momentum tensor, in flat space gmn = ηmn, since gravity is self-interacting.

We then find

Tmn = −2
δSM
δgmn

∣∣∣∣
gmn=ηmn

, ∂mT
mn = 0

where the normalization factor of −2 will be found later for consistency with the

particle. In this case the corresponding “charge” is the D-momentum:

Pm =

∫
dD−1x

(2π)D/2
T 0m
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In particular we see that the condition for the energy in any region of space to be

nonnegative is

T 00 ≥ 0

Exercise IIIB4.1

Show that the local conservation of the energy-momentum tensor allows def-

inition of a conserved angular momentum

Jmn =

∫
dD−1x

(2π)D/2
x[mT n]0

Note this result (local conservation of energy-momentum implies local con-

servation of angular momentum) is the same as that of exercise IA4.4.

To apply this to the action for the particle in external fields, we must first dis-

tinguish the particle coordinates X(τ) from coordinates x for all of spacetime: The

particle exists only at x = X(τ) for some τ , but the fields exist at all x. In this

notation we can write the mechanics action as

SL =

∫
dx

[
− gmn(x)

∫
dτ δ(x−X)1

2v
−1

.
Xm

.
Xn

+Am(x)

∫
dτ δ(x−X)

.
Xm + φ(x)

∫
dτ δ(x−X)v

]
using

∫
dx δ(x−X(τ)) = 1. (Note that one can vary the action with respect to X(τ)

and φ(x), etc., independently.) We then have

Jm(x) =

∫
dτ δ(x−X)

.
Xm

Tmn =

∫
dτ δ(x−X)v−1

.
Xm

.
Xn

Note that T 00 ≥ 0 (since v > 0). Integrating to find the charge and momentum:

Q =

∫
dτ δ(x0 −X0)

.
X0 =

∫
dX0 ε(

.
X0)δ(x0 −X0) = ε(p0)

Pm =

∫
dτ δ(x0 −X0)v−1

.
X0

.
Xm =

∫
dX0 ε(

.
X0)δ(x0 −X0)v−1

.
Xm = ε(p0)pm

where we have used p = v−1
.
X (for the free particle), where p is the momentum

conjugate to X, not to be confused with P . The factor of ε(p0) (ε(u) = u/|u| is the

sign of u) comes from the Jacobian from changing integration variables from τ to X0.

The result is that our naive expectations for the momentum and charge of the

particle can differ from the correct result by a sign. In particular p0, which semi-

classically is identified with the angular frequency of the corresponding wave, can
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be either positive or negative, while the true energy P 0 = |p0| is always positive, as

physically required. (Otherwise all states could decay into lower-energy ones: There

would be no lowest-energy state, the “vacuum”.) When p0 is negative, the charge Q

and dX0/dτ are also negative. In the massive case, we also have dX0/ds negative.

This means that as the proper time s increases, X0 decreases. Since the proper time

is the time as measured in the rest frame of the particle, this means that the particle is

traveling backward in time: Its clock changes in the direction opposite to that of the

coordinate system xm. Particles traveling backward in time are called “antiparticles”,

and have charges opposite to their corresponding particles. They have positive true

energy, but the “energy” p0 conjugate to the time is negative. (This is the classical

mechanics solution to the “Klein paradox”.)

Exercise IIIB4.2

Compare these expressions for the current and energy-momentum tensor to

those from the semiclassical expansion in exercise IIIA4.2. (Include the in-

verse metric to define the square of −∂mS + qAm there.)

5. Pair creation

Free particles travel in straight lines. Nonrelativistically, external fields can alter

the motion of a particle to the extent of changing the signs of spatial components of

the momentum. Relativistically, we might then expect that interactions could also

change the sign of the energy, or at least the canonical energy p0. As an extreme case,

consider a worldline that is a closed loop: We can pick τ as an angular coordinate

around the loop. As τ increases, X0 will either increase or decrease. For example, a

circle in the x0-x1 plane will be viewed by the particle as repeating its history after

some finite τ , moving forward with respect to time x0 until reaching a latest time tf ,

and then backward until some earliest time ti. On the other hand, from the point of

view of an observer at rest with respect to the xm coordinate system, there are no

particles until x0 = ti, at which time both a particle and an antiparticle appear at

the same position in space, move away from each other, and then come back together

and disappear. This process is known as “pair creation and annihilation”.

t

t

f

i

x
x

0
1

τ
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Whether such a process can actually occur is determined by solving the equations

of motion. A simple example is a particle in the presence of only a static electric

field, produced by the time component A0 of the potential. We consider the case of a

piecewise constant potential, vanishing outside a certain region and constant inside.

Then the electric field vanishes except at the boundaries, so the particle travels in

straight lines except at the boundaries. For simplicity we reduce the problem to two

dimensions:

A0 = −V for 0 ≤ x1 ≤ L, 0 otherwise

for some constant V . The action is, in Hamiltonian form,

SH =

∫
dτ {− .

xmpm + v 1
2 [(p+ A)2 +m2]}

and the equations of motion are

.
pm = −v(p+ A)n∂mAn ⇒ p0 = E

(p+ A)2 = −m2 ⇒ p1 = ±
√

(E + A0)2 −m2

v−1 .
x = p+ A ⇒ v−1 .

x1 = p1, v−1 .
x0 = E + A0

where E is a constant (the canonical energy at x1 = ∞) and the equation
.
p1 = ...

is redundant because of gauge invariance. We assume E > 0, so initially we have a

particle and not an antiparticle.

We look only at the cases where the worldline begins at x0 = x1 = −∞ (lower

left) and continues toward the right till it reaches x0 = x1 = +∞ (upper right), so

that p1 = v−1 .
x1 > 0 everywhere (no reflection). However, the worldline might bend

backward in time (
.
x0 < 0) inside the potential: To the outside viewer, this looks

like pair creation at the right edge before the first particle reaches the left edge; the

antiparticle then annihilates the original particle when it reaches the left edge, while

the new particle continues on to the right. From the particle’s point of view, it has

simply traveled backward in time so that it exits the right of the potential before it

enters the left, but it is the same particle that travels out the right as came in the

left. The velocity of the particle outside and inside the potential is

dx1

dx0
=


√
E2 −m2

E
outside√

(E − V )2 −m2

E − V
inside
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From the sign of the velocity we then see that we have normal transmission (no

antiparticles) for E > m+ V and E > m, and pair creation/annihilation when

V −m > E > m ⇒ V > 2m

The true “kinetic” energy of the antiparticle (which appears only inside the potential)

is then −(E − V ) > m.

Exercise IIIB5.1

This solution might seem to violate causality. However, in mechanics as well

as field theory, causality is related to boundary conditions at infinite times.

Describe another solution to the equations of motion that would be inter-

preted by an outside observer as pair creation without any initial particles :

What happens ultimately to the particle and antiparticle? What are the al-

lowed values of their kinetic energies (maximum and minimum)? Since many

such pairs can be created by the potential alone, it can be accidental (and not

acausal) that an external particle meets up with such an antiparticle. Note

that the generator of the potential, to maintain its value, continuously loses

energy (and charge) by emitting these particles.

6. Superparticle

So far we have discussed supersymmetry only in terms of supersymmetric field

theory/quantum mechanics (see section IIC); we now examine classical mechanics

of superparticles. It’s quite easy to write a manifestly supersymmetric action for a

particle in superspace; only the interpretation and application are difficult. To be

general, we define supersymmetry q in arbitrary dimensions as (see subsection XC4

for more details)

δθ = ε , δx = iεΓθ = i(δθ)Γθ

where Γ a
αβ are symmetric matrices related to Dirac γ-matrices, so that

{qα, qβ} = 2Γ a
αβpa

for transformations generated by δ = [iεq, ] (the missing indices should be clear by

context). Then the supersymmetry invariant currents (differentials) are

dθ , dx+ i(dθ)Γθ

In terms of these we write the action for a massless, superspinless superparticle

as (cf. the bosonic particle above)

−
∫
dτ 1

2v
−1(

.
x+ i

.
θΓθ)2
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(The other invariant is forbidden by dimensional analysis, and sometimes even by

Lorentz invariance.) One obvious complication is that the action is nonlinear even in

the covariant gauge (worldline metric) v = 1. In Hamiltonian form∫
dτ [−(

.
xp− i

.
θπ) + (v 1

2p
2 + λd)] , d = π + p/θ [q = −i(π − p/θ)]

(where p/ ≡ Γ · p), or manifestly supersymmetry covariantly∫
dτ{−[(

.
x+ i

.
θΓθ)p− i

.
θd] + (v 1

2p
2 + λd)]

The Lagrangian form is directly obtained by eliminating the auxiliary field p and

Lagrange multiplier λ. (Note the simplifications introduced by using p, ∼ the current
.
x+ i

.
θΓθ on shell, in place of explicit

.
x’s in the constraints.)

Quantization is a problem because unlike the “first-class constraint” p2 from vary-

ing the Lagrange multiplier v (which makes v a gauge field, see subsection IIIA5),

the constraint d is a mixture of first and “second-class” (so λ is not pure gauge), as

seen from the commutation relations:

{d, d} = 2Γp

but p is not a constraint. (Effectively p = −i∂x and π = ∂θ.)

The problem is separating, and dealing with, both kinds of constraints. We won’t

provide a covariant solution here, but note that that first-class ones can easily be

separated: Introducing Γ aαβ (in general up and down spinor indices may denote

different, but dual, spinor representations; see subsections IA4, XC2, and XC4), we

choose (see subsections IIC1 and 4)

B = p/d

(using the new Γ ), since normalizing

Γ(a
αγΓb)γβ = 2ηabδ

α
β

we have

{B,B} = 2p/p2

shows that p2 and B have an algebra that closes. (We could also choose p/π, which

commutes with itself, or p/q as earlier, which differ only by a term proportional to

p2, but they aren’t supersymmetry invariant like d and p.) In particular, the gauge

transformation generated by B acts on θ and x as

δθ = p/κ , δx = −iκp/Γθ = −i(δθ)Γθ
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modulo a term proportional to the constraint d (which can always be canceled by δλ;

there are also the usual implied gauge transformations for v). Note the opposite sign

for δx in terms of δθ, due to the opposite relative sign of the terms in d compared to

q.

Exercise IIIB6.1

Consider the slightly simplified action in first-order form for only x,

S =

∫
dτ [−(

.
x+ i

.
θΓθ) · p+ v 1

2p
2]

Find the B transformations on p and v under which (along with those given

above for θ and x) this action is invariant, and show δS = 0 (up to maybe

boundary terms in τ). (Remember that equations of motion cannot be used.)

Exercise IIIB6.2

Look at the special case of simple supersymmetry in D=4. Show that we can

consistently separate first-class constraints by treating them as

p2 , d̄ .
α , pα

.
βdα

a Show the algebra closes.

b Find a (complex) gauge-invariant action.

c See subsection IIC4: What kind of superfield does this describe? Can this

construction be generalized to other superspaces described there?

To see how much of the problem this solves, we examine the lightcone gauge.

Since there p+ is always invertible (by assumption), we concentrate on its terms:

Besides the usual gauge x+ = τ (for p2) and ensuing manipulations, for B

δθ = −p+Γ−κ+ ... ⇒ gauge Γ+θ = 0

(using the projection operator ∼ Γ+Γ−). What’s left is∫
dτ [(

.
x− + i

.
θΓ−θ)p+ − 1

2
.
xi2]

The remaining second-class constraints thus state that what’s left of θ is essentially

canonically conjugate to itself. (There is also a factor of p+, but it’s a constant by

the equations of motion, so it can be scaled away by a redefinition of θ, up to a sign.)
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The concept of a “covariant derivative” allows the straightforward generalization

of electromagnetism to a self-interacting theory, once U(1) has been generalized to a

nonabelian group. Yang-Mills theory is an essential part of the Standard Model.

1. Nonabelian

The group U(1) of electromagnetism is Abelian: Group elements commute, which

makes group multiplication equivalent to multiplication of real numbers, or addition

if we write U = eiG. The linearity of this addition is directly related to the linearity

of the field equations for electromagnetism without matter. On the other hand, the

nonlinearity of nonabelian groups causes the corresponding particles to interact with

themselves: Photons are neutral, but “gluons” have charge and “gravitons” have

weight.

In coupling electromagnetism to the particle, the relation of the canonical mo-

mentum to the velocity is modified (see subsection IA5): Classically, the covariant

momentum is dx/dτ = p+qA for a particle of charge q (e.g., q = 1 for the proton; the

electromagnetic coupling constant appears only in the photon’s term in the action,

as described in subsection IIIA4). Quantum mechanically, the net effect is that the

wave equation is modified by the replacement

∂ → ∇ = ∂ + iqA

which accounts for all dependence on A (“minimal coupling”). This “covariant deriva-

tive” has a fundamental role in the formulation of gauge theories, including gravity.

Its main purpose is to preserve gauge invariance of the action that gives the wave

equation, which would otherwise be spoiled by derivatives acting on the coordinate-

dependent gauge parameters: In electromagnetism,

ψ′ = eiqλψ, A′ = A− ∂λ ⇒ (∇ψ)′ = eiqλ(∇ψ)

or more simply

∇′ = eiqλ∇e−iqλ

(More generally, q is some Hermitian matrix when ψ is a reducible representation of

U(1).)

Yang-Mills theory then can be obtained as a straightforward generalization of elec-

tromagnetism, the only difference being that the gauge transformation, and therefore



308 III. LOCAL

the covariant derivative, now depends on the generators of some nonabelian group.

We begin with the hermitian generators

[Gi, Gj] = −ifijkGk, Gi
† = Gi

and exponentiate linear combinations of them to obtain the unitary group elements

g = eiλ, λ = λiGi; λi* = λi ⇒ g† = g−1

(We now use bold g because g is usually used for the Yang-Mills coupling.) We then

can define representations of the group (see subsection IB1)

ψ′ = eiλψ, ψ†′ = ψ†e−iλ; (Giψ)A = (Gi)A
BψB

For compact groups charge is quantized: For example, for SU(2) the spin (or, for

internal symmetry, “isospin”) is integral or half-integral. On the other hand, with

Abelian groups the charge can take continuous values: For example, in principle the

proton might decay into a particle of charge π and another of charge 1 − π. The

experimental fact that charge is quantized suggests already semiclassically that all

interactions should be described by (semi)simple groups.

If λ is coordinate dependent (a local, or “gauge” transformation), the ordinary

partial derivative spoils gauge covariance, so we introduce the covariant derivative

∇a = ∂a + iAa, Aa = Aa
iGi

Thus, the covariant derivative acts on matter in a way similar to the infinitesimal

gauge transformation,

δψA = iλiGiA
BψB, ∇aψA = ∂aψA + iAa

iGiA
BψB

Gauge covariance is preserved by demanding it have a covariant transformation law

∇′ = eiλ∇e−iλ ⇒ δA = −[∇, λ] = −∂λ− i[A, λ]

The gauge covariance of the field strength follows from defining it in a manifestly

covariant way:

[∇a,∇b] = iFab ⇒ F ′ = eiλFe−iλ, Fab = Fab
iGi = ∂[aAb] + i[Aa, Ab]

⇒ Fab
i = ∂[aAb]

i + Aa
jAb

kfjk
i

The Jacobi identity for the covariant derivative is the Bianchi identity for the field

strength:

0 = [∇[a, [∇b,∇c]]] = i[∇[a, Fbc]]
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(If we choose instead to use antihermitian generators, all the explicit i’s go away;

however, with hermitian generators the i’s will cancel with those from the derivatives

when we Fourier transform for purposes of quantization.) Since the adjoint represen-

tation can be treated as either matrices or vectors (see subsection IB2), the covariant

derivative on it can be written as either a commutator or multiplication: For example,

we may write either [∇, F ] or ∇F , depending on the context.

Actions then can be constructed in a manifestly covariant way: For “matter”

(spins 0 and 1
2), we take a Lagrangian LM,0(∂, ψ) that is invariant under global (con-

stant) group transformations, and couple to Yang-Mills as

LM,0(∂, ψ)→ LM,A = LM,0(∇, ψ)

(This is the analog of minimal coupling in electrodynamics.) The representation we

use for Gi in ∇a = ∂a + iAiaGi is determined by how ψ represents the group. (For an

Abelian group factor U(1), G is just the charge q, as a multiple of the coupling g for

that factor.) For example, the Lagrangian for a massless scalar is simply

L0 = 1
2(∇aφ)†(∇aφ)

(normalized for a complex representation).

For the part of the action describing Yang-Mills itself we take (in analogy to the

U(1) case)

LA(Aia) = 1
8g2
A

F iabF j
abηij

where ηij is the Cartan metric (see subsection IB2). This way of writing the action

is independent of our choice of normalization of the structure constants, and so gives

one unambiguous definition for the normalization of the coupling constant g. (It is

invariant under any simultaneous redefinition of the fields and the generators that

leaves the covariant derivative invariant.) Generally, for simple groups we can choose

to (ortho)normalize the generators Gi with the condition (see subsection IB2)

ηij = cAδij

for some constant cA; for groups that are products of simple groups (semisimple),

we might choose different normalization factors (but, of course, also different g’s) for

each simple group. For Abelian groups (U(1) factors) ηij = 0, but then the gauge

field has no self-interactions, so the normalization of the coupling constant is defined

only by matter terms in the action, and we can replace ηij with δij in the above.
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Usually it will prove more convenient to use matrix notation: Choosing some

convenient representation R of Gi (not necessarily the adjoint), we write

LA(Aia) = 1
8g2
R

trR F
abFab

The normalization of the trace is determined by R, and thus so is the normalization

convention for the coupling constant; a change in the representation used in the action

can also be absorbed by a redefinition of the coupling. For example, comparing the

defining and adjoint representations of SU(N) (see subsection IB2),

LA = 1
8g2
D

trD F abFab = 1
8g2
A

trA F
abFab ⇒ g2

A = 2Ng2
D

In general, we specify our normalization of the structure constants by fixing cR for

some R, and our normalization of the coupling constant by specifying the choice of

representation used in the trace (or use explicit adjoint indices). As a rule, we find

the most convenient choices of normalization are

cD = 1, g = gD

(see subsection IB5).

Exercise IIIC1.1

Write the action for SU(N) Yang-Mills coupled to a massless (2-component)

spinor in the defining representation. Make all (internal and Lorentz) indices

explicit (no “tr”, etc.), and use defining (N-component) indices on the Yang-

Mills field.

We have chosen a normalization where the Yang-Mills coupling constant g appears

only as an overall factor multiplying the F 2 term (and similarly for the electromagnetic

coupling, as discussed in previous chapters). An alternative is to rescale A→ gA and

F → gF everywhere; then ∇ = ∂+ igA and F = ∂A+ ig[A,A], and the F 2 term has

no extra factor. This allows the Yang-Mills coupling to be treated similarly to other

couplings, which are usually not written multiplying kinetic terms (unless analogies to

Yang-Mills are being drawn), since (almost) only for Yang-Mills is there a nonlinear

symmetry relating kinetic and interaction terms.

Current conservation works a bit differently in the nonabelian case: Applying

the same argument as in subsection IIIB4, but taking into account the modified

(infinitesimal) gauge transformation law, we find

Jm =
δSM
δAm

, ∇mJ
m = 0

Since ∂mJ
m 6= 0, there is no corresponding covariant conserved charge.
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Exercise IIIC1.2

Let’s look at the field equations:

a Using properties of the trace, show the entire covariant derivative can be

integrated by parts as∫
dx tr(A[∇,B]) = −

∫
dx tr([∇,A]B),

∫
dx ψ†∇χ = −

∫
dx (∇ψ)†χ

for matrices A,B and column vectors ψ, χ.

b Show

δFab = ∇[aδAb]

c Using the definition of the current as for electromagnetism (subsection IIIB4),

derive the field equations with arbitrary matter,

1
g2

1
2∇

bFba = Ja

d Show that gauge invariance of the action SA implies

∇a(∇bFba) = 0

Also show this is true directly, using the Jacobi identity, but not the field

equations. (Hint: Write the covariant derivatives as commutators.)

Exercise IIIC1.3

Expand the left-hand side of the field equation (given in exercise IIIC1.2c) in

the field, as

1
g2

1
2∇

bFba = 1
g2

1
2∂

b∂[bAa] − ja

where j contains the quadratic and higher-order terms. Show the noncovari-

ant current

Ja = Ja + ja

is conserved. The j term can be considered the gluon contribution to the

current: Unlike photons, gluons are charged. Although the current is gauge

dependent, and thus physically meaningless, the corresponding charge can

be gauge independent under situations where the boundary conditions are

suitable.
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2. Lightcone

Since gauge parameters are always of the same form as the gauge field, but with

one less vector index, an obvious type of gauge choice (at least from the point of view

of counting components) is to require the gauge field to vanish when one vector index

is fixed to a certain value. Explicitly, in terms of the covariant derivative we set

n · ∇ = n · ∂ ⇒ n · A = 0

for some constant vector na. We then can distinguish three types of “axial gauges”:

(1) “Arnowitt-Fickler”, or spacelike (n2 > 0),

(2) “lightcone”, or lightlike (n2 = 0), and

(3) “temporal”, or timelike (n2 < 0).

By appropriate choice of reference frame, and with the usual notation, we can write

these gauge conditions as ∇1 = ∂1, ∇+ = ∂+, and ∇0 = ∂0.

One way to apply this gauge in the action is to keep the same set of fields, but

have explicit n dependence. A much simpler choice is to use a gauge choice such as

A0 = 0 simply to eliminate A0 explicitly from the action. For example, for Yang-Mills

we find

A0 = 0 ⇒ F0i =
.
Ai ⇒ 1

8
(Fab)

2 = −1
4
(

.
Ai)

2 + 1
8
(Fij)

2

where “
.
” here refers to the time derivative. Canonical quantization is simple in

this gauge, because we have the canonical time-derivative term. However, the gauge

condition can’t be imposed everywhere, as seen for the corresponding gauge for the

one-dimensional metric in subsection IIIB2, and in our general discussion in subsec-

tion IIIA5: Here we can generalize the time-ordered integral for the temporal gauge

to an integral path-ordered with respect to a straight-line path in the n direction:

e−kn·∇(x) = e−iΛ(x,x−kn)e−kn·∂, e−iΛ(x,x−kn) = P
[
exp

(
−i
∫ x

x−kn
dx′ · A(x′)

)]
Applying this gauge transformation to n · ∇, as in subsection IIIA5, fixes n · A to a

constant with respect to n · ∂; the effect on all of ∇ is:

∇′(x) = eiΛ(x,x−kn)∇(x)e−iΛ(x,x−kn) ⇔ ∇′(x+ kn) = ekn·∇(x)∇(x)e−kn·∇(x)

For example, for the temporal gauge, if we choose “x” to be on the initial hypersurface

x0 = t0, then we can choose k = t− t0 so that ∇′ is evaluated at arbitrary time t:

∇′a(x) = [(ek∇0(x)∇a(x)e−k∇0(x))|x0=t0 ]|k=x0−t0
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By Taylor expanding in k, this gives an explicit expression for Aa at all times in terms

of Aa, and Fab and its covariant time-derivatives, evaluated at some initial time, but

with simply A0(t, xi) = A0(t0, x
i). Thus, we still need to impose the A0 field equation

[∇i,
.
Ai] = 0 as a constraint at some initial time.

Exercise IIIC2.1

First set A0 = 0, then derive the field equations for Ai from the Yang-Mills

action. Compare the results of exercise IIIC1.2c for J = 0. Show explicitly

that these field equations imply the time derivative of the constraint [∇i,
.
Ai] =

0.

In the case of the lightcone gauge we can carry this analysis one step further.

In subsection IIB3 we saw that lightcone formalisms are described by massless fields

with (D−2)-dimensional (“transverse”) indices. In the present analysis, gauge fixing

alone gives us, again for the example of pure Yang-Mills,

A+ = 0 ⇒ F+i = ∂+Ai, F+− = ∂+A−, F−i = ∂−Ai − [∇i, A−]

⇒ 1
8
(F ab)2 = −1

4
(∂+A−)2 − 1

2(∂+Ai)(∂−Ai − [∇i, A−]) + 1
8
(F ij)2

In the lightcone formalism ∂− (−∂+) is to be treated as a time derivative, while

∂+ can be freely inverted (i.e., modes propagate to infinity in the x+ direction, but

boundary conditions set them to vanish in the x− direction). Thus, we can treat A−

as an auxiliary field. The solution to its field equation is

A− =
1

∂+2
[∇i, ∂+Ai]

which can be substituted directly into the action:

1
8
(F ab)2 = 1

2A
i∂+∂−Ai + 1

8
(F ij)2 − 1

4
[∇i, ∂+Ai]

1

∂+2
[∇j, ∂+Aj]

=− 1
4
Ai Ai + i1

2 [Ai, Aj]∂iAj + i1
2(∂iAi)

1

∂+
[Aj, ∂+Aj]

− 1
8
[Ai, Aj]2 + 1

4
[Ai, ∂+Ai]

1

∂+2
[Aj, ∂+Aj]

We can save a couple of steps in this derivation by noting that elimination of any

auxiliary field, appearing quadratically (as in going from Hamiltonian to Lagrangian

formalisms), has the effect

L = 1
2ax

2 + bx+ c→ −1
2ax

2|∂L/∂x=0 + L|x=0

In this case, the quadratic term is (F−+)2, and we have

1
8
(F ab)2 = 1

8
(F ij)2 − 1

2F
+iF−i − 1

4
(F+−)2 → 1

8
(F ij)2 − 1

2(∂+Ai)(∂−Ai) + 1
4
(F+−)2
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where the last term is evaluated at

0 = [∇a, F
+a] = −∂+F+− + [∇i, F+i] ⇒ F+− =

1

∂+
[∇i, F+i]

⇒ L = 1
8
(F ij)2 + 1

2A
i∂+∂−Ai − 1

4
[∇i, ∂+Ai]

1

∂+2
[∇j, ∂+Aj]

as above.

In this case, canonical quantization is even simpler, since interpreting ∂− as the

time derivative makes the action look like that for a nonrelativistic field theory, with

a kinetic term linear in time derivatives (as well as interactions without them). The

free part of the field equation is also simpler, since the kinetic operator is now just

. (This is true in general in lightcone formalisms from the analysis of free theories

in chapter XII.) In general, lightcone gauges are the simplest for analyzing physical

degrees of freedom (within perturbation theory), since the maximum number of de-

grees of freedom is eliminated, and thus kinetic operators look like those of scalars.

On the other hand, interaction terms are more complicated because of the nonlo-

cal Coulomb-like terms involving 1/∂+: The inverse of a derivative is an integral.

(However, in practice we often work in momentum space, where 1/p+ is local, but

Fourier transformation itself introduces multiple integrals.) This makes lightcone

gauges useful for discussing unitarity (they are “unitary gauges”), but inconvenient

for explicit calculations. However, in subsection VIB6 we’ll find a slight modification

of the lightcone that makes it the most convenient method for certain calculations.

(In the literature, “lightcone gauge” is sometimes used to refer to an axial gauge

where A+ is set to vanish but A− is not eliminated, and D-vector notation is still

used, so unitarity is not manifest. Here we always eliminate both components and

explicitly use (D − 2)-vectors, which has distinct technical advantages.)

Although spin 1/2 has no gauge invariance, the second step of the lightcone

formalism, eliminating auxiliary fields, can also be applied there: For example, for a

massless spinor in D=4, identifying ∂	
.
	 = ∂− as the lightcone “time” derivative, we

vary ψ̄
.
	 (or ψ	) as the auxiliary field:

−iL = ψ̄
.
	∂⊕

.
⊕ψ	 + ψ̄

.
⊕∂	

.
	ψ⊕ − ψ̄

.
	∂	

.
⊕ψ⊕ − ψ̄

.
⊕∂⊕

.
	ψ	

⇒ ψ	 =
1

∂⊕
.
⊕
∂	

.
⊕ψ⊕

⇒ L = ψ̄
.
⊕

1
2

i∂⊕
.
⊕
ψ⊕

This tells us that a 4D massless spinor, like a 4D massless vector (or a complex scalar)

has only 1 complex (2 real) degree of freedom, describing a particle of helicity +1/2
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and its antiparticle of helicity −1/2 (±1 for the vector, 0 for the scalar), in agreement

with our general discussion of helicity in subsection IIB7. On the other hand, in the

massive case we can always go to a rest frame, so the analysis is in terms of spin

(SU(2) for D=4) rather than helicity. For a massive Weyl spinor we can perform the

same analysis as above, with the modifications

L→ L+
im√

2
(ψ⊕ψ	 + ψ̄

.
⊕ψ̄

.
	) ⇒ L = ψ̄

.
⊕

1
2( −m2)

i∂⊕
.
⊕

ψ⊕

where we have dropped some terms that vanish upon using integration by parts and

the antisymmetry of the fermions. So now we have the two states of an SU(2) spinor,

but these are identified with their antiparticles. This differs from the vector: While

for the spinor we have 2 states of a given energy for both the massless and massive

cases, for a vector we have 2 for the massless but 3 for the massive, since for SU(2)

spin s has 2s+1 states:

4D states of given E:

spin 0 1
2 1 3

2
. . .

m = 0 1 2 2 2 . . .
m > 0 1 2 3 4 . . .

Exercise IIIC2.2

Repeat this procedure for a massless spinor coupled to external Yang-Mills in

the lightcone gauge.

Exercise IIIC2.3

Repeat the previous problem in arbitrary dimensions for a massive Dirac

spinor. (Hint: Use the projection operators of exercise IIB3.1. How do they

affect the various γ matrices, when acting from both sides?)

Exercise IIIC2.4

Show that integration by parts for 1/∂ gives just a sign change, just as for ∂.

In general dimensions, massless particles are representations of the “little group”

SO(D−2) (the helicity SO(2) in D=4), as described in subsection IIB3. Massive

particles represent the little group SO(D−1), corresponding to dimensional reduction

from an extra dimension, as described in subsection IIB4.

3. Plane waves

The simplest nontrivial solutions to nonabelian field equations are the general-

izations of the plane wave solutions of the free theory. We begin with general, free,

massless theories, as analyzed in subsection IIB3. In the lightcone frame only p+ is
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nonvanishing. In position space this means the field strength depends only on x−.

This describes a wave traveling at the speed of light in the positive x1 direction, with

no other spatial dependence (i.e., a plane wave). We allow arbitrary dependence on

x−, corresponding to a superposition of waves with parallel momenta (but different

values of p+). While its dependence on only x− solves the Klein-Gordon equation,

Maxwell’s equations are solved by giving the field strength as many upper + indices

as possible, and no upper −’s.

Generalizing to interactions, we notice that the Yang-Mills field equations and

Bianchi identities differ from Maxwell’s equations only by the covariantization of the

derivatives (at least for pure Yang-Mills). Because Maxwell’s equations were satisfied

by just restricting the index structure, we can do the same for the covariant derivatives

by assuming that only ∇+ is novanishing on the field strengths. In other words, we

can solve the field equations and Bianchi identities by choosing the only nontrivial

components of the gauge fields to be those in ∇+.

The final step is to solve the relation between covariant derivative and field

strength. This is simple because the index structure we found implies the only non-

trivial commutators are

[∂i,∇+] = iF i+, [∂−,∇+] = 0

In particular, this implies that the gauge fields have no x+ dependence, and only a

very simple dependence on xi. We find directly

A+ = xiF i+(x−)

where F i+(x−) is unrestricted (other than the explicit index structure and coordinate

dependence). Of course, this result can also be used in the free theory, although it

differs from the usual lightcone gauge.

Exercise IIIC3.1

Gauge transform this solution to the lightcone gauge A+ = 0 in the Abelian

case.

Exercise IIIC3.2

Translate the above results into spinor notation in D=4.



C. YANG-MILLS 317

4. Selfduality

The simplest and most important solutions to the field equations are those that

are invariant under the “duality” symmetry that relates electric and magnetic charge:

[∇a,∇b] = ±1
2εabcd[∇

c,∇d]

Applying the selfduality condition twice, we find

1
2εabefε

efcd = +δc[aδ
d
b]

which requires an even number of time dimensions. For example, since the action

is usually Wick rotated anyway for perturbative purposes, we might assume that

we should do the same for classical solutions that are not considered as “small”

fluctuations about the usual vacuum. (Such a Euclidean definition of field theory

has been considered for a mathematically rigorous formalism, called “constructive

quantum field theory”, since the Gaussian path integrals for scalars and vectors are

then well-defined and convergent. However, other spins, such as for fermions or

gravity, are a problem in this approach.) Alternatively, we can replace εabcd with

iεabcd and complexify our fields. The selfduality condition, when combined with the

Bianchi identities, implies the field equations: For Yang-Mills,

∇[aFbc] = 0 ⇒ 0 = ±1
2ε
abcd∇aFbc = ∇aF

ad

Since the selfduality condition is only first-order in derivatives, it’s easier to solve

than the usual field equations.

Plane wave solutions provide a simple example of selfduality, since the field

strengths can easily be written as the sum of selfdual and anti-selfdual parts: In

Minkowski space we define the selfdual part as helicity +1 (f .
α
.
β
), and anti-selfdual

as −1 (fαβ). For example, for a wave traveling in the “1” direction, the F+2 ∓ iF+3

components give the two selfdualities for Yang-Mills, describing helicities ±1 (the two

circular polarizations).

Exercise IIIC4.1

Generalize the results of the previous subsection to more general waves, with

an A+ which is a general function of x− and xi (with the other components

of A still vanishing).

a Find the field strength, and show it satisfies the interacting field equations if

A+ satisfies the free Laplace equation

(∂i)2A+ = 0
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b In D=4, the solution to this equation is

A+ = f(x−, xt) + f̄(x−, x̄t)

Show this decomposition describes the two separate helicities.

Before further analyzing solutions to the selfduality condition, we consider actions

that use selfdual fields directly. This will allow us to describe not only theories whose

only solutions are selfdual, but also more standard theories as perturbations about

selfduality, and even massive theories. The most unusual feature of this approach is

that complex fields are used without their complex conjugates, since this is implied in

D=3+1 by selfduality. (Alternatively, we can Wick rotate to 2+2 dimensions, where

all Lorentz representations are real.) There are two stages to this approach: (1) Use a

first-order formalism where the auxiliary field is selfdual. The usual first-order actions

for spin 1/2 (Weyl or Dirac) already can be interpreted in this way, where “selfduality”

means “chirality”. (2) For the massive theory, eliminate the non-selfdual field (as an

auxiliary field, as allowed by the mass term), so that the dynamics is described by

the selfdual field, which was formerly considered as auxiliary. The massless theory

then can be treated as a limiting case.

The simplest (and perhaps most useful) example is massive spin 1/2 coupled in

a real representation to Yang-Mills fields:

L = ψTαi∇α

.
αψ̄ .

α + 1
2
√

2
m(ψTαψα + ψ̄T

.
αψ̄ .

α)

where the transposition (“ T ”) refers to the Yang-Mills group index (with respect to

which the spinors are column vectors). Note that ψ must be a real representation of

this group (AT = −A) for the mass term to be gauge invariant (unless the mass term

includes scalars: see the following chapter). Even though ψ and ψ̄ are complex conju-

gates, they can be treated independently as far as field equations are concerned, since

they are just different linear combinations of their real and imaginary parts. (Com-

plex conjugation can be treated as just a symmetry, related to unitarity.) Noticing

that the quadratic term for ψ̄ has no derivatives, we can treat it as an auxiliary field,

and integrate it out (i.e., eliminate it by its equation of motion, which gives an explicit

local expression for it):

L→ −
√

2
m

[1
4
ψTα( −m2)ψα + 1

2ψ
Tαifα

βψβ]

where we have used the identity

∇α

.
γ∇β .

γ = 1
2{∇α

.
γ,∇β .

γ}+ 1
2 [∇α

.
γ,∇β .

γ] = −1
2δ
β
α − ifαβ
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whose simplicity followed from ψ being a real representation of the Yang-Mills group.

(Of course, we could have eliminated ψ instead, but not both.) For convenience we

also scale ψ by a constant

ψ → 2−1/4
√
mψ

to find the final result

L→ −1
4
ψTα( −m2)ψα − 1

2ψ
Tαifα

βψβ

Now the massless limit can be taken easily. This action resembles that of a scalar, plus

a “magnetic-moment coupling”, which couples the “(anti-)selfdual” (chiral) spinor ψα

to only the (anti-)selfdual part fαβ of the Yang-Mills field strength.

For the same reason, the kinetic operator can be written in terms of just the

selfdual part Sαβ of the spin operator:

L = −1
4
ψT ( −m2 − ifαβSβα)ψ

This operator is of the same form found by squaring the Dirac operator:

−∇/ 2 = −(γ · ∇)2 = −1
2({γa, γb}+ [γa, γb])∇a∇b = − iF abSba

except for the selfduality. The simple form of this result again depends on the real-

ity (parity invariance) of the Yang-Mills representation; although this squaring trick

can be applied for complex representations (parity violating), the coupling does not

simplify. This is related to the fact that real representations are required for our

derivation of the selfdual form.

In the special case where the real representation is the direct sum of a complex

one ψ+α with its complex conjugate ψ−α (as for quarks in the Standard Model, or

electrons in electrodynamics), we can rewrite the Lagrangian as

Lc = −1
2ψ

Tα
+ ( −m2)ψ−α − ψTα+ ifα

βψ−β

The method can also be generalized to the case of scalar couplings, but the action

becomes nonpolynomial.

For spin 1, we start with the massless case. We can write the Lagrangian for

Yang-Mills as

L = tr(Gαβfαβ − 1
2g

2G2
αβ)

where Gαβ is a (anti-)selfdual auxiliary field. Although this action is complex, elim-

inating G by its algebraic field equation gives the usual Yang-Mills action up to a

total derivative term (εabcdFabFcd), which can be dropped for purposes of perturbation
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theory. For g = 0, this is an action where G acts as a Lagrange multiplier, enforcing

the selfduality of the Yang-Mills field strength.

If we simply add a mass term

Lm = 1
4
(m
g

)2A2

then A can be eliminated by its field equation, giving a nonpolynomial action of the

form

L+ Lm → −1
2(∂G)[(m

g
)2 +G]−1(∂G)− 1

2g
2G2

Just as the spin-1/2 action contained only a 2-component spinor describing the 2

polarizations of spin 1/2, this action contains only the 3-component Gαβ, describing

the 3 polarizations of (massive) spin 1.

Exercise IIIC4.2

Find the Abelian part of this action. Show the free field equation is

( −m2)Gαβ = 0 (without gauge fixing).

5. Twistors

In four dimensions with an even number of time dimensions, the “Lorentz” group

factorizes (into SU(2)2 for D=4+0 and SL(2)2 for D=2+2). This makes selfduality es-

pecially simple in spinor notation: For Yang-Mills (cf. electromagnetism in subsection

IIA7),

[∇αβ′ ,∇γδ′ ] = iCαγfβ
′δ′ (fαβ = 0)

where we have written primes instead of dots to emphasize that the two kinds of

indices transform independently (instead of as complex conjugates, as in D=3+1). For

purposes of analyzing selfduality within perturbation theory, we can use a lightcone

method that breaks only one of the two SL(2)’s (or SU(2)’s), by separating out its

indices into the ⊕ and 	 components:

[∇⊕α′ ,∇⊕β′ ] = 0 ⇒ ∇⊕α′ = ∂⊕α
′

where we have chosen a lightcone gauge: The vanishing of all field strengths for the

covariant derivative ∇⊕α′ says that it is pure gauge (as seen by ignoring all but the

x	α
′

coordinates). We now solve

[∇⊕[α′ ,∇	β′]] = 0 ⇒ ∇	α′ = ∂	α
′
+ i∂⊕α

′
φ

i.e., ∇	α′ − ∂	α′ has vanishing curl, and is therefore a gradient. We therefore have

A⊕α
′
= 0, A	α

′
= ∂⊕α

′
φ; fα

′β′ = −i∂⊕α′∂⊕β′φ



C. YANG-MILLS 321

These can also be written in terms of an arbitrary constant twistor εα (= δα	 above)

as

Aαβ
′
= ∂γβ

′
(−iεαεγφ), fα

′β′ = ∂γα
′
∂δβ

′
(iεγεδφ)

The final selfduality condition [∇	α′ ,∇	β′ ] = 0 then gives the equation of motion

1
2 φ+ (∂⊕α

′
φ)(∂⊕α′φ) = 0

Exercise IIIC5.1

Show that the sign convention for Wick rotation of the Levi-Civita tensor

consistent with the above equations is

Fab = 1
2εabcdF

cd, Fαα′ββ′ = Cαβfα′β′ ⇒

εαα′ββ′γγ′δδ′ = CαβCγδCα′δ′Cβ′γ′ − CαδCβγCα′β′Cγ′δ′

Exercise IIIC5.2

Look at the action Gαβfαβ for selfdual Yang-Mills in the lightcone gauge,

using the results above. Show that this action is equivalent to the lightcone

action for ordinary Yang-Mills (subsection IIIC2), with some terms in the

interaction dropped.

At least for 4D Yang-Mills, advantage can be taken of the conformal invariance of

the classical interacting theory by using a formalism where this invariance is manifest.

We saw in subsection IA6 that classical mechanics could be made manifestly conformal

by use of extra coordinates. Covariant derivatives can be defined in terms of projective

lightcone coordinates, but the position-space twistor coordinates zAα (see subsections

IIB6 and IIIB1) are more useful. The selfdual covariant derivatives then satisfy

[∇Aα,∇Bβ] = iCαβfAB

in direct analogy to 4D spinor notation. This equation also can be solved by the

lightcone method used above, but now this method breaks only the internal SL(2)

symmetry, leaving SL(4) conformal symmetry manifest. More general selfdual field

strengths in this twistor space are also of the form fA...B, totally symmetric in the

indices. We also need to impose the constraint on the field strength

zAαfAB = 0

(and similarly for the more general case) to restrict the range of indices to the usual

4D spinor indices (in which the field strengths are totally symmetric). Selfduality

implies the Bianchi identity

∇[AαfB]C = 0
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which also generalizes to the other field strengths, and is the equivalent of the usual

first-order differential equations (Dirac, Maxwell, etc.) satisfied by 4D field strengths.

As usual, it in turn implies the interacting Klein-Gordon equation, which in the

Yang-Mills case is
1
2∇[A

α∇B]αfCD = −i[fC[A, fB]D]

The Bianchi together with the z index constraint imply the constraint on coordinate

dependence

(zAα∇Aβ + δαβ )fBC = 0

which eliminates dependence on all but the usual 4D coordinates. These four equa-

tions are generically satisfied by selfdual field strengths. The selfduality itself of the

field strengths is a consequence of their total symmetry in their indices, and the fact

that they are all lower (SL(4)) indices. (The z index constraint then reduces them to

SL(2) Weyl indices all of the same chirality.)

Exercise IIIC5.3

Derive the last three equations from the previous two (selfduality and zf=0).

Exercise IIIC5.4

Show that non-selfdual Yang-Mills is conformally invariant in D=4 by extend-

ing the (4+2)-dimensional formalism of subsections IA6 and IIIB1 (especially

exercise IIIB1.5): Show the field strength

FABC = −i1
2y[A[∇B,∇C]]

satisfies the gauge covariances

δAA = −[∇A, λ]− yAλ̂

and Bianchi identities

y[AFBCD] = ∇[AFBCD] = 0

The duality transformation

FABC → 1
6
εABCDEFF

DEF

then suggests the field equations

yAFABC = ∇AFABC = 0

in addition to the usual constraint

y2FABC = 0

By reducing to D=4 coordinates with the aid of the above yF conditions, show

F reduces to the usual field strength, and the remaining equations reduce to

the usual gauge transformation, Bianchi identity, duality, and field equation.
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6. Instantons

Another interesting class of selfdual solutions to Yang-Mills theory are “instan-

tons”, so called because the field strength is maximum at points in spacetime, unlike

the plane waves, whose wavefronts propagate from and toward timelike infinity. A

particular subset of these can be expressed in a very simple form by the ’t Hooft

ansatz in terms of a scalar field: In twistor notation, choosing the Yang-Mills gauge

group GL(2) (in 2+2 dimensions, or SU(2)⊗GL(1) for 4+0),

iAAαι
κ = −δκα∂Aιln φ ⇒ iAAαι

ι = −∂Aαln φ

so the GL(1) piece is pure gauge, and has been included just for convenience. Note

that this ansatz ties the SL(2) twistor index with the SL(2) gauge group indices (ι, κ),

but in this notation the index that carries the spacetime (conformal) symmetry is free.

Imposing the selfduality condition on the field strength, and separating out the terms

symmetric and antisymmetric in AB, we find

ifABι
κ = −1

2φ∂(A
κ∂B)ιφ

−1

φ−1∂A
α∂Bαφ = 0

The “field equation” for φ is just the twistor version of the (free) Klein-Gordon

equation, and its solution is the projective lightcone version of 4D point sources (see

subsection IA6): Since for any two 6D lightlike vectors y and y′

y = e(x, 1, 1
2x

2) ⇒ y · y′ = −1
2ee
′(x− x′)2

we have the solution

φ =
k+1∑
i=1

(y · yi)−1, y2
i = 0

with y given in terms of z as before, and yi are constant null vectors. “k” is the number

of instantons. (The one term for k = 0 is pure gauge.) The usual singularities in

the Klein-Gordon equation at y = yi are killed by the extra factor of φ−1 in the field

equation.

Exercise IIIC6.1

Let’s check the Klein-Gordon equation for y 6= yi directly in twistor space.

We will need the identity

y2
i = 0 ⇒ yiA[ByiCD] = 0

(
no
∑
i

)
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in the product

y · yi = 1
2y
AByiAB

Prove this identity in two ways:

a Show it follows from the definition

y2
i = 1

4
εABCDyiAByiCD

b Show it follows from plugging in the solution to the lightlike condition,

yiAB = ziA
αziBα

c Now use the identity to show the above solution satisfies its field equation by

evaluating the z derivatives.

We can rewrite this in the usual 4D coordinates by transforming from zAα to λαµ

and xµν
′

as zAα = λα
ν(δµν , xν

µ′) (see subsection IIB6):

dzAαAAαι
κ = dxµν

′
Aµν′ι

κ + [(dλαν)λ
−1ν

β]zAβAAαι
κ = dxµν

′
Aµν′ι

κ − iλ−1ν
ιdλ

κ
ν

where in the first step we have used the expression for z in terms of λ and x, and in

the second we used the result that

(zAα∂Aβ + δαβ )φ = 0

We now recognize that the gauge transformation that gets rid of all but the “x

components” of A (whose existence is guaranteed by the condition zAαfAB = 0) uses

λ itself as the gauge parameter:

dzAαAAαι
κ = −iλ−1ν

ιdλ
κ
ν + λ−1ν

ι(dz
AαA′Aαν

µ)λκµ

The net result is that A can be reduced to an ordinary 4-dimensional expression by

just setting λ = δ in the original expression. Then

iAµµ′ι
κ = −δκµ∂ιµ′ln φ, φ =

∑
i

1

ei(x− xi)2

with y in terms of x and a scale factor (worldline metric) e as in subsections IA6

and IIIB1 (and dropping an overall factor that doesn’t contribute to A). Note that,

unlike the expression in twistor space, where conformal invariance is manifest, here

Lorentz invariance is tied to the Yang-Mills symmetry.

Exercise IIIC6.2

Show in 4D coordinates that the gauge-invariant quantity tr(f 2) is finite at
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the points x = xi, where A is singular. (This means that the gauge choice is

singular, not physical quantities.)

Another important property of instantons is that they give finite contributions to

the action. In vector notation, we have

F ab = 1
2ε
abcdFcd ⇒ S = 1

8g2
tr

∫
d4x

(2π)2
F abFab = 1

16g2
tr

∫
d4x

(2π)2
εabcdFabFcd

The last expression can be reduced to a boundary term, since

1
8
tr F[abFcd] = 1

6
∂[aBbcd]

in terms of the “Chern-Simons form”

Babc = tr(1
2A[a∂bAc] + i1

3
A[aAbAc])

Exercise IIIC6.3

Although the Chern-Simons form is not manifestly invariant, its variation is,

up to a total derivative:

a Show that its general variation is

δBabc = 1
2 tr[(δA[a)Fbc] − ∂[aAbδAc]]

b Show the gauge transformation of B is

δBabc = −1
2∂[aλbc], λab = 1

2tr(λ∂[aAb])

If we assume boundary conditions such that F drops off rapidly at infinity, then

A must drop off to pure gauge at infinity:

iAm → g−1∂mg

Since instantons always deal with an SU(2) subgroup of the gauge group, we’ll assume

now for simplicity that the whole group is itself SU(2). Then the action can be given

a group theory interpretation directly, since the integral over the surface at infinity

is an integral over the 3-sphere, which covers the group space of SO(3), and thus half

the group space of SU(2). Explicitly,

S = 1
8π2g2

∮
d3σm

1
6
εmnpqBnpq

→ 1
8π2g2

∮
d3σm

1
6
εmnpqtr(g−1∂ng)(g−1∂pg)(g−1∂qg)
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= 1
8π2g2

∮
d3x 1

6
εijktr(g−1∂ig)(g−1∂jg)(g−1∂kg)

where in the last step we have switched to coordinates for the 3-sphere, using the fact∫
d4x εmnpqfmnpq is independent of coordinate choice. In fact, in the case where g is

a one-to-one map between the 3-sphere and the group SO(3), this last expression is

just the definition of the invariant volume of the SO(3) group space. In that case, the

integral gives just the volume of the 3-sphere (2π2). In general, the map g will cover

the SU(2) group space an integer number q of times, and thus cover the SO(3) group

space 2q times, so the result will be

S =
|q|
2g2

where we have used the fact that selfdual solutions have q > 0 while anti-selfdual

have q < 0.

(Anti-)selfdual solutions give relative minima of the action with respect to more

general field configurations:

0 ≤ tr

∫
1
2(Fab ± 1

2εabcdF
cd)2 = tr

∫
(F 2 ± 1

2ε
abcdFabFcd)

⇒ S ≥ |q|
2g2

q is an integer, and thus can’t be changed by continuous variations: It is a topological

property of finite-action configurations. Thus the selfdual solutions give absolute

minima for a given topology. (All these solutions will be given implicitly by twistor

construction in the following subsection. Note that our normalization for the structure

constants of SU(2) differs from the usual, since we use effectively tr(GiGj) = δij

instead of the more common tr(GiGj) = 1
2δij, which would normalize the structure

constants as in SO(3): fijk = εijk. The net effect is that our g2 contains a relative

extra factor of 1/2, in addition to the effective extra factors coming from our different

normalization of the action.)

Exercise IIIC6.4

Explicitly evaluate the integral for the instanton number q for the solutions

of the ’t Hooft ansatz. Show that the asymptotic form can be expressed in

terms of (g)λ
κ = xκλ

′
. (det g 6= 1 because of the GL(1) piece.) Note that

there are boundary contributions not only at x = ∞ but also around the

singular points x = xi, which are of the same form but opposite sign. (Since

the singular parts of A are pure gauge, they cancel in F .)

At the quantum level, instantons are important mostly because they are an ex-

ample of fields that don’t fall off rapidly at infinity, and thus contribute to
∫
εFF .
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However, once the restriction on boundary conditions is relaxed, there can be many

such field configurations. The instantons are then distinguished by the fact that they

are the minimal action solutions for a given topology; this makes them important for

describing low-energy behavior.

7. ADHM

Much more general solutions of this form can be constructed using twistor meth-

ods. (In fact, they can be shown to be the most general selfdual solutions that fall

off fast enough at infinity in all directions.) The first step of the Atiyah-Drinfel’d-

Hitchin-Manin (ADHM) construction is to introduce a scalar square matrix in a larger

group space

UI
I′ = (uI

ι, vIiα) (I ′ = (ι, iα))

The index α is the usual two-valued twistor index, for SU(2) in Euclidean space or

SL(2) in 2+2 dimensions. The other indices are

ι (H) I (G) i

SO(N) SO(N+4k) GL(2k)
SU(N) (SL(N)) SU(N+2k) (SL(N+2k)) GL(k,C)

USp(2N) (Sp(2N)) USp(2N+2k) (Sp(2N+2k)) GL(k)

The index ι is for the defining representation of the Yang-Mills group H, which is

any of the compact classical groups for Euclidean space, but is its real Wick rotation

for 2+2 dimensions. The index I is for the defining representation of the group G,

a larger version of H, where k is the instanton number. Finally, the index i is for a

general linear group. We also have the matrix

U I
I′ = (uI ι, v

I
i′α)

For the SO and (U)Sp cases both U matrices are real, for the SU case they are complex

conjugates of each other, and for the SL case they are real and independent. We next

relate the two U ’s by

uI ιuI
κ = δκι , uI ιvIiα = vI i′αuI

ι = 0, vI i′αvIiβ = Cβαgii′

so they are almost inverses of each other, except that the “metric” g is not constrained

to be a Kronecker δ. We then write the gauge field as a generalization of pure gauge:

iAAαι
κ = uI ι∂AαuI

κ
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(This is similar to the method used for nonlinear σ models of coset spaces G/H as

discussed in subsection IVA3 below, except for g.)

Selfduality then follows from requiring a certain coordinate dependence of the

U ’s: This is fixed by giving the explicit dependence of the v’s as

vIiα = bIiAz
A
α, vI i′α = bI i′Az

A
α

where the b’s are constants. The orthonormality conditions on the U ’s then implies

the constraint on the b’s

bI i′(AbIiB) = 0

as well as determining the u’s in terms of the b’s (with much messier dependence than

the v’s), and thus A. Note that the z dependence of u can be written in terms of just

x, as follows from rewriting the uv orthogonality as (after multiplying by z)

uI ιbIiAy
AB = uI

ιbI i′Ay
AB = 0

and noting scale invariance. Then the x components of A can also be written in

terms of just x. We then can check the selfduality condition by calculating f : The

orthonormality condition on the U ’s can be written as

δJI = uI
ιuJ ι + vIi

αgii
′
vJ i′α

where gii
′

is the inverse of gii′ . Then schematically we have

iF = ∂iA+ iAiA

= (∂ū)(∂u)− (∂ū)uū(∂u)

= (∂ū)vgv̄(∂u)

= ū(∂v)g(∂v̄)u

= ūbgb̄u

or more explicitly

ifABι
κ = −(uI ιbIi(A)gii

′
(uJ

κbJ i′B))

where selfduality is FAα,Bβ = CαβfAB. We can also directly show zAαfAB = 0.

Exercise IIIC7.1

Solve the bb constraint for k=1 and H=SU(2), and compare to the 1-instanton

solution of subsection IIIC6.
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8. Monopoles

Instantons are essentially 0-dimensional objects, localized near a point in 4-

dimensional spacetime (or many points for multi-instanton solutions). Another type

of solution is 1-dimensional; this represents a particle (with a 1D worldline). Unlike

the plane-wave solutions, which represent the massless particles already described

explicitly by fields in the action, we now look for time-independent solutions, which

describe massive (since they have a rest frame), bound-state particles.

Looking at time-independent solutions is similar to the dimensional reduction

that we considered in subsection IIB4 to introduce masses into free theories, only

(1) this mass vanishes, and (2) we reduce the time dimension, not a spatial one. In

our case, the dimensional reduction of a 4-vector (the Yang-Mills potential) gives a

3-vector and a scalar, both in the adjoint representation of the group. Let’s consider

the reduction in Euclidean space, so the scalar kinetic term comes out with the right

sign. Then the 4D Yang-Mills action reduces as

1
8
F 2
ab → 1

8
F 2
ij + 1

4
[∇i, φ]2

where we have labeled the scalar A0 = φ and by dimensional reduction ∂0 → 0. Note

that this is the same action that would have been obtained by starting out with Yang-

Mills coupled to an adjoint scalar in four dimensions, either Minkowski or Euclidean,

and choosing the gauge A0 = 0. Thus, time-independent solutions to Euclidean

Yang-Mills theory are also time-independent solutions to Minkowskian Yang-Mills

coupled to an adjoint scalar (although not the most general, since the gauge A0 = 0

is not generally possible globally, especially when we assume time independence of

even gauge-dependent quantities). In particular, this means that time-independent

solutions to selfdual Yang-Mills are also solutions of Minkowskian Yang-Mills cou-

pled to an adjoint scalar. This allows us to use the first-order differential equations

and topological properties of selfdual Yang-Mills theory to find physical bound-state

particles in this vector-scalar theory.

Dimensionally reducing the (Euclidean) selfduality condition, we have

−[∇i, φ] = 1
2εijkFjk

As for instantons, the simplest solutions are for SU(2). As for the ’t Hooft ansatz,

we look for a solution that is covariant under the combined SU(2) of the gauge group

and 3D rotations: In SO(3) vector notation for both kinds of indices (using the SO(3)

normalization of the structure constants [iGi, iGj] = εijkiGk),

φi = xiϕ(r), (Ai)j = εijkxkA(r)
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(We know to use an ε tensor in A because of covariance under parity.) The selfd-

uality equation then reduces to two nonlinear first-order differential equations (the

coefficients of δij and xixj/r
2):

−ϕ− r2Aϕ = 2A+ rA′, −rϕ′ + r2Aϕ = −rA′ + r2A2

After some massaging, we find the change of variables

ϕ̃ = 1
r

+ rϕ, Ã = 1
r

+ rA

leads to the simplification

ϕ̃′ = −Ã2, Ã′ = −Ãϕ̃

ϕ̃ then can be eliminated, giving an equation for Ã. Making a final change of variables,

ψ = Ã−1 ⇒ ψψ′′ − (ψ′)2 = −1

we can guess the solution (with regularity at r = 0)

ψ = k−1sinh(kr) ⇒ A =
1

r2

(
kr

sinh(kr)
− 1

)
, ϕ =

1

r2
[kr coth(kr)− 1]

Exercise IIIC8.1

Repeat this calculation in spinor notation:

a In Euclidean space we can choose σ0
αβ′ ∼ Cαβ′ . Show that we can then write

the 4-vector potential for the monopole as

i(Aαβ)γδ = δγαxβ
δA+(r) + δδβxα

γA−(r)

which is symmetric in neither αβ nor γδ. (Compare the ’t Hooft ansatz in

subsection IIIC6.) However, xαβ is now symmetric from dropping x0.

b Impose selfduality, where

∂αβx
γδ = 1

2δ
γ
(αδ

δ
β) = δγαδ

δ
β − 1

2CαβC
γδ

from subtracting out the ∂0x
0 piece. Derive the resulting equations for A±,

and show they agree with the above for

A± = −1
2(A± ϕ)

In general, the Lagrangian of a Euclidean theory is the Hamiltonian of the

Minkowskian theory (with the sign conventions we introduced in subsection IIIA1),
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since Wick rotation changes the sign of the kinetic energy and not the potential en-

ergy. In our case, this means the Minkowskian energy of the Yang-Mills + adjoint

scalar theory can be evaluated in terms of the same topological expression we used for

instantons: From the previous subsection, using S =
∫
dt E and ∂0 = 0, we evaluate

in Euclidean space

E = 1
16π2g2

∮
d2σi ε

i0jkB0jk, εi0jkB0jk → −εijktr(φFjk) = 2 tr(φ[∇i, φ]) = ∂i tr(φ
2)

where we have used an integration by parts to simplify B. (Compare exercise

IIIC6.3a.) Since at spatial infinity

φi → xi

(
|k|
r
− 1

r2

)
, Aij → −εijkxk

1

r2

and effectively
∮
d2σi → 4πrxi, we find

E =
|k|

2πg2

Also by similar arguments to those used for instantons, we see that any solutions with

boundary conditions A → 0, |φ| → |k| as r → ∞ have energy at least as great as

this. There is also a topological interpretation to this energy: Writing it as

E = − 1
16π2g2

∮
d2σi εijktr(〈φ〉Fjk)

we see that the energy is proportional to the magnetic flux, i.e., the “magnetic charge”

of the monopole. (The asymptotic value 〈φ〉 of φ picks out a direction in isospace,

reducing SU(2) to U(1).) As in electromagnetism, magnetic charge is quantized in

terms of electric charge. However, for compact gauge groups, electric charge is also

quantized. (For the usual U(1), charges are arbitrary, but for SU(2), any component

of the isospin is quantized.) The energy is thus quantized in terms of k: It is a

multiple of the energy we found for the single monopole above.

Exercise IIIC8.2

Perform a singular gauge transformation that makes 〈φ〉 point in a constant

(rather than radial) direction in isospin (SU(2)) space. Show that the isospin

component of the asymptotic form of A describes a U(1) magnetic monopole:

magnetic flux radiating outward from the origin.
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IV. MIXED
In this chapter we consider ways in which gauge symmetry combines with global

symmetries for new effects. The interplay between global internal symmetries of scalar

and spinor theories and local symmetries of Yang-Mills is important for understanding

mass generation for all spins, and is fundamental for the Standard Model.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . A. HIDDEN SYMMETRY . . . . . . . . . . . . . . . . . .

Symmetries, especially local ones, are clearly very important in the formulation of

interactions. However, symmetries are not always apparent in nature: For example,

while most symmetries prefer massless particles, of all the observed particles the only

massless ones are the graviton, photon (probably), and (possibly some) neutrinos.

Furthermore, of the massive ones, none with different properties have the same mass,

although some are close (e.g., the proton and neutron). There are three solutions to

this problem:

(1) The symmetry is not a property of nature, but only an approximate symmetry.

Some terms in the action are invariant under the symmetry, but other terms

violate it. We can treat such “explicit symmetry breaking” by first studying the

symmetry for the invariant terms, and then treating the breaking terms as a

perturbation.

(2) Although the laws of physics are symmetric, nature is an asymmetric solution

to them. In particular, such a solution is the “vacuum”, or state of lowest en-

ergy, with respect to which all other states are defined. Since the vacuum is not

invariant under the symmetry, the symmetry transformations take the vacuum

to other states of the same energy. This case is called “spontaneous symmetry

breaking”. For example, in electrodynamics an infinite charge distribution of con-

stant density is translationally and rotationally invariant, but by Gauss’s law we

know there must be an electric field, whose direction breaks rotational invariance.

(3) The particles in terms of which these laws are formulated are not those observed

in nature. For example, the hydrogen atom is most conveniently described in

terms of a proton and an electron, but in its low-energy physics only the atom

itself is observed as a separate entity: The U(1) symmetry related to charge is

not seen from the neutral atoms. The more extreme case where such particles

always appear in bound states is known as “confinement”.

Generally, such broken symmetries are at least partially restored at high energies.

For example, if the symmetry breaking introduces masses, or mass differences between
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related particles, then the symmetry may become apparent at energies large with

respect to those masses. Similarly, a hydrogen atom excited to an energy much larger

than its lower energy levels will ionize to reveal its constituent particles.

It often is possible to change to a set of variables that are invariant under a

local symmetry. (We saw the analog for the global case when considering translation

invariance in subsection IA1.) For example, if we can define everywhere a variable that

transforms as δφ(x) = λ(x), then it can be used to everywhere undo the invariance.

We can choose the “gauge” λ = −φ, transforming φ to 0 everywhere, leaving no

residual invariance, or we can work with composite, invariant variables: E.g., ψ′ =

ψeiλ is replaced (invertibly) with ψ̂ = ψe−iφ, so ψ̂′ = ψ̂.

1. Spontaneous breakdown

We first consider symmetry breaking by the vacuum, known as “spontaneous

breakdown”. The action is invariant under the symmetry, but the vacuum state is not:

Thus, the symmetry acting on the vacuum produces other zero-energy solutions to

the field equations, but this symmetry is not apparent when considering perturbation

about the vacuum. In this case, although the symmetry is broken, there are obvious

residual effects, particularly if the breaking can be considered as “small” with respect

to some other effects.

The “Goldstone theorem” is an important statement about the effect of symmetry

breakdown: If a continuous global symmetry is spontaneously broken, then there is a

corresponding massless scalar. The proof is simple: Consider a (relative) minimum of

the potential, as the vacuum. By definition, we have spontaneous symmetry break-

ing if this minimum is not invariant under the continuous symmetry: i.e., applying

infinitesimal symmetry transformations gives a curve of nearby states, which have

the same energy, because the transformations are a symmetry of the theory. But

the mass of a scalar, by definition, is given by the quadratic term in its potential,

i.e., the second derivative of the potential evaluated at the vacuum value. (The first

derivative vanishes because the vacuum is a minimum.) So, if we look at the scalar

defined to parametrize this curve of constant energy in field space, its mass vanishes.

(This field may be a function of the given fields, such as an angle in field space.)

We can also formulate this more mathematically, for purposes of calculation:

Consider a theory with potential V (φi). (The Lagrangian is V plus derivative terms.

For simplicity we consider just scalars.) The masses of the scalars are defined by

the quadratic term in the potential, expanding about a minimum, the vacuum. The
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statement of symmetry of the potential means that

symmetry δφi = ζ i(φ) ⇒ 0 = δV = ζ i∂iV for all φi

where we allow nonlinear symmetries, and ∂i = ∂/∂φi. Differentiating, and then

evaluating at this minimum,

〈∂iV 〉 = 0 at minimum φ = 〈φ〉

⇒ 0 = 〈∂j(ζ i∂iV )〉 = 〈(∂jζ i)(∂iV )〉+ 〈ζ i∂i∂jV 〉 = 〈ζ i〉〈∂i∂jV 〉

where here the vacuum value 〈 〉 classically means to just evaluate at φ = 〈φ〉. (So

classically 〈AB〉 = 〈A〉〈B〉.) Spontaneous symmetry breaking means the vacuum

breaks the symmetry: If this symmetry is broken, then 〈ζ i〉 6= 0, so it is a nontrivial

eigenvector of 〈∂i∂jV 〉 (the mass matrix) with vanishing eigenvalue. So, we can write

φi = 〈φi〉+ χ〈ζ i〉+ ...

where χ is a massless field.

The simplest example is a single free, massless field, V = 0. Then ζ is simply a

constant. The simplest choice of vacuum is just 〈φ〉 = 0, which breaks the symmetry:

L = 1
4
(∂φ)2, δφ = constant, 〈φ〉 = 0

Then φ is a “Goldstone boson”.

The simplest nontrivial example, and a useful one, is a complex scalar with the

potential

V (φ) = 1
4
λ2(|φ|2 − 1

2m
2)2

This is invariant under phase transformations δφ = iζφ. There is a continuous set of

minima at |φ| = m/
√

2. We choose 〈φ〉 = m/
√

2; then the Goldstone theorem tells

us that the imaginary part of φ is the Goldstone field. Explicitly, separating the field

into its real and imaginary parts,

φ = 1√
2
(m+ ψ + iχ) ⇒ V = 1

4
λ2m2ψ2 + 1

4
λ2mψ(ψ2 + χ2) + 1

16
λ2(ψ2 + χ2)2

where 〈ψ〉 = 〈χ〉 = 0. We could also use the nonlinear separation of the field into

magnitude and phase, φ = (m + ρ)eiθ/
√

2: Then θ drops out of the potential, and

its transformation (ρ is invariant) is the same as that of the free massless scalar. If

φ had been real, then only the discrete symmetry φ↔ −φ would have been broken,

and there would be no Goldstone boson.
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Exercise IVA1.1

Write the complete action in terms of ρ and θ.

Note that this model would naively seem to have a tachyon (state with negative

(mass)2) if we had expanded about 〈φ〉 = 0. However, since the vacuum is defined

always as a minimum in the potential (or the energy), the true states always have

nonnegative (mass)2. This is the case for positive spins for similar reasons: We saw in

subsection IIB4 that free massive theories follow from massless ones by dimensional

reduction from one extra spatial dimension. If we had used an extra time dimension

instead, as required for the “wrong sign” for the mass term in p2 + m2, there would

also be wrong signs for Lorentz indices, resulting in kinetic terms with arbitrarily

negative energy. (In particular, we saw in subsection IIIA4 for spin 1/2 that reality

of the action required m2 > 0.)

Exercise IVA1.2

Consider a tachyonic mass term for a vector. Using a Stückeberg formalism

(subsection IIB4), show that the “longitudinal” polarization has the wrong

sign p2 term.

Spontaneous symmetry breaking will also affect the actions for fields other than

those getting vacuum values, that couple to them. For example, terms of the form

ψ2f(φ) will tend to generate a mass for ψ if 〈φ〉 6= 0 (actually f(〈φ〉) 6= 0). Such

couplings exist for ψ of spins 0, 1
2 , 1. Since masslessness is generally associated with

symmetry (chiral symmetry for spin 1
2 and gauge symmetry for spin 1), this type of

mass generation implies symmetries other than just those of the scalars are broken

by this mechanism (see subsections IVA4-6).

2. Sigma models

The Goldstone mechanism thus produces massive particles as well as massless

ones, at least for polynomial potentials, to which we are restricted by quantum con-

siderations, to be discussed later. We now look for approximations to polynomial

scalar actions that eliminate the massive fields, but still take them into account

through their equations of motion, in the limit where their masses tend to infinity.

(“σ models” are just theories of Goldstone bosons. The original theory was poly-

nomial, as described for a vector of SO(4): The component with the vacuum value

was called “σ”, the 3 Goldstone bosons were identified with the π. A “nonlinear σ

model” was the result of taking the mass to infinity, leaving a nonpolynomial action

for the Goldstone bosons; ironically, this model contained only the π, σ having been

eliminated.)
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For example, in the above simple model, we can take the limit λ → ∞, which

takes the ψ mass (λm) to infinity. In this limit, the potential energy can remain finite

only if it vanishes: |φ|2 = 1
2m

2. (In quantum language, the potential’s contribution

to the path integral is just δ(
∫
V ) in that limit. Alternatively, we can neglect the

kinetic energy for |φ| in comparison to the mass or potential, and then eliminate |φ|
through its equation of motion in this approximation.) We can also enforce this limit

directly by using a Lagrange multiplier field Λ:

L = 1
2 |∂φ|

2 + Λ(|φ|2 − 1
2m

2)

The solution to the constraint is φ = m√
2
eiθ, and the action then describes just a free,

real scalar θ.

A less trivial example is a nonabelian generalization of this example: Consider

φ as a vector of an internal SO(n) symmetry. (The previous example was the case

SO(2).) The Lagrangian is then

L = 1
4
(∂φ)2 + 1

2Λ(φ2 −m2)

The usual way to solve quadratic constraints without introducing square roots is to

use the identity

|(1 + ix)2|2 = (|1 + ix|2)2 ⇒ (2x)2 + (1− x2)2 = (1 + x2)2

This is often used for trigonometric substitutions or simplifying integrals. For exam-

ple, when an integrand has a
√

1− x2, substituting x = sin θ eliminates the square

root at the price of requiring trigonometric identities, which in turn are usually solved

by making a second variable change to y = tan(θ/2). On the other hand, the above

identity suggests making instead the variable change x = 2y/(1 + y2), which actually

gives the same result, more directly, as the previous two-step method. (This identity

can also be used for finding integer solutions to the Pythagorean theorem: A right

triangle with two shorter sides of integer lengths 2mn and m2−n2 has the hypotenuse

m2 +n2, where m,n are integers.) This is the same type of parametrization discussed

in subsection IC6 (the version without the square roots).

We then can solve the constraint φ2 = m2 with the coordinates for the sphere in

terms of an SO(n−1) vector χ,

φ = m

(
χ

1 + 1
4
χ2
,
1− 1

4
χ2

1 + 1
4
χ2

)
Then the kinetic term (now the whole action) becomes

1
4
(∂φ)2 = 1

4
m2 (∂χ)2

(1 + 1
4
χ2)2
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Exercise IVA2.1

For SO(3), express χ in terms of the usual spherical polar angular coordinates

θ and ϕ, along with the inverse expressions (θ and ϕ in terms of χ).

Another way to obtain this result is to use the solution of subsection IA6 to the

constraint

0 = y2 = (ya)2 − 2y+y− ⇒ y = e(xa, 1, 1
2x

2)

(but now (ya)2 is positive definite). Then the desired constraint

(ya)2 + (y1)2 = 1

follows from further constraining

1 = y0 = e 1√
2
(1 + 1

2x
2) ⇒ e =

√
2

1 + 1
2x

2

⇒ dy2 = e2dx2 =
2dx2

(1 + 1
2x

2)2

yielding the above result for x = χ/
√

2. This derivation is equivalent to the para-

metrization of a 3D null vector (for SO(2,1)) in terms of 3D twistors. (See subsection

IIC5, or exercise IIA3.1 for real ψ.) Scale the twistor to (x,1) (or (m,n) for the

Pythagorean theorem).

We thus have a nonpolynomial action, each term having derivatives. The original

SO(n) symmetry is nonlinearly realized on the “angle” variables χ, and the vacuum

(〈χ〉 = 0) spontaneously breaks the symmetry to SO(n−1). The constant m acts as

a dimensionful coupling, as seen by scaling χ → χ/m to give the kinetic term the

standard normalization.

A complex generalization of this model is described by the Lagrangian

L = 1
2 |∇φ|

2 + Λ(|φ|2 −m2)

where φ is now a complex n-component vector, ∇ is a U(1)-covariant derivative

(∇φ = (∂+ iA)φ), and Λ is a Lagrange multiplier enforcing that φ has magnitude m.

This model thus has a U(n) symmetry. (The U(1) is local and the SU(N) is global.)

Since A has no kinetic term (F 2), we can eliminate it by its algebraic field equation:

L→ 1
2 |∂φ|

2 + 1
8m2 (φ†

↔
∂φ)2 + Λ(|φ|2 −m2)

where we have applied the constraint |φ|2 = m2 (or shifted Λ to cancel terms propor-

tional to |φ|2 −m2). Since the U(1) gauge was not fixed yet, we still have local U(1)

invariance even without an explicit gauge field. We can use this invariance to fix the



340 IV. MIXED

phase of one component of φ, and use the constraint from Λ to fix its magnitude. In

terms of the remaining (n−1)-component complex vector χ,

φ = m

(
χ

1 + 1
4
|χ|2

,
1− 1

4
|χ|2

1 + 1
4
|χ|2

)

⇒ L = 1
2m

2 |∂χ|
2 + 1

4
(χ†

↔
∂χ)2

(1 + 1
4
|χ|2)2

(Alternatively, we can solve the constraint and fix the gauge first, then eliminate

A by its field equation.) This model is known as the CP(n−1) model (“complex

projective”).

Exercise IVA2.2

Consider the CP(1) model in 1 dimension:

a Look at new gauge invariant variables quadratic in the original fields φ. The

4 elements of this 2×2 matrix are a 3-vector “x” and its norm. (See exercise

IIA3.1. φ is now an SU(2) “twistor”.) Rewrite the CP(1) action in terms of

this 3-vector, to find the action for a nonrelativistic particle constrained to a

sphere (i.e., the case SO(3) of the previous model).

b Now look at the nonrelativistic action for a particle in a gravitational/Cou-

lomb potential (∼ 1/r), obtained from the relativistic one (section IIIB) by

replacing p2 with pi
2−2mE, as suggested by the discussion of subsection IA4.

Instead of the usual v = 1, choose v = r, so the term in the Lagrangian for

the (scalar) potential becomes a constant. Then make the change of variables

above in reverse, to obtain the 1D CP(1) model (with E as the Lagrange

multiplier), but with the mass replaced so the constraint defines the time t.

In the gauge A = 0 one gets a 4D harmonic oscillator. (The constraints from

V and A at t = 0 can be used to fix E and A.)

Another example that will prove more relevant to physics is to generalize φ to an

n⊗n matrix: We then consider the Lagrangian

L = tr[1
2(∂φ)† · (∂φ) + 1

4
λ2(φ†φ− 1

2m
2I)2]

(where I is the identity matrix). Since φ†φ is hermitian and positive definite, the

minimum of the potential is at φ†φ = 1
2m

2I, and we can choose

〈φ〉 = m√
2
I

using the SU(n)⊗SU(n)⊗U(1) invariance

φ′ = ULφUR
−1
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(We can include the U(1) in either UL or UR.) The vacuum then spontaneously breaks

this invariance to SU(n):

〈φ′〉 = 〈φ〉 ⇒ UL = UR

In the large-mass limit, we get the constraint

φ†φ = 1
2m

2I ⇒ φ = m√
2
U, U †U = I, 〈U〉 = I, L→ 1

4
m2tr[(∂U)†(∂U)]

so the field U itself is now unitary.

3. Coset space

The appearance of the scalar fields (Goldstone bosons) as group elements can

be generalized directly in terms of the effective theory, without reference to massive

fields. Such a theory should be considered as a low-energy approximation to some

unknown theory. Although the unknown theory may be better behaved at high

energies quantum mechanically (see later), the low-energy effective theory can be

determined from just (broken) symmetry. We therefore assume a symmetry group G

that is broken down to a subgroup H by the vacuum. (I.e., the vacuum is invariant

under the subgroup H, but not the full group G.) We are interested in only the

Goldstone bosons, associated with all the generators of the group G less those of H.

These fields are thus coordinates for the coset space G/H as described in subsection

IC6 (not to be confused with the coordinates that are arguments of these fields). So

we have fields that are elements of the group, but functions of x:

g = eiφ, φ = φI(x)GI

The global symmetry G is a symmetry of the theory, though not of the vacuum:

〈g〉 = I

is then invariant under g′ = hgg0 for the global subgroup g0 = h−1, where this h is

constant and g0 ∈ H (i.e., G is spontaneously broken to H).

g can be used to convert any representation ψ of the global group G into one ψ̃

(but usually reducible) of the smaller local group H:

ψ′ = g−1
0 ψ ⇒ ψ̃ ≡ gψ, ψ̃′ = hψ̃

We can apply a similar procedure to find a field strength for g, invariant under the

global group, as an element of the Lie algebra of G: Relating an ordinary derivative

on ψ to a covariant one on ψ̃,

g∂ag
−1 = ∂a − (∂ag)g−1 = ∂a + iAιaHι + iF i

aTi = ∇a + iF i
aTi
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where the derivative in the first expression acts on everything to the right. This can

be evaluated in the φ parametrization as multiple commutators, as usual: A and

F are both nonpolynomial functions of φ, but with only one derivative. We have

absorbed A into a covariant derivative ∇ because of the remaining transformation

law under the local group H:

(∇+ iF )′ = h(∇+ iF )h−1 ⇒ ∇′ = h∇h−1, F ′ = hFh−1

where we have assumed [Hι, Ti] ∼ Tj. (In particular, this is true for compact groups,

where the structure constants are totally antisymmetric: Then fικi = 0 ⇒ fιiκ = 0.)

Then the action invariant under global and local transformations can be chosen as

L = 1
4
m2tr(F 2)

For example, the real vector model we gave in the previous subsection describes the

coset space SO(n)/SO(n−1), the complex vector describes SU(n)/U(n−1), and the

matrix model describes U(n)⊗U(n)/U(n).

Exercise IVA3.1

Use the coset-space construction to derive the specific σ models explicitly

given in the previous subsection, as just identified.

a Find the real and complex vectors by dividing up the adjoint representation

into appropriate blocks.

b For the case of U(n)⊗U(n)/U(n), the direct product means we use separate

group-element fields for the two global groups, with

g′L = hgLgL0, g′R = hgRgR0

for the same h. Find an expression for the field U of the previous subsection

without breaking any global or local symmetries.

Note that the field redefinition between the G-representation matter field ψ and

the H-representation matter field ψ̃ modifies the form of the couplings. For example,

the kinetic term for ψ will have ordinary partial derivatives ∂, while that for ψ̃ will

have covariant ones ∇. (One or the other will also have F terms.) On the other

hand, a mass term for ψ̃ may turn into a potential/Yukawa term for ψ, since the

larger group G might not allow mass terms permitted by the smaller group H. The

result is that what appears as a nonderivative coupling in terms of ψ may appear as

a derivative coupling in terms of ψ̃.

We can formulate general spontaneous breakdown in this language:
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(1) Start with a polynomial action with symmetry G, including scalars φ that will

suffer the breakdown through expectation, and other fields ψ.

(2) Introduce an appropriate g and define the new scalar fields φ̃ ≡ gφ, as well as

the new matter fields ψ̃ ≡ gψ. Thus S[φ, ψ] → S[φ̃, ψ̃, g]. In terms of these new

fields, the action has a local symmetry H, and G now acts only on g.

(3) (H-covariantly) constrain φ̃ in such a way that g effectively replaces the missing

parts. Then g describes all the Goldstone bosons, while the reduced φ̃ describes

the other scalars in the original φ (in the previous examples, the massive ones,

which decoupled at low energies).

For example, for the SO(n) model, φ is an n-vector, while g parametrizes the coset

SO(n)/SO(n−1), and thus has n(n−1)/2 − (n−1)(n−2)/2 = n−1 non-gauge compo-

nents — it is an n−1-vector under H. Thus for φ̃, which is n→n−1⊕1 under H, we

just constrain the n−1 part to vanish.

We have described how nonpolynomial actions quadratic in derivatives can arise

as a low-energy approximation to polynomial theories. Further nonpolynomial terms

quartic in derivatives (but no more than quadratic in time derivatives) can be useful

for certain applications, but these arise from polynomial actions quadratic in deriva-

tives (which are preferred for quantum reasons) only by quantum effects. One use is

in models which describe (pseudo)scalar mesons by fundamental fields (i.e., solutions

to the free field equations, which yield interacting solutions through perturbation the-

ory), but baryons by nonperturbative solutions to the field equations of these scalars.

Such an interpretation is suggested by an expansion in 1/N, where N is the number

of colors, since a baryon is made of N quarks (whereas a meson contains just one

quark and one antiquark). Such models are useful for describing static properties

of baryons (masses, quantum numbers), but the complexity of such solutions to the

field equations prevents their use for interactions of baryons (especially with other

baryons).

4. Chiral symmetry

Later we’ll examine a description of the strongly interacting particles (“hadrons”)

in which they are all considered as composites (bound states) of fermionic “quarks”.

However, this theory is extremely difficult to solve, so we first consider treating the

hadrons as fundamental instead. Since there are probably an infinite number of kinds

of hadrons (or at least some integer power of 1040, considering the (Planck mass)2),

this would require a formulation in terms of a “string” that treated all “mesons”
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(bosonic hadrons) as a single entity. That possibility also will be considered later;

for now, we look at the simpler possibility of studying just the low-energy physics of

hadrons by using fields for just the lightest particles.

So far, the only observed scalar particles have been strongly interacting ones.

Some of the scalar mesons, especially the “pions”, are not only the lightest hadrons,

but can be considered close to massless on the hadronic scale. We therefore look for

a description of pions (and some close relatives) in the massless approximation; then

mass-generating corrections can be considered.

Normally, quantum corrections can affect masses. The only way to guarantee

masslessness at the quantum level is through some symmetry; we then can study this

symmetry already at the classical level. We have seen that (unbroken) gauge invari-

ance can require masslessness for all fields except the scalar and spinor. Masslessness

for a spinor can be enforced by “chiral symmetry”: If there is a U(1) symmetry for

all irreducible spinors ψα, then no mass terms (bilinears ψα1ψ2α) can be constructed.

(Generally, each spinor can have different U(1) charges, as long as no two charges

add to zero. Of course, this U(1) can be a subgroup of a larger chiral symmetry

group.) The only way a scalar can be guaranteed masslessness is if it is a Gold-

stone boson. We therefore look for a description of pions as Goldstone bosons of

some spontaneously broken symmetry. (Supersymmetry is another possibility to en-

force massless scalars, but only if there are also massless fermions, which is not the

case for hadrons.) Furthermore, pions and the other lightest scalars are actually

pseudoscalars: This suggests that they are the Goldstone bosons of broken chiral

symmetry, which simultaneously generates masses for the fermions.

For simplicity, we consider the coupling of scalar mesons to quarks. We could

instead couple mesons to “baryons” (fermionic hadrons), thus treating only hadrons,

but the principles would be the same, only the indices would be messier. Combining

C invariance with chiral symmetry, and including a meson potential for spontaneous

symmetry breaking, we can write the action for just the quarks and scalar mesons as

S =

∫
dx tr L

L = [q†
.
α
Li∂

β .
αqLβ + qTβR i∂β

.
αq*R .

α] + [1
2(∂φ)† · (∂φ) + 1

4
λ2(φ†φ− 1

2m
2I)2]

+Λ[qαLφq
T
Rα + q*

.
α
Rφ
†q†L .

α]

where φ is an m⊗m matrix (m “flavors”), qL and qR are n⊗m matrices (n “colors”),

and Λ is the “Yukawa coupling”. Sometimes it will be convenient to drop Lorentz

indices to emphasize internal symmetries:

L = (q†Li∂qL + qTRi∂q*R) + [1
2(∂φ)† · (∂φ) + 1

4
λ2(φ†φ− 1

2m
2I)2] +Λ(qLφq

T
R + qR*φ†q†L)
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Besides color symmetry (local if we had bothered to write in the Yang-Mills fields for

the “gluons”, by ∂ → ∇ on the quarks), we have the (global) U(m)L⊗U(m)R chiral

(flavor) symmetry

q′L = qLUL, q′R = qRUR*, φ′ = U−1
L φUR

including the (global) U(1) “baryon number” symmetry

UL = UR = eiθ ⇒ q′L = eiθqL, q′R = e−iθqR, φ′ = φ

If we think of baryon number as an SO(2) symmetry, then charge conjugation is

just the reflection that completes this to an O(2) symmetry (see exercise IIA1.2):

C : qL ↔ qR, φ→ φT

From this, and the usual CP

CP : qL → qL*, qR → qR*, φ→ φ*

we find the parity symmetry

P : qL ↔ qR*, φ→ φ†

(where for CP and P we also transform the coordinates as usual).

As before, the vacuum 〈φ〉 = m√
2
I breaks the flavor symmetry to the diagonal

subgroup UL = UR, which commutes with parity (and is therefore no longer “chiral”).

It also gives masses to the quarks (since chiral symmetry is broken); this is a general

feature of spinors coupled to scalars under spontaneous breakdown. In the limit

λ → ∞ (where the mass of all bosons but the Goldstones becomes infinite, but the

quark mass M = Λm is fixed), the Goldstone bosons are described by the unitary

matrix U , which transforms as U ′ = U−1
L UUR.

Exercise IVA4.1

Rewrite this action according to the analysis of exercise IVA3.1b:

a Separate the Goldstone bosons from the massive scalars.

b Replace the G-representation quarks with the H-representation quarks.

An interesting special case is m=1 (one flavor). The Goldstone boson of axial

U(1) can be identified with the π0. In the limit λ → ∞, the Lagrangian becomes

(with a tr no longer needed)

L = (q†
.
α
Li∂

β .
αqLβ + qTβR i∂β

.
αq*R .

α) + 1
4
m2(∂π)2 + M√

2
(eiπqTαR qLα + e−iπq†

.
α
Lq*R .

α)
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writing π for the neutral pion field. Λ = M/m is still the coupling of the pion to

the quarks, as can be seen by rescaling π → π/m to give the kinetic term the usual

normalization. (The coupling m is known as the “pion decay constant”, and is usually

denoted fπ. If we include leptons with the quarks, then this coupling also describes

the decay of the pion into two leptonic fermions.)

In this case, the (broken) axial U(1) transformations are

q′L = eiθqL, q′R = eiθqR, π′ = π − 2θ

The corresponding axial current (determined, e.g., by coupling a gauge vector) is

Jα
.
β

A = (q†
.
β
Lq

α
L − qTαR q*

.
β
R)−m2∂α

.
βπ

(For more than 1 color, the current should have a trace for the quarks.) This current

is still conserved, since the field equations aren’t changed by the properties of the

vacuum. The linear term is characteristic of expanding the Goldstone field about

the spontaneously broken vacuum; it corresponds to the fact that that field has an

inhomogeneous transformation under the broken symmetry.

However, in reality the pion is not exactly massless, so we should add to the

previous action a mass term for the pion, which explicitly violates the symmetry. (It

is then a “pseudogoldstone boson”.) In the general chiral symmetry model, where the

Goldstone bosons are described by a unitary matrix, a simple term that gives them

masses while preserving the polar (parity-preserving) diagonal symmetry UL = UR of

the vacuum is, for some constant ξ,

Lm = −ξ tr(φ+ φ† −
√

2mI)

Since this explicitly breaks the axial U(m) symmetries, the corresponding currents

are no longer conserved. In the U(1) case, we can also add just a mass term

Lm = 1
4
ζπ2, ζ = m2m2

π

(for some constant ζ), which is the leading contribution from the general term above.

The change in the field equation for π now violates the conservation law as

∂ · JA = −ζπ

This explicitly broken conservation law is known as “Partially Conserved Axial Cur-

rent” (PCAC).
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5. Stückelberg

By definition, only gauge-invariant variables are observable. Although in general

a change of variables to gauge-invariant ones can be complicated and impractical,

there are certain theories where such a procedure can be implemented very simply

as part of the normal gauge-fixing. Not surprisingly, the only nonlinearity in these

redefinitions involves scalars.

The simplest cases of such redefinitions are free theories, and are thus contained

in our earlier discussion of general free, massive gauge theories. The simplest of these

is the massive vector. As follows from subsection IIB4, the Lagrangian and gauge

invariance are

L = 1
8
F 2 + 1

4
(mA+ ∂φ)2

δA = −∂λ, δφ = mλ

where Fab is the Abelian field strength. Note that the scalar is pure gauge: It is

called a “compensator” for this gauge invariance. Since it has a nonderivative gauge

transformation, it can easily be gauged to zero at each point, by just choosing λ =

−φ/m. This means that without loss of generality we can consider the theory in

terms of just the gauge-invariant field

A′ = A+ 1
m
∂φ

This “composite” field can also be considered as a field redefinition or gauge trans-

formation on A. The Lagrangian simplifies to

L = 1
8
F ′2 + 1

4
m2A′2

Later we’ll see that it is often more useful to keep φ as an independent field.

Exercise IVA5.1

Choose the gauge φ = A0, then eliminate A0 by its equation of motion,

leaving only the transverse 3-vector Ai. Find the Lagrangian reduces to

−1
4
Ai( −m2)Ai. Show the relation to the lightcone gauge of subsection

IIIC2, using the dimensional reduction language of subsection IIB4.

Exercise IVA5.2

Instead choose the “unitary gauge” φ = 0, then eliminate A0 by its field

equation. Show the final result is similar to the previous gauge, except the

kinetic operator has the extra matrix factor

δij −
∂i∂j

∂2
k −m2
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Show that this is a projection operator only for m = 0. Thus the Stückelberg

field is useful even for unitary gauges: The former gauge is clearly simpler,

and relating the two results by gauge choice is simpler than using a nonlocal

(but instantaneous, i.e., local in time), invertible field redefinition.

The original Lagrangian can also be considered an unusual coupling of a massless

vector to a massless scalar: Remember that the massless scalar is the simplest example

of a Goldstone boson, with the spontaneously broken global symmetry

δφ = εTφ, Tφ = 1

where we have defined the symmetry generator T to act inhomogeneously on φ. (The

action of T is linear on eiφ, so it’s also useful to think of this as a U(1) nonlinear σ

model, as at the beginning of IVA2.) We then couple the “photon” to this charge:

After a trivial rescaling of the gauge field,

L = 1
8m2F

2 + 1
4
(∇φ)2, ∇ = ∂ + AT

where m is the “charge” with which A couples to φ, which in this case happens to

have dimensions of mass. The electromagnetic current in this case is simply J = 1
2∇φ,

whose conservation is the scalar field equation φ = 0 (with gauge-covariantized ).

Because the spontaneously broken symmetry of the corresponding Goldstone

model is now gauged, expanding about 〈φ〉 = 0 is no longer a physical statement

about the vacuum, since φ is no longer gauge invariant. (As we saw, we can even

choose φ = 0 as a gauge condition.) Therefore, from now on, when we make a

statement such as “〈φ〉 = 0” in such a case, it will be understood to refer to choos-

ing φ = 0 as the value about which to perform perturbation expansions (e.g., for

separating actions into kinetic terms and interactions).

Note that the Stückelberg action can be generated starting from the action with

just A′, and performing a gauge transformation that is not an invariance:

A′ → A′ + 1
m
∂φ

Dropping the prime from A, this transformation is just the inverse of the one we used

to eliminate the scalar. If we start from an action that has also a coupling of A′ to

matter, we see that conserved currents decouple from φ:∫
A′ · J →

∫
A · J − 1

m

∫
φ∂ · J

More precisely, if the only term in the action for vector + matter that is not gauge

invariant is the vector mass term (1
4
m2A′2), then the above gauge transformation

affects only that term.
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6. Higgs

We have seen that spontaneous symmetry breakdown can generate masses for

spinors. We also saw how a massless vector could become massive by “eating” a

would-be Goldstone scalar, in the simplest case of a scalar without self-interactions.

We’ll now examine more interesting models: Yang-Mills theories, which describe self-

interacting vectors, must couple to self-interacting scalars to become massive.

We can expect, by considering the linearization of any Yang-Mills theory coupled

to scalars, that we will need more scalars than massive vectors, since each vector needs

to eat a scalar to become massive, and some scalars will become massive and thus

uneaten. (Only would-be Goldstone bosons can be eaten, as seen by linearization to

the Stückelberg model.) For the simple (and most useful) example of U(n) for the

gauge group, an obvious choice for the scalar “Higgs” field is an n⊗n matrix. (SU(n)

can be treated as a slight modification.) The simplest such model is the one studied

in subsection IVA2: We now consider one of the SU(n) symmetries (together with

the U(1)) as the local “color” symmetry to which the Yang-Mills fields couple, and

the other SU(n) as the global “flavor” symmetry (where we use the names “color”

and “flavor” to distinguish local and global symmetries, not necessarily related to

chromodynamics).

The Lagrangian for this “Gervais-Neveu model” is then

L = tr[ 1
8g2
F 2 + 1

2(∇φ)† · (∇φ) + 1
4
λ2(φ†φ− 1

2m
2I)2]

where ∇ = ∂+ iA, and Aa and φ are n⊗n matrices (but Aa are hermitian). Now φ†φ

is gauge invariant (although not invariant under the flavor group), so we still have

〈φ†φ〉 = 1
2m

2I

as a gauge-invariant statement (but 〈φ〉 = m√
2
I, or 〈φφ†〉 = 1

2m
2I, still makes sense

only for purposes of gauge-dependent perturbation expansions).

Since any complex matrix can be written as φ = UH/
√

2, where U is unitary and

H is hermitian, we can choose the “unitary gauge” U = I (i.e., φ = φ†). As for the

Stückelberg case, this is equivalent to working in terms of the gauge-invariant fields

(defined by using this U as a gauge transformation)

A′ = U−1(−i∂ + A)U, φ′ = 1√
2
H = U−1φ

where U can be defined by

1√
2
H =

√
φ†φ, U = φ

√
2H−1
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This is well-defined as long as H is invertible, which is true for small perturbations

about its vacuum value

〈H〉 = mI

If the perturbation is so large that H has vanishing eigenvalues, then this is equivalent

to looking at states so far away from the vacuum that some of the broken symmetry

is restored. Expanding about the vacuum (H → mI +H), the Lagrangian is now

L = tr[ 1
8g2
F ′2 + 1

4
m2A′2 + 1

4
(∂H)2 + 1

4
λ2m2H2

+A′ · 1
4
(Hi

↔
∂H) + 1

2mA
′2H + 1

4
λ2mH3 + 1

4
A′2H2 + 1

16
λ2H4]

Thus all particles are now massive. As for the Goldstone case, we can take the limit

λ→∞ to get rid of all the massive scalars, which in this case leaves just the massive

vectors, adding only the mass term to the original Yang-Mills action. This was clear

from the nonlinear σ model that resulted from that limit, by coupling that field (U)

to Yang-Mills directly.

Exercise IVA6.1

Find the chiral action for this model of the type described in subsection IIIC4,

where the massive vectors are described by selfdual tensors instead of vectors.

Exercise IVA6.2

Consider again this model, for the case n=2. We modify this example by

dropping the U(1) gauge field, so we have just SU(2). Since SU(2) is pseu-

doreal, we can further restrict the Higgs field to satisfy the reality condition

φ* = CφC. Thus, both color and flavor groups are SU(2), and φ is the usual

matrix representation of the 4-vector of SO(4)=SU(2)⊗SU(2) (see subsection

IIA5). Repeat the analysis given above.

Exercise IVA6.3

Consider again the gauge group SU(2), but now take the Higgs field in the

adjoint representation, with no flavor group (i.e., a real 3-vector). Show that

only 2 of the 3 vectors get mass, leaving a residual U(1) gauge invariance.

Explain this in terms of the gauge transformations of the 3-vector. (Hint:

think 3D rotations.)

The general case is then to start with a polynomial action for scalars, describing

spontaneous symmetry breaking from G→H. As before these scalars can be decom-

posed into the coset G/H plus some representations of only H. Coupling Yang-Mills

for group G to the G of the coset, some vectors eat the coset, leaving massless the

vectors for the H subgroup. The remaining scalars are the physical Higgs. Mathemat-

ically, we take the covariant derivative ∇ for the Yang-Mills group G and the scalars
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g for the coset G/H, and combine them as g−1∇g. The construction is similar to that

for the pure coset, but now the resulting H gauge fields include the massless vectors,

while the field strengths for the coset scalars are now the massive vectors themselves.

These and the physical Higgs are all singlets of the original Yang-Mills gauge group

G, while the coset gauge group H has now become the new Yang-Mills gauge group.

7. Dilaton cosmology

Some of the ideas in general relativity can be introduced by a simple model that

involves introducing only a scalar field. Although this model does not correctly de-

scribe gravitational forces within our solar system, it does give an accurate description

of cosmology. The basic idea is to introduce a dynamical length scale in terms of a

real scalar field φ(x) called the “dilaton” by redefining lengths as

−ds2 = dxmdxnφ2(x)ηmn

(Squaring φ preserves the sign of ds2; we assume φ vanishes nowhere.) As explained

in our discussion of conformal symmetry, this field changes only how we measure

lengths, not angles (which is why it is insufficient to describe gravity): At any point

in spacetime, it changes the length scale by the same amount in all directions. In

fact, it allows us to introduce conformal invariance as a symmetry: We have already

seen that under a conformal transformation the usual proper time of special relativity

changes as

dx′mdx′nηmn = ξ(x)dxmdxnηmn

Thus, by transforming φ as

φ′(x′) = [ξ(x)]−1/2φ(x)

we have

ds′2 = ds2

for our new definition above of proper time. This transformation law for the dilaton

allows any Poincaré invariant action to be made conformally invariant. This definition

of length is a special case of the general relativistic definition,

−ds2 = dxmdxngmn(x) ⇒ gmn = φ2ηmn

The action for a particle is easily modified: For example,

SL =

∫
dτ 1

2(vm2 − v−1 .
x2) →

∫
dτ 1

2 [vm2 − v−1φ2(x)
.
x2]
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since
.
x2 = dx2/dτ 2 (or by using our previous coupling to the metric tensor gmn). It

is convenient to rewrite this action by redefining

v(τ)→ v(τ)φ2(x(τ))

The resulting form of the action

SL →
∫
dτ 1

2(vm2φ2(x)− v−1 .
x2)

makes it clear that there is no change in the case m = 0: A massless (spinless)

particle is automatically conformally invariant. We have seen this action before: It is

the coupling of a massless particle to an external scalar field 1
2m

2φ2. (What we call

the scalar field is irrelevant until we write the terms in the action for that field itself.)

Exercise IVA7.1

Let’s examine these actions in more detail:

a Find the equations of motion following from both forms of the particle action

with background dilaton φ(x).

b Find the action that results from eliminating v by its equation of motion from

both actions for m 6= 0, and show they are the same.

c By a different redefinition of v, find a form of the action that is completely

linear in φ.

The corresponding change in field theory is obvious if we look at the Hamiltonian

form of the particle action

SH →
∫
dτ [− .

xmpm + v 1
2(p2 +m2φ2)]

Using the correspondence principle, we see that the Klein-Gordon equation for a

scalar field ψ has changed to

( −m2φ2)ψ = 0

The corresponding modification to the field theory action is

S →
∫

dDx

(2π)D/2
1
4
[(∂ψ)2 +m2φ2ψ2]

Since conformal invariance includes scale invariance, it is now natural to associate

dimensions of mass with φ (or inverse length, if we do classical field theory) instead

of m, since in scale invariant theories all constants in the field equations (or action)

must be dimensionless (otherwise they would set the scale). Similarly, this makes ds2

dimensionless, reflecting the fact that it is now scale invariant.
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Since this is supposed to describe gravity, at least in some crude approximation

that applies to cosmology, where is the (Newton’s) gravitational constant? Since φ

must be nonvanishing, “empty space” must be described by φ taking some constant

value: We therefore write

〈φ〉 =

√
3

κ
, κ2 =

G

π

where “〈 〉” means vacuum value, or asymptotic value, or weak-field limit (the value

φ takes far away from matter). (We have chosen an extra factor here of π in the

definition of Newton’s constant G for later convenience, so we effectively use units

G = π. Its normalization can’t be determined without introducing true gravity.

Similarly for the
√

3, which simplifies things for cosmology, but differs from our later

conventions.) Thus, the usual mass in the Klein-Gordon equation arises in this way

as m
√

3/κ. The dilaton φ is thus defined as the field that spontaneously breaks

scale invariance, and also as its Goldstone boson. Unfortunately, things are more

complicated in cosmology, since then φ is time dependent, even though it’s not space

dependent. But physical quantities are scale invariant, just as they are rotationally

and translationally; thus only (dφ/dτ)/φ (the “Hubble constant”: see below) and its

τ derivatives are measurable.

In natural (“Planck”) units κ = 1 (i.e., G = π; or some other convenient value):

Fixing c = h̄ = κ = 1 completely determines the units of length, time, and mass.

These units are the convenient ones for quantum gravity; they are also the most

obvious universal ones, since special relativity, quantum theory, and gravity apply to

everything. However, they are presently impractical in general, since the gravitational

constant is not so easy to measure: Its presently accepted value is

G = 6.67384(80)× 10−11m3kg−1s−2

(where the numbers in parentheses refer to errors in the last digits), which is accu-

rate to only a few parts per 10,000, compared to the standard atomic and nuclear

constants, which are known to a few parts per 100,000,000. On the other hand, cos-

mological measurements are even less accurate, so we can use them there: The orders

of magnitude seem inappropriate, but interesting.

In relation to standard units, the Planck units (adjusted to our units G = π) are√
Gh̄

πc3
= 9.11843(54) · 10−36m

√
Gh̄

πc5
= 3.04158(18) · 10−44s
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√
h̄cπ

G
= 3.85776(23) · 10−8kg

Exercise IVA7.2

There is another Planck unit, for temperature. Evaluate it in standard units

(Kelvins) by setting to 1 the Boltzmann constant k.

We have yet to determine the action for φ itself: We write the usual action for a

massless scalar in D=4 (for other D we need to replace φ with a power by dimensional

analysis), up to normalization,

Sφ = −
∫

d4x

(2π)2
1
2(∂φ)2

but we have written it with the “wrong” sign, for reasons we cannot justify without

recourse to the complete theory of gravity. However, without this sign change we

would not be able to get cosmological solutions with positive energy density for source

particles (matter and radiation without self-interaction).

To a good approximation the universe can be described by a spacetime which is

(spatially) rotationally invariant (“isotropic”) with respect to a preferred time direc-

tion. Furthermore, it should be (spatially) translationally invariant (“homogeneous”),

so the dilaton should depend only on that time coordinate. We therefore look for so-

lutions of the equations of motion which depend only on time. Thus the proper time

is given by

−ds2 = φ2(t)[−dt2 + (dxi)2]

By a simple redefinition of the time coordinate, this can be put in a form

−ds2 = −dτ 2 + φ2(τ)(dxi)2

where by “φ(τ)” we really mean “φ(t(τ))”, and the two time coordinates are related

by

dτ = dt φ ⇒ τ =

∫
dt φ(t) or t =

∫
dτ

1

φ(t(τ))

In this latter form of ds we can recognize τ as the usual time, as measured by a clock

at rest with respect to this preferred time frame. It will prove convenient to calculate

with time t, so we will work with that coordinate from now on, unless otherwise

stated; in the end we will transform to τ for comparison to quantities measured by

experiment.

To a good approximation the matter in the universe can be approximated as a

“dust”, a collection of noninteracting particles. It should also be rotationally invariant

with respect to the preferred time direction, so the momenta of the particles should
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be aligned in that time direction. (Really it is this matter that defines the time

direction, since it generates the solution for φ.) Furthermore, the dust should be

translationally invariant, so all the momenta should be the same (assuming they all

have the same mass), and the distribution should be independent of time. (Here,

unlike general relativity, we do not think of spacetime itself as changing: We treat

spacetime as ordinary Minkowski space, and φ as another field on it.) Varying the

Hamiltonian form of the action for a single particle with respect to φ, we find

δSM
δφ(x)

= m2

∫
dτ vφ(2π)2δ4(x−X)

(We briefly use τ again for the worldline parameter, not to be confused with the

physical time τ just introduced.) Using the equations of motion following from that

action, we also have

vmφ =
√
− .
x2 =

∣∣∣∣ dtdτ
∣∣∣∣

where we have used dxi = 0 for this dust, and the fact that v,m, φ are all positive by

definition. We thus have

δSM
δφ(x)

= m(2π)2δ3(x−X)

We can compare this to the energy density, derived as in subsection IIIB4 (since the
.
X2 term in the action, which would contain the metric, is unmodified): for matter

T 00
M =

∫
dτ (2π)2δ4(x−X)v−1.t2 =

∫
dτ (2π)2δ4(x−X)vm2φ2 = mφ(2π)2δ3(x−X)

as we could guess from dimensional analysis. The relation between these 2 quantities

is no accident: Our original introduction of φ was as gmn = φ2ηmn. If we introduce

both φ and metric independently, so as to calculate both of the above quantities, in

the combination φ2gmn, then we automatically have

φ
δSM
δφ

= 2gmn
δSM
δgmn

= −TMm
m

which is T 00 in this case (since the other components vanish).

Of course, the dust consists of more than one particle: It is a collection of parti-

cles, each at fixed xi. That means we should replace δ3(x−X) with some constant,

independent of both xi (because of homogeneity) and t. (Because of isotropy, the

particles don’t move. In this interpretation of the expanding universe, we thus have

“static” particles whose separation increases: Although xi is constant for them, dis-

tance is measured with an extra factor of φ.) Actually, we need to average over

particles of different masses: The result is then

δSM
δφ(x)

= a, T 00
M = aφ
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for some constant a. The equations of motion for φ are now very simple; since ∂iφ = 0,

we now have simply
..
φ = a

where the dots now refer to t derivatives. If we take this equation and multiply both

sides by
.
φ, we get an obvious total derivative. Integrating this equation, we get

1
2

.
φ2 = aφ+ 1

2b

for some constant 1
2b. This equation has a simple interpretation: Recognizing aφ as

the energy density T 00
M of the dust, and −1

2

.
φ2 as the energy density of φ (from our

earlier discussion of Hamiltonian densities), we see it implies that the total energy

density of the Universe is a constant.

We can also identify the source of this constant energy: We evaluated the en-

ergy density of dust and its coupling to φ. However, there can also be radiation:

massless particles. As we saw, massless particles do not couple to φ. Also, we have

neglected any interaction of particles with each other. Thus massless particles in this

approximation are totally free; their energy consists totally of kinetic energy, and

thus is constant. (They also move at the speed of light, so components of T ab other

than T 00 are nonvanishing. However, we average over massless particles moving in

all directions to preserve isotropy.) Therefore we can identify the energy density for

radiation,

T 00
R = 1

2b

Exercise IVA7.3

Consider general forms of the energy-momentum tensor that have the right

symmetry:

a Show that the most general form that has spatial isotropy and homogeneity

is

Tmn = ρ(t)umun + P (t)(ηmn + umun), um ≡ δm0

(or the equivalent). ρ is the energy density, while P is the pressure. This

general form is called a “perfect fluid” (e.g., an ideal gas).

b Show that the equation of motion for φ and energy conservation are now

φ
..
φ = ρ− 3P, 1

2

.
φ2 = ρ

Relate pressure to energy density for radiation by using the fact that it doesn’t

couple to φ.
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c Derive from these the “covariant conservation law”

φ
.
ρ+

.
φ(3P − ρ) = 0

These equations are easily solved. There is an unavoidable “singularity” (the

“Big Bang”) φ = 0 (all lengths vanish) at some time. (To see that the singularity is

unavoidable, note that the minimum (because a > 0) of the parabola is at nonpositive

φ, from the energy conservation equation. If a = 0 it’s a straight line, so obvious.)

Imposing the initial condition φ(0) = 0 (i.e., we set it to be t = 0) and
.
φ(0) > 0 (so

φ ≥ 0),

φ = a1
2t

2 +
√
bt

The “physical” time coordinate is then

τ =

∫
0

dt φ = a1
6
t3 +
√
b1

2t
2

Since φ can’t be expressed simply in terms of τ , we use the expressions for both in

terms of t. Simple expressions can be found for a = 0 (φ ∼
√
τ) and b = 0 (φ ∼ τ 2/3).

For the case of pure matter (b = 0), the energy conservation equation written in

terms of the τ coordinate becomes, using dτ = φ dt,

1
2

(
dφ

dτ

)2

− a

φ
= 0

This is the same as the Newtonian equation for the radial motion of a particle under

the influence of a fixed point mass (or the relative motion of 2 point particles), with

total energy zero.

Since φ increases with time, distances (as measured by ds) between slowly moving

objects (such as the dust particles, but also the stars and galaxies to which they are

an approximation) also increase. This is true in spite of the fact that such objects

are not moving with respect to the natural rest frame. The most obvious effect of

this cosmological expansion is the cosmological “red shift”. The expansion of the

universe causes photons to lose energy, including those of the black-body radiation of

the universe as well as those emitted long ago from distant sources.

Since the Universe is approximately translation invariant in the spatial directions,

spatial momentum pi is conserved. (For example, vary the particle action with respect

to xi.) This tells us nothing for the dust, but for the radiation we still have

0 = p2 = −E2 + (pi)2
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and thus E also is conserved. But this is E as defined with respect to t, not τ .

(For example, it appeared in the action as
.
tE. Also, the above equation is for pm =

v−1dxm/dτ with dx2 = 0.) However, the time measured by clocks at rest is τ , and thus

the energy Ê that is measured is with respect to τ . In terms of canonical conjugates

as defined in a Lagrangian or Hamiltonian, we see this as

.
tE =

.
τÊ ⇒ Ê = φ−1E

using dτ = φ dt. In particular, for the dust particles we have Ê = m.

Actually, this is true for all components of the (4-)momentum: At any fixed

point
◦
xm, we always choose coordinates near that point such that the proper time

looks like the usual one, i.e., φ(
◦
x) = 1. This can always be accomplished by a

scale transformation: Since we have conformal invariance, we are allowed to choose

a reference frame by not only choosing an origin (translation) and orientation of the

axes (Lorentz transformation), but also the scale (and even acceleration, via conformal

boost). Rather than make this scale transformation explicitly, we simply note that

the measured momentum is actually

p̂m = φ−1pm

For example, for massive particles we then have p̂2 +m2 = 0.

Since E is conserved but Ê is measured, we thus have Ê ∼ φ−1. Therefore,

observers measure the photon’s energy, frequency, and corresponding black-body ra-

diation (whose distribution depends only on energy/temperature) as having time

dependence ∼ φ−1 (and wavelength as φ). The spectrum of radiation emitted by a

distant object is then shifted by this energy loss, so the amount of shift determines

how long ago it was emitted, and thus the distance of the emitter.

Similar remarks apply to observed energy densities: When using variations with

respect to external fields, we used δ4(x − X)’s: For the observer’s coordinates, this

will be multiplied by φ−4 (since dx is multiplied by φ). Thus the observed energy

density is

ρ̂ ≡ T̂ 00 = T 00φ−4 = aφ−3 + 1
2bφ

−4

Astronomers use (at least) 3 parameters which are more directly observable. The

“size” of the Universe φ is coordinate dependent, but we can measure the change

in time of this scale through red shifts: Comparing lengths at different times, we

measure φ(τ2)/φ(τ1), more conveniently represented in terms of the difference of the

ln: In terms of the derivative, we have

ln

(
φ(τ2)

φ(τ1)

)
≡
∫ τ2

τ1

dτ H(τ)
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or

H ≡ dφ/dτ

φ

The “Hubble constant” H (constant in space, not time) measures the expansion rate,

and gives an inverse length (time) scale. Thus it is not predicted, but determined from

observations. As for all cosmological quantities, it is difficult to measure, its value is

based on various astrophysical assumptions, and its quoted value has changed often

and by large amounts over the years. A recent estimate for its present value is

H−1 = 14.53(26) · 109 yrs.

In “natural (Planck) units,” c = G/π = h̄ = 1, H−1 = 1.507(27) × 1061. But

sometimes G = 1 is useful, especially for solutions describing stars and planets.

(There is some recent dispute on the value of the Hubble constant, depending on

whether its measurement is based on “local” ingredients of the distance ladder, such

as the assumption of certain types of supernovas as a “standard candle”, or more

cosmological evaluations. It has not yet been determined whether this is a result of

some systematic error, or new physics involving the constant’s time dependence.)

We can also define a dimensionless “(energy) density parameter” Ω by using H−1

as a length scale: However, in the simplified model we have used, it is already fixed

Ω ≡ 2ρ̂

H2
= 1

(Sometimes the parameter σ ≡ Ω/2 is used instead.) Note that in our conventions

spatial integrals are weighted as
∫
dD−1x/(2π)D/2; thus the relation of our density to

the more standard one is

ρ̂ = (2π)2ρusual ⇒ Ω =
8π
3
Gρusual

H2

(In defining ρ̂, and p̂, we used units 〈φ〉 ≡ φ(
◦
x) = 1, so to restore units we had

to insert a G/3π.) In the more general (relativity) case, this parameter measures

energy density with respect to the amount needed to “close” the universe; in this

case, it takes the “critical” value, bordering between open and closed. However, this

value agrees with observations to within experimental error. This alone shows that

the dilaton is sufficient to give an accurate cosmological model (although ingredients

other than those discussed so far may be needed).

The rate of change of the Hubble constant can be defined in terms of a dimen-

sionless quantity by comparing its inverse with the true time:

q ≡ d(H−1)

dτ
− 1
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or

q ≡ −φ d
2φ/dτ 2

(dφ/dτ)2

The “deceleration parameter” q tells how fast the expansion rate is slowing down. In

the case of pure dust q = 1
2 , while for pure radiation q = 1; otherwise, it’s somewhere

in between.

Exercise IVA7.4

Calculate H, q and Ω in terms of a, b, and t.

Recent observations indicate that q is negative: The expansion is accelerating.

Although this “experimental” value is highly unreliable, and its estimate varies widely

from year to year based on methods of measurement and choice of assumptions (as

well as author), the existence of measurements indicating q < 1
2 suggests the above

model of energy coming from just dust and radiation may be too simple. In fact, other

observations indicate the vast majority of energy in the Universe (about 95%!) is not

in any known form. While some forms of proposed missing matter (“dark matter”)

seem to fit into the above types (but are simply not observed by non-gravitational

methods), others (“dark energy”) do not, and seem to form the majority of the

missing energy. One simple remedy is to introduce a “cosmological constant” term

(or its equivalent) into the action: In the language of the dilaton, it takes the form

SΛ = Λ

∫
d4x

(2π)2
φ4

where Λ is the cosmological constant. This term preserves conformal invariance. (Its

scale invariance is obvious by dimensional analysis.) Unfortunately, it makes the

dilaton field equation nonlinear, so we no longer have a simple closed solution as

before. (Numerical methods are required.) Furthermore, the observed value of this

constant corresponds to a length scale of the order of the size of the observed Universe.

While this can be explained for the Hubble constant, since it varies with time, there

is no “natural” way to explain why a true constant should just happen to set a scale

comparable to the present value of the Hubble constant (i.e., there is an unexplained

1060 floating around). One possibility is that it is dynamically generated as a vacuum

value of another scalar field, and thus might vary with time.

Exercise IVA7.5

Show explicitly that the cosmological term is invariant under a conformal

boost.

Various early features of the universe are not well explained by the model pre-

sented so far, in particular, why this model works so well, i.e., why the universe is
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conformally flat. Furthermore, the observed isotropy of the universe suggests an early

period of the universe where all parts of the (now-observed) universe were causally

connected so that they could interact in a way to produce this homogeneity. (The

universe as described above would expand too quickly for this to happen, at least for

the observable part of the universe.) The details of this earliest era are not well un-

derstood, primarily because they involve physics at the Planck scale. There are also

many models available: The most popular class of models is “inflation”, the theory

that the universe expanded more rapidly initially; another class considers the period

before the Big Bang (which may be modified to be less or not singular).

On the technical level, the necessary properties required for such conditions can be

described most easily by introducing an extra scalar field (“inflaton”) whose changing

vacuum value has the effect of a time-dependent cosmological constant. This field

might be either fundamental or composite, or even represent modified dynamics of

spacetime itself (by eliminating the inflaton by its equation of motion to modify

the action of the dilaton: see exercise IXB5.4). Unlike the “dark energy” problem,

which would effectively modify gravity at the cosmological scale, this problem would

modify gravity at the Planck scale. Recent observational data rules out the simplest

potentials for such a scalar: Alternatives are to use a more complicated potential, or

introduce extra scalars. Since the origin of the inflaton is not understood, any such

description of the potential amounts to “curve fitting”.
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. . . . . . . . . . . . . . . . . . . B. STANDARD MODEL . . . . . . . . . . . . . . . . . . .

In this section we discuss the “Standard Model”, the minimal theory that de-

scribes all the observed particles and forces (except gravity). We also consider some

features of “Grand Unified Theories” (GUTs), an extension of the Standard Model

that uses fewer multiplets.

1. Chromodynamics

One way in which particles naively described by the action can be hidden from

observation is if the force binding them is too strong to allow them to exist freely.

Such a condition is often called “infrared slavery” since this alleged property of the

force is a long-range feature, preventing the constituent particles from escaping to

infinity. This “confinement” is not a classical phenomenon, and its occurrence even

at the quantum level has not yet been proven. Therefore, in this section we’ll simply

assume confinement, and describe the resultant symmetry properties, leaving the

dynamical properties for later chapters.

The assumption of “color” confinement is that the color forces are so strong that

they bind any objects of color to other such objects; thus, only “colorless” states, those

that are singlets under the color gauge group, can exist freely. Composite fields that

are invariant under the local group transformations can be obtained by multiplying

matter fields or Yang-Mills field strengths, perhaps using also covariant derivatives,

and contracting all color indices. The color gauge group is generally assumed to be

SU(n): usually SU(3), but sometimes larger n for purposes of perturbation in 1/n.

Larger n is also used for unification, but in that case the Higgs mechanism is used to

reduce the group of the massless vectors to SU(3) (times Abelian factors).

Another feature of these confined states, to be considered later, is their geomet-

rical structure. The observed spectrum and scattering amplitudes of the “hadrons”

(strongly interacting particles) indicates a stringlike identification of at least the ex-

cited states. (The ground states may behave more like “bags”.) This picture also

fits in with confinement, since the spatial separation of the quarks and antiquarks in

excited states would force the gluons that convey their interactions (and self-interact)

to confine themselves as much as possible by collapsing into “strings” connecting the

quarks. Thus, we describe a meson with an “open string”, with a quark at one end

and an antiquark at the other. Similarly, an excited glueball would no longer be a

ball, but rather a “closed string”, forming a closed loop.
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We will need to reconsider also the discrete symmetries, C, P, and T, and their

combinations. First of all, we note the “CPT theorem”: All local, hermitian, Poincaré

invariant actions are CPT invariant. This is easy to see from the fact that CPT only

changes the overall sign of the coordinates, which is effectively the same as changing

the sign of each derivative, as well as giving a −1 for each vector index on a field. Since

CPT also gives signs to dotted spinors and not undotted ones, we also get −1’s for

vector combinations of indices on spinors (ψαψ̄
.
α; signs cancel when contracting spinor

indices on pairs of dotted or undotted spinors). Thus, all these signs cancel because

Poincaré invariance requires an even number of vector indices (in even numbers of

dimensions, from contracting with ηab and εabcd). Alternatively, and even more simply,

in D=4 we can attribute it to having even numbers both of undotted spinor indices

and of dotted spinor indices, since we can define CPT by associating a sign with each

dotted index (including those that appear as part of a vector index). Consequently,

from now on we ignore T and consider only C, P, and CP.

Although we have considered C (and thus CP) in the context of electromagnetism,

nonabelian gauge fields require some (simple) generalization, since they carry charge

themselves. We start with the general coupling of massless fermions to nonabelian

gauge fields:

L = ψ†
.
β(−i∂

α
.
β

+ A
α
.
β
)ψα

where ψ is a column vector with respect to the gauge group, and A a hermitian

matrix. The CP transformation of the fermions then determines that of the vectors,

needed for invariance:

CP : ψ′α = ψ* .
α, ψ′*

.
α = −ψα, ∂′

α
.
β

= −∂β
.
α, A′

α
.
β

= ATβ
.
α

(remember (ψα)* ≡ ψ̄
.
α, but (ψα)* = −ψ̄ .

α because of the factor of Cαβ), where we

have chosen to represent parity on the coordinates as acting on the explicit ∂ rather

than on the arguments of the fields. The transformation on the vector is thus parity

on the vector index, combined with charge conjugation A′a = −ATa = −Aa*: The

minus sign can be associated with change in sign of the coupling (as for the Abelian

case), while the complex conjugation takes into account the charge of the vector

fields themselves. (As discussed in subsection IB2, G→ −G* is an invariance of the

algebra, where g → g* and g = eiG.)

Although these terms, as well as the F 2 term for the vectors, are CP invariant,

this invariance can be broken by coupling to scalars: The Yukawa coupling

LY = ψTαφψα + h.c.
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for some matrix φ of scalars, would require the CP transformation

φ′ = φ*

(up to perhaps some unitary transformation; note φ = φT ), but unlike the vectors

there is no guarantee that under complex conjugation the matrix φ = φiMi for real

scalars φi and constant matrix (Yukawa couplings) Mi will preserve this form, i.e.,

satisfy

φ′iMi = φiMi*

since the matrices Mi can be complex. (I.e., are Mi* a linear combination of Mi?)

The basic assumption of “chromodynamics”, or in the quantized version “quan-

tum chromodynamics (QCD)”, is that we have a nonabelian gauge theory without

fundamental scalars that couple directly (but scalars will show up when we intro-

duce electroweak interactions). Namely, we assume only Yang-Mills for the “color”

gauge group SU(n), specifically n=3, with the usual action, minimally coupled to

spin-1/2 “quarks” in the defining representation of the color group, which may have

masses. (These masses are actually generated by weakly interacting Higgs bosons,

whose Yukawa coupling we consider in subsection IVB2; for now we include just the

resulting mass terms.)

Just as an irreducible real scalar describes particles that are their own antiparti-

cles, and needs doubling (or complexification) to define charge, an irreducible (mas-

sive) spinor cannot describe distinguishable particle and antiparticle. The quarks

come in the defining representation of SU(n), which is complex, and thus require

doubling to define mass terms. Therefore, for every quark field qLα (“L” for “left”)

we have an “antiquark” field qRα (“R” for “right”). Besides this doubling, and the n

colors of the quarks, we also assume a further multiplicity of m different “flavors” of

quarks. Gauge invariance requires the quark masses be independent of color.

We’ll now show that the possible CP violation caused by masses/Yukawa cou-

plings is prevented by the doubling required by gauge invariance, with each quark

and antiquark transforming into each other under charge conjugation, just as a scalar

transforms into its complex conjugate. (A spinor can’t transform into its complex

conjugate under C, since C commutes with spacetime symmetries, like Lorentz trans-

formations.) However, the differing masses for the various quark flavors breaks the

symmetry among flavors.

The action is then of the form

tr[1
8
F 2 + (q†Li∇qL + q†Ri∇qR) + ( M√

2
qTRqL + h.c.)]
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where we have written qL and qR as matrices with respect to SU(n) color (Uc) and

U(m)⊗U(m) flavor (UfL and UfR) such that they transform as

q′L = UcqLUfL, q′R = Uc*qRUfR*

and thus the covariant derivatives can be written as

∇aqL = (∂a + iAa)qL, ∇aqR = (∂a − iAa*)qR

where Aa are hermitian, traceless, n×n matrices. (By definition, charge conjugation

takes a representation of an internal symmetry into the complex-conjugate one.)

While the color symmetry is a local symmetry, the flavor symmetry is broken,

inducing the transformation on the mass matrix

M ′ = UfLMU−1
fR

This transformation allows the mass matrix M to be chosen real and diagonal: Any

matrix can be written as a hermitian one times a unitary one. A UfR transformation,

as a field redefinition, then can be made to cancel the unitary factor in M ; then

a unitary transformation UfL = UfR can be made to diagonalize M (while keeping

it hermitian). These diagonal elements are then simply the masses of the m dif-

ferent quark flavors. The most symmetric case is M = 0, which leaves the entire

U(m)⊗U(m) chiral symmetry unbroken. (See subsection IVA4.) The least symmet-

ric case is where all the masses are nonzero and unequal, leaving as unbroken only

the subgroup U(1)m, with UfL = UfR. (In general, UfL = UfR if all masses are

nonvanishing.)

Exercise IVB1.1

Show the most general case is the product of U(N)’s for various subspaces,

with 2 U(N)’s for the massless subspace.

Since the above transformation allows M to be diagonalized, in particular it can

be made symmetric, which is sufficient to define charge conjugation:

C : qLα ↔ qRα, Aa → −Aa*

Furthermore, since M can be chosen not only symmetric but real, in particular it can

be made hermitian, which is enough to define parity:

P : qαL,R → q̄R,L .
α, Aa → −Aa

The minimal form of this action, besides making CP and T automatic, also au-

tomatically extends the discrete symmetry C to an O(2) symmetry, whose “parity”
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transformation is C and whose continuous SO(2)=U(1) symmetry is the U(1) part

of the U(m) flavor symmetry, which is not broken by the mass term. It corresponds

to a charge called “baryon number”: Up to an overall normalization factor, it simply

counts the number of quarks qLα, q̄R .
α (which form a Dirac spinor) minus the number

of “antiquarks” qRα, q̄L .
α. However, such an O(2) symmetry can be defined separately

for each flavor, since (after M has been diagonalized) the action can be written as

a sum of independent terms for each flavor. In particular, each flavor has its own

separately conserved quark number. These flavor conservation laws, at the classical

level, are broken only by the weak interactions, which we have not included in the

above action. (Gravity and electromagnetism do not violate them.)

Since confinement is a quantum effect, the details of hadronic scattering cannot be

discussed within classical field theory. However, we saw that low-energy properties of

mesons (and similarly for baryons) could be described by effective Lagrangians. The

fact that hadrons are made of quarks can be used to obtain a bit more information

even at the classical level, especially if the relevant quarks are heavy. (Heavy with

respect to what is unfortunately also a question that can be answered only at the

quantum level.) For example, in a nonrelativistic approximation, low-energy proper-

ties of hadrons can be found from just the quantum numbers, spin-spin interactions,

and masses of the quarks, while their velocities are ignored, and the gluons are ne-

glected altogether. In such an approximation, reasonably accurate predictions are

made for the masses and magnetic moments of the ground-state hadrons.

Actually, the claim that color nonsinglet states can never be observed needs a

bit of stipulation: There may be a “quark-gluon plasma” phase of hadronic matter

that can exist only at extremely high temperatures or pressures. Thus, a hypothet-

ical observer during the first moments of the universe might observe “free” quarks

and gluons. Similarly, a small enough observer, living inside an individual hadron,

might see individual quarks and gluons, since the size of his equipment would be

much smaller than what we consider “asymptotic” distances. Conversely, we could

consider the possibility of a new chromodynamic force, other than the one respon-

sible for the hadrons of which we are composed, that has a confinement scale that

is astronomical (extremely low energy), so that earthly laboratories would fit inside

the new “hadrons”. Thus, any statement about the observability of color must be a

dynamical one, and does not follow as an automatic consequence of the appearance of

a nonabelian group: Just as for the Higgs effect, confinement can be repealed under

appropriate circumstances, and the observability of color depends on the details of

the dynamics, and in particular on the values of the various parameters (momenta

and couplings).
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2. Electroweak

The weak and electromagnetic interactions are mediated by observed spin-1 par-

ticles, some of which have charge and mass. Specifically (see subsection IC4), the

massive vectors form a triplet (W+, W−, Z), while there is only one massless vector

(the photon). This suggests a gauge group of SU(2)⊗U(1), with a Higgs effect that

leaves only U(1) unbroken. From the table of known fundamental fermions, we can see

that they fall into doublets and singlets of this SU(2), with the U(1) charge being that

of electromagnetism. (This SU(2)⊗U(1) unification of the weak and electromagnetic

interactions is called the “Glashow-Salam-Weinberg” model.)

We saw in subsection IVA4 a very simple model of spontaneously broken chiral

U(m)⊗U(m) symmetry where masses were generated for quarks. In subsection IVA6

we saw how the same scalars could generate masses for vectors, by coupling to one

of the U(m)’s. We now combine those two models, specializing to the case m=2,

but with two slight modifications: (1) Since the defining representation of SU(2) is

pseudoreal, we can impose a reality condition on the Higgs field, which is in the (1
2 ,1

2)

representation of SU(2)⊗SU(2):

φ* = CφC

This makes it a vector of SO(4)=SU(2)⊗SU(2) (See exercises IIA5.3 and IVA6.2.)

It’s also the reality condition satisfied by an element of (the defining representation

of) SU(2). (See subsection IIA2.) This is not surprising, since the group product

U ′ = ULUUR allows the interpretation of a group element itself as a representation

of chiral symmetry. This is the situation described in subsection IVA2 (φ→ U in the

large-mass limit), but in this case φ†φ is automatically proportional to the identity

(it gives the square of the 4-vector), so in general an SO(4) 4-vector can be written

as the product of a scalar with an SU(2) element. This reality condition breaks the

chiral U(1)⊗U(1) to the diagonal U(1) that leaves the Higgs invariant.

(2) The gauged SU(2) is still one of the two chiral SU(2)’s, but the gauged U(1)

must now be a subgroup of the other SU(2), since the Higgs is now invariant under

the usual U(1)’s. Thus, the ungauged SU(2) is explicitly broken, and this accounts

for the mass splittings in the doublets of known fundamental fermions. Remember

that observables are singlets of gauged nonabelian groups (except perhaps for Abelian

subgroups), so any observed internal SU(2) must be a global symmetry, even when

it’s broken. As described in subsection IVA6, these singlets can be constructed as

composite fields resulting from the gauge transformation obtained from the SU(2)

part of φ.
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Using the electromagnetic charges of the various particles, we thus determine

their SU(2)⊗U(1) representations: For spin 1, we have W=(1,0) and V=(0,0), where

the first entry is the “isospin” and the second is the U(1) charge. For spin 0, we

have φ=(1
2 ,±1

2), choosing the U(1) generator as the diagonal one from UR. Finally,

for spin 1/2, we have for the leptons lL=(1
2 ,−1

2), which combines with φ to pro-

duce (0,0)⊕(0,−1), and lR=(0,1). Similarly, for the quarks we have qL=(1
2 ,

1
6
), and

qR=(0,−1
6
± 1

2). (We use for undotted spinors the convention “L” = fermion, “R ” =

antifermion.) The Lagrangian is then

L = L1 + L0 + L1/2

L1 = 1
8g′2

F 2(V ) + 1
8g2
tr F 2(W )

L0 = tr[1
4
(∇φ)†(∇φ) + 1

4
λ2(φ†φ− 1

2m
2)2]

L1/2 = tr(ψ†i∇ψ) + tr

[(
Λ+

0

0

Λ−

)
qTRqLφ+ ΛlTRlLφ

(
1

0

)
+ h.c.

]
where the fermions ψ = (qL, qR, lL, lR), and the SU(2)⊗U(1) covariant derivative acts

as

∇φ = ∂φ+ iWφ− i1
2V φ

(
1
0

0
−1

)
∇qL = ∂qL − iqLW + i1

6
V qL

∇qR = ∂qR + i1
2V qR

[
−1

3
I +

(
1
0

0
−1

)]
∇lL = ∂lL − ilLW − i1

2V lL

∇lR = ∂lR + iV lR

The infinitesimal gauge transformations have the same form, dropping the derivative

term and replacing the gauge field with the corresponding gauge parameter:

δφ = iλWφ− i1
2λV φ

(
1
0

0
−1

)
δqL = −iqLλW + i1

6
λV qL

δqR = i1
2λV qR

[
−1

3
I +

(
1
0

0
−1

)]
δlL = −ilLλW − i1

2λV lL

δlR = iλV lR

Note that the SU(2) that acts on the left of φ is the local one, while the right one is

the global one (except for its local U(1) subgroup).

For simplicity we have ignored the indices for color (and its gauge fields, treated

in the previous section), families (treated in the following subsection), and spin. We
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have also used matrix notation with respect to the local SU(2) (gauged by W ) and

the global SU(2) (explicitly broken in L1/2 by the gauging of a U(1) subgroup, the

Yukawa couplings, and the chirality of the massless neutrinos): Thus W is a traceless

hermitian 2×2 matrix, φ is also 2×2 but satisfying the “reality” condition given above

(traceless antihermitian plus real trace), qL, qR, and lL are 2-component rows, and

lR is a single component. (By definition, the diagonal parts of W and φ are electro-

magnetically neutral.) The quark Yukawa coupling is diagonal in the broken SU(2)

to preserve the local U(1) symmetry. (The tr here is trivial for the lepton Yukawa

term, but we have left it for generalization to more than one family.) Explicitly, we

can write

W =

( 1√
2
W 0 W+

W− − 1√
2
W 0

)
and for the lightest family (see subsection IC4)

qL = (dL uL), qR = (dR uR), lL = (eL ν), lR = eR

In the unitary gauge for the local SU(2),

φ = 1√
2
ϕI, 〈ϕ〉 = m

where ϕ is a single real scalar, the simplifications to the Lagrangian are

L0 → 1
4
(∂ϕ)2 + 1

8
ϕ2 tr{[W − 1

2V
(

1
0

0
−1

)
]2}+ 1

8
λ2(ϕ2 −m2)2

L1/2 → tr(ψ†i∇ψ) + 1√
2
ϕ tr

[(
Λ+

0

0

Λ−

)
qTRqL + ΛlTRlL

(
1

0

)
+ h.c.

]
We then can expand ϕ about its vacuum value m: The lowest order terms give masses

for most of the vectors and fermions: The massless fermions are the neutrinos, while

the massless vector gauging the unbroken U(1) (a combination of the original U(1)

with a U(1) subgroup of the SU(2)) is the photon (of electromagnetic fame). The

mass of the remaining vectors accounts for the weakness and short range of the “weak”

interactions.

Exercise IVB2.1

Diagonalize this Lagrangian with respect to the mass eigenstates. For conve-

nience, normalize

g = 1√
2
g0 cos θW , g′ = g0 sin θW

where θW is the “weak mixing (Weinberg) angle”.

a Find explicitly the masses for all the particles in the Standard Model (first

family for fermions) in terms of the couplings m,λ, g0, θW , Λ±, Λ. Show from
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the experimental values for the vector masses given in subsection IC4 that

sin2θW ≈ .223.

b Find all the other couplings of the mass eigenstates. Show that, with the

conventional electric charge assignments,

1

e2
=

1

2g2
+

1

g′2

(Hint: Rather than rescaling the vectors, note that the generated mass term,

and the given couplings of V and W , suggest defining

W ′ = W − 1
2V
(

1
0

0
−1

)
⇒ V = γ + k1Z,

√
2W 0 = γ + k2Z

in the conventions of subsection IIA1, for the new fields Z and photon γ, for

appropriate constants ki.)

Note that, unlike the strong (chromodynamic) or purely electromagnetic (or even

gravitational) interactions, the weak interactions break every discrete spacetime sym-

metry possible. (The others break none. CP violation will be discussed in the

following subsection. Of course, CPT is always preserved.) Sometimes this is at-

tributed to the presence of a chiral symmetry, used to reduce 4-component spinors to

2-component; however, we have already seen that in general chiral and parity symme-

tries are unrelated. (You can have either without the other. This fact will be further

discussed in subsections IVB4 and VIIIB3.) A better explanation is to attribute

P and C to doubling, which converts spinors from 2-component to 4-component:

2-component spinors are the simplest description of helicity/spin 1
2 ; 4-component

spinors are useful only to manifest a larger symmetry, when it exists. The weak inter-

actions violate parity because the neutrino is not doubled, and because the fermions

that are doubled no longer have a symmetry relating their two halves.

3. Families

In the Standard Model (and its simpler generalizations) there is no explanation

for the existence of more than one family of fermions. However, the existence of 3

families does have interesting consequences. Most of these follow from the form of the

Yukawa couplings, and thus the fermion masses. In subsection IVB1 we considered

redefinitions of the fermion fields as unitary flavor transformations. These allowed us

to obtain the simplest form of the mass matrices, since they were not flavor singlets,

and thus transformed. We now perform similar transformations, but only on the

family indices, since transformations that don’t commute with the gauge symmetries
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would complicate the other terms in the action. Now ignoring spin, color, and local

flavor indices, and using matrix notation for the family indices, the fermions transform

as

q′L = qLUqL, q′R± = qR±UqR±*, l′L = lLUlL, l′R = lRUlR*

where qL, qR±, lL, and lR have m components for the m families. qR± are the 2

components of the (explicitly broken) global flavor doublet qR. We thus have 5 U(m)

symmetries, all broken by the Yukawa couplings: These field redefinitions induce

transformations on them,

Λ′± = UqLΛ±U
−1
qR±, Λ′ = UlLΛU

−1
lR

As in subsection IVB1, UqR± and UlR can be used to make Λ± and Λ hermitian.

Then UlL can be used to make Λ diagonal, also as in subsection IVB1, leaving a U(1)m

symmetry UlL = UlR, corresponding to separate conservation laws for electron number

(including its neutrino), muon number, and tauon number for the 3 known flavors.

However, the quark sector works a bit differently: We can use UqL to diagonalize Λ+

or Λ−, but not both. This leaves another U(1)m symmetry UqL = UqR+ = UqR−. If Λ+

has been diagonalized, then 1 of the m U(1)’s, corresponding to total quark number

(baryon number) conservation, leaves Λ− invariant, while the remaining m−1 U(1)’s

can be used to eliminate some of the phases of the complex off-diagonal components

of Λ−.

The remaining global flavor symmetries are thus m lepton U(1)’s and 1 quark

U(1). The remaining Yukawa couplings are the real, diagonal Λ, describing the m

masses of the massive leptons (the neutrinos remain massless), the real, diagonal

Λ+, giving the m masses of half of the quarks, and the hermitian Λ−, consisting

of m diagonal components, describing the masses of the other quarks, m(m−1)/2

magnitudes of the off-diagonal components, and (m−1)(m−2)/2 phases of the off-

diagonal components. These phases violate CP invariance: CP, besides its affect on

the coordinates, switches each spinor field with its complex conjugate. Since the

complex conjugate term in the action uses the complex conjugates of the Λ’s, this

symmetry is violated whenever any of the components have imaginary parts (after

taking into account all possible symmetries that could compensate for this, as we

have just done). Note that CP is violated only for 3 families or more. (C and P

are separately violated for any number of families by the SU(2)⊗U(1) coupling: As

discussed in subsection IVB1, C invariance of the strong interactions is the symmetry

qL ↔ qR.) Since we can choose to transform away the phases in the subsector of the

2 lighter quark families, the large masses of the heavier quarks suppress this effect,

accounting for the smallness of CP violation.
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Since observed particles are mass eigenstates, it’s convenient to perform a further

unitary transformation (the “Cabibbo-Kobayashi-Maskawa matrix”) that diagonal-

izes the mass matrix. Although this is clearly possible by the arguments of subsec-

tion IVB1, it is not part of the unitary transformations considered in this subsection

because it does not commute with the SU(2) gauge symmetry: After such a trans-

formation, we find that the components of each SU(2) quark multiplet are linear

superpositions of different families.

Exercise IVB3.1

Perform this diagonalization explicitly for the case m=2 (two families), using

the two lightest families of quarks and leptons as listed in subsection IC4.

Which particles mix? Parametrize this mixing by an angle θc (the “Cabibbo

angle”).

An important experimental result with which the Standard Model is consistent is

the suppression of “flavor-changing neutral currents (FCNC)”. The two electrically

neutral gauge fields in this model, the Z and the photon γ, couple to currents that are

neutral with respect to the U(1) symmetries associated with each of the quark (flavor)

numbers. This is true by construction before the unitary CKM transformation, but

this transformation also leaves these two currents invariant (the “Glashow-Iliopoulos-

Maiani mechanism”). Thus, at the classical level we do not see effects such as the

decay K0 → Z → µ+µ−, which would violate this “conservation law”. Furthermore,

the quantum corrections are suppressed (though nonvanishing) for similar reasons:

For example, the lowest-order nonvanishing quantum correction comes from replacing

the Z with a W+W− pair. Without the CKM matrix, this contribution would vanish;

treating CKM, and its resulting contribution to quark masses, as a perturbation, the

resulting contribution is suppressed by a factor of m2
q/m

2
W . The absence of FCNC is

an important constraint on generalizations of the Standard Model.

4. Grand Unified Theories

The Standard Model gives a description of the weak and electromagnetic inter-

actions that describes the spin-1 particles in terms of gauge fields, and accounts for

all masses by the Higgs effect. However, it does not give any unification, in the sense

that we still have 3 groups (SU(3), SU(2), and U(1)) for 3 interactions (strong, weak,

and electromagnetic), and a large variety of spin-1/2 fields that are unrelated ex-

cept by color and broken SU(2) flavor. Grand Unified Theories unify this symmetry

by forcing all 3 gauge groups to be subgroups of a simple group, which is broken to

SU(3)⊗SU(2)⊗U(1) by Higgs (and then broken to SU(3)⊗U(1) by more Higgs). This
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means introducing new spin-1 particles that are unobserved so far because of their

very large masses. On the other hand, the known fermions are then grouped together

in a small number of multiplets without introducing new fermions (except perhaps

partners for the neutrinos to allow them to have small masses). Unfortunately, this

requires a more complicated (and ambiguous) Higgs sector, with separate spin-0 mul-

tiplets and couplings for first breaking to SU(3)⊗SU(2)⊗U(1) and then breaking to

SU(3)⊗U(1); we won’t discuss those Higgs fields here.

The simplest such model uses the group SU(5). Recall the SU(3)⊗SU(2)⊗U(1)

representations of each family of fermions:

qL = (3, 1
2 ,

1
6
), qR+ = (3̄, 0, 1

3
), qR− = (3̄, 0,−2

3
), lL = (1, 1

2 ,−
1
2), lR = (1, 0, 1)

where the first argument is the dimension of the SU(3) representation (3̄ being the

complex conjugate of the 3), the second is the SU(2) isospin, and the third is the U(1)

charge. An SU(3)⊗SU(2)⊗U(1) subgroup of SU(5) can be found easily by taking

the 5-component defining representation and picking 3 components as the defining

representation of SU(3) and the other 2 for that of SU(2): I.e., consider a traceless

hermitian 5×5 matrix as an element of the SU(5) Lie algebra, and take

(SU(5) )→
(
SU(3)− 1

3
I × U(1) 0

0 SU(2) + 1
2I × U(1)

)
or in other words

5→ (3, 0,−1
3
)⊕ (1, 1

2 ,
1
2)

From this we recognize the fermions as falling into a 5̄ ⊕ 10, where the 10 is the

antisymmetric product of two 5’s, which consists of the antisymmetric product of the

two 3’s (a 3̄), the antisymmetric product of the two SU(2) doublets, and the product

of one of each:

5̄→ (3̄, 0, 1
3
)⊕ (1, 1

2 ,−
1
2) = qR+ ⊕ lL

10→ (3̄, 0,−2
3
)⊕ (1, 0, 1)⊕ (3, 1

2 ,
1
6
) = qR− ⊕ lR ⊕ qL

Exercise IVB4.1

Find the symmetric product of 2 5’s, and its decomposition into representa-

tions of SU(3)⊗SU(2)⊗U(1).

A more unifying model is based on SO(10). A U(5) subgroup can be found from

the spinor representation by dividing up the set of 10 Dirac γ matrices into two

halves, and taking complex combinations to get 5 sets of anticommuting creation and

annihilation operators. (See exercise IC1.2.) The Dirac spinor is then

(1,−5
2
)⊕ (5,−3

2
)⊕ (10,−1

2)⊕ (10, 1
2)⊕ (5̄, 3

2
)⊕ (1, 5

2
)



376 IV. MIXED

in terms of the SU(5) representation and the U(1) charge. This Dirac spinor is

reducible into Weyl spinors 16⊕16; in fact, γ−1 is just (−1)Y+1/2 in terms of the U(1)

charge Y . (The SO(10) generators are even in oscillators, and thus do not mix even

levels with odd.) We then have

16→ (1,−5
2
)⊕ (10,−1

2)⊕ (5̄, 3
2
)

Ignoring the U(1) charge, these are the multiplets found for each family in the SU(5)

GUT, plus an extra singlet.

A simple way to understand this extra singlet is to look at a different path of

breaking to SU(3)⊗SU(2)⊗U(1): Looking at the vector (defining) representation of

SO(10), we can break it up as 6+4 (in the same way we broke up the 5 of SU(5)

as 3+2) to get the subgroup SO(6)⊗SO(4)=SU(4)⊗SU(2)⊗SU(2). We can also see

that a Dirac spinor of SO(10) (16⊕16) will be a Dirac spinor of SO(6) (4⊕4̄) times

(not plus) a Dirac spinor of SO(4), while the Dirac spinor of SO(4) is a defining

representation of one SU(2) ((1
2 ,0)) plus a defining representation of the other SU(2)

((0,1
2)). Thus,

16→ (4, 1
2 , 0)⊕ (4̄, 0, 1

2)

where we have used the fact that γ−1 (used for projection to Weyl spinors) of SO(10)

is proportional to the product of all the γ-matrices, and thus the product of γ−1’s for

SO(6) and SO(4).

Looking at this model (“Pati-Salam model”) as an alternative to SU(5) (but with

a semisimple, rather than simple, group, so it unifies only spin 1/2, not spin 1), we

now look at breaking SU(4)→U(3)= SU(3)⊗U(1) (using 4=3+1, as we did 5=3+2

for SU(5)), and breaking one SU(2)→ U(1). We then find

(4, 1
2 , 0)→ (3,−1

3
, 1

2 , 0)⊕ (1, 1, 1
2 , 0) = qL ⊕ lL

(4̄, 0, 1
2)→ (3̄, 1

3
, 0, 1

2)⊕ (3̄, 1
3
, 0,−1

2)⊕ (1,−1, 0, 1
2)⊕ (1,−1, 0,−1

2)

= qR+ ⊕ qR− ⊕ lR ⊕ lR−

where the arguments are the SU(3) representation, the U(1) charge from SU(4),

the SU(2) isospin, and the U(1) charge from the broken SU(2). If we choose the

U(1) charge of SU(3)⊗SU(2)⊗U(1) as −1/2 times the former of these two U(1)

charges plus 1 times the latter, this agrees with the result obtained by way of SU(5).

However, we now see that all the left-handed fermions are contained within one

SU(4)⊗SU(2)⊗SU(2) multiplet, and the right-handed within another, but with a

partner for the neutrino. Also, one of the SU(2)’s is that of SU(3)⊗SU(2)⊗U(1),
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while the other is the other SU(2) of the Standard Model, which was broken explic-

itly there to U(1), whereas here it is broken spontaneously. Thus, there is a local

chiral SU(2)⊗SU(2) flavor symmetry.

SO(10)

↙ ↘
SU(5) SU(4)⊗SU(2)L⊗SU(2)R

↘ ↙ ≈ 1016 GeV?

SU(3)⊗SU(2)L⊗U(1)R

↓ ≈ 100 GeV

SU(3)⊗U(1)

Furthermore, the SU(4)⊗SU(2)⊗SU(2) model is invariant under C: In general, C

is just a permutation symmetry. In this case, it simply switches the two multiplets

of each family,

C : (4, 1
2 , 0)↔ (4̄, 0, 1

2)

Combining with the usual CP, this model is thus also invariant under P:

P : (4, 1
2 , 0)↔ (4̄, 0, 1

2)* i.e., ψα(4, 1
2 , 0)↔ ψ̄ .

α(4, 0, 1
2)

But both C and P are broken spontaneously on reduction to the Standard Model.

However, SO(10) lacks C and P invariance (contrary to some statements in the liter-

ature), since there is only a single complex representation for each family of fermions

(and thus no nontrivial C; of course, there is still CP, at least for the vector-spinor

coupling, as always). In fact, the C of SU(4)⊗SU(2)⊗SU(2) is just an SO(10) trans-

formation: Although SO(10) is not O(10) (which is why it lacks a C), it still includes

reflections in an even number of “axes”, since reflection in any pair of axes is a π rota-

tion (just as for SO(2)). Thus, breaking 10→ 6 + 4 includes not only SO(6)⊗SO(4),

but also the reflection of an odd number of the “6” axes together with an odd number

of the “4” axes — a combined “parity” of both SO(6) and SO(4). (They are all the

same up to continuous SO(6)⊗SO(4) transformations.) This parity of the internal

space is the C given above. (We saw a similar situation for O(2) in subsection IVB1.)

The identification of C is somewhat semantic in a nonabelian gauge theory (ex-

cept for unbroken U(1) subgroups), since it is defined by changes in sign of unobserved

charges: The C appearing above at an intermediate stage of breaking of the SO(10)

GUT originates as a global symmetry of only the Higgs sector, leaving all “funda-

mental” particles with spin invariant. After breaking to SU(4)⊗SU(2)⊗SU(2), the

vectors and the spinors are composites of the original ones and the Higgs responsible
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for the breaking, so they pick up this symmetry. (In the same way, the spinning

particles of the Standard Model pick up the broken global SU(2) of its Higgs.)

Since GUTs unify quarks and leptons, they allow decay of the proton. However,

since this requires simultaneous decay of all 3 quarks into 3 leptons, it is an extremely

unlikely (i.e, slow) decay, but barely within limits of experiment, depending on the

model. Proton decay is still unobserved: This eliminates the simplest version of the

SU(5) GUT.

So far we have ignored neutrino masses. Although mass differences have been

measured via neutrino oscillation in solar neutrinos, the signs of the differences, and

the individual masses, are yet to be determined, as well as other related details.

However, the SO(10) GUT, with its extra “sterile” (singlet) neutrino, is not only

a good candidate for the other handedness to make each neutrino massive, but also

suggests a natural mechanism for mass via the “seesaw” mechanism: Breaking SO(10)

gives the extra right-handed neutrinos (1 per family) “Majorana” mass terms of the

form Mν2
R, where M is of the order of the GUT scale, from the Higgs that “break”

that symmetry. But such neutrinos can also get “Dirac” mass terms of the form

mνLνR (as for the quarks), where m is of the order of the electroweak scale, from

Higgs that further break that. Diagonalizing the mass matrix then yields masses of

the order m2/M for the observed, “mostly left-handed” neutrinos, giving a natural

explanation for their smallness. The Yukawa couplings that generated the masses m

are then treated as in the quark case, and include leptonic CP violation, which may

be important in cosmology.
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In section IIC we studied some general properties of supersymmetry in arbitrary

dimensions, and its representations in D=4. We now consider 4D interactions, by

introducing gauge fields defined on superspace, and their actions. A complete dis-

cussion of supersymmetry would require (at least) a semester; but here we give more

than just an overview, and include the basic tools with examples, which is enough for

many applications. Quantum aspects of supersymmetry will be discussed in chapters

VI and VIII, supergravity in chapter X, and some aspects of superstrings in chapter

XI.

1. Chiral

We first consider some field equations that appear in all free, massless, super-

symmetric theories. Of course, since the theory is massless it satisfies the massless

Klein-Gordon equation by definition: Φ = 0. From our earlier discussion of general

properties of supersymmetry, we also know that pα
.
β q̄.
β
Φ = pα

.
βqαΦ = 0. These don’t

look covariant, but noticing that pq differs from pd only by θ terms (because of the

index contraction), which already vanishes, we have the field equations

pα
.
βd̄.

β
Φ = pα

.
βdαΦ = 0

These equations imply the Klein-Gordon equation, as seen by hitting them with

another d and using the anticommutation relations {dα, d̄.
β
} = p

α
.
β
. They imply

stronger equations: By evaluating at θ = 0, dαΦ yields a spinor component field ψα,

and we find

pα
.
βψ̄.

β
= pα

.
βψα = 0

the usual for massless spin 1/2.

Another equation that can be imposed is the “chirality” condition (see subsections

IIC4-5)

d̄ .
αφ = 0

where φ now refers to such a “chiral superfield” (and thus φ̄ to an “antichiral” one,

dαφ̄ = 0). This requires that φ be complex, otherwise we would also have dαφ = 0

and thus pφ = 0 by the anticommutation relations. The component expansion is

given completely by just the d’s and not the d̄’s:

φ| = A, (dαφ)| = ψα, (d2φ)| = B



C. SUPERSYMMETRY 381

where A and B are complex scalars, and we use the normalization

d2 = 1
2d

αdα

All other components are x-derivatives of these, since the d̄’s can be pushed past the

d’s (producing p’s) until they annihilate φ. Another way to state this is to use the

fact

dα = e−U/2∂αe
U/2, d̄ .

α = eU/2∂̄ .
αe
−U/2; U = θαθ̄

.
βp

α
.
β

to solve the chirality constraint as

φ(x, θ, θ̄) = eU/2φ̂(x, θ)

where φ̂ is independent of θ̄: It is defined on “chiral superspace”. (In this equation U

generates a complex coordinate transformation.) Another way to solve the chirality

constraint is to use the covariant derivatives: Since dαdβdγ = 0 by anticommutativity

(and similarly for d̄’s),

d̄ .
αφ = 0 ⇒ φ = d̄2ψ

where ψ is a “general” (unconstrained) complex superfield. It is the “prepotential”

for the field φ.

Exercise IVC1.1

Let’s analyze the supersymmetry generators qα, q̄ .α in this case.

a Find similar expressions for q, q̄ in terms of eU/2.

b Find q, q̄ on φ̂ in terms of just θ and ∂/∂θ (no θ̄ nor ∂/∂θ̄).

Exercise IVC1.2

Show that the prepotential has a gauge invariance, under which φ is invariant.

(Hint: Use the same identity that led to the prepotential.)

From the anticommutation relations we find

[d̄
.
α, d2] = pβ

.
αdβ

Since this must vanish on φ, we find

dαd
2φ = d̄ .

αd
2φ = 0 ⇒ p

α
.
β
d2φ = 0 ⇒ d2φ = constant

(We can safely ignore this constant, at least when considering the free theory: It

corresponds to a term in the action linear in the fields.) This field equation, together

with the chirality constraint, is sufficient to determine the theory: A is the usual free

(complex) scalar, ψα is the usual free spinor, and B is a constant.
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To describe interactions of this (“scalar”) multiplet, we keep the chirality condi-

tion, since that greatly simplifies the field content of the superfield. In fact, this is

clearly the simplest off-shell superfield we can define, since it already has the smallest

number of fermions (as do the coordinates of chiral superspace). (“Off shell” means

all components less gauge degrees of freedom.) This means that the equation d2φ = 0

will be generalized, since it implies the Klein-Gordon equation. The simplest way to

do this is by constructing an explicit action, our next topic.

2. Actions

The construction of actions in superspace is different from ordinary theories be-

cause the geometrically simple objects, the potentials, are constrained, while the un-

constrained objects, the prepotentials, can be awkward to work with directly. (This

problem is magnified with extended supersymmetry, whose actions we don’t consider

here.)

We start with the simplest supermultiplet, the chiral superfield. Since chiral

superfields are defined on chiral superspace, a natural generalization of a potential

(nonderivative) term in the action to superspace is

S1 =

∫
dx d2θ f(φ) + h.c.

in terms of some function (not functional) f of chiral superfields φ (the “superpoten-

tial”). We can ignore any θ̄ dependence because it contributes only total derivatives:

φ = eU/2φ̂(x, θ) ⇒ f(φ) = eU/2f(φ̂)

Integration over θ is defined as in subsection IA2; however, now we can replace partial

derivatives with covariant ones, since the modification is again only by total deriva-

tives: ∫
dx d2θ =

∫
dx d2

with an appropriate normalization. This turns out to be the most convenient one,

since it allows covariant manipulations of the action, and the θ integration can be per-

formed covariantly: Since we know that the result of θ integration gives a Lagrangian

that depends only on x, up to total derivative terms, we can evaluate it as∫
dx d2θ f(φ) =

∫
dx [d2f(φ)]|

=

∫
dx [f ′(φ|)(d2φ)|+ f ′′(φ|)1

2(dαφ)|(dαφ)|]
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(suppressing indices on multiple φ’s). This gives the result directly in terms of com-

ponent fields, using the covariant method of defining the component expansion: In

the conventions of the previous subsection, this part of the action becomes∫
dx [f ′(A)B + f ′′(A)1

2ψ
αψα]

We now consider integration over the full superspace. As a generalization of the

above, we can write ∫
dx d4θ K(φ, φ̄) =

∫
dx (d2d̄2K)|

Supersymmetric versions of nonlinear σ models can be written in this way; here we

consider just the case where K is quadratic, which is the one interesting for quantum

theory. Since a function of just φ (or just φ̄) will give zero in the d4θ integral, we

choose

K = −φ̄φ ⇒ S0 = −
∫
dx d4θ φ̄φ

Explicitly,

L0 = d2d̄2(−φ̄φ) = −d2(d̄2φ̄)φ = −(1
2 φ̄)φ+ (i∂α

.
βd̄.

β
φ̄)dαφ− (d̄2φ̄)(d2φ)

→ −A1
2 Ā+ ψαi∂α

.
βψ̄.

β
−BB̄

where we have used the commutation relations of the covariant derivatives to push all

d’s past d̄’s to hit φ̄. Clearly, this term by itself reproduces the results derived in the

previous subsection based on kinematics, so it is the desired massless kinetic term.

We can now see the influence of adding the superpotential term to the action:

The result of combining the two terms, and then eliminating the auxiliary field B by

its equation of motion, is

S0 + S1 → L = −A1
2 Ā+ ψαi∂α

.
βψ̄.

β
+ |f ′(A)|2 + [f ′′(A)1

2ψ
αψα + h.c.]

For example, a quadratic f gives mass to the physical scalar and spinor. This action is

invariant under modified supersymmetry transformations, where the auxiliary fields

are replaced by their equations of motion there also; those transformations then

become nonlinear in the presence of interactions. Note that the scalar potential is

positive definite; this is a consequence of supersymmetry, since it implies that the

energy is always positive. This is an example of the statement that supersymmetry

prohibits tachyons.

Exercise IVC2.1

These results generalize straightforwardly:
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a Find the explicit form of the component-field action for arbitrary K(φi, φ̄i)

and f(φi) for an arbitrary number of chiral superfields φi, including all indices.

b Eliminate the auxiliary fields from the action, and find the modified super-

symmetry transformations.

c Show by direct evaluation that the action is still invariant.

As a notational convenience, we can drop the “|” after expanding a superspace

action in components: For example, we can write simply

ψα = dαφ, B = d2φ

After performing the θ-integration as above by using derivatives d and d̄, and then

“evaluating” these derivatives on φ by writing ψ and B, the component action is

expressed completely in terms of such superfields and only spacetime derivatives ∂
α
.
β
.

This component action is independent of θ (the Lagrangian is independent up to total

spacetime derivatives): This is the statement of supersymmetry invariance. Thus, we

can choose to evaluate at θ = 0, or θ = ε, or whatever; it is irrelevant. It is then

understood that the relation to the usual component actions is simply to treat the

superfield as a component field, since the θ-derivatives (in d and
∫
dθ) have been

eliminated. From now on we will generally drop the |’s.

The above results can also be derived from the superfield equations of motion

by varying the action. Since φ is constrained, it can’t be varied arbitrarily; we vary

instead the prepotential ψ (φ = d̄2ψ). For example, we find d2φ = 0 (and the complex

conjugate) from the free action. Effectively, since chiral superfields are essentially

independent of θ̄, not only integration is modified, but also (functional) variation.

Since a chiral superfield is (up to a transformation) an arbitrary function on chiral

superspace, we define

δS[φ] =

∫
dx d2θ (δφ)

δS

δφ

for an arbitrary variation of a chiral superfield φ, and similarly for varying φ̄. In

evaluating such variations, we make use of the identities∫
dx d4θ L =

∫
dx d2θ d̄2L

d̄2d2φ = 1
2 φ (d̄2d2d̄2 = 1

2 d̄2)

Thus, to vary a general action, it is convenient to first integrate over θ̄, and then vary

in the naive way: For example,

S = −
∫
dx d4θ φ̄φ+

[∫
dx d2θ f(φ) + h.c.

]
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⇒ 0 =
δS

δφ
= −d̄2φ̄+ f ′(φ)

Exercise IVC2.2

Check for this action that the component expansion of the superfield equations

of motion agree with the variation of the corresponding component action.

3. Covariant derivatives

The supersymmetric generalization of nonabelian gauge theories can be derived by

similar methods. We first write the supersymmetry covariant derivatives collectively

as

dA = (dα, d̄ .
α, ∂α .

α) = EA
M∂M

∂M = (∂µ, ∂.
µ, ∂m) = ∂/∂zM , zM = (θµ, θ̄

.
µ, xm)

Unlike the nonsupersymmetric case, the “vielbein” EA
M has θ dependence even in

“flat” superspace, and thus the “torsion” T is nonvanishing:

[dA, dB} = TAB
CdC

T
α
.
β
γ
.
γ = T.

βα
γ
.
γ = −iδγαδ

.
γ.
β
, rest = 0

We now gauge-covariantize all the supersymmetry-covariant derivatives:

∇A = dA + iAA

The covariant field strengths are then defined as

[∇A,∇B} = TAB
C∇C + iFAB

From our analysis of general representations of supersymmetry in D=4 in subsection

IIC5, we know that the simplest supersymmetrization of Yang-Mills is to include a

spinor with the vector, in terms of physical degrees of freedom. (The spinor and

vector each have two physical degrees of freedom, one for each sign of the helicity.)

Off shell, Fermi and Bose components must still balance, so there must also be an

auxiliary scalar. From dimensional analysis, the field strengths must therefore satisfy

Fαβ = F .
α
.
β

= F
α
.
β

= 0; F
α,β

.
β

= −iCαβW .
β
, F .

α,β
.
β

= −iC .
α
.
β
Wβ

where Wα| is the physical spinor.

The constant piece of the torsion implies stronger relations among the field

strengths than in nonsupersymmetric theories. For super Yang-Mills we find from



386 IV. MIXED

the Jacobi identity for the covariant derivatives the Bianchi identity for the field

strengths

∇[AFBC) = T[AB|
DFD|C)

Specifically, the dimension-1 constraints above on the field strengths imply the dimen-

sion-3/2 algebraic constraint that defines Wα, as well as

F
α
.
α,β

.
β

= Cαβ
1
2∇(

.
αW .

β)
+ C .

α
.
β

1
2∇(αWβ)

They also imply that Wα is covariantly chiral and satisfies a “reality” condition,

∇ .
αWβ = 0, ∇αWα +∇

.
αW .

α = 0

The most straightforward way to derive these results is to just evaluate the Jacobi

identities directly. We begin with a weaker set of conditions, both of dimension 1, that

will be found (in the following subsection) to be necessary and sufficient for solving

explicitly. One directly determines the vector derivative in terms of the spinor ones:

F
α
.
β

= 0 ⇒ −i∇α
.
α = {∇α,∇ .

α}

Since one could always define the vector covariant derivative this way, imposing this

condition simply eliminates redundant degrees of freedom.

The remaining constraint (including its complex conjugate) allows coupling of

super Yang-Mills to the chiral superfield:

∇ .
αφ = 0 ⇒ 0 = {∇ .

α,∇.
β
}φ = iF .

α
.
β
φ

It also implies the maintenance of certain free identities, such as

∇α∇β = 1
2 [∇α,∇β] + 1

2{∇α,∇β} = Cβα∇2

(Such constraints appear also for first quantization, e.g., in superstring theory, when-

ever a supersymmetric system is put in a background of a supersymmetric gauge field

of higher superspin. This should not be confused with background field equations

imposed by any gauge system put in a background of the same type: see subsection

VIB8.)

Thus, our minimal set of constraints can be written directly in terms of the field

strengths as

Fαβ = F .
α
.
β

= F
α
.
β

= 0

but for our purposes it will prove more convenient to write them directly as (anti)com-

mutators:

{∇α,∇β} = {∇ .
α,∇.

β
} = 0, {∇α,∇.

β
} = −i∇

α
.
β
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The solution to the dimension-3/2 Jacobis are then

[∇(α, {∇β,∇γ)}] = 0 ⇒ trivial

[∇(α, {∇β),∇.
γ}] + [∇.

γ, {∇α,∇β}] = 0 ⇒ [∇α,∇β
.
γ] = CαβW .

γ

for some field W , simply applying the constraints to drop {∇α,∇β} and replace

{∇α,∇.
β
} with ∇

α
.
β
. Similarly, we find from the dimension-2 Jacobis

{∇(α, [∇β),∇γ
.
γ]}+ [∇γ

.
γ, {∇α,∇β}] = 0 ⇒ ∇αW .

γ = 0

[∇α
.
α, {∇β,∇.

γ}] + {∇β, [∇.
γ,∇α

.
α]}+ {∇.

γ, [∇β,∇α
.
α]} = 0

⇒ [∇α
.
α,∇β

.
β
] = i(Cαβ f̄ .

α
.
β

+C .
α
.
β
fαβ), fαβ = 1

2∇(αWβ), ∇αWα+∇
.
αW .

α = 0

where we separated the last equation into its (Lorentz) irreducible pieces. (The

dimension-5/2 and 3 identities are redundant.)

Exercise IVC3.1

Explicitly evaluate all the remaining Jacobi identities, and show that they

imply no further conditions on Wα.

Component expansions are now defined with Yang-Mills-covariant derivatives:

∇αφ = ψα, ∇2φ = B

∇αWβ = fαβ + iCαβD, ∇2Wα = −i∇α

.
βW .

β

where we have used the Bianchi identities forW , and fαβ (not to be confused with Fαβ)

is the usual Yang-Mills field strength (in spinor notation). The “vector multiplet”

thus consists of the component fields Aa (the gauge field whose strength is f), Wα,

and D (auxiliary). (As explained earlier, we drop all |’s.)

It should be noted that the counting of physical, auxiliary, and gauge degrees

of freedom separately balances between bosons and fermions — both the scalar and

vector multiplets have 2 Bose + 2 Fermi physical degrees of freedom, and both have

2+2 auxiliary; the rest of the superfield also divides equally (since any superfield

does). For both cases, 1
2 of the Weyl spinor is auxiliary (as seen from the lightcone

analysis of subsection IIIC2). For the scalar multiplet, we have a complex auxiliary

scalar; for the vector multiplet, a real scalar + 1 component of the gauge vector.
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4. Prepotential

We saw in the previous subsection that coupling super Yang-Mills to matter gave

directly one of the minimal constraints on the super Yang-Mills fields themselves.

Hence, as for ordinary Yang-Mills, the definition of the gauge theory follows from

considering the transformation of matter, and generalizing it to a local symmetry. As

for selfdual Yang-Mills (see subsection IIIC5), the vanishing of some field strengths

implies that part of the covariant derivative is pure gauge:

{∇α,∇β} = 0 ⇒ ∇α = e−Ωdαe
Ω

(Thus Aα = e−Ω(dαe
Ω). The parentheses mean that the dα acts only on the eΩ.) How-

ever, since {∇α,∇.
β
} 6= 0, this gauge transformation Ω (“prepotential”) is complex.

We therefore have the covariantly chiral superfield

∇ .
αφ = 0, ∇ .

α = eΩ̄d .
αe
−Ω̄ ⇒ φ = eΩ̄φ̂, d .

αφ̂ = 0

Alternatively, we could combine this exponential with that already contained in the

free spinor derivative:

∇α = e−U/2−Ω∂αe
U/2+Ω, φ = eU/2+Ω̄φ̂, ∂ .

αφ̂ = 0

U + 2Ω is the analog of the covariant derivative for the Yang-Mills prepotential. This

is a hint at supergravity: U is just the flat piece of the supergravity prepotential.

We thus see that supersymmetry automatically gives gravity the interpretation of the

gauge theory of translations.

Note that the gauge parameter is real, while the matter multiplet is (covariantly)

chiral. The resolution of this apparent inconsistency is that solving the constraints

introduces a new gauge invariance, just as solving the source-free half of Maxwell’s

equations (really just constraints, not field equations) introduces the potential and

its gauge invariance:

∇′A = eiK∇Ae
−iK , ∇α = e−Ωdαe

Ω ⇒ eΩ
′
= eiΛ̄eΩe−iK , dαΛ̄ = 0

φ′ = eiKφ, φ = eΩ̄φ̂ ⇒ φ̂′ = eiΛφ̂

This suggests the definition of a new (“chiral”) representation, where we use the

obvious field φ̂ and the chiral gauge parameter Λ replaces the real one K: Making a

nonunitary similarity transformation,

∇̂A = e−Ω̄∇Ae
Ω̄ ⇒ ∇̂ .

α = d .
α, ∇̂α = e−V dαe

V , eV = eΩeΩ̄
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φ̂ = e−Ω̄φ, ˆ̄φ = φ̄eΩ̄ ⇒ d .
αφ̂ = 0, ˆ̄φ = (φ̂)†eV

∇̂′A = eiΛ∇̂Ae
−iΛ, eV

′
= eiΛ̄eV e−iΛ

The chiral representation can also be treated as a complex gauge. Alternatively, we

can also include U in the transformation as above; then U and V appear only in the

combination U + V .

Exercise IVC4.1

Show that the explicit expression for the field strength Wα in terms of the

prepotential V in the chiral representation is

Wα = −id̄2(e−V dαe
V )

Show this expression is chiral.

Exercise IVC4.2

In the Abelian case, give an explicit component expansion of the prepotential

V , such that the vector potential Aa, the physical spinor Wα, and the auxiliary

field D appear as independent components. Note that the other components

do not appear explicitly in component expansions when gauge-covariant ex-

pansion (∇...|) is used. The component (nonsupersymmetric) gauge where

these components are set to vanish is the “Wess-Zumino gauge”, and is the θ

part of the radial gauge of subsection VIB1 below.

Exercise IVC4.3

For some purposes (like quantization) we need the explicit form of an in-

finitesimal gauge transformation of V . Show this can be written as

δV = −iLV/2[(Λ+ Λ̄) + coth(LV/2)(Λ− Λ̄)]

(Hint: Consider e−V δeV , and think of δ as an operator, as for the expansion

of ∇α = e−V dαe
V . LA was defined in subsection IA3.)

5. Gauge actions

Generalization of actions to super Yang-Mills theory is straightforward. Matter

coupling is achieved simply by replacing the chiral superfields of the matter multiplets

with Yang-Mills-covariantly chiral superfields. The coupling can be seen explicitly in

the chiral representation: In the kinetic term,

φ̄φ = (φ̂)†eV φ̂



390 IV. MIXED

while in the
∫
d2θ term all V -dependence drops out because of gauge invariance. (The

superpotential is a gauge invariant function of the φ’s, and the transformation to the

chiral representation is a complex gauge transformation. The fact that the gauge

transformation is complex is irrelevant, since the superpotential depends only on φ

and not φ̄.) Component expansion can be performed covariantly by replacing d’s with

∇’s in the definition of θ integration: Since the Lagrangian is a gauge singlet, this is

the same acting on it, although individual terms in the expansion differ because the

fields are not singlets. Similarly, d̄2 can be replaced with ∇2
also when performing θ̄

integration for purposes of varying an action with respect to a chiral superfield. This

is equivalent to gauge covariantizing the functional derivative (e.g., by transforming

from a chiral representation) as

δφ(x, θ)

δφ(x′, θ′)
= ∇2

δ(x− x′)δ4(θ − θ′)

Usually we will drop the “̂ ”’s on φ and φ̄, when the representation is clear from the

context by the use of explicit V ’s.

The action for super Yang-Mills itself follows from dimensional analysis: Since

each θ integral is really a θ derivative, d2θ integration has mass dimension +1, the

same as a spacetime derivative. Since the Lagrangian for a physical spinor, in this

case Wα, has a single such derivative, dimensional analysis says the action must be

SsYM = − 1
g2
tr

∫
dx d2θ 1

2W
αWα

where the (covariant) chirality of Wα allows integration over chiral superspace. (Sim-

ilar analysis applies to the matter multiplet, where
∫
d4θ takes the place of a for

the scalar φ.) Replacing
∫
d2θ → ∇2, we evaluate the component expansion as

SsYM = 1
g2
tr

∫
dx (1

2f
αβfαβ +Wαi∇α

.
βW .

β
−D2)

Another term we can write, for superelectromagnetism (supersymmetrization of an

Abelian gauge theory) is the “Fayet-Iliopoulos term”

SFI = ζ

∫
dx d4θ V = ζ

∫
dx D

which involves only the auxiliary field D. (The analog for the chiral scalar superfield

is
∫
dx d2θ φ.)

Exercise IVC5.1

Derive the supersymmetric analog of the Stückelberg model of subsection

IVA5, by coupling an Abelian vector multiplet to a massless chiral scalar
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multiplet using the symmetry generator T defined there. (G→ −iT in trans-

formation laws, covariant derivatives, etc., on φ, where Tφ = 1⇒ T 2φ = 0.)

a To couple the gauge field it is necessary to start, as usual, with a (quadratic)

matter action that is globally invariant under this symmetry:

S0 =

∫
dx d4θ 1

2(φ− φ̄)2

(At this point this is the usual, since only the cross-term survives, but this

will not be the case for the covariantly chiral superfields.) Find the super-

symmetric gauge coupling, and express the resulting action in terms of V and

φ̂.

b Use this result to find the mass term for V in the gauge φ̂ = 0.

Another interesting form of the action uses a generalization of the Chern-Simons

form defined in the discussion of instantons in subsection IIIC6. In superspace, the

calculation of the field strength with curved indices is modified to

∇M = EM
A∇A = ∂M + iAM , −i[∇M ,∇N} = FMN = EM

AEN
BFAB

where we have left sign factors from index reordering in the last equation implicit.

Although the curved-index expressions are not as useful (for example, for seeing which

components vanish by constraints), we can see easily that some arguments used in

nonsupersymmetric theories carry over to superspace. Thus, we can define the super

Chern-Simons form by
1
8
tr F[MNFPQ) = 1

6
∂[MBNPQ)

BMNP = tr(1
2A[M∂NAP ) + i1

3
A[MANAP ))

Converting to flat superspace (again with some implicit sign factors),

BABC = EA
MEB

NEC
PBMNP = tr(1

2A[AdBAC) − 1
4
A[ATBC)

DAD + i1
3
A[AABAC))

In terms of this expression, the super Yang-Mills action can be written simply in

terms of the spinor-spinor-vector part B
α
.
βc

of BABC as

SsYM,1 = 1
2i

1
g2

∫
dx d4θ Bα,

.
α
α
.
α

Note that the fact that the curl of B is gauge invariant implies that B transforms

under a gauge transformation as the curl of something, and thus the integral of any

part of B is gauge invariant (up to possible torsion terms: see the exercise below).

Furthermore, we can drop the F
α
.
β

= 0 constraint on the A in this action; it follows
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from variation with respect to A
α
.
β
. One simple way to check this action is to use the

chiral representation A .
α = 0: Then only the Aα

.
β
↔
d .
β
Aα and (A

α
.
β
)2 terms contribute,

and A
α
.
β

= id̄.
β
Aα, while Wα = d̄2Aα, so

∫
d2θ̄ integration gives −

∫
dx d2θ W 2.

Exercise IVC5.2

Derive the expression for BABC directly using only flat indices:

a Start with F[ABFCD) expressed in terms of T and A, and write it as a total

derivative plus torsion terms.

b Do the same for the gauge transformation of B. Show that the torsion terms

do not contribute to δBα
.
α,
α,

.
α.

The multiplets and couplings we have considered are sufficient to write a su-

persymmetric generalization of the Standard Model. Unfortunately, supersymmetry

provides no unification. To get the right symmetry breaking, it turns out to be

necessary to provide a supersymmetry multiplet for each particle of the Standard

Model: The spin-1 gauge bosons are accompanied by spin-1/2 “gauginos” (“gluinos”,

“photino”, “Wino”, “Zino”), the spin-1/2 leptons by spin-0 “sleptons”, the quarks

by “squarks”, and the spin-0 Higgs’s by spin-1/2 “Higgsinos”. Furthermore, since

a reality condition can’t be imposed on chiral scalar multiplets, the Higgs scalars

are themselves doubled. Ultimately, the success of supersymmetry depends on the

experimental detection of these particles.

6. Breaking

The methods of section IVA can be generalized straightforwardly to supersymmet-

ric theories: Goldstone bosons and Higgs fields become supermultiplets, etc. However,

to obtain realistic models supersymmetry itself must be broken, since fermions and

bosons with similar mass and other properties are not observed in nature. More

specifically, since gravity is observed, any supersymmetric theory of the world must

include supergravity, and thus the breaking must be spontaneous. (Explicit breaking

would violate gauge invariance.) Then the gravitino, which gauges supersymmetry,

will become massive by a superhiggs mechanism, by eating a Goldstone fermion. (See

subsections XB6-7. If the graviton and gravitino are treated as composites, then this

fermion could also be a composite.)

We saw in subsection IIC1 that energy is always nonnegative in supersymmetric

theories. In particular, from the same arguments used there we see that a state can be

invariant under supersymmetry (q|ψ〉 = q†|ψ〉 = 0) if and only if it has zero energy.

Any such state can be identified as the vacuum, since no state has lower energy.
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This means that the only way to guarantee spontaneous supersymmetry breaking is

to choose a theory which has no zero-energy state. (Note that energy is uniquely

defined by the supersymmetry algebra; there is no possibility of adding a constant

as in nonsupersymmetric theories.) In theories with extended supersymmetry, the

relation between supersymmetry and energy applies for each supersymmetry; thus

supersymmetry is either completely broken spontaneously or completely unbroken.

(An exception is central charges, which modify the supersymmetry algebra: See the

following subsection.)

Furthermore, physical scalars appear at θ = 0 in matter multiplets, while auxiliary

fields appear at higher order. Since supersymmetry breaking requires θ dependence

in a vacuum value of a superfield, this means an auxiliary field must get a vacuum

value.

A simple example of spontaneous supersymmetry breaking is the O’Raifeartaigh

model; it has the Lagrangian

LO’R = −
∫
d4θ

3∑
i=1

Φ̄iΦi +

[∫
d2θ λ(ζΦ1 +mΦ2Φ3 + Φ1Φ

2
2) + h.c.

]
To study symmetry breaking we ignore derivative terms, since vacuum values are

constants. Then the scalar field equations are:

δ

δBi

→ −B̄i+∂if = 0 : −B̄1+λ(ζ+A2
2) = −B̄2+λ(mA3+2A1A2) = −B̄3+λmA2 = 0

δ

δAi
→ Bj∂i∂jf = 0 : 2A2B2 = mB3 + 2A2B1 + 2A1B2 = mB2 = 0

(where ∂i = ∂/∂Ai on the superpotential f(A)). Since there is no solution for Bi = 0,

supersymmetry breaking is required. In general, for superpotential f(Φ), the field

equations for B = 0 are f ′(A) = 0, so a linear term is always needed for supersym-

metry breaking.

With Abelian vector multiplets, a Fayet-Iliopoulos term
∫
d4θ V can also generate

such breaking, since it also is a linear term of an auxiliary field.

Exercise IVC6.1

Evaluate the Lagrangian −
∫
d4θ φ̄φ for covariantly chiral φ by using covariant

θ-integration,
∫
d4θ = ∇2∇2

. For the case of U(1) gauge theory, add the

action for the gauge superfield with a Fayet-Iliopoulos term, and find the

potential for the physical scalars by eliminating the auxiliary field D by its

field equation.
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For simplicity (as in this chapter), we may want to ignore supergravity; however,

we still need to take account of its contribution to breaking global supersymmetry via

the superhiggs effect. The net low-energy contribution from the supergravity fields

(assuming no cosmological constant is generated) is to introduce effective explicit

supersymmetry breaking: Although the original theory is locally supersymmetric, we

neglect the supergravity fields but not their vacuum values (in particular, those of

the auxiliary fields). In particular, if the supergravity fields are bound states, then

this procedure is essentially the classical introduction of nonperturbative quantum

effects.

Thus we consider adding terms to the classical action that break supersymmetry

explicitly. The easiest way to do this is to introduce constant superfields (“spurions”);

this allows us to continue to take advantage of the superspace formalism (at both

the classical and quantum levels). Since we are neglecting (super)gravity, and in

particular its nonrenormalizability (see chapter VII), we consider only terms that will

preserve the quantum properties of the unbroken theories. This will clearly be the

case if we consider only the usual terms, with some fields replaced by spurions: This

is equivalent to using background (fixed) fields, in addition to (but in the same way

as) the usual field variables, performing all (classical/quantum) calculations as usual,

and then setting the background fields (specifically, the auxiliary fields, which are

responsible for breaking supersymmetry) to constants.

Thus, introducing constant (in x) chiral and real spurion fields

ϕ = θ2c, V = θ2θ̄2r

in terms of complex and real parameters c and r, in addition to the true fields φ and

V , we have terms of the form∫
d2θ [ϕφ, ϕφ2, ϕφ3, ϕW 2, (d̄2dαV)φWα],

∫
d2θ d2θ̄ Vφ̄eV φ

(and complex conjugates). These terms can preserve the usual gauge invariances, and

can be shown to also preserve the desirable quantum properties of supersymmetry:

The condition is that replacing the spurion field by 1 (instead of its above value)

gives either 0 or a conventional term (one with coupling constant of nonnegative

mass dimension). Another way to introduce these spurions (except perhaps for the

φV crossterm, which is less useful) is as coupling constants , rather than as fields:

Instead of introducing new terms to the action, we generalize the old ones, so the

constant part of each coupling is the usual coupling, while its θ-dependent terms

produce the breaking.
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Exercise IVC6.2

Find the component expansions of the above explicit breaking terms. What

are the mass dimensions of the constants c and r in the various cases?

Exercise IVC6.3

Expand the Lagrangian

L = −
∫
d4θ φ̄φ+

[∫
d2θ (1

6
φ3 + ϕφ) + h.c.

]
in components. Find the masses.

7. Extended

The supersymmetry we discussed earlier in this chapter, with a single spinor coor-

dinate, is called “simple (N=1) supersymmetry”; the generalization to many spinors is

called “extended (N>1) supersymmetry” (for N spinor coordinates). N=1 supersym-

metric theories, at least for spins≤1, are most conveniently described by superspace

methods. (There are also some definite advantages for N=1 supergravity at the quan-

tum level.) On the other hand, the technical difficulties of extended superspace often

outweigh the advantages. (The main advantage of extended superspace is proving cer-

tain properties of the quantum theories. Of course, extended supersymmetric theories

are complicated in any case.) Alternative formulations of extended supersymmetry

are either

(1) on shell,

(2) in terms of components (ordinary spacetime, not superspace), or

(3) in simple superspace (manifesting only one of the supersymmetries).

By going half way, using N=1 superfields to describe extended supersymmetry,

some of the advantages of the superspace approach can be retained. In this subsection

we will list some of the extended supersymmetric actions for lower spins in N=1

superspace form. These actions can be obtained by: (1) using extended superspace

to derive the component field equations (usually using dimensional reduction: see

subsections XC5-6), and combining components into N=1 superfields, or (2) writing

the extra supersymmetries in N=1 superspace form, and using them to determine the

action.

The simplest example is N=2 supersymmetry. As for any extended supersymme-

try, its algebra can be modified by including Abelian generators Z (with dimensions

of mass), called “central charges”:

{qiα, q̄j.
β
} = δji pα

.
β
, {qiα, qjβ} = CαβCijZ, {q̄i.α, q̄

j.
β
} = C .

α
.
β
CijZ; [Z, q] = [Z, q̄] = 0
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(where i = 1, 2). In terms of dimensional reduction (for N=2, from D=5 or 6; see

subsections XC5-6), the origin of these generators can be understood as the higher-

dimensional components of the momentum. (This is reflected in the free field equation

p2 + Z2 = 0.) N=2 supersymmetry is sometimes called “hypersymmetry”, and N=2

supermultiplets, “hypermultiplets”.

Our first example is the free, massive N=2 scalar multiplet: Since we already

know the field content (see subsection IIC5), it’s easy to write the free Lagrangian

Lsm,N=2 = −
∫
d4θ φ̄i

′
φi′ +

1
2

(∫
d2θ mi′j′φi′φj′ + h.c.

)
where the index “i′” is for an extra SU(2) (not the one acting on the supersymmetry

generators), broken by the mass term, and the mass matrix mi′j′ is symmetric while

mi′
j′ = Ck′i′m

k′j′ is hermitian. In other words, it represents a 3-vector of this SU(2),

and thus a generator of the preserved U(1) subgroup, which we have used to define

the central charge:

Zφi′ = mi′
j′φj′

The other N=2 multiplet of low spin is the vector multiplet. It also has a simple

Lagrangian,

LsYM,N=2 = − 1
g2
tr

(∫
d2θ W 2 +

∫
d4θ φ̄φ

)
where φ is covariantly chiral and in the adjoint representation of the Yang-Mills gauge

group. In the Abelian case, we can also add an N=2 Fayet-Iliopoulos term,

LFI,N=2 =

∫
d4θ ζ0V +

(∫
d2θ ζ+φ+ h.c.

)
where (ζ0, ζ+, ζ−) (ζ− = ζ+*) is a constant 3-vector of the SU(2) of the N=2 super-

symmetry: The 3 scalar auxiliary fields of this N=2 multiplet form a 3-vector of the

SU(2). Unlike the previous example, this multiplet has all the auxiliary fields needed

for an off-shell N=2 superspace formulation: Not only do the physical components

balance between bosons and fermions (4 of each), but also the auxiliary ones (also 4

of each).

These 2 N=2 multiplets can be coupled: The scalar multiplet action is modified

to

Lsm,N=2 = −
∫
d4θ φ̄i

′
φi′ +

1
2

[∫
d2θ τ i

′j′φi′(φ+M)φj′ + h.c.

]
where now φi′ is also a representation of the Yang-Mills group (not necessarily ad-

joint), with respect to which it is covariantly chiral. However, the same SU(2) matrix
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τ that appears in the mass matrix mi′j′ = Mτi′j′ now also appears with the N=2

super Yang-Mills fields,

∇Aφi′ = dAφi′ + iAnAGnτi′
j′φj′ , φ = φnGn

where Gn are the usual Yang-Mills group generators. (Without loss of generality, we

can choose τi′
j′ =

(
1
0

0
−1

)
; then φ+′ is some arbitrary representation of the Yang-Mills

group, while φ−′ is the complex conjugate.) Note that the mass term appears in

exactly the same way as an Abelian N=2 vector multiplet that has been replaced by

a vacuum value for its physical scalars. This can also be seen from the commutation

relations for the N=2 super Yang-Mills covariant derivatives (see below), since the

scalars appear in exactly the same way as the central charge.

By our earlier helicity arguments, the only N=3 supersymmetric theory with spins

≤ 1 is N=3 super Yang-Mills. The analogous statement also holds for N=4, while

no such theories exist for N>4. Since theories with N supersymmetries are a subset

of those with only N−1 supersymmetries, N=3 and N=4 super Yang-Mills must be

the same: Counting states of supersymmetry representations, we see that this theory

is the same as N=2 super Yang-Mills coupled to one N=2 scalar multiplet in the

adjoint representation (in direct analogy to N=2 super Yang-Mills in terms of N=1

multiplets). In terms of N=1 multiplets, this is super Yang-Mills plus 3 adjoint scalar

multiplets. The action then follows from the above results (without central charges

and Fayet-Iliopoulos terms):

LsYM,N=4 = 1
g2
tr

[
−
∫
d2θ W 2 −

∫
d4θ φ̄IφI +

(∫
d2θ 1

6
εIJKφI [φJ , φK ] + h.c.

)]
where “I ” is a U(3) index. (The U(1) part of the U(3) symmetry involves also a

phase transformation of the θ’s.)

For comparison, here are the general (UV well-behaved) actions for all numbers

of supersymmetries (in D=4):

LN=1 = − 1
g2
tr

∫
d2θ 1

2W
αWα + ζ

∫
d4θ V −

∫
d4θ φ̄eV φ+

[∫
d2θ f(φ) + h.c.

]

LN=2 = − 1
g2
tr

(∫
d2θ W 2 +

∫
d4θ e−V φ̄eV φ

)
+

∫
d4θ ζ0V +

(∫
d2θ ζ+φ+ h.c.

)
−
∫
d4θ φ̄i

′
(eV τ )i′

j′φj′ +
1
2

[∫
d2θ τ i

′j′φi′(φ+M)φj′ + h.c.

]
LN=4 = 1

g2
tr

[
−
∫
d2θ W 2 −

∫
d4θ e−V φ̄IeV φI +

(∫
d2θ 1

6
εIJKφI [φJ , φK ] + h.c.

)]
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where we now use ordinary chiral superfields, making dependence on V explicit.

As for off-shell N=1 supersymmetry, much information on extended supersym-

metric gauge theories can be gained by examining the properties of the covariant

derivatives and their field strengths. In fact, this is more true in the extended case,

where the “obvious” constraints often imply field equations (which is more than one

would want for an off-shell formulation). The empty-space covariant derivatives are

the direct generalization of N=1: Introducing N θ’s as θiα (and complex conjugate

θ̄i
.
α), where “i” is an N-valued index with as much as a U(N) symmetry,

dA = (diα, d̄
i .
α, ∂α .

α); diα = ∂iα − i1
2 θ̄i

.
α∂α .

α, d̄i .α = ∂̄i .α − i1
2θ

iα∂α .
α

Tiα,
j .
β
γ
.
γ = T j .

β,iα
γ
.
γ = −iδji δγαδ

.
γ.
β
, rest = 0

Exercise IVC7.1

Find the superspace representation of the extended supersymmetry generators

(which anticommute with these covariant derivatives). For N=2, include the

central charge.

By definition, extended super Yang-Mills has only spins 1 and less. Dimensional

analysis then gives the unique result, including physical fields only,

{∇iα,∇j .
β
} = −δji i∇α

.
β

{∇iα,∇jβ} = Cβαiφ̄ij

[∇i .
α,−i∇β

.
β
] = C.

β
.
α
iW i

β

[∇α
.
α,∇β

.
β
] = Cαβif̄ .

α
.
β

+ C .
α
.
β
ifαβ

(and complex conjugates of some of these equations). This corresponds directly to

our discussion in subsection IIC5, where we saw that a general representation looked

like antisymmetric tensors φ, φi, φij, ... of U(N), corresponding to helicities h, h−1/2,

h−1,... . In this case, h=1, and these helicities come from the surviving on-shell

components of fαβ,W
i
α, φ

ij,... . For N=4 we have selfduality with respect to charge

conjugation (see also subsection IIC5),

φij = 1
2ε
ijklφ̄kl

Exercise IVC7.2

Analyze the Bianchi identities of these covariant derivatives:

a Show that for N>2 they imply the field equations.

b Find a component action that yields these field equations for N=4.
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An interesting simplification of extended superspace occurs for selfduality: Con-

straining

fαβ = W iα = φij = 0

and dropping the selfduality condition for N=4 (so φ̄ij 6= 0), we find all commutators

involving ∇i .
α are trivial:

{∇iα,∇j .
β
} = −δji i∇α

.
β
, {∇i .

α,∇
j .
β
} = [∇i .

α,∇β
.
β
] = 0

while all the remaining commutators have a similar form:

{∇iα,∇jβ} = Cβαiφ̄ij, [∇iα,−i∇β
.
β
] = CβαiW i

.
β
, [∇α

.
α,∇β

.
β
] = Cαβif̄ .

α
.
β

The latter result suggests we combine the internal and dotted spinor indices as

A = (
.
α, i)

so that we can combine the nontrivial equations as

[∇Aα,∇Bβ} = iCαβfAB

The former equations then allow us to interpret the remaining covariant derivatives

∇i .
α as a subset of the SL(2|N) generators that rotate the A index, which form a

subgroup of the superconformal group (S)SL(4|N). We therefore restrict ourselves to

the chiral superspace described by the coordinates

zAα = (xα
.
α, θiα)

The net result is that we have a superspace with no torsion, with coordinates that

represent half of the supersymmetries as translations and the other half as rotations.

By comparison with our treatment of the selfdual bosonic theory in subsections

IIIC5-7, we see that we can extend trivially all our results for the bosonic case to the

(extended) supersymmetric case by simply extending the range of the indices. In par-

ticular, we also have a chiral twistor superspace: Extending the range on the twistor

coordinates zAα used there so A is now an SL(4|N) index, the superconformal group

is now manifest, and all the methods and results there (e.g., the ADHM construction)

apply automatically to the supersymmetric case.
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PART TWO: QUANTA
Many important new features show up in field theory at the quantum level. Prob-

ably the most important is “renormalizability”, which states that all the parameters

(masses and couplings) that appear as coefficients of terms in the action must have

nonnegative mass dimension (when the massless part of the kinetic term has no di-

mensionful coefficient). Since the action is dimensionless,
∫
d4x has dimension −4,

and the fields have positive dimension, this allows only a small number of terms for

any given set of fields. This one condition gives relativistic quantum field theory more

predictive power than any known alternative.

There are many perturbation expansions that can be applied to quantum field

theory. One is the mechanical JWKB expansion, which is an expansion in derivatives.

Of the inherently field theoretical expansions, the simplest is to expand directly in

fields, or equivalently, in the coupling constants. This expansion is the basis of per-

turbative quantum field theory. However, this expansion does not preserve gauge

invariance term by term. On the other hand, the terms in this expansion can be

collected into small subsets that do preserve gauge invariance. There are three such

regroupings, discussed in the four following chapters, and they are based on pertur-

bation expansions:

(1) the field theoretic JWKB (“loop”) expansion,

(2) expansions in spin or helicity, and

(3) expansions in internal symmetry (color or flavor).

V. QUANTIZATION
For the most part, integrals are hard to evaluate, in particular the path integrals of

exponentials that appear in quantum theory. The only exponentials that are generally

easy to integrate are Gaussians, and the products of them times polynomials, which

can in turn be evaluated as derivatives of Gaussians. Such integrals are the basis of

perturbation theory: We keep the quadratic part of the action, but Taylor expand the

exponential of higher-order terms. Effectively, this means that we not only expand

in orders of h̄ to perturb about the classical theory, but also expand in orders of the

coupling constants to perturb about the free theory. This makes particularly useful

our analysis of relativistic quantum mechanics (as free field theory). The JWKB

expansion for the wave function (or S-matrix) expands the exponent in powers of h̄,

dividing it onto three qualitatively different parts:
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(1) negative powers of h̄ (generally 1/h̄ only), which describe the classical theory

(they dominate the classical limit h̄→ 0), whose physical implications have been

considered in previous chapters;

(2) h̄-independent, where almost all of the important (perturbative) quantum fea-

tures appear (including topological ones, and quantum breaking of classical sym-

metries); and

(3) positive powers, which give more quantum corrections, but little new physics,

except when summed to all orders.

These are generally known as “trees”, “one-loop”, and “multiloop”, because of their

graphical interpretation.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . A. GENERAL . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the Schrödinger approach to quantum mechanics one solves a differential equa-

tion. The Feynman approach is complementary: There one performs an integral.

Integrals are solutions to differential equations (e.g., f ′ = g ⇒ f =
∫
g), but usually

differential equations are easier to solve than integral equations. However, there is an

important exception: Gaussian integrals are easy, and so are their boundary condi-

tions. In field theory the most important approximation is one where the integrand

is approximated as a Gaussian, and the exact integral is evaluated as a perturbation

about that Gaussian. Of course, solving the corresponding differential equation is

also easy, but in that case the integral is easier because it corresponds to working

with the action, while the differential equation corresponds to working with the field

equations.

A major advantage of Feynman’s approach is that it allows space and time to

be treated on an equal footing. For example, as in classical electrodynamics, we

can solve the wave equation inside a spacetime volume in terms of conditions on the

boundary of that volume: It is not necessary to choose the spatial boundary at infinity

so that it can be ignored, and divide the temporal boundary into its “future” and

“past” halves so that all conditions are “initial” ones imposed at the past boundary.

It is not even necessary to distinguish between preparation (“if”) and measurement

(“then”) when describing probabilities: We can instead ask the probability of a given

wave function describing the whole boundary. This is a particular advantage for

relativistic quantum field theory, where space and time are more closely related than

in nonrelativistic theories. We now “review” Feynman’s approach for general quantum

systems, and quantum mechanics in particular, so that it can be applied without

further explanation when we come to quantum field theory.
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1. Path integrals

Before discussing the path integral approach to quantum mechanics, we first re-

view some features of quantum mechanics. We can separate the fundamentals of

quantum mechanics into “kinematics” and “dynamics”: The kinematics are every-

thing at a fixed time — Hilbert space, preparation/measurement, probability, observ-

ables. The dynamics are the time development. There are several ways to describe

time dependence of matrix elements; we will start with a general framework, then

specialize.

Time dependence may be associated with either the states (Schrödinger picture)

or operators (Heisenberg picture). We will be more explicit at first, taking all the time

dependence out of the states and operators and putting it into a “time development

operator” U(t, t′) that transforms the Hilbert space from time t′ (earlier) to time t

(later). For example, if we want to relate an earlier state to a later one we evaluate

〈f |U(t, t′)|i〉; more generally, we can look at things like

〈f |...O2U(t2, t1)O1U(t1, ti)|i〉

which means to prepare an initial state |i〉 at time ti, then act with an operator O1

at time t1, operator O2 at time t2, etc., and eventually measure the amplitude for a

final state 〈f |.

Now the dynamics can be described entirely through the properties of U . The

general physical properties it must satisfy are

causality (locality) : U(t3, t2)U(t2, t1) = U(t3, t1)

unitarity : U(t2, t1)†U(t2, t1) = I

Causality tells us that things happen in chronological order: Each event is determined

by those immediately preceding. It is a kind of group property; in particular, from

considering t3 = t2 we find that

U(t, t) = I

We can then write

U(t+ ε, t) ≈ I − iεH(t)

by expanding in ε, for some operator H(t) that we call the Hamiltonian. Again

applying causality, we find

∂tU(t, t′) = lim
ε→0

U(t+ ε, t′)− U(t, t′)

ε

=

(
lim
ε→0

U(t+ ε, t)− I
ε

)
U(t, t′) = −iH(t)U(t, t′)
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which is the Schrödinger equation for U . Again applying causality to build up the

finite U from products of the infinitesimal ones,

U(tf , ti) = e−iεH(tf−ε) · · · e−iεH(ti+ε)e−iεH(ti) ≡ T
{
exp

[
−i
∫ tf

ti

dt H(t)

]}
which defines the “time-ordered product” T . Finally, unitarity, another group prop-

erty, tells us that probability is conserved; in particular, from applying to U(t+ ε, t),

H(t)† = H(t)

The expression of U in terms of a hermitian Hamiltonian guarantees causality and

unitarity. (It “solves” those conditions.) If H is time independent and we have a

(orthonormal) basis of eigenstates of H, we can write

H|I〉 = EI |I〉 ⇒ U(t, t′) =
∑
I

|I〉〈I|e−i(t−t′)EI

In Feynman’s path integral approach to quantum mechanics (based on an analogy

of Dirac), the action is the starting point for quantization. The basic idea is to begin

with the basic quantity in quantum mechanics, the transition amplitude, and write

it as an integral of the action

〈f |i〉 =

∫
Dφ e−iS[φ]

where
∫
Dφ is a “functional integral”: Integrate over φ(t) for each t (with some

appropriate normalization). The boundary conditions in t are defined by the choice

of initial and final states. In this subsection we will define this integral in a more

explicit way by breaking up the time interval into discrete points and taking the

continuum limit; in subsection VA2 we will study ways to evaluate it using its general

properties.

The path integral can be derived from the usual Hamiltonian operator formalism.

Considering for simplicity a single coordinate q, the wave function is given in position

space by

ψ(q) = 〈q|ψ〉, |ψ〉 =

∫
dq√
2π

ψ(q)|q〉

where we use the convenient normalizations∫
dq√
2π
|q〉〈q| = 1 =

∫
dp√
2π
|p〉〈p|

[
〈q|q′〉 =

√
2πδ(q − q′), 〈p|p′〉 =

√
2πδ(p− p′)

]
for coordinate and momentum space. To describe time development, we work in

the Heisenberg picture, where time dependence is in the operators (and thus their

eigenstates):

ψ(q, t) = 〈q, t|ψ〉
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Time development is then given completely by the “propagator” or “Green function”

G(qf , tf ; qi, ti) ≡ 〈qf , tf |qi, ti〉 ⇒ ψ(qf , tf ) =

∫
dqi√
2π

G(qf , tf ; qi, ti)ψ(qi, ti)

Exercise VA1.1

Let’s review the relationship between time development in the Heisenberg and

Schrödinger pictures. Using the usual relation

〈ψ|Q(t)|χ〉 ≡ 〈ψ(t)|Q|χ(t)〉

between the time-independent states |ψ〉 and time-dependent operators Q(t)

of the Heisenberg picture and the time-dependent states |ψ(t)〉 and time-

independent operators Q of the Schrödinger picture, define time-dependent

eigenstates in two ways:

Q|q〉 = q|q〉 ⇒
{ 〈q(t)|ψ(t)〉 ≡ 〈q|ψ〉
ψ(q, t) ≡ 〈q|ψ(t)〉 ≡ 〈q, t|ψ〉

Given the time development of a state

|ψ(t)〉 = U(t)|ψ〉

(U(t) ≡ U(t, 0)), find the development of Q(t), |q(t)〉, and |q, t〉, and show in

particular that |q(t)〉 6= |q, t〉. Which is the eigenstate of Q(t)?

In general, even for time-dependent Hamiltonians, we can find the infinitesimal

time development explicitly from the definition of the time derivative and the time-

dependent Schrödinger equation:

[i∂t −H(−i∂q, q, t)]〈q, t| = 0

⇒ 〈q, t+ ε| = 〈q, t|{1− iεH[P (t), Q(t), t]} ≈ 〈q, t|e−iεH[P (t),Q(t),t]

and similarly for 〈p, t + ε| (where P and Q are the Hilbert-space operators). To

derive the path-integral formalism, we then iterate this result to obtain finite time

development by inserting unity infinitely many times, alternating between coordinate

and momentum,

〈qf , tf |qi, ti〉 =

∫
dp0√

2π

dq1√
2π

dp1√
2π
...〈qf , tf |...

...|p1, ti + 3ε〉〈p1, ti + 3ε|q1, ti + 2ε〉〈q1, ti + 2ε|p0, ti + ε〉〈p0, ti + ε|qi, ti〉

to obtain successive infinitesimal exponentials,∫
dp0√

2π

dq1√
2π

dp1√
2π
...〈qf |e−iεH ...e−iεH |p1〉〈p1|e−iεH |q1〉〈q1|e−iεH |p0〉〈p0|e−iεH |qi〉
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where the time dependence follows from the previous equation. However, note that

all the implicit time dependence of the Heisenberg picture drops out, because we

extracted the e−iεH ’s, putting all the factors of each matrix element at the same

time: Although each matrix element is evaluated at time ε earlier than the one to its

immediate left, each is of the form

〈a, t+ ε|b, t〉 = 〈a, t|e−iεH[P (t),Q(t),t]|b, t〉 = 〈a|e−iεH[P,Q,t]|b〉

(where |b〉 ≡ |b, ti〉, etc.), leaving only any explicit time dependence that may appear

in the Hamiltonian, effectively translating the other t’s → ti. Then we only need to

know

〈q|p〉 = eipq, 〈p|q〉 = e−ipq

to evaluate the matrix elements in the path integral as∫
dp0√

2π

dq1√
2π

dp1√
2π
...

exp{−i[qip0 + εH(p0, qi, ti)− q1p0 + εH(p0, q1, ti + ε) + q1p1 + εH(p1, q1, ti + 2ε) + ...]}

More explicitly, this result is

〈qf , tf |qi, ti〉 =

∫
Dp Dq e−iS, Dp Dq =

N−1∏
n=0

dpn√
2π

N−1∏
n=1

dqn√
2π

S =
N−1∑
n=0

{−(qn+1 − qn)pn + ε[H(pn, qn, ti + 2nε) +H(pn, qn+1, ti + (2n+ 1)ε)]}

q0 = qi, qN = qf ; tf − ti = 2Nε

Note that by adding (or subtracting) a step or two we could just as well evaluate

〈qf , tf |pi, ti〉 or 〈pf , tf |qi, ti〉 or 〈pf , tf |pi, ti〉.

The classical picture is a segmented path, with the particle traveling along a

straight line segment from point qn to point qn+1 with momentum pn: Each q is

associated with a point, while each p is associated with the line segment connecting

two consecutive points. In the “continuum” limit ε→ 0, N →∞, tf − ti fixed,

S =

∫ tf

ti

dt[− .
qp+H(p, q, t)]

(We have dropped some terms in 〈q|H|p〉 and 〈p|H|q〉 from reordering the operators

Q and P in H(P,Q) to apply P |p〉 = p|p〉 and Q|q〉 = q|q〉. These commutator terms

alternate in sign, combining to give terms of order ε2, and can be dropped in the

continuum limit.)
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More generally, we can evaluate an arbitrary transition amplitude as

A = 〈f |i〉 =

∫
dqf√

2π

dqi√
2π
ψf*(qf )〈qf , tf |qi, ti〉ψi(qi) =

∫
Dp Dq ψf*(qf )e

−iSψi(qi)

where now

Dp Dq =
N−1∏
n=0

dpn√
2π

N∏
n=0

dqn√
2π

Note that we can combine the initial and final wave function, as

Ψ(qi, qf ) ≡ ψf*(qf )ψi(qi) ⇒ A =

∫
Dp Dq Ψ(qi, qf )e

−iS

The complex conjugation of ψf vs. ψi is due to the complex conjugation involved in

time reversal (as seen, e.g., when comparing an eigenstate of p at the initial time to

the same eigenstate at the final time). In field theory, where the “p’s and q’s” are

functions of space as well as time, if we choose the boundary in space also to be finite,

so that the space and time boundaries form a single connected and closed boundary,

then Ψ is simply a function of the q’s over all that boundary.

We now see the relationship of the path integral approach to the time development

operator: From the above derivation of the path integral, by integrating back out the

insertions of unity immediately after extracting the infinitesimal exponentials and

translating the time of each matrix element to zero, we find

〈qf , tf |qi, ti〉 = 〈qf |U(tf , ti)|qi〉

U(tf , ti) = e−iεH(tf−ε) · · · e−iεH(ti+ε)e−iεH(ti) = T
{
exp

[
−i
∫ tf

ti

dt H(t)

]}
as previously. This is effectively a Schrödinger-picture expression (all the P ’s and Q’s

are at the initial time), and can also be derived in that picture by solving for the time

dependence of any state |ψ(t)〉.

2. Semiclassical expansion

The path integral formulation is especially suited for semiclassical approxima-

tions: The Bohr-Sommerfeld quantization rule follows from the fact that the func-

tional integral is invariant under S → S + 2πn, since S appears only as e−iS; in that

sense the action is more like an angle than a single-valued function. The JWKB ex-

pansion follows from S → S/h̄ and expanding in h̄. This expansion can be interpreted

as an expansion in (space and time) derivatives, since it leads in the usual way to the

identification p = −ih̄∂/∂x and E = ih̄∂/∂t.
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Exercise VA2.1

For comparison, we review the Schrödinger equation approach. Consider the

nonrelativistic JWKB expansion for the propagator (for an arbitrary Hamil-

tonian H) to the first two orders in h̄, writing it as

G ≈ √ρe−iS/h̄

(S here is an unknown at first; only after solving the Schrödinger equation is

it found to be related to the action that follows from H.)

a Show the corresponding orders in the time-dependent Schrödinger equation

at t > 0 can be written as the classical equation of motion for the action S

and the (probability) current conservation law for the (probability) density ρ

(“Hamilton-Jacobi equations”),

H =
.
S,

∂

∂qi

(
ρ
∂H

∂pi

)
+

.
ρ = 0

when the argument p of H is evaluated at

pi = −∂S
∂qi

(Assume a symmetric ordering of p’s and q’s in the quantum H.) Compare

the relativistic case examined in exercise IIIA4.2.

b The propagator is expressed in terms of q and q0, where G(q, q0, t) ∼ δ(q−q0)

at t = 0, so the first order in h̄ is found by using the solution to the Hamilton-

Jacobi equations to write the classical action in terms of the “final” position

q and initial position q0. (In principle; in general even the classical equations

may be too difficult to solve analytically.) However, the Hamiltonian is given

as a function of p and q. Show that the change in variables from q, p to q, q0

gives
∂H

∂pi
= −(M−1)ij

∂2S

∂qj0∂t
, (M)ij =

∂2S

∂qi0∂q
j

Show that

ρ = det (−i 1
h̄
M)

(the “van Vleck determinant”) solves the current conservation law, using the

explicit expression for (det M)M−1 given in subsection IB3. (Check the nor-

malization by comparing to the free case).

One way to apply the path integral is as follows: (1) Find a classical solution to

the equations of motion. This gives the leading contribution in h̄ (“stationary phase

approximation”), ∫
Dφ e−iS/h̄ ≈ e−iS0/h̄
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(The validity of such an approximation with an imaginary exponent will be discussed

in subsection VA5.)

(2) Expand about the classical solution as

φ = φcl +
√
h̄∆φ

Expanding in ∆φ (or h̄), we have schematically

h̄−1S = h̄−1S0 + h̄−1/2S ′0∆φ+ 1
2S
′′
0 (∆φ)2 + h̄1/2 1

6
S ′′′0 (∆φ)3 + ...

where “0” means to evaluate at φ = φcl and the derivatives are really functional

derivatives (so there is also an integral for each derivative). The first term in the action

gives the classical contribution, while the linear term vanishes by the equations of

motion. The quadratic term gives an h̄-independent contribution to the exponential,

so the next order approximation to the functional integral comes from integrating

just that: Integrating Gaussians as in subsection IB3,∫
Dφ e−iS/h̄ ≈ e−iS0/h̄(det S ′′0 )−1/2

where the determinant is now a functional one, which can be defined by performing

the functional integral as in the previous section, as a series of ordinary Gaussian

integrals. The boundary conditions are ∆φ = 0 at ti and tf (since φcl = φ there).

Normalization constants can be determined by comparing the free case, or considering

the limit where the initial and final times converge.

(3) We then expand the exponential in the cubic and higher terms (positive powers

of h̄): The resulting functional integral is that of an h̄-independent Gaussian times a

polynomial with positive powers of h̄. Since odd orders in ∆φ vanish in the integral

by symmetry (the dummy variable change ∆φ → −∆φ gives an overall sign), only

integer powers of h̄ appear:∫
Dφ e−iS/h̄ = e−iS0/h̄

∫
D(∆φ)e−iS

′′
0 (∆φ)2/2

(
1 +

∞∑
n=1

h̄nfn[∆φ]

)

Polynomials times Gaussians are also straightforward to integrate: The easiest way

is to first evaluate integrals of Gaussians with linear terms:∫
dDx

(2π)D/2
e−x

TSx/2+jT x = (det S)−1/2ej
TS−1j/2

∫
dDz* dDz

(2πi)D
e−z

†Hz+z†j+j†z = (det H)−1ej
†H−1j
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from shifting the integration variables (x → x + S−1j, etc.) to eliminate the linear

terms, then using the previous results. In functions of x multiplying the Gaussian, x

can be replaced with ∂/∂j (and similarly for z) and then pulled outside the integral.

(If a linear term is not included, it can be introduced, and the result can be evaluated

at j = 0.) The final result then takes the form

〈qf , tf |qi, ti〉 = e−iS0/h̄(A+ h̄B + ...) = exp

(
−i 1

h̄

∞∑
n=0

h̄nSn

)

Exercise VA2.2

Generalize the above results for integration of Gaussians with linear terms to

the cases with fermionic and mixed (subsection IIC3) integration variables.

Exercise VA2.3

Evaluate ∫
dDx

(2π)D/2
e−x

TSx/2xixjxkxl

by taking (∂/∂ji)(∂/∂jj)(∂/∂jk)(∂/∂jl) on the above result.

As an example, consider the free nonrelativistic particle. The separability of the

action translates into factorization of the functional integral, so the result can be

found from the one-dimensional case. As usual,

L = −1
2m

.
x2 ⇒ xcl(t) = xi +

xf − xi
tf − ti

(t− ti)

where we have written the classical solution in terms of the variables appropriate to

the initial and final states, namely xi for an initial state localized there at time ti,

and xf , tf for the final state. Since the classical action is itself quadratic, so is its

expansion:

S = S0 +∆S, S0 = −1
2m

(xf − xi)2

tf − ti
, ∆S = −

∫
dt 1

2m(
.

∆x)2

In general, a determinant from the ∆S integral must be evaluated (but see exercise

VA2.1). In this simple case, time translation invariance, dimensional analysis, and

independence from xf , xi are enough to determine the result of that functional integral

up to a constant, fixed by the short-time limit tf → ti. The final one-dimensional

result is then

〈xf , tf |xi, ti〉 =

√
−im
tf − ti

eim(xf−xi)2/2(tf−ti)

where we have used √
2πδ(x) = lim

ε→0

1√
ε
e−x

2/2ε
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(one way of defining a Dirac δ function) to normalize

〈xf , t|xi, t〉 =
√

2πδ(xf − xi)

The Gaussian integral for the free particle can also be performed explicitly, by

using the discretized Hamiltonian path integral of the previous subsection.

Exercise VA2.4

The path integral for the free, nonrelativistic particle can be evaluated much

more easily using the Hamiltonian form of the action. First consider the

Gaussian integral ∫ ∞
−∞

dx eipx−εx
2/2

as a special case of the Gaussians already evaluated, and use it to derive the

identity ∫ ∞
−∞

dx eipx = 2πδ(p)

(The ε thus acts as a regulator to make the integral well defined.) Then use

the discretized expression of subsection VA1, and evaluate the x integrals

first. All but one of the p integrals then can be trivially evaluated, the last

giving a Fourier transform.

Exercise VA2.5

Consider the one-dimensional harmonic oscillator. (The multi-dimensional

case is again separable.)

a Explicitly evaluate the discretized path integral to find the result

〈xf , ti + t|xi, ti〉 =

√
−imω
sin ωt

exp

{
imω[1

2(x2
f + x2

i )cos ωt− xfxi]
sin ωt

}

b Rederive the result using the result of exercise VA2.1. (Hint: First solve the

classical equations of motion for x(t), then rewrite it in terms of xi = q0 and

xf = q; plug into S0 = S and apply the above.)

Note that we have been sloppy about the definition of the “integration measure”:

In going from the Hamiltonian form of the action to the Lagrangian form, we ignored

some m dependence. Specifically, if we start with the Hamiltonian form, as derived

in the previous subsection, and derive the Lagrangian form by integrating out p, we

find the 1/m in H = p2/2m leads to

N−1∏
n=0

dpn√
2π

N−1∏
n=1

dxn√
2π

→ mN/2

N−1∏
n=1

dxn√
2π
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The m(N−1)/2 then cancels similar factors from the N − 1 x-integrals, while the re-

maining
√
m is that found in the final result above.

If we had considered a more general Hamiltonian, as in subsection IIIA1, where

p2 appeared as 1
2g

ij(x)pipj, then we would have obtained a measure of the form (for

i = 1, ..., D)

[det g(x0)det g(xN)]−1/4

N−1∏
n=1

dDxn

(2π)D/2
√
det g(xn)

(We have averaged g as g(x)p2 →
√
g(xn)g(xn+1)p2

n, since xn is associated with the

point n while pn is associated with the link from n to n+1.) Such measure factors are

easy to recognize, since they are always local, without any derivatives: If we included

it in the action, it would be a term proportional to

ln
∏
n

det g(xn) = 1
ε

∑
n

ε ln det g(xn) ∼ δ(0)

∫
dt ln det g(x(t))

(The factors at x0 and xN are for standard normalization of the wave functions, which

we can absorb by a redefinition.) In practice we just drop all such factors throughout

the calculation, and fix the normalization at the end of the calculation. Since the

Lagrangian form follows from the Hamiltonian form, which was properly normalized,

we know such factors will cancel anyway. Auxiliary fields can require similar factors

for proper normalization; then such factors are simply the Jacobians from the field

redefinitions from a form where they appeared with trivial quadratic terms.

3. Propagators

The amplitude we defined by path integration in subsection VA1 is the “propa-

gator” or “Green function” for the Schrödinger equation. Explicitly, we define

G(q, t; q′, t′) ≡ θ(t− t′)〈q, t|q′, t′〉

where we have included the “step function” θ(t − t′) (1 for t > t′, 0 otherwise) to

enforce that the final time is later than the initial time (retarded propagator). This

satisfies the free case of the general defining equation of the propagator

[∂t + iH(−i∂q, q, t)]G(q, t; q′, t′) = [−∂t′ + iH(i∂q′ , q
′, t′)]G(q, t; q′, t′)

=
√

2πδ(q − q′)δ(t− t′)

where we have used

∂tθ(t− t′) = δ(t− t′)
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and the facts that G without the θ factor is a homogeneous solution of the Schrödinger

equation (no δ’s) and becomes a δ in q for small times. The propagator then gives a

general solution of the Schrödinger equation as

〈q, t| =
∫

dq′√
2π
〈q, t|q′, t′〉〈q′, t′| ⇒ ψ(q, t) =

∫
dq′√
2π
G(q, t; q′, t′)ψ(q′, t′)

In particular, for ψ(q, t′) =
√

2πδ(q − q′) at some time t′ for some point q′, ψ(q, t) =

G(q, t; q′, t′) at all later times. These equations are matrix elements of the correspond-

ing operator equations; e.g.,

G(q, t; q′, t′) ≡ 〈q|U(t, t′)|q′〉

[∂t + iH(t)]U(t, t′) = U(t, t′)[−
←
∂ t′ + iH(t′)] = δ(t− t′)I

where we now include a step function in the definition of the time development oper-

ator U :

U(t, t′) ≡ θ(t− t′)T
{
exp

[
−i
∫ t

t′
dt′′ H(t′′)

]}
This solution for the propagator is not unique; as usual, a first-order differential

equation needs one boundary condition. Another way to say it is that the inhomoge-

neous differential equation is arbitrary up to a solution of the homogeneous equation.

We have eliminated the ambiguity by requiring that the propagator be retarded, as

incorporated in the factor θ(t− t′); using instead −θ(t′ − t) would give the advanced

propagator.

This has an interesting translation in terms of the Fourier transform with respect

to the time, which replaces the so-called “time-dependent” Schrödinger equation with

the “time-independent” one. Fourier transforms are a useful way to solve differen-

tial equations when performed with respect to variables with translational invari-

ance, since this implies conservation of the conjugate variable: The result is elimi-

nation of the corresponding derivatives. In this case, it means the time-independent

Schrödinger equation needs a time-independent Hamiltonian. For example, defining

Ũ(E,E ′) ≡
∫

dt√
2π

dt′√
2π
e−i(E

′t′−Et)U(t, t′)

⇒ −i(E −H)Ũ(E,E ′) = δ(E − E ′)I

⇒ Ũ(E,E ′) =
i

E −H
δ(E − E ′)

Now inverse Fourier transforming,

U(t, t′) =

∫
dE√
2π

dE ′√
2π
ei(E

′t′−Et)Ũ(E,E ′)
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=

∫
dE

2π
e−iE(t−t′) i

E −H
we have an ambiguity in integrating E past the pole at E = H. We therefore shift

the pole slightly off the real axis, so we can integrate exactly on the real axis. Closing

the contour by adding to the real axis a semicircle of infinite radius in either the

complex upper- or lower-half-plane, wherever convergent (lim|t|→∞ e
−|Et| = 0, but

lim|t|→∞ e
+|Et| =∞), we find∫

dE

2π
e−iEt

i

E −H ± iε
= ±θ(±t)e−iHt

which gives either the retarded or advanced propagator depending on the choice of

sign for the infinitesimal constant ε (retarded for E−H+iε). Remember from exercise

IIA1.2 that complex integration is essentially just Gauss’s law, with poles acting as

charges: The general integral result we used is∮
dz′

2πi
f(z′)

1

z′ − z
= f(z)

where the counterclockwise contour of integration encloses the pole at z but no sin-

gularity in f , so we can evaluate the integral by Taylor expanding f about z.

t < 0

t > 0

H+iε
H−iε

E

To perform the inverse Fourier transform, we note that the exponent needs an

infinitesimal negative part to make the integral convergent:∫
dt eiEt(±)θ(±t)e−iHt∓εt =

i

E −H ± iε

The choice in nonrelativistic quantum field theory is fixed by choice of the overall

sign of the action: The sign used in subsection IIIA3 is that appropriate for a retarded

propagator. Consider adding a −iεψ*ψ to the Lagrangian for convergence: It gives

kinetic operator −i∂t +H − iε.

Exercise VA3.1

Show that
i

x+ iε
− i

x− iε
= 2πδ(x)
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by four methods:

a Use the above result for the Fourier transform.

b Show that this is the contour integral definition of the δ function, which is

actually a distribution, by integration, multiplying by an arbitrary (nonsin-

gular) function and integrating along the real axis. (Hint: Push the poles

onto the real axis, shifting the contours along with them, to find the integral

of a single function along the difference of two contours.)

c Prove the identity (checking the normalization)

lim
ε→0

2ε

x2 + ε2
= 2πδ(x)

d Prove, choosing the usual cut for ln along the negative real axis, that

ln(x+ iε)− ln(x− iε) = 2πiθ(−x)

by evaluating for positive and negative x. Take the derivative.

For the example of the free particle in one dimension we found by various methods

G(x, t;x′, t′) = θ(t− t′)
√
−im
t− t′

eim(x−x′)2/2(t−t′)

However, we could have saved the trouble if we just started in momentum space,

Ĝ(p, t; p′, t′) ≡ 〈p|U(t, t′)|p′〉 = 〈p|θ(t− t′)e−i(t−t′)H |p′〉 = θ(t− t′)e−i(t−t′)p2/2m〈p|p′〉

= θ(t− t′)
√

2πδ(p− p′)e−i(t−t′)p2/2m

in the retarded case. If we Fourier transform p to x (the same as a change of basis

from |p〉 to |x〉), the integrals are then simple Gaussians. Again, the result is simpler

in p-space because p is conserved. In the relativistic case we will want to treat energy

and momentum equally; doing the same here for later comparison, we define

ψ̃(p, E) =

∫
dq√
2π

dt√
2π
e−i(pq−Et)ψ(q, t)

and similarly for G̃, and we have

G̃(p, E; p′, E ′) =
i

E − p2/2m+ iε

√
2πδ(p− p′)δ(E − E ′)

4. S-matrices

“Scattering” is defined as a process that starts with a free state and ends with

a free state, with interaction (self- or with external forces) at intermediate times,
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e.g., particles coming in from and going out to spatial infinity and scattering from

a potential of finite spatial extent. Thus, if the interaction is nonvanishing only

somewhere between times t1 and t2, where tf > t2 > t1 > ti, we can write

U(tf , ti) = U(tf , t2)U(t2, t1)U(t1, ti) = e−i(tf−t2)H0U(t2, t1)e−i(t1−ti)H0

in terms of the “free term” H0 of the Hamiltonian H = H0 + V , where V is the

“interaction term”. (V may be time dependent, but not H0.) It is more convenient

to work with a quantity that is independent of initial and final times (as long as they

are outside of the interaction region t1 to t2). We therefore define the “S(cattering)-

matrix” operator S as

S ≡ lim
ti→−∞
tf→+∞

eitfH0U(tf , ti)e
−itiH0

where we have thrown in the limit because in the real world interaction doesn’t just

start and stop, but fades in and out. However, in our simple example above we find

S = eit2H0U(t2, t1)e−it1H0

In the special case of a free theory (V = 0), we have simply S = I.

In the interacting case, the amplitude we get from the path integral is the inter-

acting propagator. To be able to take the limit describing time development between

infinite initial and final times, we need to choose boundary conditions such that the

initial and final basis states have the time dependence of free particles, described

by H0, assuming that the particle behaves freely at such asymptotically large times.

This is called the “interaction picture”, to distinguish from the Heisenberg picture,

where the states have no time dependence, and the Schrödinger picture, where the

states have the complete interacting time dependence. We thus evaluate the limiting

amplitude

A = lim
ti→−∞
tf→+∞

〈ψf (tf )|ψi(ti)〉 = lim
ti→−∞
tf→+∞

∫
dqf√

2π

dqi√
2π
ψf*(qf , tf )〈qf , tf |qi, ti〉ψi(qi, ti)

for the interaction-picture states |ψ(t)〉, relating the interaction-picture coordinate

basis 0〈q, t| to the Heisenberg-picture basis 〈q, t| (with initial conditions 0〈q, 0| =

〈q, 0| ≡ 〈q|):

0〈q, t| = 〈q|e−itH0 ⇒ 〈qf , tf |qi, ti〉 = 0〈qf , tf |eitfH0U(tf , ti)e
−itiH0|qi, ti〉0

ψ(q, t) = 0〈q, t|ψ〉 ⇒ A = 〈ψf |S|ψi〉
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with S as defined above. In terms of operators Û and V̂ in the interaction picture,

we can write this as

S ≡ lim
ti→−∞
tf→+∞

Û(tf , ti), Û(tf , ti) = T
{
exp

[
−i
∫ tf

ti

dt V̂ (t)

]}

V̂ (t) = eitH0V (t)e−itH0

Exercise VA4.1

Derive this expression for Û in terms of V̂ by finding and solving its equation

of motion with respect to tf (with appropriate initial condition).

The fact that time development conserves probability (H = H†) is reflected in

the corresponding unitarity condition for the S-matrix:

S†S = 1

A more complicated condition is causality : The basic idea is that interactions take

place in chronological order. (A stronger statement of causality will be found in the

relativistic case: that any interaction should take place at a spacetime point, rather

than just at a single time. It follows from this weaker one in relativistic theories,

since event B is later than event A in every Lorentz frame only when B is in A’s

lightcone.) Causality is the condition that the Hamiltonian at any time involves only

variables evaluated at that time. (H(t) is a function of only φ(t), all at the same

time t, where φ = p, q are the quantum variables appearing in the Hamiltonian.) A

nice way to describe the interactions is by introducing a classical background as we

did for the semiclassical expansion of path integrals, such as by φ(t) → φ(t) + χ(t),

where χ is just some function. The important point is that we have shifted φ(t) by

χ(t) at the same t, so as not to disturb causality. We then consider the effect on the

S-matrix of modifying the background χ by a function δχ localized (nonvanishing) at

some particular time t, and a function δχ′ localized at t′, such that t > t′. Picking

out the δχ pieces in the time-ordered product, we can therefore write

S[χ+ δχ+ δχ′] = U(f, t)V(t)U(t, t′)V(t′)U(t′, i)

S[χ+ δχ] = U(f, t)V(t)U(t, t′)U(t′, i)

S[χ+ δχ′] = U(f, t)U(t, t′)V(t′)U(t′, i)

S[χ] = U(f, t)U(t, t′)U(t′, i)

where U(t′, i) is the time-development operator from time ti to time t′ (including the

canceling factor with H0), V(t′) is the extra factor in the time development at time
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t′ resulting from the function δχ′ localized there, etc. Thus we replace a V with the

identity if the corresponding δχ is absent. Then we easily find

S[χ+ δχ+ δχ′] = S[χ+ δχ]S−1[χ]S[χ+ δχ′]

⇒ (S−1[χ+ δχ]S[χ+ δχ+ δχ′]− I)− (S−1[χ]S[χ+ δχ′]− I) = 0

⇒ δ

δχ(t)

(
S[χ]†

δ

δχ(t′)
S[χ]

)
= 0 for t > t′

using the infinitesimal functions δχ and δχ′ to define functional derivatives (as in

subsection IIIA1 for the action).

In general, it is not possible to solve the Schrödinger equation for the propagator

or the S-matrix exactly. One approximation scheme is the perturbation expansion in

orders of the interaction:

H = H0 + V ⇒ T (e−i
∫
dt H) = e−i(tf−ti)H0 +

∫ tf

ti

dt e−i(tf−t)H0 [−iV (t)]e−i(t−ti)H0

+

∫ tf

ti

dt

∫ t

ti

dt′ e−i(tf−t)H0 [−iV (t)]e−i(t−t
′)H0 [−iV (t′)]e−i(t

′−ti)H0 + ...

⇒ Sfi ≡ 〈f |S|i〉 = 〈f |i〉+

∫ ∞
−∞

dt 〈f, t|[−iV (t)]|i, t〉

+

∫ ∞
−∞

dt

∫ t

−∞
dt′ 〈f, t|[−iV (t)]e−i(t−t

′)H0 [−iV (t′)]|i, t′〉+ ...

(To get this result, look at the definition of the time-ordered product in terms of

infinitesimal integrals.) The first term in S is just the identity (i.e., the free piece). All

the other terms consist of a string of interactions (−iV ) connected by free propagators

(e−itH0 , where t is the time between the interactions), with each interaction integrated

over all time (subject to time-ordering of the interactions), and the initial/final state

(wave function) evaluated at the initial/final interaction time.

Exercise VA4.2

Assume the initial and final states are eigenstates of the free Hamiltonian:

H0|i〉 = Ei|i〉, H0|f〉 = Ef |f〉

Assuming V has no explicit time dependence, explicitly evaluate the time

integrals in the S-matrix, effectively Fourier transforming from time to energy,

to find

Sfi = 〈f |i〉 − 2πiδ(Ef − Ei)〈f |(E −H0)
1

E −H + iε
(E −H0)|i〉|E=Ei
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(Hints: Redefine the integration variables to be the times between interac-

tions. Taylor expand 1/(E −H + iε) in V for comparison.)

In field theory we want to express any state in terms of a basis of products of

1-particle states, so we can calculate the behavior of these specified particles. We

try to do this by using field variables (the “q’s” of field theory): Each field operator

should produce a single particle. Unfortunately, this is not the case: An asymptotic

state of given 3-momentum created by such a field operator is not necessarily an

eigenstate of the energy, because such a state can be either 1-particle or n-particle,

due to interactions. The propagator for the field is then of the form

Ĝ(p, t; p′, t′) ∼ δ(p− p′)
∑
I

ψ*I(p)ψI(p)e
−i(t−t′)EI(p)

EI(p) =

nI∑
i=1

EI,i(pi),

nI∑
i=1

pi = p

where “EI,i(pi)” is the energy of a 1-particle state (the
∑

I will include an integral in

general). However, as long as all particles have masses, such an asymptotic 1-particle

state is distinguishable as that of lowest energy E0: The higher-energy states are

n-particle states to which this particle can couple. (If some of the n-particle states

were lower energy, the 1-particle state could decay into them, and thus the 1-particle

state would be unstable, and not asymptotic. With massless particles things are more

complicated: Then 1-particle states are more difficult to define and to measure.) In

principle, we could define the 1-particle states by constructing the corresponding

operator, consisting of the field plus terms higher order in the fields; in practice, this

is rather complicated. (Note: For the above analysis, it might be convenient to use

the center-of-mass frame.)

A simpler way to make the asymptotic states unambiguous is by modifying the

definition of the S-matrix:

S = lim
ti→−∞(1+iε)

tf→+∞(1+iε)

eitfH0 T
(
e
−i
∫ tf
ti

dt H
)
e−itiH0

introducing factors of 1 + iε for some positive ε, which may be chosen small for

convenience. (Actually, we can generally replace 1 + iε with just i if it is not too

confusing: The result is the same.) The effect is seen by considering a matrix element

of particular fields that may be a superposition of different energies E in the initial

state and E ′ in the final state, but evaluated between an initial state of energy Ei and

a final state of energy Ef (which might not be equal for a time-dependent interaction,
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e.g., if the number of particles changes). Since E ≥ Ei initially and E ′ ≥ Ef finally,

the time dependence of any such matrix element is proportional to

Sfi ∼ lim
tf→+∞(1+iε)

eitf (E′−Ef ) lim
ti→−∞(1+iε)

e−iti(E−Ei) =

{
1 for E = Ei, E

′ = Ef

0 otherwise

Alternatively, we can simply impose E = Ei, E
′ = Ef directly in the definition:

S = lim
ti→−∞
tf→+∞

eitfH0δH(tf ),H0 T
(
e
−i
∫ tf
ti

dt H(t)
)
δH(ti),H0e

−itiH0

where the free Schrödinger equation H0 = Ei or Ef defines Ei for the initial state

and Ef for the final state, and δH,H0 is evaluated by examining the asymptotic time-

dependence of the time-development operator with respect to ti and tf : Normally

field theory is calculated in energy-momentum space, working with the spacetime

Fourier transform of the above, where this amounts to simply comparing energies

E = Ei, E
′ = Ef .

If we know some details of the interaction, this modification may be irrelevant: In

particular, in local quantum field theory interactions happen at a point in space and

time. For example, consider the inner product between a 1-particle state in its rest

frame and a related n-particle state, which appears in the same propagator. Because

of locality, the wave function for the n-particle state, when evaluated in position space

(which is where the theory is local) is simply the product of n 1-particle wave functions

evaluated at the same point. But we know that for small relative momenta (where a

nonrelativistic approximation holds) that the individual wave functions propagate as

|ψ| ∼ |t− t′|−(D−1)/2

from the form of the free 1-particle propagator. (Or, we can use dimensional analysis,

and consider the spread of a particle of restricted range of momenta from a confined

region: Then |ψ|2 ∼ 1/V and the volume V ∼ |t − t′|D−1.) This implies that the

n-particle wave function will fall off as the nth power of that, so in the limit of large

times the 1-particle state will dominate. In a relativistic theory the length scale

associated with this fall-off will be associated with the masses involved, and thus at

a subatomic scale.
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5. Wick rotation

In the previous subsection we ensured convergence in the definition of the S-matrix

by effectively making the “coordinate change”

t→ (1− iε)t = e−iεt

in the definition of the limit

(1− iε)t→∞ ⇒ t→ (1 + iε)∞

This affected the time-development operator as

e−iHt → e−iHt−εt

for H > 0 to pick out the ground state H = 0. The same effective substitution was

made in subsection VA3 in defining the contour integral for the propagator:∫
dE

2π
e−iE(1−iε)t i

E −H
=

∫
dE

2π
e−iEt

i

(1 + iε)E −H

=

∫
dE

2π
e−iEt

i

E − (1− iε)H
=

∫
dE

2π
e−iEt

i

E −H + iε

which is the same as the substitution

E → (1 + iε)E = eiεE

(when working with the time-independent Schrödinger equation) since essentially

E = i∂/∂t.

In general, having to do contour integrals and keep track of iε’s in propagators is

inconvenient. Fortunately, there is a simple way in practical calculations to get rid

of not only the iε’s but (almost) all the other i’s as well. The method is known as

“Wick rotation”. The basic idea is to extend the above complex rotation from angle

ε to angle π/2:

t→ −it = e−iπ/2t, E → iE

pushing the contour even farther away from the singularities. Thus, the Schrödinger

equation is changed to a “diffusion equation” (to describe, e.g., Brownian motion):

(i∂t −H)ψ = 0 ⇒ (∂t +H)ψ = 0

For example, for the free particle the resulting equation has no i’s. The time-

independent Schrödinger equation then becomes

(E −H)ψ = 0 ⇒ (iE −H)ψ = 0
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The result for the propagator is then∫ ∞
−∞

dE

2π
e−iEt

1

H − iE
= θ(t)e−Ht

Now no iε prescription is needed, since the pole was moved away from the real axis.

Similar remarks apply to the inverse Fourier transform∫ ∞
−∞

dt eiEtθ(t)e−Ht =
1

H − iE

Exercise VA5.1

Find the Wick-rotated retarded propagator G(x′, t′;x, t) for the free (1D)

particle, satisfying

(∂t +H)G = (−∂t′ +H ′)G =
√

2πδ(x− x′)δ(t− t′)

Furthermore, if we define the S-matrix directly in this Wick-rotated space

S = lim
ti→−∞
tf→+∞

etfH0 T
(
e
−
∫ tf
ti

dt H
)
e−tiH0

then the limiting procedure is unambiguous even in field theory, since

lim
ti→−∞

eti(E−Ei) =

{
1 for E = Ei

0 for E > Ei

lim
tf→+∞

e−tf (E−Ef ) =

{
1 for E = Ef

0 for E > Ef

Another important effect is on actions. For example, in the mechanics path

integral for a particle with kinetic term T = 1
2m

.
x2 in a potential V (x), we integrated

e−iS : S =

∫
dt(V − T )

(The iε prescription in that case is described in exercise VA2.4.) Upon Wick rotation,

this becomes

e−S : S =

∫
dt(V + T )

The major change on the exponent −S is that it is now not only real, but negative

definite. (For physical purposes, we assume the potential has a lower bound, which

can be defined to be nonnegative without loss of generality.) Thus, the semiclassical

approximation we made earlier, called the “stationary phase” approximation, has now

become the “steepest descent” approximation, namely fitting e−S/h̄ to a Gaussian,



A. GENERAL 423

which is approximating the integral by the places where the integrand is largest. We

thus write

S(x) = S(x0) + 1
2(x− x0)2S ′′(x0) + ..., S ′(x0) = 0, S ′′(x0) > 0

for one variable, with the obvious generalization to many variables. Explicitly, we

then have ∫
dx√
2πh̄

e−S(x)/h̄ ≈ 1√
S ′′(x)

e−S(x)/h̄

∣∣∣∣∣
S′(x)=0

plus higher orders in h̄, expressed in terms of higher derivatives of S. In the case

of many variables, S ′′ is replaced with a determinant, as for the Gaussian integrals

of subsection IB3, and for functional integrals, with a functional determinant. (But

sometimes the functional determinant can be replaced with an ordinary determinant:

See exercise VA2.1.)

So now we can first calculate everything in Wick-rotated spacetime, where every-

thing is real (more precisely, classical reality properties are preserved quantum me-

chanically), and then Wick rotate back to find the correct result in physical spacetime.

In particular, the appropriate ε’s, still needed to correctly position the singularities

in physical spacetime, can be restored by rotating back through an angle 1
2π − ε:

inverse Wick : t→ (i+ ε)t = ei(π/2−ε)t, E → (−i+ ε)E = e−i(π/2−ε)E
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Classically we distinguish between particles and waves. This can be consistent

with a classical limit of a quantum theory if there is a conserved charge associated

with the classical particles, with respect to which the classical waves are neutral. Such

a situation is described by a field theory Lagrangian (density) of the form

L = ψ†O(φ)ψ + Lφ(φ)

where ψ is the field of the charged particle, and φ the field of the waves that carry

the interaction. O includes the kinetic operator; a nonrelativistic example was given

in subsection IIIA3. Thus O(φ)ψ = 0, the field equation for ψ, is also a Schrödinger

equation, which we can derive from a classical mechanics action. (A zero-range inter-

action, as in billiard-ball collisions, is described by an Lφ without derivatives.) Then

we can have continuous worldlines for the particles: The statement that the worldlines

do not end or split is associated with charge conservation. The interaction between

the particles and waves is described by φ dependence in the particle (mechanics) ac-

tion obtained from O (and not the term Lφ for the wave fields). If we look at just

the mechanics action, the modification is the same as considering external fields (like

external potentials in nonrelativistic mechanics), since we are ignoring Lφ, which is

needed for the field equations of φ.

Lφ then can be added separately. Coupling to such external fields is a simple

way to study properties of particles without applying field theory. For example, in

nonrelativistic mechanics it helps to explain charge and spin, which don’t appear

explicitly in the free Schrödinger equation.

1. Particles

All the information in quantum mechanics is contained in the propagator, which

gives the general solution to the Schrödinger equation, and can be obtained by the

Feynman path integral. Here we discuss the free propagator for the spinless particle

(whose classical description was given in section IIIB), which is the starting point for

relativistic perturbation theory.

We consider quantization first in the Lorentz covariant gauge v = 1. From sub-

section IIIB2 we have

SH,AP =

∫ T

0

dτ [− .
xmpm + 1

2(p2 +m2)]
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Except for the T integration in the functional integral (in addition to the functional

integration over x and p), the same methods can be applied as in the nonrelativistic

case, where we had

SH,NR =

∫ tf

ti

dt(− .
xipi + 1

2m
p2)

The simplest expression (and ultimately the most useful one) is obtained by Fourier

transforming with respect to x: In comparison to the multidimensional nonrelativistic

result

ĜNR(pi, t; p′i, t′) = δ(p− p′)θ(t− t′)e−i(t−t′)p2/2m

(where here δ(p − p′) = (2π)(D−1)/2δD−1(pi − p′i) for D − 1 spatial dimensions), the

relativistic result is

G̃(p, p′) =

∫
dT δ(p− p′)θ(T )e−iT (p2+m2)/2

(where now δ(p− p′) = (2π)D/2δD(pa − p′a) for D spacetime dimensions).

There are several simple yet important differences from the nonrelativistic case:

(1) The dependence on the mass m is different. In particular, we can set m = 0 only

in the relativistic case.

(2) There is an additional integration
∫
dT , because the variable T , which is the

remaining part of v, survives the gauge v = 1. (It is all that remains of a

would-be functional integral over v.) This is analogous to the time integral in

the nonrelativistic case for G̃(pi, E; p′i, E ′), if we set the energy to zero. This

is as expected, since the relativistic classical mechanics differs from the nonrel-

ativistic one mainly by constraining the “Hamiltonian” 1
2(p2 + m2) to vanish.

This interpretation also leads to the “zero-energy” version of the inhomogeneous

(proper-)time-independent Schrödinger equation for this case,

−i1
2( −m2)G(x, x′) = δ(x− x′)

(3) The propagator is automatically “retarded” in the “proper time” T , as a conse-

quence of the positivity condition v > 0, which was motivated by the geometrical

interpretation of v as the worldline metric.

When used in this manner to write the propagator in terms of a Gaussian, T is known

as a “Schwinger parameter”.

Generally, it is convenient to remove the momentum δ-function (which resulted

from translational invariance) as

G(x, x′) = ∆(x− x′) ⇒ G̃(p, p′) = δ(p− p′)∆(p)
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∆(p) =

∫
dT θ(T )e−iT (p2+m2)/2

where we have simply written ∆(p) for the Fourier transform of ∆(x) (dropping the

tilde). Performing the T integral, using the same methods as for the t integral in the

nonrelativistic case, we have the final result

∆(p) =
−i

1
2(p2 +m2 − iε)

Actually, this result is almost obvious from solving the relativistic wave equation. The

only part that is not obvious is the “iε prescription”: how to perform the contour

integration upon Fourier transformation. In the nonrelativistic case, we saw two

obvious choices, corresponding to retarded or advanced propagators; the classical

action did not distinguish between the two, although the retarded propagator has the

obvious convenience of determining later events from earlier ones. On the other hand,

in the relativistic case the choice of propagator was fixed from classical considerations.

T is restricted to be positive, and the iε is needed to make the T integral converge.

Exercise VB1.1

Take the nonrelativistic limit of the relativistic propagator, and compare with

the propagator of nonrelativistic quantum mechanics. Explain the difference

in terms of the nonrelativistic limit of the classical mechanics action.

Exercise VB1.2

Perform the analysis of exercise VA2.4 for the relativistic particle. First re-

place the integration over T by a sum: Instead of dividing up the time into

2N intervals of length ε and taking the limit N →∞, ε→ 0, with 2Nε fixed,

sum 2ε
∑∞

N=0, and then take the limit ε→ 0. (2Nε is now T instead of tf− ti,
and we integrate over it instead of keeping it fixed.) Perform all x integrals

and then all but the last p integral before summing over N . Again, the entire

calculation is much easier than using the Lagrangian (second-order) form of

the path integral.

To understand this point better, we examine the Fourier transformation with

respect to time. In contrast to the nonrelativistic case, there are now two poles, at

p0 = ±ω, ω =
√

(pi)2 +m2 : ∆ =
i

ω

(
1

p0 − (ω − iε)
− 1

p0 + (ω − iε)

)
where now pa = (p0, pi). These are also the two classical values of the canonical energy

(as opposed to the true energy, which is the absolute value), which we saw previously
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corresponded to particles and antiparticles. With our prescription for integrating

around the poles, using the same methods as in the nonrelativistic case, we then find

Ĝ(pi, t; p′i, t′) = (2π)D/2δD−1(pi − p′i) 1

ω
e−iω|t−t

′|

= (2π)D/2δD−1(pi − p′i) 1

ω
[θ(t− t′)e−iω(t−t′) + θ(t′ − t)eiω(t−t′)]

We now see that the particles (p0 = ω) have a retarded propagator, while the antipar-

ticles (p0 = −ω) have an advanced propagator. This is the quantum version of the

classical result we saw earlier, that particles travel forward in time, while antiparticles

travel backward. The interpretation is simple: When evaluating matrix elements of

the form 〈f |O|i〉, the resulting propagator ensures that the initial wave function con-

tains only positive energies, while the final complex conjugate wave function contains

only negative energies (i.e., the final wave function itself contains positive energies).

We next compare quantization in the lightcone gauge. Again from subsection

IIIB2,

SH,LC =

∫ τf

τi

dτ [
.
x−p+ − .

xipi + 1
2(pi2 +m2)]

Whereas in the covariant gauge the analog to the nonrelativistic time t was the

“proper time” T , the analog is now the lightcone “time” τ . Since τ = x+/p+, we

have E = p−p+ (E = i∂/∂τ vs. p− = i∂/∂x+), and thus

∆(p) =
i

E − 1
2(pi2 +m2) + iε

=
−i

1
2(p2 +m2 − iε)

as before. Note that this derivation was almost identical to the nonrelativistic one:

Unlike the covariant gauge, we did not have to add in T as a separate variable of

integration (but not path integration). However, this Schwinger parameter is useful

for evaluating momentum integrals and analyzing momentum dependence. This is a

typical characteristic of unitary gauges: They are more useful for keeping track of

degrees of freedom.

Exercise VB1.3:

Quantize the particle with v not constrained to be positive, and show the

resultant propagator is proportional to δ(p2). Also quantize the Lagrangian

λαλ̄ .
αx

α
.
α, where λ and λ̄ are twistors. Show the result is θ(p0)δ(p2), and

explain the relation to the previous Lagrangian.
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2. Properties

As in electrodynamics, the free scalar satisfies a differential equation second-order

in time, so the propagator is used differently from nonrelativistic quantum mechanics

to give a general solution to the wave equation. We begin by considering a free

“action” between two different scalar fields, written in a way where all derivatives act

on just one field or just the other, i.e., where the field equation is explicit. The two

forms are related by integration by parts, but now we keep boundary terms:∫
dDx [A( −m2)B −B( −m2)A] =

∫
dDx ∂ · (A

↔
∂B) =

∮
dD−1σm A

↔
∂mB

where in the last step we have used the (generalized) Stokes’s theorem (see subsection

IC2); “
∮
dD−1σm” is the integral over the closed surface bounding the volume inte-

grated over in
∫
dDx. In practice we take the volume to encompass all spacetime in

the limit, neglect the part of the boundary at spacelike infinity, and choose the parts

of the boundary at timelike infinity to be surfaces at constant time, so the boundary

integrals are over just space:∮
dD−1σm A

↔
∂mB =

∫
dD−1x A

↔
∂ tB|∞−∞ =

∫
dD−1x A

↔
∂ tB|∞ −

∫
dD−1x A

↔
∂ tB|−∞

We then have the solution for the wave function inside the volume in terms of that

on the boundary:

( −m2)ψ = 0, −i1
2( −m2)G(x, x′) = −i1

2( ′ −m2)G(x, x′) = δ(x− x′)

⇒
∮
dD−1σ′m

(2π)D/2
G(x, x′)1

2i
↔
∂ ′mψ(x′) = ψ(x)

where the wave equation for ψ is the Klein-Gordon equation.

Exercise VB2.1

For a free nonrelativistic particle, solve x(t)’s “1D wave equation” for a Green

function that vanishes at ti and tf (“Dirichlet” boundary conditions). Use it

to find the solution for x(t) in terms of ti, tf , xi, and xf as given in subsection

VA2. (Don’t forget the sign from the orientation of the “boundary”, i.e.,

t = ti or tf .)

Similarly, this defines a conserved current from any two wave functions

∂ · (ψ1*
↔
∂ψ2) = ψ1*( −m2)ψ2 − ψ2( −m2)ψ1* = 0

or, evaluating the integral over a volume infinite in space but infinitesimal in time,

the conserved charge
d

dt

∫
dD−1x ψ1*

↔
∂ tψ2 = 0
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This leads to the covariant inner product 〈 || 〉 on a hypersurface (as opposed to the

naive inner product 〈 | 〉 for the full space)

〈1||2〉 = ε(p0)

∫
dD−1x

(2π)D/2
ψ1*1

2i
↔
∂ tψ2

where the ε(p0) appears because the boundary integral gives a + at later times (pos-

itive energy) and a − at earlier times (negative energy). Explicitly, we find for the

inner product of plane waves

ψp(x) = 〈x|p〉 = eip·x

⇒ 〈p||p′〉 = (2π)D/2−1δD−1(pi − p′i)ε(p0)1
2(p0 + p′0)

We have used p2 + m2 = p′2 + m2 = 0, which also implies that |p0| = |p′0|: Thus,

the inner product vanishes if the waves have opposite-sign energy, while for the same

sign ε(p0)1
2(p0 + p′0) = |p0|. The result then can be written manifestly covariantly as

〈p||p′〉 =
δ(p− p′)

2πδ[1
2(p2 +m2)]

= θ(p0p′0)ω(2π)D/2−1δD−1(pi − p′i)

Similarly, the solution for the wave function in terms of the Green function gives

only positive-energy contributions from the part of the surface at earlier times, and

only negative-energy contributions from the part of the surface at later times. More

general on-shell wave functions, since they depend on only D − 1 spatial momenta

and the sign of the energy, can be written as a restricted Fourier transform

ψ(x) =

∫
dp 2πδ[1

2(p2 +m2)]eip·xψ̃(p)

⇒ 〈1||2〉 =

∫
dp 2πδ[1

2(p2 +m2)]ψ̃1(p)*ψ̃2(p)

(Here ψ̃(p)* means to complex conjugate after Fourier transforming to p-space; oth-

erwise, we need to change the sign of the argument.) In particular, for a plane wave

we have

ψ̃p′(p) =
δ(p− p′)

2πδ[1
2(p2 +m2)]

It will prove useful later to have a collection of solutions to the homogeneous and

inhomogeneous Klein-Gordon equations, and compare them in 4-momentum space

and time-3-momentum space. Using the previous nonrelativistic and relativistic re-

sults, we find

∆: −i/(p2 +m2 − iε) ⇒ θ(t)e−iωt +θ(−t)eiωt = e−iω|t|

∆*: i/(p2 +m2 + iε) ⇒ θ(t)eiωt +θ(−t)e−iωt = eiω|t|

∆R: −i/(p2 +m2 − iεp0) ⇒ θ(t)e−iωt −θ(t)eiωt = −2iθ(t)sin(ωt)

∆A: i/(p2 +m2 + iεp0) ⇒ θ(−t)e−iωt−θ(−t)eiωt = −2iθ(−t)sin(ωt)

∆+: θ(p0)2πδ(p2 +m2) ⇒ θ(t)e−iωt +θ(−t)e−iωt = e−iωt

∆−: θ(−p0)2πδ(p2 +m2) ⇒ θ(t)eiωt +θ(−t)eiωt = eiωt
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(the inhomogeneous terms in their wave equations vary in sign) where we have omitted

certain common factors (see subsection VB1). ∆± satisfy the homogeneous equation,

while the rest satisfy the inhomogeneous one. (These are easily checked in the mixed

space, where the Klein-Gordon operator is −(∂2
t + ω2).) This table makes explicit

which sign of the energy propagates in which time direction, as well as the linear

relations between the momentum-space expressions. In particular, we see that ∆+

propagates just the positive-energy states, while ∆− propagates just the negative-

energy ones.

Exercise VB2.2

The relativistic propagator uses a particular choice for integrating around the

two poles in the complex energy plane, as encoded in the iε prescription. If

we ignored the classical determination of that prescription, there would be

four simple choices, integrating either above or below the two poles.

a Show these four choices can be enforced by replacing iε in p2 +m2 − iε with

iε, −iε, iεp0, −iεp0

and derive the results of the table above.

b Give explicit expressions for the four propagators in position space in four

dimensions for the massless case.

We can check the propagator’s behavior by explicit evaluation, using plane waves:

ε(p0)

∫
dD−1x′

(2π)D/2
∆(x− x′)1

2i
↔
∂ t
′ψp(x

′) = ε(p0)1
2(p0 + i∂t)

1

ω
e−iω|t−t

′|ei~p·~x−ip
0t′

= θ[p0(t− t′)]ψp(x)

where we have used the previous result for Ĝ(~p, t; ~p′, t′) (and thus ∆(~p, t)). Again

we see that the propagator propagates positive-energy solutions forward in time and

negative-energy backward.

This propagator also applies to relativistic field theory. (See subsection IIIA3 for

nonrelativistic field theory.) In comparison to the nonrelativistic case, the propagator

is now −i/1
2(p2 +m2) instead of −i/( 1

2m
~p 2−E), and this determines the kinetic term

in the field theory action:

S0 = −
∫
dx 1

2φ
1
2( −m2)φ =

∫
dx 1

4
[(∂φ)2 +m2φ2]

To make the functional integral of e−iS0 converge, we replace m2 → m2 − iε, which

is the same iε prescription found in first-quantization. Note that we have used a real
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field φ* = φ. (A complex field can be used by doubling ψ = (φ1 + iφ2)/
√

2.) This is

possible only in the relativistic case because we have both positive-energy solutions

e−iEt as well as negative ones e+iEt. (In other words, the relativistic Schrödinger

equation is a second-order differential equation, so we get two i’s to make the kinetic

operator real.) Reality simply means identifying particles with antiparticles. (E.g.,

there is no “antiphoton” distinct from the photon.)

3. Generalizations

More generally, we will find propagators of the form (in momentum space)

∆ = − i

K
, K = K†

corresponding to free actions

S0 =

∫
dx 1

2φKφ

where K = −1
2( −m2) in the case just considered. (We have neglected the iε in ∆,

which destroys its naive antihermiticity.) Then the inner product is defined as above

in terms of the Green function by again using integration by parts,

i

∫
dDx [(KA)†B − A†KB] = ε(p0)

∮
dD−1σm A†MmB

to define the operator Mm, which was −ε(p0)1
2i
↔
∂m in the previous case. (dD−1σm

is the Hodge dual of the (D−1)-forms of subsection IC2.) For the usual equal-time

hypersurfaces, we use M0 = −M0. There may be additional implicit matrix factors

in the Lorentz-invariant inner product A†B.) This in turn defines the inner product

〈1||2〉 =

∫
dD−1σm
(2π)D/2

ψ1
†Mmψ2

and thus

ψ(x) = ε(p0)

∮
dD−1σ′m
(2π)D/2

G(x, x′)M ′mψ(x′)

This inner product gives a nonnegative norm on physical bosonic states, but on physi-

cal fermionic states it is negative for negative energy, because ordering the initial state

to the left of the final state (the wrong ordering for quantum mechanics) produces

a minus sign from the anticommutativity of the fermions. (From the explicit inte-

gral, this appears because K is generally second-order in derivatives for bosons, but

first-order for fermions, so Mm has one factor of p0 for bosons and none for fermions.)
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For physical fields, the (free) field equation will always imply the Klein-Gordon

equation (after gauge fixing for gauge fields). Thus, the propagator can always be

written as

∆ = − i

K
= −i N(p)

1
2(p2 +m2 − iε)

in terms of some matrix kinematic factor N(p). Using this expression for the propa-

gator in our above position-space inner product, this implies (e.g., using Ĝ as in the

previous subsection for the denominator by using a Fourier transform)

ψp(x) = ψ̂(p)eip·x ⇒ N(p)M0(p)ψ̂(p) = ωψ̂(p)

from integrating over a hypersurface at constant time. If we generalize to other flat

hypersurfaces with timelike normals nm (e.g., by just Lorentz transforming), we have

N(p)n ·M(p)ψ̂(p) = ε(p0)n · pψ̂(p)

and finally, by taking linear combinations for different n’s,

N(p)Mm(p)ψ̂(p) = ε(p0)pmψ̂(p)

If we choose a basis that is orthonormalized with respect to all quantum numbers

other than momenta (i.e., with respect to spin/helicity and internal symmetry), we

have

〈p, i||p′, j〉 = δij
δ(p− p′)

2πδ[1
2(p2 +m2)]

If we ignore coordinate/momentum dependence and focus on just these other quantum

numbers, then it is clear that

N = [ε(p0)]2s
∑
i

|i〉〈i|

where we have included an extra sign factor for negative energy and half-integer spin

from the reordering of states, as explained above. In an arbitrary basis, we can

generalize to

N(p) = [ε(p0)]2s
∑
i

ψ̂†i(p)ψ̂i(p)

The positive-energy propagator is then given by a sum over all positive-energy states:

∆+ = N(p)θ(p0)2πδ[1
2(p2 +m2)]

The fact that K is not simply the Klein-Gordon operator is a consequence of un-

physical (gauge/auxiliary) degrees of freedom appearing in the action: Then N is a

projection operator that projects out the auxiliary degrees of freedom on shell, and
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the gauge degrees of freedom on and off (in unitary gauges), as represented above

by a sum over physical states. However, more general N ’s are sometimes used that

include unphysical degrees of freedom; these must be canceled by “ghosts”, similar

unphysical degrees of freedom of the opposite statistics.

Exercise VB3.1

Demonstrate all these properties for spin (helicity) 1
2 (see subsections IIA6,

IIB6-7, and IIIA4): Find Mm from integration by parts. Find N both from

inverting to get the propagator and from summing over physical states. Show

the NMψ̂ identity is satisfied.

a For the massless case, use twistors for the solution to the field equation to

find

(Mα
.
β)
γ
.
δ

= δαγ δ
.
β.
δ
ε(p0), (N)

α
.
β
(p) = ε(p0)pαp̄.

β
= p

α
.
β

b Do the same for the massive Dirac spinor, to find

Mm = −γmε(p0), N = 1
2(p/+m)

(Hint: Consider the rest frames for p0 > 0 and < 0. Remember Υ = γ0.)

Exercise VB3.2

Use the construction of exercise VB1.2 to define the path integral for the

spinning particle of exercise IIIB1.3. Show that in the covariant gauge v = 1,

λ = constant, the propagator can be written as

∆(p) ∼
∫
dξ dT θ(T )e−T

1
2p

2−iξψ·p ∼ −iψ · p1
2p

2
=

i

ψ · p

up to some arbitrary normalization factor, where ξ =
∫
dτ λ is the only gauge

invariant part of λ (as T =
∫
dτ v is for v).

We will find that quantum corrections modify the form of the propagator. In

particular, it may modify the position m2 of the pole in −p2 and its residue, as well

as adding terms that are analytic near that pole. For example, consider a scalar

propagator of the form

∆(p) = −i N
1
2(p2 +m2 − iε)

+R

where N is a constant and R is analytic in p. By the procedure of “renormalization”,

N can be set to 1, and m2 can be set to its original value (see chapter VII). Alter-

natively, we can cancel N in the normalization of external states, and redefine the

masses of these states to coincide with what appears in the propagator.
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Exercise VB3.3

Use this propagator to define the inner product between two plane waves,

and evaluate it explicitly. Show that R gives no contribution, and the plane

waves need factors of
√
N to maintain their normalization. (Hint: What is

the wave equation corresponding to ∆, and how is it related to Mm? You can

also consider the relation of N to ∆+.)

Away from the pole, at higher values of −p2 than m2, there will also be cuts

corresponding to multiparticle states. Although these higher-energy intermediate

states in the propagator will contribute to the time development even for on-shell

states (those satisfying p2 + m2 = 0 asymptotically), in S-matrix elements we can

ignore such contributions on external lines, using our modified definition for evaluating

the asymptotic limit for the S-matrix (see subsection VA4).

Exercise VB3.4

Consider the general scalar propagator

∆(p) = −i
∫ ∞

0

dµ
ρ(µ)

1
2(p2 + µ2 − iε)

, ρ(µ) = δ(µ−m) + θ(µ− 2m)σ(µ)

which contains a pole at mass m and contributions from multiparticle states

at mass 2m and higher. Fourier transform from energy to time. Use this

propagator to define the time development of a momentum eigenstate satis-

fying the free wave equation asymptotically, using the 1 + iε prescription of

subsection VA4 to define the asymptotic limit:

ψ(t) ≡ lim
ti→−∞(1+iε)

∫
G(t, ti)

1
2i
↔
∂ tiψ0(ti)

and show that σ(µ) does not contribute:

( −m2)ψ0 = 0 ⇒ ψ(t) = ψ0(t)

4. Wick rotation

As in the nonrelativistic case, the iε prescription can also be fixed by the infinites-

imal Wick rotation (see subsection VA5)

t→ (1− iε)t, E → (1 + iε)E ⇒ 1

p2 +m2
→ 1

p2 +m2 − iε
However, in the relativistic case, a finite Wick rotation gets rid of not only i’s but

also the annoying minus signs associated with the Minkowski metric. We now replace

all timelike coordinates, including proper time, with spacelike coordinates:

t→ −it, τ → −iτ
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In addition, for every vector field V a we replace

V 0 → −iV 0 (V i → V i)

and similarly for tensor fields. (Here we have defined Wick rotation in the first-

quantized sense: on all explicit coordinates and momenta, as well as on explicit

Lorentz indices. For example, in the field theory action we rotate the explicit deriva-

tives and the integration measure, rather than the arguments of the fields.)

Euc.

Min.
−ω+iε

+ω−iε

E

Note that E as defined in the nonrelativistic case was −p0, which is the same as

p0 only in Minkowski space:

p0 → −ip0, p0 → +ip0

Furthermore, there is some apparent ambiguity in how to change the integration

measure, corresponding to how the integration contours are rotated (i.e., changes

in the limits of integration). In particular, we see from subsection VA5 that the

contour rotation for E is actually in the opposite direction of that for t, consistent

with Fourier transformation. (Effectively, we keep the extra i for
∫
dp from rotating

p0, while dropping the −1 from p0 ↔ p0 because of the usual absolute value in the

Jacobian in real changes of variables.) The net result is the naive change for
∫
dx,

while that for
∫
dp preserves the inverse Fourier transform:∫

dx→ −i
∫
dx,

∫
dp→ i

∫
dp; δ(x)→ iδ(x), δ(p)→ −iδ(p)

When manipulating explicit expressions, the factors of i on coordinates/momenta

and fields can be transferred to the constant tensors contracting their indices: The

net effect is that the Wick rotation is equivalent to changing just τ , the integration

measures, the flat-space metric, and the Levi-Civita tensor:

τ → −iτ, ∂

∂τ
→ i

∂

∂τ
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∫
dτ → −i

∫
dτ,

∫
dx→ −i

∫
dx,

∫
dp→ i

∫
dp

ηmn → δmn, εabcd → −iεabcd

So now the inner product is positive definite: We have gone from Minkowski space

to Euclidean space.

For example, for the relativistic particle in the gauge v = 1, the propagator is

now

∆(p) =

∫
dT θ(T )e−T (p2+m2)/2 =

1
1
2(p2 +m2)

The integral is automatically convergent because p2+m2 is now positive definite. If we

examine our transformation of timelike components in terms of the complex p0 plane,

we see that we have just rotated the contour from the real axis to the imaginary axis,

through an angle π/2, which avoids the poles at p0 = ±(ω − iε). (There is actually

a slight cheat in the massless case, since the two poles converge near vanishing 3-

momentum, where ω = 0, but this problem can be avoided by an appropriate limiting

procedure.) Note that in the relativistic case the Euclidean propagator is completely

real also in momentum space; even the overall −i has been killed. (Compare the

nonrelativistic case in subsection VA5, where−i/(H−E)→ 1/(H−iE).) This follows

from first Wick rotating in position space, then performing the Fourier transform as

usual (avoiding an extra −i from rotating the
∫
dt in the Fourier transform).

Exercise VB4.1

Find the propagator in time-3-momentum space, Ĝ(pi, t; p′i, t′), after Wick

rotation. (I.e., Wick rotate ∆(p) first, then Fourier transform.)

Exercise VB4.2

Find the massless propagator in 4D Minkowski coordinate space, including

the iε, by

a Fourier transforming the Schwinger-parametrized momentum-space propaga-

tor in Minkowski space (including the “Minkowski” τ),

b doing the same entirely in Euclidean space, and then Wick rotating the time

back to Minkowski space, and

c Fourier transforming both of the above cases without using the Schwinger

parameter, first doing the energy integrals as in the previous section. (Hint:

Use rotational invariance to point ~x in a particular direction to simplify the

angular integration.)
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Exercise VB4.3

Although the propagator in momentum space is most useful for scatter-

ing of plane waves, its position-space dependence is more useful for bound

states/scattering of localized sources:

a Evaluate the Wick-rotated propagator in arbitrary dimensions D for large

x =
√
x2 by

(1) Fourier transforming the Schwinger-parametrized form,

(2) performing the (Gaussian) p integration before the T , and

(3) using the steepest descent approximation on the exponential to approxi-

mate the T integral (but don’t bother sticking the power of T multiplying

the exponential in it as a log).

Why does this approximation correspond to large x? (It may be useful to

make the redefinition T → (x/m)τ .) You should find the result

∆(x) ≈
√

2πm(D−3)/2x−(D−1)/2e−mx

After Wick rotating back, the exponential becomes a phase inside the light-

cone, while outside it gives exponential damping, as in quantum mechanical

barrier penetration. (In the massless case, there is damping away from the

lightcone both inside and outside, but only by powers, determined by dimen-

sional analysis.)

b Show the above result is exact in D=1 and 3 by

(1) Fourier transforming without the Schwinger parameter,

(2) performing a contour integral over the magnitude of p by closing it ap-

propriately and picking up the contributions at the poles at p = ±im,

and

(3) for D=3, fixing xm in a particular direction and doing the angular part of

the p integration.

(This method can also be used to obtain the exact corrections to the above in

terms of elementary functions for higher odd D.) For the physical case of the

potential produced by a static point source in 3 spatial dimensions, we find

∆(x) =
√

2πe−mx/x, so at short range the Coulomb potential is unmodified,

while it is exponentially damped at range 1/m.

c Check the results for b by taking the massless limit, and comparing to the

analogous result using the method of a, but doing the T integral exactly
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for those cases. (Warning: The result is infinite in D=1, and some type of

“regularization” must be used to subtract an infinite constant, leaving a finite

x-dependent remainder.)

The corresponding effect on the action, where we path-integrated

e−iS : S =

∫
dτ 1

2(vm2 − v−1 .
xm

.
xnηmn)

is to integrate the Wick rotated expression

e−S : S =

∫
dτ 1

2(vm2 + v−1 .
xm

.
xnδmn)

This method also applies to relativistic field theory. Wick rotation t → −it of the

kinetic term

e−iS0 : S0 =

∫
dx 1

4
[ηmn(∂mφ)(∂nφ) +m2φ2]

now gives

e−S0 : S0 =

∫
dx 1

4
[δmn(∂mφ)(∂nφ) +m2φ2]

This has an interesting consequence in the complete action (including interac-

tions). Positivity of the energy implied the non-time-derivative terms in the action

had to be positive, but the time-derivative terms are now the same sign in the Wick-

rotated action, effectively the same as adding an extra spatial dimension: The energy

T + V is the same as the Wick-rotated Lagrangian (−T + V → T + V ). So we can

replace the condition of positivity of the energy with positivity of the Wick-rotated

action, which we need anyway for path-integral quantization. (Note that for the

particle this again requires v ≥ 0.)

Although Wick rotation is thus very useful for application to “intermediate”

states, it can never be applied to physical (i.e., initial and final) states: For ex-

ample, p2 + m2 = 0 has no solution in Euclidean space, since each term is strictly

positive. Typically, this means that one performs quantum calculations first in Eu-

clidean space, then Wick rotates back to Minkowski space before applying physical

state conditions.

Unfortunately, the simple results for Wick rotation obtained here for spin 0,

although they generalize to spin 1, do not work so simply for other spins. (Consider,

e.g., trying it in spinor notation.) However, the method can still be applied to the

coordinates, and simplifies momentum integrals, since one can avoid contours, i’s,

and Minkowski minus signs.

Another way to understand Wick rotation is by dimensional reduction from a

space with 1 extra spatial dimension. (This is also useful for introducing mass: See
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subsection IIB4.) Then reduction of that spatial dimension gives the original theory,

while reduction of the time dimension instead gives that theory in Euclidean space.

For Dirac spinors (see subsection IIA6), the latter makes it clear why the γ0 drops

out of ψ̄, as it now plays the role of γ−1 in Weyl projection, since x0 has been reduced

instead of x−1.
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A relativistic quantum field theory is defined by three properties:

(1) Poincaré invariance (“relativistic”) is the basic result of special relativity. Its con-

sequences have been accurately observed both macroscopically and (sub)micro-

scopically, and no violations are known.

(2) Unitarity (“quantum”) is the main mathematical result of quantum mechanics:

Any quantum theory can be considered as the corrections to the classical theory

implied by unitarity. This is one way to define perturbation theory, and is equiv-

alent to the usual (JWKB) expansion in h̄. (The other major axioms of quantum

mechanics are concerned with the physical interpretation of the quantities calcu-

lated, such as the preparation and measurement of states.) Quantum mechanics

also has been accurately verified, with no observed violations.

(3) Causality (“field theory”) appears in many areas of physics, formulated in many

ways. The strongest way to state causality, in a way independent of special

relativity and quantum mechanics, is as locality: All interactions happen at a

point; there is no action at a distance. This means that any force applied by an

object at one point in spacetime on another elsewhere(/when) must be mediated

by yet another object that carries the effect of that force between the two. The

most accurate verifications of this principle have been through the predictions of

relativistic quantum field theory. Note that “locality” is what defines spacetime:

For example, in quantum mechanics x and p are treated on an equal footing.

Usually p is defined as the generator of a symmetry, but this definition can be

obscured in a translationally noninvariant potential or in curved spaces (like a

particle on a sphere, or in general relativity). But the fact that interactions are

local in x (and are no more than quadratic in p) tells us that events occur at a

point that can sensibly be interpreted as a “position”.

We now define the perturbation expansion of the S-matrix, and give its general

properties.

1. Path integrals

Path integrals for relativistic quantum field theory in four dimensions are better

in every way than canonical quantization. They are

(1) easier to learn and apply: just Gaussian integrals.

(2) more heuristic: no “Dirac sea” or harmonic oscillators (where are the springs?).
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(3) less mathematical: no operators, so no time-ordered products (much less “T*”

ones), Wick contraction, normal ordering, etc.

(4) more efficient: Functionals make combinatoric factors automatic.

(5) more rigorous: Constructive quantum field theory has proven the existence of

certain relativistic quantum field theories in less than four dimensions (working

in Euclidean space).

(6) more covariant: The action and Feynman rules are, so the middle steps should

be.

As we have seen in simpler examples (subsection VA2), perturbation for path

integrals is based on Taylor expansion of the exponential of the “interaction” (part

of the exponent higher than quadratic in the functional integration variables). Since

general transition amplitudes involve also wave functions, we also Taylor expand

them: In field theory, this is an expansion in the number of particles. We therefore

write

Ψ [φ] =
∞∑
N=0

1
N !

∫
dσ1m...dσNn

(2π)ND/2
φ(x1)...φ(xN)Mm

1 ...M
n
NψN(x1, ..., xN)

where we have used the covariant inner product of subsection VB3. (The surfaces of

integration are at t = ±∞.) We have also used the free N-particle wave function ψN ,

K1ψN = ... = KNψN = 0

which is sufficient to describe particles at t = ±∞. Amplitudes for such asymptotic

states are elements of the S-matrix, as defined in the interaction picture (see subsec-

tion VA4). In practice we choose a particular value of N , and use a basis element for

ψN , namely the product of N 1-particle wave functions:

ψN(x1, ..., xN) =
N∏
i=1

ψNi(xi) + permutations ⇒ Ψ [φ] =
N∏
i=1

〈φ||ψNi〉

In principle, if there are bound states in the theory, we can consider similar wave

functions, but besides φ we expand in the composite field describing the bound state.

It should be possible to discover such states by looking at the properties of the

amplitudes of the φ states. (For example, a two-particle bound state would show up

in the amplitude describing the scattering of two particles.)

Note that the fields φ are real (or we sum over both φ and φ*), while the wave

functions (Ψ or ψ) are complex: As usual in quantum mechanics, we work in a

complex Hilbert space, but often expand over a real basis. For example, ψ(q) =
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ψ(0)+ψ′(0)q+ 1
2ψ
′′(0)q2 + ... or (ψ1

ψ2
) = ψ1

(
1
0

)
+ψ2

(
0
1

)
. Since in a covariant approach

we treat particles and antiparticles on an equal footing, Ψ [φ] should include both the

initial and final wave function: Thus, the factors in Ψ at t = −∞ can be interpreted

as the usual positive-energy multiparticle wave functions, while the factors at t = +∞
can be interpreted as the complex conjugate of the usual positive-energy multiparticle

wave functions. Since they each have one sign of the energy, they are necessarily

complex. However, for a real field φ we can have only 〈φ||ψ〉, while for a complex

field φ we distinguish 〈φ||ψ〉 as representing a particle at t = −∞ or an antiparticle

at t = +∞, and 〈φ*||ψ〉 as an antiparticle at t = −∞ or a particle at t = +∞. (As

usual, which we choose to call particle and which antiparticle is relative, because of

CPT invariance.)

We therefore want to evaluate the path integral

A =

∫
Dφ e−iS[φ]Ψ [φ]

(Because the wave functions have free time dependence, the transition amplitude A is

in this case an S-matrix amplitude S.) Separating out the free and interacting pieces

of the (gauge-fixed) action,

S = S0 + SI =

∫
dx 1

2φKφ+ SI

and using the integration identity∫
du√
2π

e−uAu/2f(u+ v) =

∫
du√
2π

e−uAu/2eu∂vf(v) ∼ e∂vA
−1∂v/2f(v)

at v = 0, we can evaluate the path integral as

A = exp

(
−i
∫
dx 1

2

δ

δφ

1

K

δ

δφ

)
e−iSI [φ]Ψ [φ]

∣∣∣∣
φ=0

−i
∫
dx 1

2

δ

δφ

1

K

δ

δφ
=

∫
dx dx′ 1

2

δ

δφ(x)
∆(x− x′) δ

δφ(x′)

We have dropped the determinant factor, since in our case it will be only an overall

constant coming from the kinetic operator K. We then absorbed this proportionality

constant into the definition of Dφ, as we did for the free particle in subsection VA2.

In this case, this normalization is fixed by the “free” part of the S-matrix.

It will prove convenient to distinguish the ends of propagators that attach to SI

from those that attach to Ψ , so using the identity

f(∂x)g(x, x+ y) = f(∂′x + ∂′y)g(x′, y′) (x′ = x, y′ = y + x)
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evaluated at x = y = 0, we rewrite this expression as

A = exp

(
−i
∫

1
2

δ

δφ

1

K

δ

δφ
+

δ

δφ

1

K

δ

δϕ
+ 1

2

δ

δϕ

1

K

δ

δϕ

)
e−iSI [φ]Ψ [ϕ]

∣∣∣∣
φ=ϕ=0

We then evaluate the derivatives that act on only one or only the other:

A = exp

(
−i
∫

δ

δφ

1

K

δ

δϕ

)
Z[φ]Ψ̃ [ϕ]

∣∣∣∣
φ=ϕ=0

Ψ̃ [φ] =

{
exp

(
−i
∫

1
2

δ

δφ

1

K

δ

δφ

)
Ψ [φ]

}
Z[φ] =

{
exp

(
−i
∫

1
2

δ

δφ

1

K

δ

δφ

)
e−iSI [φ]

}

A

Ψ

Ψ Z

e-iSI

Then we move the differential operators into the wave functional:

A = Ψ̂

[
δ

δφ

]
Z[φ]

∣∣∣∣
φ=0

Ψ̂

[
δ

δφ

]
= exp

(
−i
∫

δ

δφ

1

K

δ

δϕ

)
Ψ̃ [ϕ]

∣∣∣∣
ϕ=0

Z[φ] (the “generating functional” for the S-matrix) contains all propagators with

SI [φ]’s attached at both ends, and forms the basis of the perturbation expansion.

From the integration identity above, we can also write it as

Z[ϕ] =

∫
Dφ e−i(S0[φ]+SI [φ+ϕ])

Effectively, we have just taken the functional integral
∫
Dφ e−iS[φ] and separated the

field into a “quantum field” φ (the integration variable) and a “background field” ϕ,

where ϕ includes the asymptotic states, which propagate to infinity, while φ vanishes

at infinity (or at least goes to a constant) fast enough to allow the usual integration

by parts in performing the functional integral. Thus ϕ gives the boundary value of

the field. This is essentially the same as the general prescription for path integrals

given in subsection VA2, except that we take ϕ to be arbitrary for convenience of

functional differentiation, and we drop free ϕ terms, which were incorporated into Ψ̃

(i.e., we expand just SI).

Ψ̃ [φ] is the result of contracting some pairs of the one-particle wave functions

with propagators. This gives the usual inner product of those one-particle states:

Since for any one-particle wave function satisfying the free field equations we have

the propagator identity∫
dσm

(2π)D/2
ψ(x)Mm∆(x− x′) = ψ(x′)
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such contractions give ∫
dσmdσ

′
n

(2π)D
ψ(x)Mm∆(x− x′)M ′nψ′(x′)

=

∫
dσm

(2π)D/2
ψ(x)Mmψ′(x) = 〈ψ*||ψ′〉 = 〈ψ′*||ψ〉

where the inner product vanishes unless ψ and ψ′ have opposite energies (i.e., one is

incoming and one is outgoing). This is the boring part of the S-matrix element: It

represents the corresponding particles not interacting at all. (For example, in the free

case SI = 0 we have Z = 1, and A = Ψ̃ |φ=0 consists of only such inner products.) For

most purposes we just factor out such free inner products, and consider only processes

where all particles interact.

Finally, the conversion from Ψ̃ to Ψ̂ replaces all the on-shell inner products with

integrals over all spacetime: Using the propagator identity from above,

Ψ̂

[
δ

δφ

]
=

∞∑
N=0

1
N !

∫
dNDx

(2π)ND/2
ψ̃N(x1, ..., xN)

δ

δφ(x1)
...

δ

δφ(xN)

where ψ̃N appears in Ψ̃ exactly as ψN in Ψ :

Ψ̃ [φ] =
∞∑
N=0

1
N !

∫
dσ1m...dσNn

(2π)ND/2
ψ̃N(x1, ..., xN)Mm

1 ...M
n
Nφ(x1)...φ(xN)

Usually we represent ψN as the product of single-particle wave functions,

Ψ̂N

[
δ

δφ

]
=

N∏
i=1

(∫
ψNi

δ

δφ

)
⇒ AN =

N∏
i=1

(∫
ψNi

δ

δφ

)
Z[φ]

∣∣∣∣∣
φ=0

in which case Ψ̂ simply replaces each field φ in (the surviving terms of) Z with one

of these wave functions.

∆→


∆ : SI( )SI

1 : ψ( )SI

〈 || 〉 : ψ( )ψ

A
Z

e-iSI

SI
!

" || # 1/K

1
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Thus, of the three types of propagators, only the ones that connected two factors

of SI remain, all inside Z; the ones that connect the wave functions to Z have been

replaced with just spacetime integrals, while those connecting the wave functions to

each other have become the usual spatial integrals for the Hilbert-space inner product.

Exercise VC1.1

Show that the amplitude can also be written as

A = Ψ̌

[
δ

δφ

]
Z[φ]Ψ0[φ]

∣∣∣∣
φ=0

Ψ̌

[
δ

δφ

]
=

∞∑
N=0

1
N !

∫
dNDx

(2π)ND/2
ψN(x1, ..., xN)

δ

δφ(x1)
...

δ

δφ(xN)

Ψ0 = e〈φ||φ〉/2

making all inner products of non-scattering particles explicit. (Hint: Write

both this and the earlier form of the amplitude completely explicitly, in terms

of operators on Z[φ]Ψ [ϕ].) We can interpret Ψ0 as the free “vacuum wave

functional” and ZΨ0 as the interacting vacuum wave functional.

2. Graphs

Before giving applications of these rules, we consider a few general properties. A

convenient way to describe the terms in the expansion of the two exponentials in Z

is pictorially, by “Feynman diagrams/graphs”. Each factor of SI is a “vertex” of the

graph, represented by a dot in the diagram; each factor of the propagator 1/K is a

“link” in the graph, represented by a line connecting the two dots representing the

two factors of SI on which each δ/δϕ acts. (Both derivatives can also act on the same

factor of SI , giving a loop.) So any term in the expansion of Z is represented by a

diagram consisting of a bunch of dots (interaction vertices) connected by lines (prop-

agators). When we want to “draw” the amplitude A itself, we also draw additional

lines, each with one end attached to a vertex and one end unattached. These “external

lines” represent the one-particle wave functions coming from ΨN , and not propagators

(“internal lines”). While in the diagram for Z each vertex can have ϕ dependence,

in the diagram for A there is none, and the number of lines (internal and external)

coming from any vertex explicitly indicates the order in ϕ of the corresponding term

in SI .

The physical interpretation of these diagrams is simple: The lines represent the

paths of the particles, where they act free, while the vertices represent their collisions,

where they interact. These diagrams are generally evaluated in momentum space: We
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then can associate a particular momentum with each line (propagator), and momen-

tum is conserved at each vertex. An arrow is drawn on each line to indicate the

direction of “flow” of the momentum. (Otherwise there is a sign ambiguity, since

complex conjugation in position space changes the sign of the momentum.) Then the

sum of all momenta flowing into (or all out of) a vertex vanishes. The momentum

associated with a line is then interpreted as the momentum of that particle, with

the arrow indicating the direction of flow of the proper time τ . (p changes sign with

τ .) When evaluating an S-matrix element, the fact that the external-line wave func-

tions satisfy the free wave equation means the external momenta are on-(mass-)shell

(p2 + m2 = 0); on the other hand, this is not true of the momenta on the internal

lines, even though those particles are treated as free.

Some graphs in the S-matrix are disconnected: They can be divided into separate

parts, each with a subset of the particles that interact with each other but not with

the other subsets. For convenience, we consider only the connected graphs: If we

write

Z[ϕ] = e−iW [ϕ], Ac = Ψ̂

[
δ

δϕ

]
(−i)W [ϕ]|ϕ=0

then W is the generating functional for the connected S-matrix Ac. To prove this

relation between Z and W , we first note that it is just the combinatorics of the

graphs, and has nothing to do with spacetime. Therefore, it is sufficient to consider

the simple (unphysical) case where the action has no derivatives. Since the propagator

is then local, connectedness is equivalent in this case to locality. We then observe

that the lack of derivatives allows the functional integral to be factorized explicitly

into ordinary integrals at each point in spacetime:

Z[ϕ] =

∫
Dφ e−i

∫
dx L(φ(x),ϕ(x)) =

∏
x

∫
dφ(x) e−iL(φ(x),ϕ(x))

=
∏
x

Z(ϕ(x)) = e−i
∫
dx W(ϕ(x)) = e−iW [ϕ]

Thus, this W is local, and therefore connected; this implies W is connected in the

general case. The simplest kind of connected graph is a “tree” graph, which is a graph

that has no closed paths; the rest are called “loop” graphs.

“One-particle-irreducible” (1PI) graphs are defined to be those connected graphs

that can’t be disconnected by severing a single propagator. It then follows that any

connected graph can be represented as a generalized tree graph, whose “vertices”

(including two-point vertices) are actually 1PI graphs. We then define the “effective

action” Γ [φ] to be the classical action plus all 1PI loop graphs. Note that the vertices

of the original action are the 1PI tree graphs; thus Γ is also the classical kinetic term
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plus all (tree and loop) 1PI graphs. Actually, since the 1PI tree graphs are −iSI , we

define the classical part of Γ to be S, but the quantum part to be the quantum 1PI

part of W . Of course, the effective action is nonlocal. However, the tree graphs that

follow from this action are exactly all the connected graphs of the original action:

This is clear for all but the 2-point vertices from the definition. For the propagator

and its relation to the 2-point 1PI loop graphs, we simply compute the expression

following from Γ : Denoting the 2-point 1PI loop operator as A, the kinetic operator

of Γ is K + A. The propagator following from Γ is then

1

K + A
=

1

K
− 1

K
A

1

K
+

1

K
A

1

K
A

1

K
− ...

(The “−” signs come from the “−i” that goes with each factor.) But this is exactly the

result of the complete propagator (including loop graphs) following from the original

action.

Z

W

W W

Γ

Γ

Γ

Γ

This quantum modification of the propagator leads us to reanalyze our prescrip-

tion for evaluating the S-matrix: For example, even in the simplest case, where this

A is just a constant, the full propagator differs from the free propagator by a change

in the mass. This means the mass of asymptotic states should also be changed, which

invalidates part of our evaluation of the S-matrix in the previous subsection. Similar

problems occur when A is proportional to K, which changes the normalization of

asymptotic states. There are two ways to fix these problems: (1) We compensate by

modifying the kinetic term in the classical action, replacing K with K minus such

local contributions from A. Treating these new terms as part of the interaction in

our derivation of the S-matrix, so our normalization and mass in the free propagator
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are unchanged, these “interaction” terms cancel the unwanted terms in the quantum

propagator, so it then has the same residue and pole as the free one. This procedure

is known as “renormalization”, and will be discussed further in chapter VII, primarily

for the purpose of eliminating infinities. (2) Alternatively, we modify our derivation

of the S-matrix to take the full propagator into account. The easiest way to see this

change is to remember that by definition the S-matrix follows from treating the effec-

tive action as a classical action (except for its nonlocality and nonhermiticity), but

keeping only the “tree” graphs. Then clearly (a) the quadratic part Γ0 of Γ is used

to define the asymptotic states, and (b) instead of eliminating all free propagators

except those connecting factors of SI , we eliminate all full propagators (found from

Γ0) except those connecting factors of ΓI , the nonquadratic part of Γ . In other words,

we modify our earlier definition of the S-matrix by dropping all graphs that have any

quantum correction to external lines. Thus, this procedure can also be applied in

the case of renormalization; in fact, it should be applied in general, simply because

it allows us to immediately ignore many graphs. It also allows us to avoid confusion

resulting from attaching wave functions of the wrong mass to propagator corrections:

E.g., in momentum space, we would have to interpret ambiguous factors such as

δ(K)A(1/K)..., where the factor of δ(K) comes from a plane-wave wave function.

ΓΓ
Γ

Γ
Γ

Γ

Γ
ΓΓΓ

This analysis of the quadratic part of Γ also leads us to examine the terms of

lower order: constant and linear. The constant term is just a normalization, and

should be dropped. (This is not true in the case of gravity, where a constant term in

the Lagrangian is not gauge invariant by itself.) The linear term describes the decay

of a particle into the vacuum: It implies we have the wrong vacuum. A linear term

necessarily has no derivatives (otherwise it is a boundary term, which vanishes by our

boundary conditions); it is part of the “effective potential” (a generalization of the

potential energy, whose contribution to a classical mechanics Lagrangian contains no

time derivatives; see subsection VIIB2). The existence of a linear term means that

the minimum of the effective potential, i.e., the true vacuum, is not described by

vanishing fields. To correct this situation we therefore apply the same procedure as

for the classical action (chapter IV): (1) Shift the appropriate fields by constants,

to put us at the minimum of the potential, and (2) use the new quadratic terms in

the potential to determine the true masses of states defined by perturbation about
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this new vacuum. Again eliminating any constant terms, the resulting Γ has only

quadratic and higher-order terms.

To summarize, the general procedure for calculating Feynman graphs is:

(1) Calculate the effective action, i.e., the 1PI graphs.

(2) Shift the scalars to put them at the minimum of the effective potential, dropping

the resultant constant, to reveal the true masses of all particles.

(3) Calculate the S-matrix from diagrams without external-line corrections, with ex-

ternal wave functions whose normalization and masses are determined by the

zeroes of the kinetic operators in the shifted Γ .

Another use of the effective action, besides organizing the calculation of the S-

matrix, is for studying low-energy behavior: This means we apply an expansion in

derivatives, as in first-quantized JWKB (see subsection VA2). Of most interest is the

lowest order in the approximation, where all fields are effectively constant: This gives

the effective potential. (In practice, “all fields” means just the scalars, since constant

spinor fields are not generally useful, while higher spins are described by gauge fields,

whose constant pieces can be set to vanish in an appropriate formulation: E.g., the

constant piece of the metric tensor can be attributed to a scalar — see subsection

IXA7.) However, the definition of “1PI” graphs is ambiguous, depending on how we

define “particle”: For example, if we include auxiliary fields in the effective action (as

in supersymmetry, but also for bound-state problems: see subsections VIIB3 and 6),

the result at fixed order in any expansion parameter (h̄, coupling, etc.) is different,

since the auxiliaries get contributions at each order, so eliminating them by their

effective-action field equations mixes orders. (E.g., B2 + h̄Bf(A) → h̄2f 2.) This is

crucial when the composite fields defined by these auxiliaries, and thus the auxiliaries

themselves, obtain vacuum values. Therefore, the effective action is most useful for

these purposes when, for appropriate choice of fields and definition of h̄, a useful

first-quantized semiclassical expansion can be found. Another important use of the

effective action is that it is gauge invariant (even in the nonabelian case, when using

the background-field gauge; see subsection VIB8): Sometimes simplifications due to

gauge invariance are thus easier to see in the effective action than in the S-matrix.

We now consider an interesting topological property of (connected) graphs, which

can be proven by induction. Start with a given diagram and consider adding a

propagator in various ways: adding a vertex to the middle of an existing propagator

or external line (perhaps also adding external lines), inserting a propagator into a

vertex to separate it into 2 vertices, or connecting a vertex to itself. This is sufficient

to generate all nontrivial (not a lone propagator) connected diagrams from a lone
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vertex. The effect these steps has on the number of P propagators, V vertices, L

“loops” (closed circuits), and E external lines is:

(1) For any graph, adding a 2-point vertex to the middle of a propagator or external

line gives an extra propagator and no extra loops.

(2) Adding an external line to a vertex changes nothing else.

(3) We can split a vertex into 2 vertices connected by a propagator.

(4) If we draw an extra propagator from a vertex to itself or another, that gives an

extra loop and no extra vertices.

Each of these steps preserves the identity, also satisfied by the initial lone vertex,

P − V = L− 1

The same result follows from counting momentum integrals: In momentum space

there is an internal momentum, and corresponding integral, for each propagator, and

a momentum conservation condition, and corresponding δ function, for each vertex.

The only independent momenta are the external ones (associated with each ϕ in Z[ϕ])

and one momentum vector for each loop. Thus, after integrating out all the delta

functions, except for an overall momentum conservation δ function for each connected

graph, we are left with integrations over only the loop momenta. So, we are again

led to the above result. (The rule for disconnected graphs then follows.)

Exercise VC2.1

For the figure at the beginning of this subsection, check this identity for each

of the 3 connected graphs. Apply the above construction to produce each of

them from a single vertex.

3. Semiclassical expansion

We can define perturbations by inserting h̄’s in various ways, as discussed in sub-

section IIIA3. The h̄ that defines classical mechanics yields an expansion in derivatives

on “matter” fields (those that describe classical particles in the limit h̄ → 0, as op-

posed to the “wave” fields). This expansion is covariant as long as the h̄ multiplies

covariant derivatives. However, it can’t be applied to Yang-Mills fields, and it doesn’t

correspond to a diagrammatic expansion. On the other hand, the h̄ that defines clas-

sical field theory is an expansion in the number of “loops”, and allows us to group

graphs in gauge-invariant sets, since gauge transformations are not h̄-dependent: As
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in quantum mechanics, we can perform a JWKB expansion by appropriately inserting

h̄:

Z[ϕ] =

∫
Dφ exp

{
− i
h̄

(S0[φ] + SI [φ+ ϕ])

}
= exp

{
−ih̄

∫
dx 1

2

δ

δϕ

1

K

δ

δϕ

}
e−iSI [ϕ]/h̄

The order in h̄ has a simple graphical interpretation. We see that there is a factor

of h̄ for each propagator and a factor of 1/h̄ for each vertex. Thus, by the above

topological identity, for each connected graph the power in h̄ is one less than the

number of loops. (More simply, giving the action a 1/h̄ gives that factor to each∫
dx, and thus an h̄ to each

∫
dp, of which there are L− 1.) We therefore write

Z[ϕ] = e−iW [ϕ]/h̄, W =
∞∑
L=0

h̄LWL

where W0 generates the connected “tree” graphs, which have no loops.

We know that the leading term in the JWKB expansion is associated with the

classical theory. We can make this more explicit in the field theory case by finding the

general classical (perturbative) solution to the field equations from the tree graphs.

Graphically the solution is very simple: We replace one ϕ on each tree graph with a

propagator, and associate the end of the propagator with the position of the classical

field Φ(x). If we then act on this Φ, which is a sum over all tree graphs, with K,

it cancels the propagator, leaving a bunch of Φ’s (also sums over all tree graphs)

connected at x, with the appropriate vertex factor. In other words, we find KΦ =

−δSI [Φ]/δΦ, the classical field equations.

K Φ

φ
φ

φ

Φ

Φ

φ

φ

φ

φ

=

To prove this, it’s convenient to again use functionals, to automatically keep track

of all combinatorics. The quantum field equations can be derived from the general

identity ∫
Dφ

δ

δφ
f [φ] = 0
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since we only integrate functionals f that are assumed to fall off fast enough as

φ → ∞ to kill all boundary terms. (This follows from the perturbative definition of

the functional integral.) In particular, for any action S̃,

0 =

∫
Dφ ih̄

δ

δφ
e−iS̃/h̄ =

∫
Dφ

δS̃

δφ
e−iS̃/h̄

For our present purposes, we choose

S̃ = S0[φ] + SI [φ+ ϕ]

⇒ 0 =

∫
Dφ

(
δS0[φ]

δφ
+
δSI [φ+ ϕ]

δφ

)
e−iS̃/h̄ =

∫
Dφ

(
Kφ+ ih̄

δ

δϕ

)
e−iS̃/h̄

⇒ K〈φ〉ϕ +
δW [ϕ]

δϕ
= 0

where “〈φ〉ϕ” is the expectation value of the field in a background:

〈φ〉ϕ =

∫
Dφ φe−iS̃/h̄∫
Dφ e−iS̃/h̄

(and, of course,
∫
Dφ e−iS̃/h̄ = e−iW/h̄).

We now examine the classical limit h̄ → 0 of this result by noting that if we

impose the free field equation on the background

Kϕ = 0 ⇒ δS̃

δφ
=
δS[φ+ ϕ]

δφ

where S[φ] = S0[φ] + SI [φ] is the usual action: In other words, the field equations

following from S̃ are just the usual field equations for the complete field

φ̃ = φ+ ϕ, ϕ = lim
x→∞

φ̃

since we chose our boundary conditions so φ → 0 as x → ∞ (including |t| → ∞,

whereas ϕ→ 0 only at spatial infinity). We then apply the stationary-phase approx-

imation (or, after Wick rotation, the steepest-descent approximation)

lim
h̄→0

∫
Dφ f [φ]e−iS̃/h̄ =

(
f [φ]e−iS̃/h̄

)∣∣∣
δS̃/δφ=0

for f = φ and 1 to find

KΦ+
δW0[ϕ]

δϕ
= 0 ⇒ Φ = ϕ− 1

K

δW0[ϕ]

δϕ

Φ ≡ lim
h̄→0
〈φ̃〉ϕ = φ̃|δS[φ̃]/δφ̃=0
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Thus, Φ is the solution to the classical field equations with boundary condition Φ→ ϕ,

and can be found directly from the classical (0-loop) part of W by replacing one field

with a propagator.

A similar result holds for W0 itself, by taking the classical limit as above for

f [φ] = 1:

W0[ϕ] = S0[φ] + SI [φ+ ϕ]

when evaluated at the result of varying the above with respect to either argument:

δ

δφ
⇒ δS[φ+ ϕ]

δφ
= Kϕ = 0

δ

δϕ
− δ

δφ
⇒ δW0[ϕ]

δϕ
= −Kφ

The former follows directly from the limiting procedure; the latter we have just proven

equivalent by evaluating the limit for 〈φ̃〉ϕ. Since by definition the effective action Γ

is related to W in exactly the same way that S is related to W0 (the trees from Γ

give the full W ), we also have

W [ϕ] = Γ0[φ] + ΓI [φ+ ϕ]

δΓ [φ+ ϕ]

δφ
= K̃ϕ = 0 ⇔ δW [ϕ]

δϕ
= −K̃φ

where K̃ is the kinetic operator appearing in Γ0, the quadratic part of Γ . (Some care

must be taken for the fact that the poles and residues of K̃ in p2 may differ from

those of K, as discussed in the previous subsection.)

In practice, if one wants to make use of the classical field equations perturbatively,

one looks at tree graphs with a specific number of external lines: For example, in a

scalar theory with φ3 interaction (assuming 〈Φ〉 = 0),

KΦ+ 1
2Φ

2 = 0, Φ =
∞∑
n=1

Φn ⇒ KΦn + 1
2

n−1∑
m=1

ΦmΦn−m = 0

gives a recursion relation for the term Φn that is nth order in ϕ.

Exercise VC3.1

Consider the relativistic Schrödinger (Klein-Gordon) equation for a scalar

wave function ψ in an external scalar potential φ:

(K + φ)ψ = 0

(If you find it less confusing, you can consider the nonrelativistic case K =

~p 2/2m − E, where H = ~p 2/2m + φ.) Find the perturbative solution for the
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quantum mechanical (one-particle) S-matrix for ψ (see exercise VA4.2). Show

that this agrees with the contribution to the field-theoretic S-matrix for the

Lagrangian

L(ψ, φ) = ψ*(K + φ)ψ + Lφ(φ)

coming from tree graphs with an external ψ line, an external ψ* line, and an

arbitrary number of external φ lines.

Exercise VC3.2

Consider, instead of the background field ϕ, a “current” source J that attaches

propagators to external lines. The current is effectively just a one-point in-

teraction (it caps loose ends of propagators), so it can be introduced into the

generating functional by the modification

SI [φ]→ SI [φ] +

∫
dx Jφ

We now have

e−iW [J ]/h̄ =

∫
Dφ exp

{
− i
h̄

(
S0[φ] + SI [φ] +

∫
dx Jφ

)}
Z[J ] is thus the Fourier transform of e−iS[φ]/h̄ with respect to the conjugate

variables φ and J .

a Derive the “Schwinger-Dyson equations”(
δS[φ]

δφ(x)

∣∣∣∣
φ=ih̄δ/δJ

+ J(x)

)
e−iW [J ]/h̄ = 0

b Find the classical limit

W0[J ] = S[φ] +

∫
Jφ at φ =

δW0[J ]

δJ
⇔ J = −δS[φ]

δφ

(i.e., W0[J ] is the “Legendre transform” of S[φ]). Find the corresponding

relation for Γ [φ] and W [J ].

c Show that the free part of W [J ] is given by

Wfree = −1
2

∫
dx J

1

K
J ⇒ ϕ ≡ φfree = − 1

K
J

Note that J can be replaced with ϕ in W [J ] everywhere except the free term,

since in all other terms J appears only in the combination (1/K)J . Show

how this can be done in such a way as to reproduce the results above for the

solution of the classical field equations in terms of W [ϕ]. Warning: Before
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this substitution we use Kϕ + J = 0, but afterwards we apply Kϕ = 0; also

beware of integration by parts, since ϕ does not vanish at ∞, so the naive

substitution φ→ φ+ϕ is not very helpful. (Historically, Z was introduced as

a functional of J . However, the only two applications of Feynman diagrams,

the S-matrix A and the effective action Γ , both required that the external-

line propagators resulting from the Feynman rules for Z[J ] be “amputated”.

Therefore, we use background fields exclusively. The resulting derivations,

generalities, and applications are at least as simple as and often a little simpler

than the corresponding ones with current sources.)

There is a major flaw in this relation between classical field theory and tree

graphs, the “Klein paradox”. The difference is that classical field theory uses fields

everywhere, not wave functions. Thus the propagator must be real (or pure imaginary,

depending on conventions) to preserve the reality (or complex conjugation) properties

of the fields; usually one uses the retarded propagator. On the other hand, in quantum

field theory negative-energy states must travel backward in time to preserve positivity

of the true energy, so the complex Stückelberg-Feynman propagator must be used.

Furthermore, in classical field theory the external line factors are the fields, which

contain both positive and negative energies, the same on each line. In quantum field

theory, each external line carries a different one-particle wave function, positive energy

in the asymptotic past or negative energy in the asymptotic future.

4. Feynman rules

It is usually most convenient to calculate Feynman diagrams in Wick-rotated

(to eliminate i’s) momentum space (where massive propagators are simpler). The

“Feynman rules” are then read off of the action as

S =

∫
dx 1

2φKφ+ SI [φ] ⇒ Z[φ] = e−W [φ] = exp

(∫
1
2

δ

δφ

1

K

δ

δφ

)
e−SI [φ]

where in Z[φ] we simply replace each field φ with a single-particle wave function in

all possible permutations, since for the case of an N-particle amplitude we usually

write the wave function as the product of N single-particle wave functions (although

more generally it is a linear combination of these):

AN = Ψ̂N

[
δ

δφ

]
Z[φ]

(
AN,c = −Ψ̂N

[
δ

δφ

]
W [φ]

)
, Ψ̂N

[
δ

δφ

]
=

N∏
i=1

(∫
ψNi

δ

δφ

)
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We Fourier transform as

φ(x) =

∫
dp eip·xφ(p), φ(p) =

∫
dx e−ip·xφ(x)

(Of course, φ(x) and φ(p) are different functions, but the distinction should be clear

from context.) In practice we choose the single-particle wave functions to be eigen-

states of the momentum, so

ψi(x) = eipi·xψ̂i(pi), ψi(p) = δ(p− pi)ψ̂i(pi) (p2
i +m2

i = 0)

where ψ̂ is some simple factor (e.g., 1 for a scalar). Then the external line factor

terms become ∫
dx ψi(x)

δ

δφ(x)
= ψ̂i(pi)

δ

δφ(pi)

while for propagator terms∫
dx 1

2

δ

δφ(x)

1

K(−i∂)

δ

δφ(x)
=

∫
dp 1

2

δ

δφ(p)

1

K(p)

δ

δφ(−p)

and for vertex terms∫
dx φ1(x)...φn(x) =

∫
dp1...dpn φ1(p1)...φn(pn)δ(p1 + ...+ pn)

where each of the φ’s in the vertex may represent a field with derivatives; then we

replace −i∂ on φ(x) with p on φ(p). Thus, e.g., we have

AN =

[∏
ψ̂Ni(pi)

δ

δφ(pi)

]
Z[φ]

Exercise VC4.1

Some signs for Fourier transformation of functional derivatives:

a Use the definition
δ

δφ̃(p)
φ̃(p′) = δ(p− p′)

to show that ˜( δ

δφ

)
(p) =

δ

δφ̃(−p)
where we now use tildes to indicate Fourier transformation.

b Evaluate δ/δφ̃(−p) on 〈φ||ψ〉. Note that it involves ψ(p), not ψ(−p).

Note that there is some ambiguity in the normalization of external line factors,

associated with the numerator factor in the propagator

∆ =
1

K
=

N(p)
1
2(p2 +m2)
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For nonzero spin (or internal symmetry), we have already discussed the normalization

analogous to that for scalars, namely∑
ψ̂†(p)ψ̂(p) = ±N(p)

(with − for negative energy and half-integer spin). However, there is already some

freedom with respect to coupling constants: Even for scalars, if a coupling appears in

the kinetic term as a factor of 1/g2, then effectively the kinetic operator is K = K0/g
2,

where K0 is the usual (coupling-independent) one. Thus N = g2N0, so ψ̂ = gψ̂0,

meaning coupling dependence in external lines. Alternatively, this external-line fac-

tor of the coupling can be included in the definition of probabilities in terms of

amplitudes, which already includes nontrivial factors because of the use of (non-

normalizable) plane waves. Furthermore, quantum effects modify the form of the

propagator: Such effects can be absorbed near the pole p2 = −m2 by a field redef-

inition, but often it is more convenient to leave them. Then N will again have a

constant, (but more complicated) coupling-dependent factor, which must be canceled

in either the external-line factors or probabilities. (However, note that these questions

do not arise in calculations of the functionals W [φ] or Γ [φ].)

In tree graphs all momentum integrals are trivial, with the momentum conserva-

tion δ functions at each vertex, and the δ functions of the external lines, determining

internal momenta in terms of external momenta. In loop graphs there is a momentum

integral left for each loop, over the momentum of that loop. The amplitude will al-

ways have an overall δ function for momentum conservation for each connected piece

of the graph. Since we are always interested in just the connected graphs, we pull

this conservation factor off to define the “T-matrix”: Including the factor of “i” from

Wick rotating back to Minkowski space,

Sconnected = iδ
(∑

p
)
T

In general there will be combinatoric factors associated with a graph. These

follow automatically from the functional expressions, but can also be seen from the

symmetries of the graph. Here “symmetries” means ways in which the graph can

be twisted, with external lines fixed, such that the graph looks the same, including

the types of particles propagating along the lines. For example, a graph with 2

vertices that are connected by n identical propagators would get a factor of 1/n! for

that symmetry. There are also sign factors from fermions: Permutation of external

fermion lines gives minus signs, because it involves permutation of anticommuting

fields in the functionals. Each fermion loop gets a minus sign for the same reason.
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(This is related to the fact that fermionic integration gives determinants instead of

inverse determinants.) Explicitly, it comes from evaluating expressions of the form

(ignoring momentum dependence and external fields)(
δ

δψ̄

δ

δψ

)
· · ·
(
δ

δψ̄

δ

δψ

)
(ψ̄ψ) · · · (ψ̄ψ)

=

(
δ

δψ̄

δ

δψ

)
ψ̄

[(
δ

δψ
ψ

)(
δ

δψ̄
ψ̄

)]
· · ·
[(

δ

δψ
ψ

)(
δ

δψ̄
ψ̄

)]
ψ

where the propagator derivatives (δ/δψ̄)(δ/δψ) give no signs connecting up successive

vertex factors ψ̄ψ, but the last one does in closing the loop.

The general rules for contributions to the (unrenormalized) effective action Γ [φ]

are then:

(A1) 1PI graphs only, plus S0 (
∫

1
2φKφ).

(A2) Momenta: label consistently with conservation, with
∫
dp for each loop.

(A3) Propagators: 1/1
2(p2 +m2), or 1/K, for each internal line.

(A4) Vertices: read off of −SI .
(A5) External lines: attach the appropriate (off-shell) fields and

∫
dp, with δ(

∑
p).

(A6) Statistics: 1/n! for n-fold symmetry of internal/external lines;

−1 for fermionic loop; overall −1.

(If we want to calculate W [φ] instead, then simply replace step 1 with “Connected

graphs only”.) The next step is to analyze the vacuum:

(B1) Find the minimum of the effective potential (for scalars).

(B2) Shift (scalar) fields to perturb about minimum; drop constant in potential.

(B3) Find resulting masses; find wave function normalizations.

Renormalization is performed either before or after this step, depending on the

scheme. Finally, the trees from Γ are identified with the complete amplitudes from

S. Thus, T-matrix elements are given by:

(C1) Connected “trees” of (shifted, renormalized) Γ : (A2-4) for L=0 with S → Γ .

(C2) “Amputate” external Γ0-propagators.

(C3) External lines: 1, or appropriate to Γ0 wave equation K̃ψ = 0 (
∑
ψ̂†ψ̂ = ±N).

(C4) External-line statistics: No symmetry factors; −1 for fermion permutation.

Note that Γ is usually simpler than T with respect to treatment of external

lines: In T we often have contributions from graphs which are identical except for

permutation of external lines from identical fields. In Γ only one such graph need

be considered, since the statistics of the attached external fields automatically takes

care of this symmetry. (We then also drop the 1/n!, or at least reduce it.)
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We label the lines of a graph with arrows to indicate the direction of “flow”

of momenta: Momentum conservation means the total momentum flowing into any

vertex is equal to that flowing out, which we use to eliminate dependent momenta

(integrating out δ functions). (In tree graphs all internal momenta are determined by

external ones, which are constrained by conservation of total external momentum.)

This “sign” of direction of the arrow is independent of the sign of the energy; we must

combine the two to determine whether an external state is initial or final: An incoming

external line with positive energy is initial, negative energy is final; an outgoing line

is the opposite (i.e., for positive energy the arrow indicates the direction of time, but

negative energy means travel backward in time). The choice of direction of arrows

is arbitrary, and the convenience of any choice depends on the graph and the theory.

There is no correspondence between this choice and signs of energy, since generally

one wants to apply the same graph for cases with each external line with either

sign, whereas internal lines in trees may have either sign depending on the external

kinematics, and those in loops must be summed over both signs. Often the direction

of the arrow is chosen to indicate the direction of flow of positive charge, when such

a quantum number (U(1) symmetry) exists.

The simplest nontrivial tree graphs are 4-point amplitudes. We now label all

momenta as incoming, which is convenient for symmetry, and corresponds naturally

to using incoming (initial) states with positive energy and outgoing (final) states

with negative energy (as from the complex-conjugate final wave functions). These

momenta are conveniently expressed in terms of the Mandelstam variables (see sub-

section IA4): with these signs,

s = −(p1 + p2)2, t = −(p1 + p3)2, u = −(p1 + p4)2

We also use the convention that s is defined in terms of the momenta of the two

initial particles (and we also use this same definition when there are more than two

final particles); t and u are then more or less interchangeable, but if initial and final

particles are pairwise related we choose t in terms of the momenta of such a pair.

1

2

3

4

s

1+2
t

1

2

3

4

1+3 1+4 u

1

2

3

4

+ +
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For example, the simplest nontrivial theory is φ3 theory, with

K = 1
2(− +m2)→ 1

2(p2 +m2)

SI =

∫
dx 1

6
gφ3 =

∫
dp1 dp2 dp3

1
6
gφ(p1)φ(p2)φ(p3)δ

(∑
p
)

The four-point S-matrix amplitude at tree level (order g2) then comes from using the

following contributions to the factors in A (calculated in Euclidean space):

Ψ̂4 =
δ

δφ(p1)

δ

δφ(p2)

δ

δφ(p3)

δ

δφ(p4)

e
∫

(δ/δφ)(1/K)(δ/δφ)/2 = ...+

∫
dk 1

2

δ

δφ(k)

1
1
2(k2 +m2)

δ

δφ(−k)
+ ...

e−SI = ...+ 1
2S

2
I + ...

Using (δ/δφ(p))φ(k) = δ(p−k), keeping only the connected part, and integrating out

the δ functions (except δ(
∑
pexternal)), we are left with

Sc = δ(p1 + p2 + p3 + p4)g2

(
1

1
2(m2 − s)

+
1

1
2(m2 − t)

+
1

1
2(m2 − u)

)
(There would be an extra i for the δ in Minkowski space.) Note the symmetry factor

1/3! for the φ3 coupling, which is canceled upon taking 3 functional derivatives for

the vertex factor. The T-matrix then comes from just factoring out the δ:

T = g2

(
1

1
2(m2 − s)

+
1

1
2(m2 − t)

+
1

1
2(m2 − u)

)
But this contribution to W is given by a single term:

W = −g2

∫
dp1dp2dp3

1
2 [1

2φ(p1)φ(p2)]
1

1
2(m2 − s)

[1
2φ(p3)φ(−p1 − p2 − p3)]

or, in position space,

W = −g2

∫
dx 1

2(1
2φ

2)
1

1
2(m2 − )

(1
2φ

2)

(The 1
2 ’s correspond to the various symmetries: switching a pair connecting to the

same vertex, or switching the two pairs.)

Exercise VC4.2

Find the 5-point tree amplitude for φ3 theory. What order in g is the n-point

tree?

The momentum integrals are real in Euclidean space: There are no singularities

in the integrand, since p2 +m2 is always positive (although there are some subtleties



462 V. QUANTIZATION

in the massless case). Thus, all these integrals are most conveniently performed in

Euclidean space. However, eventually the result must be analytically continued back

to Minkowski space: x0 → ix0, which means p0 → ip0 (but p0 → −ip0, being also

careful to distinguish δnm → δnm and δmn → ηmn for indices on fields) via a 90◦ rotation.

This returns some of the i dependence. There are also i’s associated with integration

measures: Since all the momentum integrals for the S-matrix elements have already

been performed, all that remains is a factor of i to go with δ(
∑
p) for each connected

graph. There can also be i dependence in external line factors.

Remember that negative p0 indicates a particle traveling backward in time; the

true motion of such a particle is opposite to that of the arrow indicating momentum

flow. Thus, external lines with arrows pointing into the diagram and positive p0, or

out of the diagram and negative p0, both indicate initial states, arriving from t = −∞.

Conversely, external lines with arrows pointing into the diagram and negative p0, or

out of the diagram and positive p0, both indicate final states, departing to t = +∞.

A related issue is particles vs. antiparticles. If a particle is described by a real

field, it is identified as its own antiparticle; but if it is described by a complex field,

then it is identified as a particle if it has a certain charge, and as an antiparticle if

it has the opposite charge. (For example, a proton is positively charged while an

antiproton is negatively.) Of course, this is convention, since a complex field can

always be replaced by two real fields, and we can always relabel which is the field

and which the complex conjugate; generally there should be a useful conservation law

(symmetry) associated with these complex combinations (usually electric charge),

and the one called “particle” is the one more common to the observer. For example,

suppose we have a complex scalar external field/wave function φ(p). For p0 > 0 this

describes a particle propagating to x0 = +∞. Similarly, φ*(p) for p0 > 0 describes

an antiparticle propagating to x0 = +∞. On the other hand, φ* for p0 < 0 describes

a particle propagating from x0 = −∞, while φ for p0 < 0 describes an antiparticle

propagating from x0 = −∞.

5. Semiclassical unitarity

As in nonrelativistic quantum mechanics, the only conditions for unitarity are

that: (1) the metric (inner product) on the Hilbert space is positive definite (so all

probabilities are nonnegative), and (2) the Hamiltonian is hermitian (so probabilities

are conserved). Both of these conditions are statements about the classical action.

The second is simply that the action is hermitian, which is easy to check. The first is

that the kinetic (quadratic) terms in the action, which define the (free) propagators,
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have the right sign. This can be more subtle, since there are gauge and auxiliary

degrees of freedom. Therefore, the simplest way to check is by using the lightcone

formalism. (Note that for the next few subsections we stick to Minkowski space for

purposes of discussing unitarity, where i’s and complex conjugation are important.)

We see from the analysis of subsection IIB3 for field equations, or for actions in

subsection IIIC2 (for spins ≤ 1, and more generally below in chapter XII) that after

lightcone gauge fixing and elimination of auxiliary degrees of freedom the kinetic

terms for physical theories always reduce to −1
4
φ φ for bosons and 1

4
ψ( /i∂+)ψ for

fermions, where there is a sum over all bosons and fermions, and each term in the

sum has a field with a single hermitian component. Complex fields can multiply their

complex conjugates, but these can always be separated into real and imaginary parts.

There are never crossterms likeA B, since after field redefinition, i.e., diagonalization

of the kinetic operator, this gives A′ A′ − B′ B′, so one term has the wrong sign.

Similar remarks apply to massive fields, but with replaced by −m2 (as seen, e.g.,

by dimensional reduction), or we can treat the mass term as part of the interactions.

Exercise VC5.1

What’s wrong with A A + B B + m2AB? (Hint: something, but none of

the above. Diagonalize.)

Now we only need to check that the single-component propagators of these two

cases define positive-definite inner products. Since multiparticle inner products are

products of uniparticle inner products, it’s sufficient to look at one-particle states.

We therefore examine the S-matrix defined in subsection VC1 for the special case of

1 particle at t = −∞ going to 1 particle at t = +∞, using the free, massless lightcone

Lagrangians given above. For the boson we found that this matrix element was simply

the inner product between the two states, appearing in the form
∫
dσ dσ′ ψ∆ψ′. This

worked only because the propagator had the right sign. (It is essentially +e−iω|t|.)

Thus the sign we use is required for unitarity.

A simple way to treat the fermion is to use supersymmetry: Since the boson and

fermion kinetic terms are spin independent in the lightcone formalism, we can look at

any supersymmetric theory, and check the boson and fermion kinetic terms there. If

the boson term agrees with the one we just checked, then the fermion term is OK by

supersymmetry (which preserves unitarity by the lightcone-like supertwistor analysis

of subsection IIC5). Alternatively, we can use the same method applied to the boson:

The propagator now has an extra factor of 1/(−i∂+), or 1/p+ in momentum space.

Since p+ is always positive for positive energy, these states also appear with the

correct-sign norm. To analyze negative energy (antiparticles), we note that in the
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derivation of the path integral final states always appear to the left and initial states

to the right. In the fermionic case this is important because it will introduce an extra

sign: Since

ψ1
∂+
ψ2 = +ψ2

∂+
ψ1

(with two signs canceling from reordering fermions and integration by parts), the

right sign will always be produced with correct ordering of initial vs. final states

(i.e., positive vs. negative energy), independent of the helicity (or whether electron

vs. positron, etc.)

For similar reasons, it is clear that integral spin is always described by commut-

ing (bosonic) fields, while half-integral spin is always described by anticommuting

(fermionic) fields: The number of undotted minus dotted indices on a field is always

odd for half-integer spin, even for integer, and a derivative carries one dotted and one

undotted index, so contraction of all indices means an even number of derivatives for

integer spin and odd for half-integer. Without loss of generality, we then can separate

each field into its real and imaginary parts. Then for each real field integration by

parts gives

φ(−i∂)nφ = (−1)n[(−i∂)nφ]φ = (−1)n+φφ(−i∂)nφ ⇒ (−1)n+φ = 1

where (−1)φ is the statistical factor for φ (1 for bosons, −1 for fermions), and we

have included the appropriate i’s for hermiticity of the action. Thus, integer spin is

associated with bosons ((−1)n = 1 = (−1)φ), and half-integer with fermions ((−1)n =

−1 = (−1)φ). This is the “spin-statistics theorem”. By using real fields with a

diagonal kinetic term, we have implicitly assumed kinetic terms appear only with the

correct sign: For example, for a complex bosonic field

φ = A+ iB ⇒ φ†∂φ = Ai
↔
∂B = −Bi

↔
∂A

and thus has indefinite sign. Thus, spin and statistics follows from Poincaré invari-

ance, locality, and unitarity. If we drop unitarity, we get “ghosts”: We’ll see examples

of such wrong-statistics fields when quantizing gauge theory.

Note that demanding unitarity (the right sign of the kinetic term) is the same as

demanding positivity of the true energy, as least as far as the kinetic term is concerned:

The energy is given by the Hamiltonian of the field theory; if the kinetic term changes

sign, the corresponding contribution to the Hamiltonian does also. (Compare the

discussion of Wick rotation of the action in subsection VB4.)

Using anticommuting fields to describe fermions is more than a formality. In gen-

eral, the significance of describing states by quantizing classical fields that commute



C. S-MATRIX 465

or anticommute has two purposes: (1) to avoid multiple counting for indistinguish-

able particles, and (2) to insure that two identical fermions do not occupy the same

state. Thus, when describing two particles in different states, the phase associated

with (anti)commutation is irrelevant: A “Klein transformation” can be made that

makes anticommuting quantities commute for different states, and anticommute (i.e.,

square to zero) only for the same state. However, such transformations are nonlocal,

and locality is crucial in relativistic field theory. (See exercise IA2.4d.)

6. Cutting rules

For some purposes it is useful to translate the three defining properties of relativis-

tic quantum field theory into graphical language. Poincaré invariance is trivial, since

the propagators and vertices are manifestly Poincaré covariant in covariant gauges.

Unitarity and causality can also be written in a simple way in functional notation. We

first note that the inner product for free multiparticle wave functions can be written

very simply in momentum space as

〈ψ|χ〉 =
(
ψ†[φ]eD+χ[φ]

)∣∣
φ=0

, D+ =

∫
dp

←
δ

δφ(p)
∆+(p)

δ

δφ(−p)

∆(p) =
−iN(p)

1
2(p2 +m2 − iε)

⇒ ∆+(p) = θ(p0)2πδ[1
2(p2 +m2)]N(p)

where ψ and χ are products of positive-energy single-particle states, and ∆+ (the

“cut” propagator) projects onto the positive-energy mass shell. (The exponential

takes care of the usual combinatoric factors.) We have written a generic propagator,

with numerator factor N (=1 for scalars). (Without loss of generality, we have as-

sumed a real basis for the fields, so N can be taken as real.) The S-matrix amplitude

then can be written in operator language as

Ψ [φ] = ψ†[φ]χ[φ] ⇒ A =

∫
Dφ Ψ [φ]e−iS[φ] = Ψ̂

[
δ

δφ

]
Z[φ] = 〈ψ|S|χ〉

We have used the fact that positive-energy states propagate forward in time and

negative backwards to write the usual Hilbert-space inner product in terms of initial

and final states of positive energy. The S-matrix operator S appears because χ and

ψ satisfy the free equations of motion, and S performs time translation from t = −∞
for χ to t = +∞ for ψ to include interactions.

The unitarity condition is then (see subsection VA4)

S†S = 1 ⇒ Z[φ]†eD+Z[φ] = 1
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while causality is

δ

δφ(x)

(
S[φ]†

δ

δφ(y)
S[φ]

)
= 0 ⇒ δ

δφ(x)

(
Z[φ]†eD+

δ

δφ(y)
Z[φ]

)
= 0 for x0 > y0

(We have gone from the S-matrix S to S[φ] to Z[φ]. For purposes of defining unitarity

and causality, S[φ] can be defined in various ways, but the most convenient way is, as

for Z, expanding the quantum fields about a background in the interactions. Then

it’s easy to go to the Z form of these identities, since Z[φ] = 〈0|S[φ]|0〉 for that

definition. Inserting the identity between S† and S as a sum over states as performed

by D+, the translation then follows.) This causality relation, which already holds

in nonrelativistic field theory, can be strengthened by using Lorentz invariance: If

(x − y)2 > 0 (spacelike separation), then x0 < y0 can be Lorentz transformed to

x0 > y0. Thus, the above expression vanishes everywhere except on or inside the

backward lightcone with respect to x − y. These functional forms of unitarity and

causality (and Poincaré invariance) can also be used as a basis for the derivation of

the functional integral form of Z[φ] in terms of the action, rather than relying on its

relation to the Hamiltonian formalism.

The fact that these conditions are satisfied by Feynman diagrams follows easily

from inspection. We examine them using the explicit expression for Z following from

the functional integral:

Z[φ] = eDe−iSI , Z[φ]† = eD*eiSI

D = 1
2

∫
dp

δ

δφ(p)
∆(p)

δ

δφ(−p)
, ∆(p) =

−iN
1
2(p2 +m2 − iε)

D* = 1
2

∫
dp

δ

δφ(p)
∆(p)*

δ

δφ(−p)
, ∆(p)* =

iN
1
2(p2 +m2 + iε)

These expressions can be translated straightforwardly into position space as∫
dp

δ

δφ(p)
∆(p)

δ

δφ(−p)
=

∫
dx dx′

δ

δφ(x)
∆(x− x′) δ

δφ(x′)

etc.

From the results at the end of subsection VB2, we see that the propagators satisfy

the relations

∆+(x) = ∆(x) +∆A(x) = ∆*(x) +∆R(x)

∆+(x) = ∆−(−x), ∆(x) = ∆(−x), ∆R(x) = −∆A(−x)

and, of course, ∆R(x) = 0 for x0 < 0. We will now see that the cancellations in

the unitarity and causality relations occur graph by graph: There are contributions
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consisting of a sum of terms represented by exactly the same diagram, with each

term differing only by whether each vertex comes from Z or Z†. First, this affects

the sign of the term, since each vertex from Z† gets an extra sign from the eiSI in Z†,

as compared to the e−iSI in Z. Second, this affects which propagators appear:

(x, y) in : (Z,Z)→ ∆(x− y)

(Z†, Z)→ ∆+(x− y)

(Z,Z†)→ ∆−(x− y)

(Z†, Z†)→ ∆*(x− y)

S S†

∆

∆ _

∆ _

∆+

∆+

∆*

(We’ve drawn the figure in chronological order, corresponding to the operator product

S†S, so final states are summed over, with always positive energy flowing from S to

S†.)

Now if we sum over two terms differing only by whether the position x of one

particular vertex appears in Z or Z†, the result before integration is proportional to∏
∆(x− yi)

∏
∆−(x− zj)−

∏
∆+(x− yi)

∏
∆*(x− zj)

where yi are from Z and zj are from Z†. However,

∆(x− y)−∆+(x− y) = ∆−(x− y)−∆*(x− y) = ∆R(y − x) = 0 for x0 > y0

Writing ∆ = ∆+ + ∆R and ∆− = ∆* + ∆R in the difference of the two products,

each surviving term in the difference contains a ∆R, and therefore the two products

cancel if x0 is the latest of all the vertices. We thus take any sum of the same

diagram over different distributions of the vertices between Z and Z† occurring in the

unitarity or causality relation before integration over the coordinates of the vertices,

separate the sum into pairs which are identical except for whether the latest vertex is

in Z or Z†, and apply the above relation to show this difference vanishes. Thus, the

vanishing of a sum of graphs indicated by unitarity or causality is actually satisfied by

cancellation between each pair of terms before integration over coordinates. (Which
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pair is determined by the values of the coordinates, since we need to find the latest

one; after integration, the cancellation is between the whole set of terms for the same

graph.) In the unitarity relation we sum over whether a vertex occurs in Z or Z† for

each vertex, including the latest one, so that condition is easily satisfied. (The only

diagram that survives is the one with no particles, which gives 1.) In the causality

relation we perform this sum for each vertex except y (since δ/δφ(y) acts only on Z),

but since y0 < x0, y0 is not the latest vertex, so again the latest one is summed over.

+ + + = 0

Exercise VC6.1

Consider an arbitrary 1-loop graph. Why would replacing all the propagators

∆ with advanced propagators∆A (or all with retarded propagators∆R) all the

way around the loop in the same direction give zero? Use this result, and the

relation between the various propagators, to show that any one-loop diagram

(with normal propagators) can be expressed as a sum of products of tree

graphs, with some summations of external states (“Feynman tree theorem”).

How does this differ from the cutting rule for unitarity? (Hint: Look at the

signs of the energies of external states.)

There is one fine point in this construction: We may use Feynman rules from a

complex action, such as those used for massive theories in subsection IIIC4, or when

using complex gauges (see section VIB). In that case, since the S-matrix S is gauge-

independent, and the original action S was real (before eliminating complex fields

or choosing complex gauges), it is legal to use the Hermitian conjugate action S† to

define the Feynman rules for S† (and Z†): When multiplying S†S, we use the usual

rules to find the second factor S, and the conjugate rules to find the S used in the

first factor S†:
S†S = [S(S†)]†S(S)

The result of conjugating the S-matrix then will be to complex conjugate twice, and

return rules identical to those used for S, except for the differences noted above for

real actions. That means that the above proof of the cutting rules goes through

unmodified, where we use the same complex rules in the entire diagram, regardless of

whether they are associated with Z or Z†. In particular, this means that vertices from

the two parts of the graph will differ only by sign (conjugating just the i in eiSI , not the
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SI), and propagators will differ only by their (momentum-space) denominators, not

their numerators. This is particularly important for the complex fields of subsection

IIIC4, since otherwise even the types of indices carried by the fields would differ.

Note that the minus sign for each cut fermion loop is exactly the extra sign for

converting the usual numerator factor for negative-energy fermions into a sum over

states. (See subsection VB3.)

7. Cross sections

In quantum physics, the only measurables are probabilities, the squares of abso-

lute values of amplitudes. Since we calculate amplitudes in momentum space, proba-

bilities are expressed in terms of scattering of plane waves. They are more naturally

normalized as probabilities per unit 4-volume (or D-volume in arbitrary dimension),

since plane waves are uniformly distributed throughout space. This can be seen ex-

plicitly from the amplitudes: Because of the total momentum conservation δ-function

that appears with each connected S-matrix element Sfi, we have for the probability

P

Sfi = iδ
(∑

p
)
Tfi

⇒ P = |Sfi|2 = |Tfi|2δ
(∑

p
)
δ(0) = |Tfi|2δ

(∑
p
) VD

(2π)D/2

where we have found the coordinate D-volume by the Fourier-transform definition of

the δ-function:

δ(0) =

∫
dx 1 =

∫
dDx

(2π)D/2
1 =

VD
(2π)D/2

A “cross section” is defined as a probability for the scattering of two incoming

particles into some number of outgoing particles. The scattering is “elastic” if the

two final particles are the same as the two initial particles (they exchange only 4-

momentum), “inelastic” otherwise. Generally one particle is in a beam directed at a

target (at rest in the lab frame) containing the other “incoming” particle, but in some

experiments two beams are directed at each other. In either case the cross section is

defined by the rate at which one particle interacts

rate

particle
=

probability/time

(density)× (volume)
=

P

ρVD

divided by the flux of the other particle

flux =
rate of arrival

area
= (density)× (relative velocity) = ρv12
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and thus the “differential cross section” (yet to be integrated/summed over final

states) is

dσ =
P

VD
× 1

ρ1ρ2v12

The “total cross section” σ is then given by summation over all types of final states

and integration over all their remaining momentum dependence.

The spatial density ρ is the integrand of the spatial integral that defines the inner

product: From subsection VB2, for bosonic plane waves (ψp(x) = eip·x) we have

〈ψ||ψ〉 = ε(p0)

∫
dD−1x

(2π)D/2
ψ*1

2i
↔
∂ tψ =

∫
dD−1x

(2π)D/2
ω

⇒ ρ =
ω

(2π)D/2

where ω = |p0|. (The same result can be obtained for fermions, when their external

line factors are appropriately normalized.)

The expression for dσ is actually independent of the frame, as long as the 3-

momenta of the two particles are parallel. This is the case for the most frequently

used reference frames, the center-of-mass frame and the “lab frame” for either particle

(where that particle is at rest, as is the lab if that particle is part of a target). Then

(ω1ω2v12)2 = ω2
1ω

2
2

∣∣∣∣ ~p1

ω1

− ~p2

ω2

∣∣∣∣2 = |ω2~p1 − ω1~p2|2 = −1
2(p1[ap2b])

2 = λ2
12

λ2
12 ≡ 1

4
[s− (m1 +m2)2][s− (m1 −m2)2]

using again the Mandelstam variables and λij introduced in subsection IA4. Finally,

we include the “phase space” for the final states to obtain

dσ = |Tfi|2
(2π)DδD (

∑
p)

λ12

∏
f

dD−1p

(2π)D/2−1ω

∏
f :n ident

1

n!

where the first product is over all final one-particle states. The second is only for total

cross sections, and is over each set of n identical final particles. The normalization

again follows from the inner-product for plane waves: By Fourier transformation,

dD−1x ρ → dD−1p/(2π)D−1ρ. It also appears in the “cut propagator” ∆+ used in

unitarity, as in the previous subsection:∫
dDp

(2π)D/2
θ(p0)2πδ[1

2(p2 +m2)] =

∫
dD−1p

(2π)D/2−1ω

The simplest and most important case is where two particles scatter to two par-

ticles. (This includes elastic scattering.) The “differential cross section” dσ/dΩ,
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where dΩ is the angular integration element for p3, is found by integrating dσ over

dD−1p4 and d|~p3|. The former integration is trivial, using the δ function for (D − 1)-

momentum conservation. The latter integration is almost as trivial, integrating the

remaining δ function for energy conservation:

dD−1p3 δ
(∑

p0
)

= dΩ d|~p3| (~p3)D−2

∣∣∣∣∂∑ p0

∂|~p3|

∣∣∣∣−1

δ(|~p3| − |~p3|0)

∑
p0 = ω1 + ω2 −

√
(~p3)2 +m2

3 −
√

(~p1 + ~p2 − ~p3)2 +m2
4

⇒ ∂
∑
p0

∂|~p3|
=
−1

2(s−m2
3 −m2

4)ω3 +m2
3ω4

|~p3|ω3ω4

where |~p3|0 is |~p3| evaluated as a function of the remaining variables at
∑
p0 = 0. We

then find
dσ

dΩ
= (2π)2|Tfi|2

|~p3|D−1

λ12[1
2(s−m2

3 −m2
4)ω3 −m2

3ω4]

The center-of-mass frame (see subsection IA4) is the simplest for computations.

In that frame the differential cross section simplifies to

dσ

dΩ
= (2π)2|Tfi|2

λD−3
34

λ12sD/2−1

and in particular in D=4:
dσ

dΩ
= (2π)2|Tfi|2

λ34

λ12s

Another convenient form for the differential cross section is dσ/dt, trading θ for t and

integrating out the trivial dependence
∫
dφ = 2π (for D=4). In the center-of-mass

frame we have

dΩ = 2πd(cos θ) = π
s

λ12λ34

dt

Since t is Lorentz invariant, we therefore have in all frames (that conform to our

earlier requirement for the λ12 factor in dσ)

dσ

dt
= 1

2(2π)3|Tfi|2
1

λ2
12

For example, for the 4-point scalar example considered in subsection VC4, we

have
dσ

dt
=

(4π)3g4

s(s− 4m2)

(
1

s−m2
+

1

t−m2
+

1

u−m2

)2

Exercise VC7.1

A simpler example than the cross section is the decay rate,

dP

dt
=
∑
f

P

ρVD
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for initial density ρ (where t is now time).

a For the case of decay of a particle of mass M into 2 particles of masses m1,m2

in D=4, show that in the rest frame

dP

dt
= 4π

λ12

M3
|Tfi|2

(with a factor of 1
2 for final identical particles). What happens when M =

m1 +m2? (That 4π is only for the case of initial spin 0; otherwise the initial

spin picks a direction, so the 4π should be replaced by an
∫
dΩ.)

b For the case of coupling SI =
∫
dx gφ1φ2φ3, evaluate the classical (tree)

contribution in terms of g,M,m1,m2. Give the dimensional analysis of the

result. Consider also the case where the final particles are massless.

Exercise VC7.2

Consider the cross section for elastic scattering of two particles to lowest order

(tree graphs), in four dimensions. For the following, consider the nonrelativis-

tic limit (small velocities).

a Show from the definition that classically the “total cross section”, as indi-

cated by the name, is just the cross-sectional area with respect to the beam

(assuming each “arrival” results in an “interaction”).

b A φ4 interaction corresponds to a δ-function potential in classical mechanics,

since it has zero range. In classical mechanics, such “billiard ball” scattering

is purely geometrical, depending only on the “size” of the balls. Find the

effective “radius” of these classical billiard balls in terms of their mass and

coupling.

c Replace the φ4 interaction with a φ2χ interaction, where χ is an intermediate

particle with a different mass (nonzero, and also much larger than the φ

kinetic energies). (We still consider scattering of φ particles.) What is the

effective radius of the φ particles?

d In the limit where the χ mass becomes infinite, but also its coupling, the cubic

interaction is effectively replaced with a φ4 interaction (finite when the limit

is taken appropriately). What is this coupling constant in terms of the cubic

coupling and χ mass?

For some purposes (such as considerations of unitarity and causality, as in the

previous subsection) it is useful to draw the Feynman diagrams for the cross section

itself (or actually |T |2). In such a diagram we draw one of the diagrams from S
and one from S†, separating the two by a line (dashed, zig-zag, or shaded on one
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side, according to your preference), and connecting all the external lines (initial and

final) on one side to the corresponding ones on the other. The result is a bubble

diagram with a “cut”: The “cut propagators” are ∆+ = 2πθ(p0)Nδ[1
2(p2 + m2)]

(or ∆−, depending on how we label the momenta), corresponding to the propagator

∆ = N/1
2(p2 + m2), if we sum over all polarizations; otherwise N is replaced by a

term in the sum N =
∑
ψ̂†ψ̂. The momenta of the cut propagators may not be

integrated over, depending on whether they represent final states whose momenta

are summed over (i.e., not measured; in practice the momenta of initial particles

are always measured). The only other difference in the Feynman rules from the S-

matrix is that in Wick rotating back S gets the usual m2 → m2 − iε while S† gets

m2 → m2 + iε, and each connected graph in S gets an iδ(
∑
p) while each in S†

gets a −iδ(
∑
p). The algebra for the cross section is thus identical to that of a

vacuum bubble (although the momentum integration is not, and the cut propagators

lack the usual denominators). In particular, instead of summing over just physical

polarizations in a cut vector propagator, which corresponds to using a unitary gauge,

we can include ghosts in the external states, and use any gauge: This follows from

the cutting rules derived for unitarity.

S S†

∆

∆ _

∆ _

∆+

∆+

∆*

8. Singularities

We know from free theories that any propagator has a pole at the classical value of

the square of the mass. This statement can be extended to the interacting theory: The

(“Landau”) singularities in any Feynman diagram are exactly at classically allowed

(on shell) values of the momenta.

The simplest way to see this is to write the propagators in a way reminiscent of

the classical theory, where the appearance of the worldline metric in the action results

in the (Wick-unrotated) Schwinger parametrization of the propagator,

−i
1
2(p2 +m2)

=

∫ ∞
0

dτ e−iτ(p2+m2)/2
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For simplicity we consider a scalar field theory with nonderivative self-interactions.

The corresponding form of a Feynman diagram, written in momentum space by

Fourier transformation, is then∫
dx′idpijdτij e

−i
∑
〈ij〉

[τij(p
2
ij

+m2)/2−(xi−xj)·pij ]

where i, j label vertices (and external endpoints), 〈ij〉 labels links (propagators),

and dx′ indicates integration over just vertices not attached to external lines. (This

notation is a bit ambiguous, as there may be more than 1 link connecting any 2

vertices.)

We can now interpret the exponent of the Feynman diagram as a classical me-

chanics action in Hamiltonian (first-order) form, as we did for the path integral with

discretized time in subsection VA1. (There also, momenta were associated with links,

while positions located 2-point “vertices”.) As there, we have no measure factor, but

one is introduced if we integrate out the auxiliary momentum variables p to find the

Lagrangian (second-order) form:∫
dx′idτij

∏
〈ij〉

τ
−D/2
ij e

−i
∑
〈ij〉

[m2τij−(xi−xj)2/τij ]/2

(This is just the product of Schwinger-parametrized position-space propagators. Note

the similarity to the nonrelativistic analog in subsections VA2-3.)

If we instead integrate out the positions x′, we produce δ functions for momentum

conservation: ∑
j

pij = 0

i.e., the sum of all momenta flowing into any vertex vanishes. (Note pij = −pji.) This

constraint can be solved by replacing momenta associated with each propagator with

momenta associated with each loop (and keeping momenta associated with external

lines). For example, for planar diagrams, we can write

pij = pIJ = kI − kJ

where I, J label loops: pIJ labels the propagator by the two loops on either side,

rather than the vertices at the ends (and similarly for τij = τIJ). Similar remarks

apply to nonplanar diagrams, but the parametrization in terms of loop momenta kI is

more complicated because of the way external momenta appear. (In the planar case,

the above parametrization can also be used for external momenta, and automatically

enforces overall momentum conservation.) The Feynman integral then becomes∫
dk′IdτIJ e

−i
∑
〈IJ〉

τIJ [pIJ (k)2+m2]/2
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where k are loop (k′) and external momenta after solving the conservation conditions.

To emphasize the similarity of the “vertex” form of the exponent to the “loop”

form, we can also put the loop version into first-order form by introducing auxiliary

variables p̃: Also redefining

τIJ → 1/τ̃IJ

we have for the planar case∫
dk′IdpIJdτ̃IJ

∏
IJ

τ̃
(D−4)/2
IJ e

−i
∑
〈IJ〉

[τ̃IJ p̃
2
IJ
/2+m2/2τ̃IJ−(kI−kJ )·p̃IJ ]

This has the same form as the original action except for the measure and mass

dependence, which disappear in the massless 4D case. If we interpret I, J as labeling

points in “loop” space, this gives the “dual” graph.

We next find the classical “equations of motion” by varying the action. By the

stationary phase approximation (or steepest descent, after Wick rotation of τ), the

classical solutions give the most important contribution to the integrals (at least

for weak coupling). This approximation is related to long-distance (i.e., infrared)

behavior (see exercise VB4.3a). Taking account of the fact that the τ ’s are constrained

to be positive (by treating τ = 0 separately or making a temporary change of variables

τ = β2 or eβ to an unconstrained variable), we find from the original action

τij(p
2
ij +m2) = 0, pij =

xi − xj
τij

,
∑
j

pij = 0

These are known as the “Landau equations”. Their correspondence with classical

configurations of particles follows from treating τ as the proper time, as seen from

p = ∆x/∆τ . (Actually, it is the generalization discussed in section IIIB of proper time

to include the massless case; in the massive case s = mτ .) The equation τ(p2+m2) = 0

says that either the particle for the line is on-shell or there is no such line (it has

vanishing proper length). We can find similar equations from the other actions, such

as ∑
J

τIJpIJ = 0

which says that the sum of τp around a loop vanishes, another statement that p∆τ =

∆x.

Exercise VC8.1

Consider the “one-loop propagator correction”: the graph where a single par-

ticle of mass M splits into two of masses m1 and m2, which rejoin. What is

the physical condition relating these 3 masses (with all particles on shell to

satisfy the above)? What happens when M = m1 +m2? What if m2 = 0?
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Some of these equations are directly related to those found analyzing electric

circuits (“Kirchhoff’s laws”), where the propagators are wires and the vertices are

junctions: Momentum conservation relates to current conservation, while position is

electric potential. The proper time can then be identified with resistance. (The anal-

ogy can be extended in a first-quantization approach to Feynman diagrams, where a

slightly different analysis of the 1-dimensional wave equation for x(τ) as the potential

leads to identification of p = dx/dτ as the 1D electric field, which is conserved at a

junction due to Gauss’s law. See subsection VIIIC5.)

Note that these physical singularities are all in physical Minkowski space: In

Euclidean space, p2 +m2 is positive definite, so it never vanishes (except for constant,

massless fields p = m = 0). Furthermore, in Euclidean space, one can always rotate

any momentum to any direction, whereas in Minkowski space one can never Lorentz

transform to or through either the forward or backward lightcone. Thus, calculating

in Euclidean space makes it clear that S-matrix elements for positive-energy states

are given by the same expressions as those for negative-energy states: To compare

two amplitudes that are the same except for some final particles being replaced with

initial antiparticles, or vice versa, we just change the sign of the energy. This is

called “crossing symmetry”. In the case where all particles are reversed, it is CPT

invariance (“CPT theorem”).

9. Group theory

Although the manipulation of spin indices in Feynman diagrams is closely tied to

momentum dependence, the group theoretic structure is completely independent, and

can be handled separately. Therefore, it is sufficient to consider the simple example

of scalars with a global symmetry. (The more physical case of chromodynamics will

be the same with respect to group theory, but will differ in dependence on momentum

and spin.) The simplest case is the U(N) family of groups. We choose an action of

the form

L = 1
g2
tr[1

4
(∂φ)2 + V (φ)]

where φ is a hermitian N×N matrix. This action is invariant under the global U(N)

symmetry

φ′ = UφU−1

A simplification we have chosen is that the interaction has only a single trace; this

is the case analogous to pure Yang-Mills theory. (We also included the coupling

constant as in Yang-Mills.)
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gluon quark

color

flavor

When we draw a Feynman diagram for this field theory, instead of a single line for

each propagator, we draw a double (parallel) line, each line corresponding to one of

the two indices on the matrix field. Because of the trace in the vertex, the propagator

lines connect up there in such a way that effectively we have continuous lines that

travel on through the vertices, although the two lines paired in a propagator go their

separate ways at the vertex. These lines never split or join, and begin or end only on

external fields. We can also draw arrows on the lines, pointing in the same direction

everywhere along a single line, but pointing in opposite directions on the two lines

in any propagator pair: This keeps track of the fact that φ appears in the trace

always multiplied as φφ and never as φφT . A physical picture we can associate with

this is to think of the scalar as a bound-state of a quark-antiquark pair, with one

line associated with the quark and another with the antiquark; the arrows are then

oriented in the direction of time of the quark (which is the opposite of the direction

of time for the antiquark). The quark is thus in the defining representation of U(N)

(and the antiquark in the complex conjugate representation). Group theory factors

are trivial to follow in these diagrams: The same color quark continues along the

extent of a “quark line”; thus, there is a Kronecker δ for the two indices appearing

at the ends of the quark line (at external fields); each quark is conserved.

Exercise VC9.1

Using the quark-line notation, where the lines now represent flavor, draw all 4-

point tree graphs, with 3-point vertices, representing scattering of K+K− →
π+π− (see subsection IC4) via exchange of other (pseudo)scalar mesons in

that U(6) multiplet. What are the intermediate states (names of mesons) in

each channel? Note that the “flavor flow” of both diagrams can be represented

by a single diagram, by separating all pairs of intermediate lines to leave a
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square gap in the middle: This “duality diagram” represents the mesons as

strings; the gap between quarks represents the “worldsheet”.

Exercise VC9.2

Consider quark-line notation for doing group theory in general: (Calculate

using only graphs, with numerical factors — no explicit indices or Kronecker

δ’s, except for translating definitions.)

a Write the structure constants for U(N) as the difference of two diagrams, by

considering a vertex of the form tr(A[B,C]).

b Find pictorially the resulting expression for the Cartan metric (see subsection

IB2): Show that it is the identity times 0 for the U(1) subgroup and 2N for

the SU(N) subgroup (as found previously in subsection IIIC1).

c Also use these diagrams to prove the Jacobi identity (i.e., find the resulting

6 diagrams and show they cancel pairwise).

d Derive diagrammatically the value of dijk of exercise IB5.3b for the defining

representation.

Exercise VC9.3

Consider the group theory factors for the above scalar theory, with only a

cubic interaction. Draw all the 1PI 1-loop diagrams with 4 external double-

lines, and rewrite the corresponding factors in terms of traces and products

of 4 fields, including factors of N. (Be careful to include all permutations of

connecting propagators to vertices.)

In general, we find that connected Feynman diagrams may include diagrams that

are disconnected with respect to the above group-theory diagrams, where we consider

the two group-theory lines on an external line to be connected. Such diagrams corre-

spond to multiple traces: There is a factor of the form tr(GiGj...Gk) corresponding

to each connected group-theory graph, where i, j, ..., k are the group-theory indices

of the external lines (actually double indices in the previous notation). However, all

connected trees are group-theory connected. Furthermore, they are all “planar”: Any

connected U(N) tree can be drawn with none of the quark lines crossing, and all the

external lines on the outside of the diagram, if the external lines are “color-ordered”

appropriately. Of course, one must sum over permutations of external lines in the

T-matrix because of Bose symmetry. However, in calculating W [φ] one need consider

only one such planar graph, with the external lines color-ordered; the Bose symmetry

of the fields in W automatically incorporates the permutations. (Similar remarks

apply to loop and nonplanar graphs.)
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As an example, consider the U(N) generalization of the 4-point tree example of

subsection VC4. The Lagrangian is now (scaling the coupling back into just the

vertex)

L = tr{1
4
[(∂φ)2 +m2φ2] + 1

3
gφ3}

where the interaction term now has a combinatoric factor of 1
3

instead of 1
6

because

it is symmetric only under cyclic permutations. The result for W is now modified to

W = −g2tr

∫
dx 1

2φ
2 1

1
2(m2 − )

φ2

U(N)

−
N
1
— SU(N)

+

−

USp(2N)

SO(N)

This analysis for U(N) can be generalized to SU(N) by including extra diagrams

with lines inside propagators short-circuited, representing subtraction of traces. It

can also be generalized to SO(N) and USp(2N): In those cases, antisymmetry or

symmetry of the matrices means the lines no longer have arrows, and we include

diagrams where the lines inside the propagators have been “twisted”, with signs

appropriate to symmetrization (USp) or antisymmetrization (SO). (This is the same

as indicated by the matrix representation of the defining representation generators of

SL, SO, and Sp groups given in subsection IB5.)

Generalization for all the above groups to include defining representations is also

straightforward: Such fields, like the true quarks in QCD, carry only a single group-

theory line. For example, sticking with our simpler scalar model, we can generalize

to a scalar theory with the same group theory as chromodynamics, with “free” quark

fields, appearing as scalar fields in the defining representation of the group:

L→ L+ tr[1
2(∂ψ)† · (∂ψ) + ψ†f(φ)ψ], ψ′ = UψU−1

f
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where ψ is an N×M matrix with M flavors, and Uf is the flavor symmetry. (This

color+flavor symmetry was treated in subsections IC4 and IVA4.) This field has a

propagator with a single color line (with an arrow); however, we can also use another

double-line notation, where ψ propagators carry one line for color and another for

flavor. This method can be generalized to arbitrary representations obtained by

direct products of defining representations, (anti)symmetrizations, and subtractions

of traces, by giving the propagators the corresponding number of lines (though usually

two lines are sufficient for the interesting cases).
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VI. QUANTUM GAUGE THEORY
We now consider special features of spin and gauge invariance, and introduce some

special methods for dealing with them. In quantum theory, gauge fixing is necessary

for functional integration: Gauge invariance says that the action is independent of

some variable; integration over that variable would thus give infinity when evaluating

amplitudes for gauge-invariant states. Eliminating that variable from the action (a

“unitary gauge”) solves the problem, but not always in the most convenient way. (If

it were, we wouldn’t have introduced such a redundant description in the first place.)

Note that such infinities already appear for global symmetries: For example, the

functional integral with wave function 1 (vacuum-to-vacuum amplitude) is infinite by

translation invariance. This infinity is easier to understand for a nontrivial amplitude

in momentum space, as a factor of a momentum-conservation δ-function (which is

either ∞ or 0, but necessarily ∞ for the vacuum amplitude, which has vanishing

momentum because the vacuum is translationally invariant).

. . . . . . . . . . . . . .

. . . . . . . A. BECCHI-ROUET-STORA-TYUTIN . . . . . . .

We have seen the relationship of gauge invariances to constraints in subsection

IIIA5. In this section we consider the quantization of constrained systems, and its

application to gauge theories. The Becchi-Rouet-Stora-Tyutin (BRST) method is

not only the most powerful, but also the easiest way to gauge fix: It replaces the

gauge symmetry with an unphysical, fermionic, global symmetry that acts only on

unphysical degrees of freedom. (For simplicity of notation, in this section we assume

all physical quantities are bosonic. Generalization to physical fermions is obvious.)

1. Hamiltonian

Physical observables commute with the constraints. Thus, time development is

described by the gauge-invariant Hamiltonian Hgi, or we can set the gauge fields λi

equal to some arbitrary functions of time f i(t) as a “gauge choice”:

λi = f i ⇒ H = Hgi + f iGi

In quantum mechanics, physical states should be annihilated by the constraints. As

usual, the constraints define a Lie algebra. However, the original Hilbert space might

not contain any singlet representations, or we may want a non-singlet. We then

apply the coset construction of subsection IC6, where the constraints are covariant

derivatives. Thus the constraints are divided up into:
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(1) a subalgebra G0 that annihilates all physical states,

(2) complex “lowering operators” G− that also annihilate these states, and are a

representation of the subgroup generated by G0, and

(3) their hermitian conjugate “raising operators” G+ = G−
†.

(Again, we treat +, −, and 0 as multivalued indices.) Another way to state this is

that the states satisfy the constraints through expectation values:

〈ψ|Gi|χ〉 = 0

Thus,

(G0 − const.)|ψ〉 = G−|ψ〉 = 〈ψ|(G0 − const.) = 〈ψ|G+ = 0

where we have allowed for “normal-ordering” constants to be included as eigenvalues

of (an Abelian subset of) the G0 constraints. In the case where all constraints are

Abelian, it then follows that, althoughG+ do not annihilate these states, they generate

gauge invariances:

δ|ψ〉 = G+|ζ+〉, (G0 − const.′)|ζ+〉 = G−|ζ+〉 = 0

preserves the inner product of such states as well as the constraints on |ψ〉. This may

include “residual gauge invariances” that survive in a solution to the constraints.

Unfortunately, things get more complicated in the nonabelian case. For example,

the gauge invariance and constraints above are no longer compatible in general:

0 = G−δ|ψ〉 = G−G+|ζ+〉 = [G−, G+]|ζ+〉 = −if−+
+G+|ζ+〉 6= 0

However, one example that doesn’t have this problem is the simple case where

there are only 3 constraints, forming an SU(2) algebra (so f−+
+ = 0): If we choose

G− to be the lowering operator and G+ to be the raising operator, then the constant

appearing for G0 is simply the lowest eigenvalue in some irreducible representation in

the Hilbert space |ψ〉, and the constraints pick out the corresponding state (or states,

if there is more than one representation with that “spin”).

A convenient way to deal with this problem is to replace the nonabelian algebra

Gi with a single operator, which is therefore Abelian. We define a BRST operator Q

that imposes all constraints Gi by adding a classical anticommuting “ghost” variable

ci, and its canonical conjugate bi,

{bi, cj} = δji
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for each constraint:

Q = ciGi − i1
2c
icjfji

kbk

The second term has been added to insure the Poisson bracket or commutator

{Q,Q} = 0

so that its crossterm cancels the square of the first term, while its own square vanishes

by the Jacobi identity f[ij
lfk]l

m = 0. Quantum mechanically, the BRST operator is

nilpotent:

quantum mechanically {Q,Q} ≡ 2Q2 = 0

We can also describe the ghost dependence by the “ghost number”

J = cibi ⇒ [J,Q] = Q

(Quantum mechanically, we need to normal order these expressions for Q and J .)

Each anticommuting ghost and its conjugate will serve to “cancel” each commuting

constraint and its conjugate gauge degree of freedom. (Similarly, bosonic ghosts are

introduced for fermionic constraints, so each term in Q is fermionic.)

The BRST operator provides a convenient method to treat more general gauges

than λ = f , such as ones where the gauge fields become dynamical, which will prove

useful particularly in relativistic theories. Now the original physical observables A

will satisfy

[Gi, A] = [bi, A] = [ci, A] = 0 ⇒ [Q,A] = [J,A] = 0

and similarly the physical quantum mechanical states |ψ〉 will satisfy

(G0, G−; b0, b−; c+)|ψ〉 = 0 ⇒ Q|ψ〉 = J |ψ〉 = 0

where we have used the fact the only nonvanishing structure constants are f00
0, f0+

+,

f0−
−, f++

+, f−−
−, and f+−

k. (In the quantum case there are also some subtleties

due to normal ordering.) We also have the gauge invariances

δA = {Q,Λ}, δ|ψ〉 = Q|λ〉

for arbitrary operators Λ and (unrelated) states |λ〉, since the Q-terms won’t con-

tribute when evaluating matrix elements with states annihilated by Q:

(〈ψ1|+ 〈λ1|Q)(A+ {Q,Λ})(|ψ2〉+Q|λ2〉) = 〈ψ1|A|ψ2〉
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Note that for any A,

{Q, [Q,A]} = [Q2, A] = 0

as a consequence of the Jacobi identity and Q2 = 0. The gauge invariances are thus

consistent with the constraints because of the nilpotence of the BRST operator. (So

Q(|ψ〉+Q|λ〉) still vanishes, etc.) States satisfying

Q|ψ〉 = 0, δ|ψ〉 = Q|λ〉

(i.e., we identify states that differ by Q on something) are said to be in the “coho-

mology” of Q (“BRST cohomology”), and operators satisfying

[Q,A] = 0, δA = {Q,Λ}

are said to be in its “operator cohomology”. (The latter cohomology also has a

classical analog.) Products of physical operators are also physical:

[Q,AB] = [Q,A]B +A[Q,B] = 0, δ(AB) = [Q, λA]B +A[Q, λB] = [Q, λAB +AλB]

Exercise VIA1.1

Assume that each physical state can be represented as a physical observable

(Hermitian operator) acting on a ground state, which is itself physical:

|ψ〉 = A|0〉, A = A†, Q|0〉 = 0

Show how this relates the gauge parameters and cohomologies of |ψ〉 and Q.

The BRST operator incorporates the ghosts that are necessary to generalize treat-

ment of the constraints to the nonabelian case: For example, to reproduce the gauge

transformations of the Abelian case, we choose

|λ〉 = b+|ζ+〉, Q|ζ+〉 = 0 ⇒ δ|ψ〉 = Q|λ〉 = Ĝ+|ζ+〉

where

Ĝi = {Q, bi} = Gi − icjfjikbk

are the “gauge-fixed” constraints, which include an extra term to transform the ghosts

as the adjoint representation. They reduce to just Gi in the Abelian case, but add

ghost terms to the gauge transformation law otherwise. Note that

Ĝi ≡ Gi + G̃i ⇒ Q = ci(Gi + 1
2G̃i)

In particular, the Hamiltonian is a physical operator describing the energy and

the time development, so we can write

H = Hgi + {Q,Λ}, [Q,Hgi] = 0 ⇒ T
(
e−i
∫
dt H

)
= T

(
e−i
∫
dt Hgi

)
+ {Q, κ}
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for some κ. This includes gauge fixing for the gauge λi = f i discussed above, using:

Λ = f ibi ⇒ H = Hgi + f iĜi, L = −(
.
qmpm − i.cibi) +H

The ghost terms in Ĝi only affect the time development of unphysical states in this

gauge.

For example, when calculating S-matrix elements, the result is independent of

the gauge choice Λ, as long as both the gauge-invariant Hamiltonian Hgi and the

states are BRST invariant. (Hgi commutes with Q, the initial and final states are

annihilated by it.) It is also independent of the gauge choice |λ〉 for |ψ〉 → |ψ〉+Q|λ〉.
(Such a “residual gauge invariance” persists even though the asymptotic states satisfy

the free field equations.)

In the cases of interest in relativistic physics, the constraints always consist of a

linear term depending only on the canonical momenta p (conjugate to the fundamental

variables q), at least after some redefinitions, plus higher-order terms, which can be

treated perturbatively. Therefore, as the simplest nontrivial example, we consider a

model with a single variable q, with

Hgi = 0, G = p ⇒ Q = cp

If we assume boundary conditions on the wave functions such that they can be Taylor

expanded in q (they can always be expanded in c), we can write

ψ(q, c) = 〈q, c|ψ〉 =
∞∑
n=0

(αn + cβn) 1
n!
qn

and similarly for λ(q). We then examine δ|ψ〉 = Q|λ〉, comparing terms with the

same power of c and q on both sides of the equation, to find δαn and δβn. We then

see that we can easily gauge βn = 0 for all n by choosing certain coefficients in |λ〉
to be −βn (so β′n = βn + δβn = 0). Looking at Q|ψ〉 = 0, we then find that αn = 0

for all n except n = 0, so only the constant piece of ψ survives. In other words, the

cohomology is given by

Q|ψ〉 = 0, δ|ψ〉 = Q|λ〉 ⇒ p|ψ〉 = b|ψ〉 = 0

So, solving for the cohomology of Q = cp is the same as solving the constraint pψ = 0

without ghosts.

Exercise VIA1.2

Consider creation and annihilator operators satisfying

[a, d†] = [d, a†] = {c, b†} = {b, c†} = 1
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(the other commutators vanishing):

a Find the cohomology of the BRST operator

Q = ca† + c†a

by expanding in creation operators a†, b†, c†, d† about a vacuum state de-

stroyed by the annihilation operators a, b, c, d. (This is the common alterna-

tive to the boundary conditions used for Q = cp above.)

b Compare the method of constraints used in the Abelian case: Ignore the

fermions, and identify which bosons are constraints and how they are applied.

The generalization to include anticommuting constraints is straightforward except

for signs:

[Gi, Gj} = −ifijkGk, {bi, cj] = δji ⇒ Q = ciGi − i1
2(−1)jcjcifij

kbk

The extra sign factor (−1)j appears because ghosts have effectively a hidden fermionic

index “•” to account for statistics, ci = c•i, bi = bi•, and there’s a sign with respect

to moving the j on c past the 2nd • so that the contracted indices take the canonical

ordering. (In the generalization of BRST to include “anti-BRST”, this additional

index becomes a 2-valued index of Sp(2), the spinor of SO(2,1). See subsection

XIIA2.)

2. Lagrangian

To obtain more interesting gauges we need some extra bosonic variables, such

as the gauge fields λi that we lost along the way, and their canonical conjugates

(“Nakanishi-Lautrup fields”) Bi,

[Bi, λ
j] = −iδji

as well as their corresponding ghosts (“antighosts”) c̃i. We can do this in a trivial

way by including constraints that set B to zero:

Q = ciGi − i1
2c
icjfji

kbk + b̃iBi, J = cibi − c̃ib̃i

where c̃i is conjugate to b̃i,

{c̃i, b̃j} = δji

As a simple example, consider

Λ = λibi ⇒ {Q,Λ} = λiĜi − ib̃ibi
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The action now includes the gauge fields and all the ghosts as dynamical variables:

L = −(
.
qmpm +

.
λiBi − i.cibi − i

.
b̃ic̃i) +Hgi + {Q,Λ}

For this gauge we can eliminate b and b̃ by their equations of motion; assuming Gi

is only linear in p, we then can eliminate p to return completely to a Lagrangian

formalism:

L = Lgi(q, λ)−
.
λiBi − i(∇tc

i)
.
c̃i

where Lgi represents the original gauge-invariant action (which depended on both q

and λ, including time derivatives), and ∇t is the covariant (time) derivative:

∇tc
i =

.
ci + cjλkfkj

i

The gauge condition (from varying B) is now
.
λ = 0, generalizing the non-derivative

gauges found without the antighosts and Nakanishi-Lautrup fields. Correspondingly,

the ghost term is now second order in derivatives.

Exercise VIA2.1

Consider the general gauge choice

Λ = λibi + [F i(q, p) + Ei(B)]c̃i

⇒ {Q,Λ} = λiĜi − ib̃ibi + (F i + Ei)Bi + ci[Gi, F
j]c̃j

where F i are some arbitrary functions of the original variables, and Ei are

functions that effectively average over the types of gauges produced by F i.

Find the gauge-fixed Hamiltonian and Lagrangian. In the case where E is

linear in B, eliminate B, b, and b̃ from the Lagrangian by their algebraic

equations of motion.

Now that we understand the principles, all these manipulations can be performed

directly in the Lagrangian formalism. This will have the advantage that in field

theory the Lagrangian is manifestly Lorentz covariant, while the Hamiltonian (or the

Lagrangian in the Hamiltonian form − .
qp+H) is not, because of the way it singles out

time derivatives (and not spatial ones). (Consider, e.g., electromagnetism.) Similarly,

neither the unitary gauge Gi = 0 nor the temporal gauge λi = 0 is usually Lorentz

covariant. We can work with just the original variables q, λ plus the new variables

B, c, c̃, and defineQ by the transformation it induces (as derived from the Hamiltonian

formalism):

Qqm = ciδiq
m, Qλi = −i(.

ci+cjλkfkj
i), Qci = −i1

2c
jckfkj

i, Qc̃i = Bi, QBi = 0
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where δi is the gauge transformation induced by Gi ([Gi, ] in the Hamiltonian for-

malism). In deriving Q, we have used the equations of motion of p, b, b̃ (which were

eliminated). Note that the BRST transformations of the original variables are exactly

the same as the gauge transformations, with the gauge parameters replaced with the

corresponding ghosts. We can also consider a modified (gauge-unfixed) classical ac-

tion where the Nakanishi-Lautrup fields B are original variables, with the fact that

they don’t occur explicitly implying they have constraints B = 0. In yet another

alternative classical action, we can treat the antighosts c̃ as pure gauge degrees of

freedom, with their own nonderivative gauge transformation δc̃ = λ̃ that allows them

to be completely gauged away.

The Lagrangian can be gauge-fixed directly as

L = Lgi +QΛL

where in the case just considered

ΛL = −
.
λic̃i

gives the same L as above for the
.
λ = 0 gauge. In the simpler case described earlier

(the gauge λ = function of t only)

ΛL = (λi − f i)c̃i

This gives the result, for the simplest choice f = 0,

L = Lgi(q, λ) + λiBi − i(.
ci + cjλkfkj

i)c̃i → Lgi(q, 0)− i.cic̃i

after eliminating the Lagrange multipliers B and λ by their algebraic equations of

motion. Note that ΛL = λic̃i corresponds to the Hamiltonian formalism’s Λ = 0.

Thus, in the Hamiltonian formalism we never quantize with H = Hgi + λG, but

can use just Hgi and Λ = 0, which is equivalent to using Hgi + {Q,Λ} for any Λ,

while in the Lagrangian formalism we can never quantize with just Lgi(q, λ), or even

Lgi(q, 0), and ΛL is never zero, but must be chosen so as to break the gauge invariance.

However, the extra term for Lgi(q, 0) is just the
.
cb term found from converting Hgi to

the Lagrangian formalism. These gauges can be summarized by a table relating Λ’s

in the Hamiltonian and Lagrangian formalisms:

Λ =

H L

0 λc̃

fb (λ− f)c̃

λb
.
λc̃
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Exercise VIA2.2

Repeat exercise VIA2.1 directly in the Lagrangian formalism. (Find ΛL, etc.)

All our results for quantization apply equally well in the path-integral formalism,

which can be applied to either the Hamiltonian or Lagrangian. (Of course, for field

theory we will be interested in applying BRST to path integrals for Lagrangians.)

For example, choosing

ΛL = f i(q, λ, c)c̃i ⇒ QΛL = f iBi + (Qf i)c̃i

where f is a function of only the minimal variables q, λ, c, then integration over the

nonminimal variables B, c̃ inserts into the functional integral the δ-functionals

δ(f)δ([Q, f})

while the exponent contains only the classical gauge-invariant Lagrangian Lgi(q, λ).

(But the functional integral is still over all minimal variables q, λ, c.) However,

δ-functionals are generally difficult to deal with; the exponential form allows per-

turbation expansion. (Exceptions are when the δ-functionals reduce to ordinary δ-

functions, for a finite number of degrees of freedom: See subsection XIB8.)

We then evaluate matrix elements as

A =

∫
Dφ Ψ [φ]e−iS[φ]; S = Sgi +QΛ, Ψ = Ψgi +QΛΨ ; QSgi = QΨgi = 0

Sgi and Ψgi depend on just the physical fields (no ghosts), so they are gauge invariant

as well as BRST invariant. For S-matrices, since Ψ is an asymptotic state, the BRST

operator used for its constraint and gauge invariance can be reduced to its free part:

Q then acts on only the gauge fields. The statement of gauge invariance of Ψgi is then

equivalent to the requirement that gauge fields appear in it only as their Abelian field

strengths. For example, the usual gauge vector A describing electromagnetism ap-

pears in single-particle factors in the wave functional (Ψ [φ] =
∏
Ψ1[φ] as in subsection

VC1) only as:

Ψ1[A] = 〈Aa||ψa〉, δAa = −∂aλ, ψa = λ = 0

⇒ 0 = δΨ1 = 〈δAa||ψa〉 = 〈λ||∂aψa〉

using ∂0〈λ||ψ〉 = 0 (where the relativistic inner product 〈 || 〉 was defined in subsection

VB2). The transversality of ψa is equivalent to coupling to the Abelian field strength,

since

∂aψa = 0 ⇒ ψa = ∂bψab ⇒ 〈Aa||ψa〉 = 1
2〈F

ab||ψab〉

in terms of an antisymmetric-tensor external-line factor ψab.



A. BECCHI-ROUET-STORA-TYUTIN 491

3. Particles

We have seen that the relativistic particle (with or without spin) is a simple

example of a constrained system. For the simplest case, spin 0, the BRST operator

follows simply from the single constraint:

Q = c1
2( −m2)

Unlike the nonrelativistic case, the relativistic “Hamiltonian” is identified with this

constraint. Since we know constraints are treated by the BRST operator, we can

consider writing the field theory action in terms of it:

S0 = −
∫
dx dc 1

2ΦQΦ

Using the explicit c dependence of the field Φ = φ−icψ, we find the usual scalar kinetic

term. φ is thus the usual field, while ψ is an “antifield”, which has opposite statistics

to φ (fermion instead of boson). We’ll see in chapter XII that Q can be constructed

straightforwardly for arbitrary spin, and has a simple expression in term of generalized

spin operators. (As in nonrelativistic theories, spin is easier to treat directly in

quantum mechanics rather than by first-quantization of a classical system.) The

kinetic term then generally can be written as a slight modification of the above. Then

the antifields will be found to play a nontrivial function, rather than just automatically

dropping out as in this case.

From the constraints and their algebra for spin 1/2 (see also exercises IIIB1.3-4)

we find the BRST and ghost-number operators:

Q = c1
2( −m2)− 1

2ξ(γ · ∂ − im)− 1
2ξ

2b+ 1
2 ξ̃µ, J = cb+ 1

2ξζ + 1
2 ξ̃ζ̃

where ξ and its conjugate ζ are bosonic ghosts, and we have added a nonminimal

term with boson ξ̃ (conjugate ζ̃) and fermion µ (conjugate κ) to allow gauges general

enough for first-quantization:

[ζ, ξ] = [ζ̃ , ξ̃] = {κ, µ} = 2

For convenience, we also have chosen ξ (and ζ) to anticommute with γ,

{ξ, γa} = {ζ, γa} = 0

to avoid having to replace −im with γ−1m; this has the natural interpretation of

treating ξ and ζ as bosonic (ghost) components of the γ matrices (see subsections

XIIA4-5,B5).
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Exercise VIA3.1

Find Q and J for spin 1 as constructed from the direct product of 2 spin 1/2’s

(see exercise IIB4.1d).

Note that [Q, ξ] = 0, but {Q,A} 6= ξ for any A, so ξ is in the operator coho-

mology of Q. Normally, this would imply infinite copies of the physical states in

the cohomology, since applying a “translation” with the ghost variable ξ gives a new

state in the cohomology from any given one. The nonminimal variables allow us to

avoid this problem by combining ξ with ξ̃ to produce harmonic oscillator creation

and annihilation operators:

ξ = a+ a†, ξ̃ = i(a† − a), ζ = ã− ã†, ζ̃ = −i(ã† + ã)

[a, ã†] = [ã, a†] = 1, rest = 0

This allows us to define a ground state

a|0〉 = ã|0〉 = 0

which breaks the translation symmetry of ξ. In chapter XII we’ll show in a more

general framework how the ΦQΦ type of action then reproduces the Dirac action.

4. Fields

As described in subsection VIA2, we can perform gauge fixing through BRST,

including the introduction of ghosts, directly on the Lagrangian at the classical level.

Also, the BRST transformations on the physical fields are just the gauge transforma-

tions with the gauge parameters replaced by ghosts, and the BRST transformation on

the ghosts is quadratic in ghosts times the structure constants, while on the antighosts

it gives the Nakanishi-Lautrup fields, and it annihilates the NL fields. In the case of

Yang-Mills we then have

QAa = −[∇a, C], QC = iC2, QC̃ = −iB, QB = 0

while for matter transforming as δφ = iλφ we have

Qφ = iCφ

where we have used matrix notation for the group algebra, as usual. There are two

minor differences from the transformation rules we used in our general discussion

previously: (1) We have included an extra “i” in our definition of the relativistic Q,

for a convenience that will become apparent only when we relate relativistic first- and
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second-quantization (see chapter XII). (2) There is a relative sign difference for QC

because now Q is second-quantized while Gi is still first-quantized (i.e., matrices).

More explicitly, we have, e.g.,

C2 = 1
2{C,C} ⇒ QCi = −1

2C
jCkfkj

i; Qφ = iCiGiφ

The gauge-fixed action is then the gauge-invariant action plus the BRST trans-

formation of some function Λ:

Sgf = Sgi − iQΛ

For example, consider Yang-Mills in the most common type of gauge, where some

function of A is fixed:

Λ = tr

∫
1
2C̃[f(A) + 1

2αB] ⇒

Lgf = Lgi − 1
2B[f(A) + 1

2αB]− 1
2iC̃

∂f

∂A
· [∇, C]

for some constant α. For α = 0, B is a Lagrange multiplier, enforcing the gauge

f(A) = 0, while for α 6= 0, we can eliminate B by its auxiliary field equation:

−1
2B[f(A) + 1

2αB]→ 1
4α
f 2

(f can also depend on matter fields.) Examples will be given in the following section.

In field theory gauge-fixing functions always have linear terms, as do gauge trans-

formations. Furthermore, there always exist “unitary gauges”, where no ghosts are

required. The ghost terms in general gauges serve simply to provide the appropriate

Jacobian factor for the field redefinition that transforms from the general gauge to

the unitary gauge, which appears at the quantum level from functionally integrating

out the ghosts. The simplest example is the trivial gauge invariance that occurs in

the Stückelberg model (subsection IVA5):

QA = −∂C, Qφ = mC, QC̃ = −iB, QC = QB = 0

which we can fix with

−iQ(C̃Oφ) = −BOφ+ imC̃OC

for some field-independent operatorO. Functionally integrating out B still sets φ = 0,

but produces an inverse functional determinant of O (from redefinition of φ, or from

δ(Oφ)), canceled by that from integrating out the ghosts. The advantage of BRST

is that all this can be treated at the classical level, in terms of the classical action,
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without regard to functional integration, while directly giving a solution that can be

expressed immediately in terms of Feynman rules.

Exercise VIA4.1

Show that the gauge fixing

−iQ(C̃Oφ+ C̃AB + CBφ+ CCB)

whereO, A, B, and C are field-independent operators, gives a result equivalent

to the previous, by considering functional determinants or field redefinitions.

Exercise VIA4.2

Show that the Lagrangian

AAB + CBD → AABD

by the field redefinition

D → D + B−1B

for bosons A, B, C, D and operators A, B. This is the classical equivalent of

det(AB) = det(A)det(B).

These methods apply straightforwardly to supersymmetric theories in superspace:

From the gauge transformations of subsection IVC4,

QeV = iC̄eV − ieVC; QC = iC2, QC̄ = iC̄2

QC̃ = −iB, QC̃ = −iB̄; QB = QB̄ = 0

where C, C̃, and B are chiral superfields, and C̄, C̃, and B̄ their hermitian conjugates.

In practice, this BRST approach is sufficient for gauge fixing. In particular, this

is true for the fundamental fields used in the standard model (including gravity),

which have spin≤2. Therefore, we’ll use mostly this approach in the rest of this text.

However, some observed hadrons have much higher spin. The first-quantized approach

of chapter XII gives a natural and direct way of understanding ghosts and BRST for

the fields describing such particles, and translates directly into the treatment of Zinn-

Justin, Batalin, and Vilkovisky (ZJBV) for field theory.
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There are two important properties of gauges we have examined: (1) Gauges

which eliminate some degrees of freedom, such as lightcone or unitary gauges, are

simpler classically, which makes them easier to understand physically. (2) Gauges that

manifest as many global invariances as possible, such as the Fermi-Feynman gauge,

will be found later to simplify quantum calculations, because the explicit momentum

dependence of the propagator or vertices is simpler, and keeping a symmetry manifest

makes it unnecessary to check. In this section we’ll examine these gauges in greater

detail, especially as they relate to interacting theories.

We’ll study also some special gauges, with nontrivial interaction terms, that have

both of these properties to some extent. In particular, they are manifestly Lorentz

covariant, but avoid many of the complications associated with ghosts.

1. Radial

We know from nonrelativistic classical and quantum mechanics that the equations

of motion can be solved exactly only for certain simple external field configurations.

One particular case we have already emphasized is that of an action quadratic in the

dynamical variables, i.e., the harmonic oscillator and its generalizations. Higher-order

terms are then treated as perturbations about the exact solution. Such an expansion

in the coordinates x is the particle version of the JWKB expansion in h̄: Calling the

“classical” part of x “y”, we substitute x→ y+
√
h̄x and Taylor expand in x. (From

now on we’ll drop the h̄’s, and just remember to perturb about the quadratic terms.)

For the scalar field we write

φ→ φ+ x · ∂φ+ 1
2x

mxn∂m∂nφ+ ...

where ∂...∂φ is implicitly evaluated at y.

For the gauge fields we would like to be a bit more clever: For example, for the

electromagnetic potential Am we know we can always add a constant, so Am(y) is

irrelevant, while for ∂A only Fmn = ∂[mAn] is gauge invariant. This means we want to

choose a gauge best suited to this calculation: a gauge that both eliminates as many

as possible of the lower-order terms, and expresses A(y + x) in terms of only F (y)

and its derivatives. Similarly, we should have a Taylor expansion for charged fields

in terms of covariant derivatives. The appropriate gauge, which easily can be found

explicitly, is the “radial gauge”

x · A(y + x) = 0
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(Note that, unlike F , A depends on x independently of y, not just as y+ x, since the

gauge condition itself is x-dependent. We write A(y + x) only to indicate that A is

evaluated at position y + x.) One way to solve this condition is to use the identity

xnFnm = (x · ∂ + 1)Am − [∇m, x · A] (∂ = ∂/∂x)

which follows from the definition of F . Using the gauge condition, we then can write

Am =
1

x · ∂ + 1
xnFnm

Alternatively, we can replace x everywhere (including the argument y+x) by τx, and

then identify x · ∂ = τ∂/∂τ to find

τxnFnm(y + τx) = ∂ττAm(y + τx)

Integrating both sides over τ from 0 to 1, we find

Am(y + x) =

∫ 1

0

dτ τxnFnm(y + τx)

Note in particular that A(y) = 0.

Another way to define this gauge is to consider gauge covariant translation from

y to y + x to produce a gauge transformation from an arbitrary gauge to the radial

gauge. Writing the covariant derivative at y as

D = D + iA(y), D = ∂/∂y

we know from subsection IIIC2 that

ψ′(y + x) ≡ ex·Dψ(y) = eiΛex·Dψ(y) = eiΛψ(y + x)

so that covariant translation produces a ψ′(y + x) that is the same as ψ(y + x) up to

a gauge transformation. Thus the gauge-transformed ψ can be written as a covariant

Taylor expansion (for purposes of perturbation) about y:

ψ′(x+ y) =
∞∑
n=0

1
n!
xa1 · · ·xan(Da1 · · · Danψ′)(y)

In particular, ψ′(y) = ψ(y).

However, we want to define a covariant derivative with respect to x (not y), so

that

∇ = ∂ + iA′(x+ y), ∇ψ′(y + x) = (Dψ)′(y + x) = ex·D(Dψ)(y)
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Using

∂ψ(y) = 0

we find the solution

∇ = ex·DDe−x·D mod ex·D∂e−x·D

where the latter term vanishes on ψ′(y + x), so the right amount of it can be added

to the former expression to cancel any D terms. The result is

∇ = ex·D(∂ +D)e−x·D

This implies x · A′(y + x) = 0 directly: Contracting both sides with x, the Taylor

expansion of the right-hand side terminates after the first couple of terms. Taylor

expanding the uncontracted expression, we have

A′a(y + x) =
∞∑
n=0

1
n!

1
n+2

(x · D)nxbFba(y)

We can also write

∂ + iA′(x+ y) = ∇ = ex·De−x·D[∂ + iA(x+ y)]ex·De−x·D = eiΛ[∂ + iA(x+ y)]e−iΛ

and

∇ = ex·De−y·∂Dey·∂e−x·D

Exercise VIB1.1

Show this Taylor expansion is equivalent to that obtained from the first

method used in this section to solve the gauge condition. (Hint: Look out for

hidden x and y dependence — How does x · ∂ on ψ′ or F ′ relate to x · D?

Also beware of notation: In the first construction we did not use a gauge

transformation, so no primes were used.)

Exercise VIB1.2

Generalize this construction to superspace (see subsection IVC3):

a First give an expression for the gauge potential AA in terms of covariant

derivatives of field strengths FAB.

b Then look at the expansion in just θ. Give the explicit result for the ex-

pansions of Aα and Aa about θ = 0, applying the constraints: This is the

“Wess-Zumino gauge” (see exercise IVC4.2 for the Abelian case).

Thus, to just quadratic order in x, the mechanics action for a relativistic particle

in external fields (subsection IIIB3) becomes

SL ≈
∫
dτ{−1

2v
−1ηmn

.
xm

.
xn + 1

2
.
xmxnFnm(y)
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+v[φ(y) + xm(∂mφ)(y) + 1
2x

mxn(∂m∂nφ)(y)]}

To this approximation the classical equations of motion are linear and can be solved

exactly. It can also be used to find exact solutions for constant electromagnetic fields.

2. Lorenz

For purposes of explicit calculations in perturbation theory, it’s more convenient

to use gauges where Lorentz covariance is manifest. “Lorenz gauges” are a class of

gauges using

f = ∂ · A

(and similarly for other gauge fields) as the gauge-fixing function. From the discussion

of subsection VIA4, we have from the usual BRST as applied to Yang-Mills

Lgf = 1
8
F 2
ab − iQ 1

2 [C̃(∂ · A+ 1
2αB)]

= −1
4
A · A− 1

4
(∂ ·A)2− 1

2 [Aa, Ab](−i∂aAb+ 1
2AaAb)−

1
2B∂ ·A−

1
4
αB2− 1

2iC̃∂ · [∇, C]

After eliminating B by its field equation, the kinetic terms are

−1
4
A · A− 1

4
(∂ · A)2 + 1

4α
(∂ · A)2 − 1

2iC̃ C

In particular, for α = 1 we have the “Fermi-Feynman” gauge, which gives the nicest

propagators. (It is also the gauge that follows automatically from a first-quantized

BRST construction, which will be described in chapter XII.) More generally, we find

the propagator from inverting the kinetic operator: For the ghosts this is always 2/p2,

but for Aa,

2[ηabp2 + ( 1
α
− 1)papb]−1 = 2

[
ηab
p2

+ (α− 1)
papb
(p2)2

]
For α = 0 this is the “Landau gauge”, which has the advantage that the propagator

is proportional to the transverse projection operator. (It kills terms proportional to

pa.) However, α = 1 is clearly the simplest, and the 1/p4 term can cause problems

in perturbation theory. (Note the trivial case α =∞, which corresponds to no gauge

fixing, gives a propagator that blows up.)

Exercise VIB2.1

In the Abelian case, consider making a gauge transformation on the gauge-

fixed action (including matter), with λ ∼ −1B. Show that the only effect

is to change the value of the coefficient α of the B2 term. Find a similar

transformation for the form of the action where B has been eliminated. This

shows explicitly the decoupling of the longitudinal mode of the photon.
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Exercise VIB2.2

Show that for general A and B

(ηabA+ papbB)−1 =
1

A

(
ηab − papb

B
A+ p2B

)
(There are 2 simple ways to do this exercise — use Lorentz covariance, then

fix the 2 coefficients by multiplication; or use the explicit formula for inverses

from subsection IB3.)

Note that in the Abelian case the lightcone gauge is a special case of the Landau

gauge. (An analogous situation occurs in the classical mechanics of the particle for

the gauges of the worldline metric, as discussed in subsection IIIB2.) Here we have

0 = na(∂bFab) = n · ∂(∂ · A)− (n · A)

In the lightcone formalism, this is the field equation that comes from varying the

auxiliary field. In the lightcone gauge n · A = 0, it implies ∂ · A = 0 (and thus also

Aa = 0), since n · ∂ is invertible.

This is particularly useful in D=4, where we can generalize from the lightcone to

a Lorentz-covariant form by using twistors: From subsection IIB6 (with the special

sign conventions introduced there),

p2 = 0 ⇒ pα
.
α = pαp̄

.
α, n2 = 0 ⇒ nα

.
α = nαn̄

.
α

Massless spinors are described on shell in momentum space by (see subsection IIB7)

ψα = pαφ, ψ̄
.
α = p̄

.
αφ̄

where external-line factors for Feynman diagrams are given by setting φ = 1. For

massless vectors, we have p · A = n · A = 0 (but n · p 6= 0), so depending on whether

the helicity is +1 (selfdual field strength) or −1 (anti-selfdual field strength), we find,

respectively,

f̄
.
α
.
β ∼ p̄

.
αp̄

.
β, fαβ = 0 ⇒ Aα

.
β =

nαp̄
.
β

nγpγ
φ̄

fαβ ∼ pαpβ, f̄
.
α
.
β = 0 ⇒ Aα

.
β =

pαn̄
.
β

n̄
.
γ p̄.

γ

φ

The normalization of A has been chosen compatible with |φ| = 1 and AaA*a = 1 for

evaluating cross sections. In a general Landau gauge the arbitrary gauge-dependent

polarization spinors nα, n̄
.
α can be chosen independently for each external line, since

gauge invariance means independent gauge parameters for different momenta. (This
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method is known as “spinor helicity”.) However, in a lightcone gauge the polarization

spinors are constant.

The lightcone gauge condition is thus again a stronger gauge condition than

Lorenz gauges, as expected from the fact that it has fewer derivatives. This difference

shows itself in various ways:

(1) In perturbation theory on shell, in the lightcone frame the Landau gauge condition

0 = p ·A = −p+A− kills A− but says nothing about A+, which can be eliminated

by the residual gauge invariance δA+ = p+λ to obtain the lightcone gauge.

(2) In perturbation theory off shell, more derivatives in the gauge condition imply

more derivatives in the ghost kinetic operator. Thus, more ghost degrees of

freedom are introduced to cancel the extra unphysical degrees of freedom in the

gauge field.

(3) Lorenz gauges also have a nonperturbative ambiguity (the “Gribov ambiguity”)

that axial gauges avoid: Nonperturbative solutions to the gauge condition can be

found that differ from the perturbative one, in the nonabelian case. Specifically,

it is possible to find a nontrivial gauge transformation g (∇′ = g−1∇g) such that

0 = ∂ · A′ = −i∂ · g−1(∇g) for ∂ · A = 0

even when g is required to satisfy boundary conditions that it approach the

identity at infinity (except in the Abelian case, where g = eiλ ⇒ λ = 0⇒ λ =

0). This is not the case for axial gauges, where

0 = n · A′ = n · g−1(∇g) for n · A = 0 ⇒ g−1(n · ∂g) = 0 ⇒ g = I

by simply integrating from infinity.

3. Massive

In subsection IIB4 we described the introduction of mass for the vector by dimen-

sional reduction, giving the Stückelberg formalism for a massive (Abelian) gauge field.

The gauge-invariant action (subsection IVA5) and BRST transformation laws (sub-

section VIA4) followed from adding an extra dimension and setting the corresponding

component of the momentum equal to the mass:

Lgi = 1
8
F 2
ab + 1

4
(mAa + ∂aφ)2

QAa = −∂aC, Qφ = mC, QC̃ = −iB, QB = 0

where the scalar is the extra component of the vector.
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There are two obvious covariant gauges for such a vector: (1) The “unitary gauge”

f = φ

simply gauges away the scalar. Since the scalar has a nonderivative gauge transfor-

mation, the ghosts do not propagate: The gauge-fixing term

−iQ(C̃φ) = −Bφ+ imC̃C

simply eliminates the scalar and ghosts as auxiliary fields. The net result is that we

could have simply chosen

gauge φ = 0

and ignored ghosts because of φ’s nonderivative transformation law. Thus the gauge-

fixed Lagrangian is just the result of adding a mass term to the massless Lagrangian:

Lgf = 1
8
F 2
ab + 1

4
m2A2

But the propagator is

2[ηab(p2 +m2)− papb]−1 = 2

[
ηab

p2 +m2
+

papb
m2(p2 +m2)

]
Notice that the second term is higher in derivatives than the first; this can cause some

technical problems in perturbation theory.

(2) The Fermi-Feynman gauge works similarly to the massless case. We then

modify the gauge-fixing function to

f = ∂ · A+mφ

so

−iQ[1
2C̃(∂ · A+mφ+ 1

2B)] = −1
2B(∂ · A+mφ+ 1

2B)− 1
2iC̃( −m2)C

⇒ Lgf = 1
8
F 2 + 1

4
(mA+ ∂φ)2 + 1

4
(∂ · A+mφ)2 − 1

2iC̃( −m2)C

= −1
4
A · ( −m2)A− 1

4
φ( −m2)φ− 1

2iC̃( −m2)C

The propagators are again simpler. The vector has D propagating components instead

of just the D−1 physical ones; the 2 ghosts cancel φ and the extra component in A.

Exercise VIB3.1

Generalize the Fermi-Feynman gauge for the Stückelberg formalism to the

“renormalizable gauges” with gauge-fixing function

f =
m

µ
∂ · A+ µφ
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a Find the gauge-fixed action.

b Show that the ghosts and φ have mass µ, while the vector propagator has the

form

2

[(
ηab +

papb
m2

) 1

p2 +m2
− papb

m2

1

p2 + µ2

]
This shows explicitly the second unphysical bosonic mode of mass µ to cancel

the 2 ghosts, as well as the 3 transverse physical modes of mass m.

c Look at the cases

µ =


0 (Landau gauge)

m (Fermi-Feynman gauge)

∞ (unitary gauge)

These two choices of gauge also exist for Yang-Mills theories exhibiting the Higgs

mechanism, since those models give the Stückelberg model when linearized about

the vacuum values of the fields. The advantages are the same: The unitary gauge

eliminates as many unphysical degrees of freedom as possible (see subsection IVA6

for an example), while the Fermi-Feynman gauge gives the simplest propagators.

Exercise VIB3.2

Treat propagators in path-integral language as the insertion of 2 fields into

the path integral. Show that BRST invariance relates the propagators of the

ghosts to those of the bosons. Check that these relations hold for the gauges

of the previous problem.

Exercise VIB3.3

Work out the Fermi-Feynman gauge for an arbitrary Higgs model, generalizing

the analysis for the Stückelberg case.

4. Gervais-Neveu

We next consider pure Yang-Mills theory for the gauge group U(N), but use a

complex gauge-fixing function

f0 = ∂ · A+ iA2

where Aa is a vector of hermitian N×N matrices, and A2 ≡ AaAa. (The hermitian

conjugate, i → −i, gives similar results.) The gauge-fixed Lagrangian (in the action

S = g−2tr
∫
L) is then

LA = 1
8
F 2 + 1

4
f 2

0 = −1
4
A · A− iAaAb∂bAa − 1

4
AaAbAaAb
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(where is the free D’Alembertian) while the ghost action can be written as

LC = −1
2iC̃∇

2C − 1
2C̃Cf0

where ∇ acts on C as if it were in the defining representation (i.e., ∇C = ∂C + iAC,

not [A,C]). This “Gervais-Neveu gauge” already has the simplification that some of

the terms in the Yang-Mills self-interaction have been canceled.

Exercise VIB4.1

Consider the “anti-Gervais-Neveu gauge”, where the same gauge-fixing term

is added with opposite overall sign.

a Show the resulting Lagrangian can be written as

LA ∼ tr[(∂/A/ + iA/ 2)2]

where the trace is with respect to both (N×N) internal and (4×4) Dirac

matrices. Thus, spin can be treated in a manner closely analogous to internal

symmetry.

b Show the propagator can be written in the form of the product of 2 (massless)

Dirac-spinor propagators.

c Starting with the complex first-order formulation of Yang-Mills of subsection

IIIC4, show that the action can be written in a way that replaces the above

4×4 matrices with 2×2 matrices, as

LA ∼ tr[Ĝ2 + Ĝ(∂A* + iAA*)]

in first-order form, where now Ĝ is neither traceless nor symmetric in spinor

indices (its trace is the Nakanishi-Lautrup field), or in second-order form as

LA ∼ tr[(∂A* + iAA*)2]

(Note that this differs from the above Dirac form, as expanded in 2×2 matri-

ces, because it includes the Chern-Simons term.)

Next, consider a model where the Yang-Mills fields couple to scalars that are also

represented by N×N matrices, but that are in the defining (N-component) represen-

tation of the gauge (“color”) U(N), while also being in the defining representation of

a second, global (“flavor”) U(N). (See subsection IVA6.) This complex field thus has

2N2 real components compared to the N2 gauge vectors, and the 2N2 ghosts. We also

choose a Higgs potential such that the masses of the scalar and vector come out the
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same (but we can also specialize to the massless case). The scalar Lagrangian is then

(again with g−2tr in the action)

Lφ = −1
2φ
†∇2φ+ 1

4
R2, R = φ†φ− 1

2m
2

Finally, we modify the gauge-fixing function to

f = f0 + iR

With this choice, the ghost terms are unmodified (R is gauge invariant), but the

scalar self-interaction is completely canceled (including the mass term). The total

Lagrangian is then

L = (LA + 1
4
m2A2) + (−1

2φ
†∇2φ+ i1

2φ
†φf0) + i(−1

2C̃∇
2C + i1

2C̃Cf0)

Since the scalar Lagrangian is identical in form to that of the ghosts, and neither

has self-interactions, functional integration over them will produce canceling func-

tional determinants, because they have opposite statistics. This is a reflection of the

fact that both sets of fields now describe unphysical polarizations, since both describe

massless states in a theory where all physical states are massive (as seen, e.g., in a

unitary gauge). This has the great advantage that, for this particular model, both

the scalar fields and the ghosts can be dropped altogether, while the Lagrangian

L→ LA + 1
4
m2A2

completely describes the physical massive vector and scalar states. This was possible

only because of the use of a complex gauge condition: The longitudinal component of

the vector is now imaginary, which fixes the wrong sign associated with the Minkowski

metric. A related characteristic of this gauge is that we nowhere needed to change

the vacuum value of any field, unlike other gauges for actions where there is a Higgs

effect.

We now note that this result for the massive case (and its massless limit) actually

can be obtained more easily than the result for the pure Yang-Mills case: Since the

final result has no ghosts, it is in a unitary gauge, where the vector not only “eats”

the usual compensating scalar, but “overeats” by absorbing the physical scalar. The

appropriate gauge condition is still complex and involves the scalars, but is now linear :

gauge φ = 〈φ〉 = 1√
2
mI
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where φ†, treated as independent, is unfixed. (As for the usual unitary gauge Im φ =

0, i.e., φ = φ†, there are no propagating ghosts, since the gauge transformation of φ

has no derivatives.) In this gauge the action becomes quadratic in φ†:

Lφ → −1
2φ
†i(∂ · A+ iA2) 1√

2
m+ 1

4
(φ† 1√

2
m− 1

2m
2)2

In fact, φ† appears as an auxiliary field (taking the place of the Nakanishi-Lautrup

field), so we can eliminate it by its equation of motion:

δ

δφ†
⇒ φ† = m√

2
+
√

2
m
if0 ⇒ L = LA + 1

4
m2A2

(Actually the final result is independent of what nonzero constant value the scalars

are given.) This procedure is analogous to that used for the lightcone gauge, where

one component of the gauge field is fixed and one is eliminated as an auxiliary field:

A closer analogy will be found in subsection VIB6.

Of course, such gauges generalize to other Higgs models, but results will not be

as simple when the vector and scalar masses differ:

Exercise VIB4.2

Make the coefficient of the R2 term in Lφ arbitrary, so the masses of the

vector and scalar are unequal, but choose the same gauge φ = 〈φ〉. Find the

propagator, and compare with that of exercise VIB3.1.

5. Super Gervais-Neveu

Nonhermitian gauges are also useful in supersymmetric theories: Here we consider

the supersymmetric analog of the massive model of the previous section. Although

we work in N=1 superspace, the model turns out to automatically have an N=2

supersymmetry. Just as the bosonic model ended with only a vector field describing

only physical polarizations, we now want a real scalar superfield to have only physical

polarizations. Since such a superfield has 8 bosonic components and 8 fermionic, while

massless N=1 multiplets have 2+2 physical polarizations, we need 1 vector multiplet

plus 3 scalar multiplets. Since the bosonic model had a complex scalar representation,

2 of these scalar multiplets must form the analogous defining⊗ defining representation

of local ⊗ global groups, so the last must be a real (adjoint) representation of the

local group. The model is then given by (where again S = g−2 tr
∫
dx L)

Lgi = −
∫
d2θ W 2 −

∫
d4θ (e−V φ̄0e

V φ0 + φ̄+e
V φ+ + φ−e

−V φ̄−)

−
[∫

d2θ (φ+φ− − 1
4
m2)φ0 + h.c.

]
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where we have included the only possible scale-invariant potential term, and intro-

duced a Higgs mechanism by an N=2 Fayet-Iliopoulos term, which we chose to write

in terms of the chiral scalar. (See subsection IVC7.)

The BRST transformations (which also imply the gauge transformations) for this

action are (see subsection VIA4)

QeV = iC̄eV − ieVC, Qe−V = −e−V (QeV )e−V = iCe−V − ie−V C̄

QC = iC2, QC̄ = iC̄2; QC̃ = −iB, Q ˜̄C = −iB̄; QB = QB̄ = 0

Qφ+ = iCφ+, Qφ0 = i[C, φ0], Qφ− = −iφ−C

Qφ̄+ = −iφ̄+C̄, Qφ̄0 = i[C̄, φ̄0], Qφ̄− = iC̄φ̄−

Our nonhermitian choice for the BRST gauge-fixing function is

Λ = −
∫
d2θ C̃(d̄2e−V + φ0)−

∫
d2θ̄ ˜̄C(d2eV + φ̄0)

Note that eV is an element of the algebra as well as a “nonunitary element” of the

group, only because we chose the group U(N) (as was the case for A2 in the bosonic

version). The gauge-fixing and ghost terms are then

−iQΛ =

∫
d2θ B(d̄2e−V + φ0) +

∫
d2θ̄ B̄(d2eV + φ̄0)

−
∫
d4θ (C̃e−V C̄ + ˜̄CeVC)−

∫
d2θ CC̃φ0 −

∫
d2θ̄ C̄ ˜̄Cφ̄0

where we have used the field equation enforced by the Lagrange multipliers B and

B̄ (or, equivalently, made field redefinitions of the Lagrange multipliers to generate

terms proportional to their constraints).

Exercise VIB5.1

Make a component analysis of this theory:

a Expand the gauge-invariant action in components.

b Do the same for the gauge-fixing terms.

c Compare the bosonic part of both the gauge-invariant and gauge-fixed actions

to those of the previous subsection, after elimination of auxiliary fields.

We now see that the ghost terms are identical in form to those for φ±, under the

identification

(φ+, φ−, φ̄+, φ̄−)↔ (C, C̃, ˜̄C, C̄)

(but beware signs from ordering of ghosts). So again the ghosts cancel the (N=2)

matter fields, leaving only the N=2 vector multiplet. But we can also eliminate
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the N=1 matter half of this N=2 multiplet using the Nakanishi-Lautrup Lagrange

multipliers: The final simple result for the gauge-fixed action is thus

L = −
∫
d2θ W 2 −

∫
d4θ [e−V (d2eV )eV d̄2e−V + 1

4
m2(eV + e−V )]

A further simplification results from the redefinition (again possible only for U(N))

eV → 1 + V

This also simplifies the BRST (and gauge) transformation for V :

QV = i(C̄ − C) + i(C̄V − V C)

whose linear form resembles the bosonic case. Using the expression (see exercise

IVC4.1)

Wα = −id̄2e−V dαe
V → −id̄2 1

1 + V
dαV

for the field strength, the Lagrangian becomes

L = −
∫
d4θ

[
−1

2

1

1 + V
(dαV )d̄2 1

1 + V
dαV +

1

1 + V
(d2V )(1 + V )d̄2 1

1 + V

+1
4
m2

(
V +

1

1 + V

)]
Although the nonabelian vector multiplet has nonpolynomial self-interactions in

any gauge, this gauge simplifies the lower-point interactions, which are the ones more

frequently used for a fixed number of external lines. Expanding this action to cubic

order, we use the identity

dαd̄2dα = d̄
.
αd2d̄ .

α = −1
2 + {d2, d̄2}

for the kinetic term, and

d̄ .
αd

2 = d2d̄ .
α + i∂α .

αd
α

for the gauge-fixing part of the cubic term, with integration by parts. (For the gauge-

invariant term, some work can be saved by using the equivalent W
2

form.) The result

is

L =

∫
d4θ {1

4
V ( −m2)V + [1

4
m2V 3 + (d̄

.
αV )V i∂α .

αd
αV ] +O(V 4)}

Not only are there fewer terms than with linear gauge conditions, but these terms

have fewer spinor derivatives, which yields fewer nonvanishing contributions in loops

(see subsection VIC5). As for the bosonic model of the previous subsection, this

analysis also applies for the unbroken case m = 0.
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Exercise VIB5.2

Find the corresponding form of the kinetic and cubic terms without the re-

definition eV → 1 + V .

Exercise VIB5.3

Gauge fix by using the unitary gauge

φ+ = φ̄− = m√
2

to obtain the same result. (A better value might be 1
2m, but again the value

is irrelevant.)

Exercise VIB5.4

Look at the super anti -Gervais-Neveu gauge, or super anti -Fermi-Feynman

gauge, changing the sign of the gauge-fixing term for the vector multiplet (see

exercise VIB4.1).

a Show that in the massless case the kinetic operator becomes, instead of ,

K ∼ d4 ≡ 1
4!
εαβγδdαdβdγdδ

where we now use 4-component spinor indices.

b Show that the resulting propagator is of the form, in supercoordinate space,

∆(x, θ;x′, θ′) ∼ d4

2 δ
4(θ − θ′)δ4(x− x′) ∼ ln[(x− x′ − i1

2θγθ
′)2]

where “x−x′− i1
2θγθ

′” (see subsection IIC2) is the supersymmetry invariant.

(Hint: Use d4 =
∫
d4ζ eζ

αdα . Warning: If derived by Fourier transformation,

the integral is infrared divergent, and requires dropping an infinite constant.)

6. Spacecone

We have just seen that gauge independence allows complex gauge conditions,

which make the action complex. (In subsection IIIC4, we also used complex auxiliary

fields, with a similar effect.) In this subsection we introduce a complex analog of the

lightcone, the “spacecone”, which will greatly simplify Feynman diagram calculations

with massless fields. The spacecone gauge condition is

A2 − iA3 = 0

or more generally

n · A = 0, n2 = 0, n · n* > 0
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(but only na, not n*a, appears in the action). While this gauge is spacelike (in the

sense that only spatial components of the gauge field are fixed), it is also null, by

virtue of being complex. Thus, although algebraically like the lightcone, it allows

canonical quantization with the usual time coordinate. In fact, it is just a Wick

rotation of the lightcone. We then eliminate A2 + iA3 as an auxiliary field.

The spacecone is a new gauge to add to our list of axial gauges n · A = 0 from

subsection IIIC2, and the related gauges for scalars from subsections IVA5-6, VIB3-4:

axial gauges non-null null (+ auxiliary field eq.)

(partly) temporal timelike : A0 = 0 lightcone : A+ = 0, δ/δA−

spacelike Arnowitt-Fickler : A1 = 0 spacecone : At = 0, δ/δĀt

scalar unitary : φ = φ† Gervais-Neveu : φ = 〈φ〉, δ/δφ†

In fact, at least for the free theories, the gauges for the scalars can be considered

as dimensional reductions (from 1 or 2 extra dimensions) of those for the vector, as

used for deriving the Stückelberg formalism in subsection IIB4, where the spacelike

components of the vector associated with gauge fixing become scalars: Arnowitt-

Fickler → unitary, spacecone → Gervais-Neveu. (There is also the gauge A0 − φ = 0

of exercise IVA5.1, and the related A1− iφ = 0, obtained by reduction of 1 dimension

from lightcone or spacecone.)

The main advantages of the spacecone over the lightcone are special to D=4, so

we now review the lightcone in a way specialized to physical spacetime. We first

repeat the results of subsection IIIC2, relabeling the indices appropriately. Starting

with the gauge condition (see subsections IA4 and IIA3 for notation)

At = 0

and eliminating Āt by its field equation, the Lagrangian for pure Yang-Mills becomes

L = A+∂t∂̄tA− − 1
4
(F+−)2 + 1

4
(F tt̄)2

F+− = ∂+A− − ∂−A+ + i[A+, A−]

F tt̄ = ∂−A+ + ∂+A− + i
1

∂t
([A+, ∂tA−] + [A−, ∂tA+])

We simplify the Lagrangian by using the selfdual and anti-selfdual combinations:

Dropping also the t superscripts on ∂ for simplicity,

F± = 1
2(F tt̄ ± F+−) = ∂±A∓ + i

1

∂
[A±, ∂A∓]
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L = A+∂∂̄A− + F+F−

= A+ 1
2 A− − i

(
∂−

∂
A+

)
[A+, ∂A−]− i

(
∂+

∂
A−
)

[A−, ∂A+]

+ [A+, ∂A−]
1

∂2
[A−, ∂A+]

Exercise VIB6.1

Label all the fields and derivatives in the above forms of the Lagrangian, F
in particular, in spinor notation.

Exercise VIB6.2

Show that the field redefinitions A± → (∂)±1φ±, when applied to just the

first two terms of the above Lagrangian, produce a local action describing

the selfdual field equations of the lightcone formalism of subsection IIIC5

(taking into account the difference between the lightcone and spacecone).

Compare the results of exercise IIIC5.2. Thus, by treating the latter two terms

separately from the former two, Yang-Mills can be treated as a perturbation

about selfdual Yang-Mills.

Another simplification for massless D=4, and closely related to the use of helicity,

is twistors. For our Feynman diagram calculations for spins ≤ 1, almost all spinor

algebra involves objects carrying at most two spinor indices (spinors, vectors, selfdual

tensors), so we use the twistor matrix notation of subsection IIB6. In particular, in a

general class of gauges the external line factors for Yang-Mills fields in this notation

(see subsection VIB2) read

A = ε+ =
|ε〉[p|
〈εp〉

⇒ f* = i|p][p|, f = 0

for + helicity or

A = ε− =
|p〉[ε|
[εp]

⇒ f = i|p〉〈p|, f* = 0

for −, where (ε±)a are the polarization 4-vectors for helicity ±1 in terms of a twistor

εα, ε̄
.
α, which can vary from line to line, and whose choice defines the gauge, as a special

case of the Landau gauge. (Positive helicity is the same as selfduality, negative is anti-

selfdual. The Landau gauge condition is generally applied in arbitrary Lorenz gauges

to external lines, to eliminate the redundant longitudinal degrees of freedom.)

One special case is the lightcone gauge

n · A = 0, n = |ε〉[ε|



512 VI. QUANTUM GAUGE THEORY

in terms of an arbitrary constant lightlike vector n. A more convenient gauge is the

spacecone gauge, which can be written in terms of two twistors:

n = |ε+〉[ε−|

These two twistors are sufficient to define a complete reference frame: We can convert

all spinor indices into this basis, as

ψα = ψ±ε±
α

etc. This corresponds to using two lightlike vectors to define the spacecone gauge,

n± = |ε±〉[ε±|. For simplicity, we write |ε±〉 = |±〉; then a vector in this basis can be

written as

p = p+|+〉[+|+ p−|−〉[−|+ pt|−〉[+|+ p̄t|+〉[−|

if we use the normalization

〈+−〉 = [−+] = 1

E.g., for massless momentum p = |p〉[p|,

p+ = 〈p−〉[−p], p− = 〈+p〉[p+], pt = 〈+p〉[−p], p̄t = 〈p−〉[p+]

We will also drop the superscript t in contexts where there is no ambiguity. This

basis is related to our previous spinor basis up to phase factors, |±〉 ∼ |±〉, |±] ∼ | .±],

and we assume them to be commuting (rather than anticommuting); these changes

are more convenient for dealing with twistors (commuting spinors).

The advantage of the spacecone is that we can Lorentz covariantize the Feyn-

man rules by identifying these two lightlike vectors with physical on-shell massless

momenta. We need two such “reference” vectors because we are not allowed to have

n = p on any line. Since only |+〉 appears in the external line factors for helicity +1,

and only |−] in those for −1, the simplest choice is to pick the momentum of one

external line with helicity +1 to define |−] for all lines with helicity −1, and pick the

momentum of one line with helicity −1 to define |+〉 for lines with helicity +1. (In

the presence of massless external spinors, we can also choose a helicity +1/2 line to

define |−], etc. Lines for massless external scalars can be used for either.)

We now return to external line factors. The naive factors for the above Lagrangian

are 1, since the kinetic term resembles that of a scalar. However, this would lead to

unusual normalization factors in probabilities, which are not obvious in this complex

gauge. Therefore, we determine external line factors from the earlier spinor helicity

expressions for external 4-vectors. In Lorenz gauges (ε±)a would be the polarization
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for helicity ±1 for the complete 4-vector, but in the spacecone formalism only A±

appear. Furthermore, in the spacecone we find

(ε+)− = −|+〉[+| · |+〉[p|
〈+p〉

= 0

(ε−)+ = −|−〉[−| · |p〉[−|
[−p]

= 0

since by antisymmetry 〈++〉 = [−−] = 0, so that A+ carries only helicity +1 and

A− only −1. (This statement has literal meaning only on shell, but we can make this

convenient identification more general by using it as a definition of helicity off shell.)

The appropriate external line factors for these fields are thus

(ε+)+ = −|−〉[−| · |+〉[p|
〈+p〉

=
[−p]
〈+p〉

(ε−)− = −|+〉[+| · |p〉[−|
[−p]

=
〈+p〉
[−p]

Note that these factors are inverses of each other, consistent with leaving invariant

(the inner product defined by) the kinetic term.

An exception is the external line factors for the reference momenta themselves,

where |p〉 = |∓〉 for helicity ± gives vanishing results. However, examination of the

Lagrangian shows this zero can be canceled by a 1/∂ in a vertex, since p = p̄ = 0 for

the reference momenta by definition. (Such cancellations occur automatically from

field redefinitions in the lightcone formulation of the selfdual theory.) The actual

expressions we want to evaluate, before choosing the reference lines, are then

p−

p
(ε+)+ =

〈+p〉[p+]

〈+p〉[−p]
[−p]
〈+p〉

=
[p+]

〈+p〉

p+

p
(ε−)− =

〈p−〉[−p]
〈+p〉[−p]

〈+p〉
[−p]

=
〈p−〉
[−p]

Evaluating the former at |p〉 = |−〉 and the latter at |p〉 = |+〉, we get 1 in both cases.

In summary, for reference lines: (1) use only the 3-point vertex of the corresponding

selfduality (± ± ∓ for helicity ±), and use only the term associating the singular

factor with the reference line (the other term and the other vertices give vanishing

contributions); (2) including the momentum factors on that line from the vertex, the

external line factor is 1.

Our above normalization means that we have chosen the phase 〈+−〉/[−+] = 1 as

allowed by the usual ambiguity of twistor phases, while our choice of the magnitude

〈+−〉[−+] = −〈+|[+| · |−〉|−] = 1 is a choice of (mass) units. In explicit calculations,
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we restore generality (in particular, to allow momentum integration) by inserting

appropriate powers of 〈+−〉 and [−+] at the end of the calculations, as determined

by simple dimensional and helicity analysis. (This avoids a clutter of normalization

factors
√
〈+−〉[−+] at intermediate stages.) For example, looking at the form of

the usual spinor helicity external line factors, and counting momenta in the usual

Feynman rules (or as seen from the original, gauge-invariant action), we see that any

tree amplitude (or individual graph) in pure Yang-Mills must go as

〈 〉2−E+ [ ]2−E−

where E± is the number of external lines with helicity ±.

7. Superspacecone

To generalize these results to high-energy (massless) QCD, we consider supersym-

metric QCD, i.e., Yang-Mills coupled to massless fermions in the adjoint representa-

tion. For tree graphs, this is equivalent to ordinary massless QCD except for group

theory, which can be evaluated separately. We first apply the spacecone approach to

the component action for supersymmetric QCD: The modification of this action for

ordinary massless QCD is trivial (replacing the adjoint quark current with defining).

From this we derive the “superspacecone” formalism, rewriting the action more sim-

ply in terms of spacecone superfields. (This form can also be derived from the usual

superspace, but we will not consider that here.)

We now combine the spacecone approach to pure Yang-Mills of subsection VIB6

with the spacecone version of the lightcone treatment of the massless spinor in sub-

section IIIC2. We modify the lightcone to the spacecone for the quarks by instead

eliminating ψ⊕ and ψ̄
.
	 as auxiliary. For later convenience, we also write the remaining

fermionic fields as

ψ̄
.
⊕ → ψ+, ψ	 → −ψ−

Then we directly find the terms in the Lagrangian

L = A+∂∂̄A− + F+F− + iψ+(∂̄ −∇− 1
∂
∇+)ψ−

F± = ∂±A∓ − 1
∂
([A±,−i∂A∓] + {ψ+, ψ−})

where the quark term in F± comes from the quark coupling to At̄ when using its

equation of motion to solve for F tt̄. Collecting terms, we have

L = L2 + L3 + L4
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L2 = A+ 1
2 A− + ψ+

1
2

−i∂
ψ−

L3 =

(
∂∓

∂
A±
)

([A±,−i∂A∓] + {ψ+, ψ−}) +

(
∂∓

∂
ψ±
)

[A±, ψ∓]

L4 = −([A+,−i∂A−]+{ψ+, ψ−}) 1

∂2
([A−,−i∂A+]+{ψ+, ψ−})−[A+, ψ−]

1

−i∂
[A−, ψ+]

where terms with ± have only a single sum over it. Although this Lagrangian is

much messier than the original covariant one, one again saves work by expanding

terms once in the action rather than repeatedly for each Feynman diagram.

External-line factors for the spinors follow from the covariant ones of subsection

VIB2 as they did for the spacecone vectors of subsection VIB6. We thus have

ψ+ = [−p], ψ− = 〈+p〉

Compared with those for A±, we see ψ+ψ− has an extra factor of p = 〈+p〉[−p] as

compared with A+A−, as expected from the extra factor of 1/(−i∂) in the kinetic

operator. Similarly, if we choose to use external quark lines as reference lines, we use

p−

p
ψ+ = [p+],

p+

p
ψ− = 〈p−〉

which also reduce to 1 for the appropriate reference momenta.

The rule that trees go as 〈 〉2−E+ [ ]2−E− can still be applied with fermions, if the

subscripts on E± are applied to just the sign of the helicity, using the fact helicities

±1
2 always appear in equal numbers.

Noting that the bosonic and fermionic terms are the same except for factors of

−i∂, we can combine them into chiral superfields that depend on only two anticom-

muting coordinates, θ+ and θ− (really θ⊕ and θ̄
.
	):

S = 1
g2
tr

∫
dx dθ+dθ− L,

∫
dθ+dθ− = d+d− or − d−d+, {d+, d−} = −i∂

d±φ
∓ = 0; φ±| = A±, d±φ

±| = ψ±

(no sum on ±). These spinor derivatives (and their corresponding supersymmetry

generators) describe only spatial supersymmetry, since they contain no time deriva-

tives. Then, using the identity

d±d∓[φ±, φ∓]| = [A±,−i∂A∓] + {ψ+, ψ−}

we easily combine the terms in the Lagrangian L into the superspacecone Lagrangian

L:

L = φ+
1
2

−i∂
φ− +

(
∂∓

∂
φ±
)

[φ±, φ∓] + [φ+, d−φ
−]

1

∂2
[φ−, d+φ

+]
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The last term can also be written as

−[φ+, φ−]
d+d−
∂2

[φ+, φ−]

Exercise VIB7.1

Introduce another pair of chiral superfields as auxiliary. Show the above

L then can be rewritten in local form, with no spinor derivatives, where the

kinetic term resembles the covariant one for a massless spinor, while the inter-

action term contains no derivatives and is only cubic. (Hint: d±d∓/(−i∂) are

projection operators for chiral superfields.) Thus this Lagrangian resembles

the Chern-Simons one that appears on the 3D boundary for the topological

term in Yang-Mills (see subsection IIIC6). Expand the action in components,

and separate out the pure Yang-Mills part.

Exercise VIB7.2

Repeat exercise VIB6.2 to obtain the superspacecone action for selfdual super

Yang-Mills, quadratic in φ+ and linear in φ−. Use the field redefinition

φ− → d+ϕ
−, d−ϕ

− = 0

and integrate the action over just θ− (by acting with d−) to obtain a “chiral”

action, with no spinor derivatives, and superfields that are functions of just

θ+ integrated over just θ+. After further redefinitions as in VIB6.2, obtain an

action identical to the nonsupersymmetric one obtained there, except for the∫
dθ+. Expand in components, and relate to the nonsupersymmetric case.

8. Background-field

A more general type of gauge choice is the background field gauge. As we saw

in subsection VC1, the generating functional can be written in a form where the

quantum field is expanded about a background field in the interaction part of the

classical action. The basic steps of the background field gauge method are:

(1) choose gauge fixing that is gauge invariant in the background gauge field,

(2) show that the quantum/background splitting of the entire gauge-invariant action

is also gauge invariant in the background gauge field, and

(3) show that the effect of splitting the kinetic term in the gauge-invariant action can

be neglected. (Only the interaction terms should have been split.)

The result is then that the effective action Γ , which depends only on the background

fields, is gauge invariant in them. This gauge invariance is a strong condition which
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not only simplifies the effective action but allows a “background gauge” to be chosen

for it that is independent of the “quantum gauge” applied to the path integral: The

background fields and quantum fields can be in different gauges. For example, for a

relativistic treatment of the quantum corrections to bound states whose constituents

are nonrelativistic (such as the hydrogen atom), it is convenient to use a Fermi-

Feynman gauge (convenient for relativistic matter coupling to electromagnetism or

chromodynamics) for the quantum fields and a Coulomb gauge (convenient for static

or nonrelativistic matter) for the background fields.

A simple way to formulate the background expansion is in terms of the covariant

derivative:

A→ Ã = A+ A ⇒ ∇→ D + iA, D = ∂ + iA

where A is the quantum field (the variable of path integration) and D is the “back-

ground covariant derivative” in terms of the background field A. We then find for

the field strength

Fab → −i[Da + iAa,Db + iAb] = Fab +D[aAb] + i[Aa, Ab]

and similarly for the action. Matter fields are split as usual,

φ→ φ̃ = ϕ+ φ

We now have two gauge invariances, corresponding to the two gauge fields. Both

transformations are defined to have the same, usual form on ∇ = D + iA (and on

φ̃ = ϕ + φ), and thus both leave the action inert, but (1) the “background gauge

invariance” is defined to transform the background fields covariantly

background : D′ = eiλDe−iλ (ϕ′ = eiλϕ), ∇′ = eiλ∇e−iλ (φ̃′ = eiλφ̃)

⇒ A′ = eiλAe−iλ (φ′ = eiλφ)

and thus the quantum field transforms as a matter (non-gauge) field, while (2) the

“quantum gauge invariance” is defined to leave the background fields inert

quantum : D′ = D (ϕ′ = ϕ), ∇′ = eiλ∇e−iλ (φ̃′ = eiλφ̃)

⇒ A′ = eiλ[(−iD + A)e−iλ] [φ′ = eiλ(ϕ+ φ)− ϕ]

The latter then determines the new BRST transformations

QAa = −[Da + iAa, C], QC = iC2, QC̃ = −iB, QB = 0 [Qφ = iC(ϕ+ φ)]
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The key to the background field gauge is to break the quantum invariance, so

a propagator can be defined, but preserve the background invariance, so the path

integral is gauge invariant. Since Q, the BRST operator for the quantum gauge

invariance, is now background gauge invariant, we need only choose a gauge-fixing

function Λ that is also background gauge invariant. Many gauges are possible: The

basic rule is to modify any normal gauge condition simply by replacing any partial

derivatives ∂ with background covariant derivatives D. For example, for a Lorentz

covariant gauge

∂ · A→ D · A

We then gauge fix in the usual way, and now the gauge-fixing terms and the ghost

terms are background gauge invariant, as long as we define the ghosts to transform

covariantly:

background : C ′ = eiλCe−iλ, C̃ ′ = eiλC̃e−iλ, B′ = eiλBe−iλ

For example, for Lorenz gauges the ghost term is modified, by the modification of the

gauge condition and the quantum BRST transformation, as

C̃∂ · ∇C → C̃D2C + C̃D · i[A,C]

Furthermore, even axial gauges are modified: For example, even though the gauge

condition A0 = 0 allows elimination of a component of the quantum field, it doesn’t

affect the background field, which now appears in the ghost Lagrangian

C̃∂0C → C̃D0C

Since the S-matrix is gauge-independent (when BRST is used to perform gauge

fixing, as we have), we can use the background field gauge version of the generating

functional (now using φ to represent all quantum fields and ϕ all background),

Z[ϕ] =

∫
Dφ e−iS̃, S̃ = S0[φ] + SI [φ+ ϕ]− iQΛ[φ, ϕ] = Ŝ − (S0[φ+ ϕ]− S0[φ])

Ŝ = S[φ+ ϕ]− iQΛ, S[φ] = S0[φ] + SI [φ]

where S[φ] is the original gauge-invariant action, QΛ is the gauge-fixing as de-

scribed above, and Ŝ is the sum of this gauge fixing and the background-expanded

gauge-invariant action. We have thus separated the total action S̃ appearing in the

background-gauge-fixed generating functional into the background-gauge-invariant

part Ŝ minus the noninvariant terms S0[φ+ ϕ]− S0[φ].



B. GAUGES 519

As usual, the classical part of the effective action Γ [ϕ] is given by adding the

kinetic term S0[ϕ] of the (gauge-invariant) classical action to the 1PI tree graphs,

which are just the vertices for the background fields. (The Q term doesn’t contribute

because it has no pure background piece.) Thus,

Γclass[ϕ] = S̃|φ=0 + S0[ϕ] = Ŝ|φ=0 = S[ϕ]

We now note that, as far as calculating just the effective action is concerned,

we can drop all terms in the gauge-fixed action independent of or linear in φ: Any

independent term contributes only classically; any linear term will generate one-

particle reducible graphs (“tadpoles”). This means we can drop the noninvariant

terms S0[φ + ϕ] − S0[φ] from S̃. Thus, the Feynman rules for calculating Γ are:

(1) Use the classical gauge-invariant action S[ϕ] for the classical contribution to Γ ;

and (2) for the quantum contribution, use all the 1PI loop graphs coming from Ŝ.

The result is background gauge invariant, since Ŝ is manifestly so.

Another important feature of the quantum-gauge-fixed background field action is

that it is background-gauge-invariant order-by-order in the quantum fields. In fact,

every term in the corresponding ordinary gauge action has been replaced by one (or

more, if there are F terms) background-gauge-invariant term.

Exercise VIB8.1

Consider the Fermi-Feynman background-field gauge for the quantum field

of pure Yang-Mills theory. Write all terms (both gauge-invariant and gauge-

fixed) quadratic in the quantum field. Show that these combine as

−1
4
A · A− i1

2A
a[Fab, Ab]

where = (D)2 (and “DA” means “[D, A]”, etc.).

Since all external lines are associated with background fields, if we draw graphs

in such a way as to exhibit only the quantum fields, they will all look like vacuum

graphs: graphs with no external lines. However, any particular such vacuum graph

will represent many of the original graphs, since the background lines can be attached

in many ways. Furthermore, in background field gauges any such vacuum graph, con-

sidered as a contribution to the effective action, will be gauge invariant with respect

to the background gauge transformations, since it results from the non-background

gauge true vacuum graph by the replacement of the ordinary derivative with the

background covariant derivative ∂ → D (plus perhaps some noniminimal F terms),

including in the propagator. In particular, the complete one-loop contribution to Γ
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is given by the vacuum graph with no quantum interactions: It can be obtained from

just the part of the Ŝ that is quadratic in the quantum fields.

Exercise VIB8.2

Consider an arbitrary gauge-invariant Yang-Mills action S[Ã] (any functional

of the Yang-Mills field invariant under the full nonabelian gauge transforma-

tions) with Ã = A+A in terms of the background field A and quantum field

A. Taylor expand the action in A as

S[Ã] = S[A] + A
δS[A]

δA
+ ...

The infinitesimal quantum gauge transformation mixes different-order terms

in the expansion. Show that the term quadratic in A is invariant under an

Abelian quantum gauge transformation (just the Abelian part of the full non-

abelian quantum gauge transformation) only if the background satisfies the

field equations, δS[A]/δA = 0. Similar remarks apply to BRST transforma-

tions and the gauge-fixed action. (Since quadratic actions, even in background

fields, yield only a propagator, they can be described by first-quantization:

Thus gauge invariance implying background field equations occurs whenever

a gauge field appears as both a quantum mechanical state and a background

field, for example in string theory. See subsection XIIB7 for a simpler exam-

ple.)

The S-matrix is then given in the usual way from Γ [ϕ], after adding another

gauge-fixing term for the background gauge invariance. Since the total S-matrix is

given by just the trees following from treating Γ as a classical action, we need only

a gauge-fixing term for the physical fields, and we can ignore background ghosts.

(Of course, quantum ghosts were already used to calculate Γ .) This background

gauge fixing is independent of the quantum gauge fixing. In particular, we can choose

different quantum and background gauges: For example, when treating spontaneously

broken gauge theories, it’s often more convenient to choose a Fermi-Feynman quantum

gauge and a unitary background gauge; i.e., we expand the background fields about

the physical vacuum to make the physical states obvious, but leave the quantum



B. GAUGES 521

fields unexpanded to avoid complicating the Feynman rules. This also avoids the

complication of having to expand about the vacuum twice, since vacuum values get

quantum corrections to those appearing in the classical action.

The gauge invariance of the effective action in the background-field formalism is

a big advantage over other quantum gauges, where the effective action is only BRST

invariant, since gauge invariance is a much stronger constraint than BRST invariance:

Gauge symmetry is local, while BRST is only global. Thus, the background-field

gauge produces a much simpler effective action. In other words, the background-

field gauge produces an effective action without ghosts: Although we can drop ghost

terms from the effective action in general, because there are no physical external

ghost states (since we calculate only the “tree” graphs of the effective action), the

result is not normally BRST invariant; but in the background-field gauge it is still

BRST invariant, since it is gauge invariant. This means that the background-field

gauge yields not only simpler results, but fewer calculations: Many terms can be

determined by “gauge covariantization”.

Exercise VIB8.3

Consider an effective action for Yang-Mills plus matter in a background-field

gauge. Its gauge invariance can be used to derive “Ward-Takahashi identi-

ties”. (These were originally expressed as properties of the S-matrix, but are

much simpler to understand in terms of the effective action.)

a Show that the part of the effective action quadratic in the Yang-Mills fields,

and independent of the matter fields, is invariant under the Abelian gauge

transformations. (Hint: Taylor expand.) Thus, in such gauges the quantum

correction to the gluon propagator is transverse.

b By the same method, find a relation between any quantum 3-point vertex

coupling matter to Yang-Mills and the corresponding matter propagator cor-

rection. (Note a simpler case: Since the renormalization counterterms are

local, gauge invariance just says that the coefficients of the two corresponding

counterterms are the same, i.e., they occur in the combination ∼ Ψ̄∇/ Ψ .)

However, this does not mean we can completely ignore BRST and ghosts by using

background-field gauges: Although the effective action is gauge invariant and ghost

free, ghosts and BRST still appear in the (quantum-gauge-fixed) classical action. In

practice this means, as far as calculating the Feynman graphs that contribute to the

effective action, that in the background-field gauge calculations are about one loop

simpler than in other gauges. For example, for one-loop graphs we effectively cal-

culate free one-loop vacuum bubbles (including ghosts) covariantly coupled to back-
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ground fields: There are fewer of the complications of nonabelian theories, since the

quantum fields appear only as non-gauge fields with covariant couplings and no self-

interactions. However, already at two loops we have self-interactions of the quantum

fields, which include the same kinds of terms that would have appeared had we not

used a background-field formalism.

Another complication is that BRST invariance is not as restrictive as gauge invari-

ance: It can be shown that in general gauges at the quantum level BRST invariance

is preserved only up to “wave-function renormalizations” (rescalings) of the quan-

tum fields. However, in the background-field gauge wave-function renormalizations

of the quantum fields can be ignored, since the quantum field is a dummy vari-

able: There are no external quantum fields, so all such factors cancel. (Actually, we

can also ignore wave function renormalization counterterms in non-background-field

gauges, since when calculating S-matrix elements such divergences will be canceled

by corresponding divergences in the external-line factors. In general, external-line

normalization factors may be nontrivial even when wave-function renormalization is

performed, depending on the renormalization scheme.)

An exception is Abelian gauge theories, such as QED: Because the gauge-invariant

action for just the gauge fields is free, background field gauges are identical to ordinary

gauges. Also, the ghosts decouple (for linear gauge conditions).

The main point of the background-field gauge is that two gauge choices can be

made. This method can be further generalized so that there are three independent

gauge choices: (1) First we choose the quantum gauge as before, to obtain an effective

action that is gauge invariant with respect to background gauge transformations. In

terms of S-matrix diagrams, this is a choice of gauge for propagators inside loops.

(2) Then we choose the background gauge as before, to obtain S-matrix elements.

This is a choice of gauge for propagators external to 1PI subgraphs. (3) Finally, there

is still a gauge invariance of the external fields: These fields describe asymptotic

states, and hence have a linearized gauge invariance. This means that the generating

functional Z(A), or W (A), can always be written in a form invariant under Abelian

gauge transformations. (In fact, this will be the case in general, without a background-

field gauge, since the S-matrix is gauge independent.) As a consequence, Z and W

can always be rewritten in terms of Abelian field strengths, making this invariance

manifest. (However, the Feynman rules generally will not give them directly in this

form.) Writing them in this form has the same advantages as manifesting background

gauge invariance in the effective action: There are fewer possible terms one can write,

Lorentz covariance is manifest, comparison is easier, and more gauge choices are
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available. (In practice, we usually choose some unitary gauge for the external fields,

to isolate the physical polarizations.) Furthermore, since asymptotic states are on

shell, these external Abelian field strengths satisfy the free, Abelian, gauge-covariant

(Maxwell) field equations, giving further restrictions on the number of independent

ways they can appear (with respect to derivatives acting on them).

9. Nielsen-Kallosh

So far we have considered only gauges where the gauge-fixing term is the square

of the gauge-fixing function. More generally, we’ll need gauge-fixing terms of the form

fOf for some symmetric operator O = OT . Straightforwardly, we can write

iQ1
2C̃[f(A)− 1

2αO
−1B] = 1

2B(f − 1
2αO

−1B) + 1
2iC̃

∂f

∂A
· [∇, C]

However, B is no longer auxiliary, so we can’t eliminate it by its field equation. But

we can diagonalize the Lagrangian by the corresponding redefinition,

B → B + 1
α
Of

(The Jacobian of such redefinitions is unity, the determinant of a triangular matrix

of the form
(

1
0
x
1

)
.) The gauge-fixing terms are then

−1
4
αBO−1B + 1

4α
fOf

The inverse operator is inconvenient for Feynman rules. We know that integrating

out B gives a functional determinant, so O−1 can be replaced by an O if we change

the statistics of the Nakanishi-Lautrup field. However, this is a bit formal, since tech-

nically O must be symmetric between the two B’s, while it should be antisymmetric

between two fermions.

Exercise VIB9.1

Instead of f(A)− 1
2αO−1B, use O[f(A)− 1

2αB], and again diagonalize. The

extra factor in the ghost kinetic term can then be put in a separate term

by (the inverse of) the method of exercise VIA4.2. This method avoids any

symmetry problems with O.

A useful example is gauge fixing for super Yang-Mills in superspace. Gauge fixing

for massless Yang-Mills is actually more difficult than for the massive (Higgs) case,

considered in subsection VIB5. We’ll look at the Abelian theory, to determine what

kind of gauge fixing we need to define the propagator. (With slight generalization,
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this is also sufficient for the background-field gauge: See the following subsection.)

In that case the BRST transformations are

QV = i(C̄ − C), QC̃ = −iB, Q ˜̄C = −iB̄, QC = QB = QC̄ = QB̄ = 0

where C, C̃, and B are chiral. Using the result (the Abelian case of exercise IVC4.1)

Wα = −id̄2dαV

the gauge-invariant kinetic term is (rearranging derivatives and using integration by

parts; see subsection VIB5)

L0 = −
∫
d2θ 1

2W
αWα = −

∫
d4θ 1

2V d
αd̄2dαV =

∫
d4θ V (1

4
− d̄2d2)V

To gauge-fix to the Fermi-Feynman gauge we choose

L1 = −iQ
∫
d4θ [(C̃ + ˜̄C)V + C̃(1

2 )−1B̄]

=

∫
d4θ [( ˜̄CC − C̃C̄)− (B + B̄)V −B(1

2 )−1B̄]

(dropping d4θ integrals of totally chiral or totally antichiral terms, which vanish). If

we were to simply redefine B by

B → B − d̄2d2V, B̄ → B̄ − d2d̄2V

the gauge-fixing terms would diagonalize as (using d̄2d2d̄2 = 1
2 d̄2)

−(B + B̄)V −B(1
2 )−1B̄ → V d̄2d2V −B(1

2 )−1B̄

giving the desired result for V : At this stage the total result is

L = L0 + L1 →
∫
d4θ [1

4
V V + ˜̄CC − C̃C̄ −B(1

2 )−1B̄]

Because B is complex, the replacement of B with a fermionic superfield can

be performed classically, just like the rest of the gauge-fixing procedure. We thus

introduce ghosts for a trivial gauge invariance as described in subsection VIA4:

QD = E, QĒ = −iD̄, QE = QD̄ = 0

We have treated the ghosts and their hermitian conjugates independently; alterna-

tively, we can consider D̄ and Ē as not being the conjugates of D and E. The gauge

fixing is simply

L2 = −iQ(−ĒD) = D̄D − iĒE
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We next make the redefinition

D → D + (1
2 )−1d̄2B̄, D̄ → D̄ + (1

2 )−1d2B

which has the effect∫
d4θ [D̄D −B(1

2 )−1B̄]→
∫
d4θ D̄D +

∫
d2θ DB +

∫
d2θ̄ D̄B̄

which vanishes, after using the now-algebraic field equations from varying B and

B̄. Alternatively, we can make this field redefinition instead of the previous field

redefinition: We then have the terms∫
d4θ [D̄D − (B + B̄)V ] +

∫
d2θ DB +

∫
d2θ̄ D̄B̄ →

∫
d4θ V d̄2d2V

after using the still-algebraic B equations.

The net result

L = L0 + L1 + L2 →
∫
d4θ (1

4
V V + ˜̄CC − C̃C̄ − iĒE)

is that the original nonlocal B term has been replaced classically with the local

ĒE term, which yields the same determinant upon quantization, but gives simple

Feynman rules more directly. (The determinant is nontrivial in the background-field

gauge. A similar procedure can be applied to gauge fixing for spin 3/2.)

Exercise VIB9.2

Apply the method of exercise VIB9.1 to super Yang-Mills, where O is now

d2 or d̄2 (as implied by the form of L1 above). Thus, the expression in L1 on

which Q acts will have terms V d2C̃ and C̃B̃, and their h.c. Show the result,

instead of 3 fermionic ghost pairs, is 4 fermionic and 1 bosonic ghost pairs.

Exercise VIB9.3

Perform the analogous quantization for the nonabelian case of pure super

Yang-Mills (no matter), using the super Gervais-Neveu gauge. Compare with

the limit m → 0 of the model considered in subsection VIB5, and show the

V part of the action agrees.

Exercise VIB9.4

Use this method to produce a gauge-fixing term α(n ·A) (n ·A) for a gauge

vector A in terms of a parameter α and constant vector n. Find all propaga-

tors. Look for simplifying special cases of α and n.
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10. Super background-field

Although in principle the background-field formalism is the same for supersym-

metric theories as nonsupersymmetric, there are some technical differences because of

the nonlinearity in the prepotentials. (Similar remarks apply to nonlinear σ models.)

The basic idea is that we want to expand the full covariant derivative in quantum

fields about background-covariant derivatives: As for the nonsupersymmetric case,

∇ → D + iA, but now A is further expressed in terms of D and the prepotential

because of the constraints. The generalization in this case (and for nonlinear σ mod-

els) is easy because the solution to the constraints makes the prepotentials appear

as (complex) group elements: Because of the closure of group multiplication, we can

write

g→ gBgQ

in terms of quantum (gQ) and background (gB) group elements (fields). More explic-

itly, for our case we write (see subsection IVC4)

eΩ → eΩBeΩQ

and thus for the covariant derivatives

∇α → e−ΩQDαeΩQ

absorbing the background prepotential completely into the background covariant

derivative

Dα = e−ΩBdαe
ΩB

In other words, as the name suggests, the full covariant derivative ∇ has been ex-

panded about an arbitrary background, described by ΩB. (This is even clearer in the

supergravity case, where we simply replace the flat-space dα with the curved-space

Dα, since dα is more than a partial derivative, and already contains the flat-space

part of the metric tensor.) For purposes of quantization, it is most convenient to go

to a chiral representation for the quantum field. For the background field we need not

be so specific, since it is hidden in the background covariant derivatives. The result

is then

∇α → e−VDαeV , ∇ .
α → D̄ .

α, ∇α
.
α → i{D̄ .

α, e
−VDαeV }

where V is the quantum field.

Exercise VIB10.1

Solve the rest of the commutator algebra to find expressions for all the field

strengths in terms of V and DA.
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The rest of the quantization procedure then follows as for the nonsupersymmetric

case, except for the Nielsen-Kallosh ghost described in the previous subsection. In

particular, for the terms in the gauge-fixed classical action quadratic in the quantum

field V ,

Wα → −i1
2 [D

.
α, {D .

α, e
−VDαeV }] =Wα − iD̄2DαV + i1

2D̄
2[V,DαV ] +O(V 3)

⇒ S2V =

∫
dx d4θ V (−1

2D
αD̄2Dα + i1

2W
αDα + D̄2D2)V

Pushing the D in the first term to the right, we find

−1
2D

αD̄2Dα = i1
4
(Dα

.
αD̄ .

αDα + D̄ .
αDα

.
αDα)− D̄2D2

Using integration by parts on all the derivatives in the second term so they act to the

left, then switching the V ’s so they again act to the right,

Dα
.
αD̄ .

αDα + D̄ .
αDα

.
αDα → Dα

.
αD̄ .

αDα +DαDα
.
αD̄ .

α

= Dα
.
αD̄ .

αDα +Dα
.
αDαD̄ .

α + [Dα,Dα
.
α]D̄ .

α

= −i + 2W
.
αD̄ .

α

where = DaDa. The final result is similar to the bosonic case (exercise VIB8.1):

S2V =

∫
dx d4θ 1

4
V ( + 2iWαDα + 2iW

.
αD̄ .

α)V

(This result is invariant under integration by parts because of the Bianchi identity

DαWα + D̄ .
αW

.
α

= 0.)

Ghosts and matter are quantized straightforwardly: For matter we have

∇ .
αφ = ∇αφ̄ = 0 ⇒

φ→ ϕ+ φ, φ̄→ eV (ϕ̄+ φ̄); D̄ .
αϕ = Dαϕ̄ = 0

The action thus looks the same as usual ((ϕ̄+ φ̄)eV (ϕ+φ), etc.), except that all chiral

superfields are now background-chiral. For the standard ghosts we have for the ghost

action SC =
∫
dx d4θ LC (remembering there are no background ghosts, and using

the full nonlinear transformation law from exercise IVC4.3)

LC = (C̃ + ˜̄C)LV/2[coth(LV/2)(C − C̄) + (C + C̄)] = (C̃ + ˜̄C)(C − C̄) +O(V )

→ ( ˜̄CC − C̃C̄) +O(V )

the same as in non-background gauges, except again the ghosts are background-chiral.

(Note that the background gauge parameter is real, since the background covariant
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derivatives are in the real representation, while the quantum gauge parameter is chiral,

since the quantum prepotential is in the chiral representation.) Now the Nielsen-

Kallosh ghost of the previous subsection is nontrivial: We again have

LNK = −iĒE

but these ghosts also are background-chiral. This means they contribute to the effec-

tive action only at one loop, through “vacuum bubbles”.

In deriving the NK ghost action as in the previous subsection (but also later for

finding propagators), we used the modification of “ ” for background-covariantly

chiral superfields, analogous to that for V : For any such chiral field φ,

D̄2D2φ = 1
2( + i[Wα,Dα])φ

from pushing the D̄’s to the right and using the commutation relations.
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We have seen how covariant expansions of the S-matrix can be based on various

definitions of h̄. Covariant expansions can also be based on spacetime quantum

numbers: For example, we can perturb in mass; this is equivalent to adding low-

energy corrections to the high-energy approximation. Also, the first-quantized version

of the h̄ expansion, which expands in powers of momenta, is effectively an expansion

in inverse powers of mass (low-energy approximation).

The only other spacetime property of a particle is spin, or helicity for massless

particles in D=4. It is possible to define expansions in terms of it by describing the

leading order by a complex action. This violates semiclassical unitarity at that order;

however, the loop expansion violates unitarity at tree order also, so the expansion

is still useful as long as unitarity returns once the expansion has been summed.

Furthermore, we have already seen that gauges where unitarity is not manifest have

some advantages over unitary gauges. In particular, the Gervais-Neveu gauge uses a

complex gauge condition.

1. Yang-Mills

We first consider calculations for massless theories; these are simpler than massive

ones in D=4 because the little group of the Lorentz group is SO(D−2) instead of

SO(D−1), and is thus Abelian: We can label the spin of a state by an integer or half-

integer, the helicity, by use of the spacecone formalism. To simplify notation, we drop

the transverse index (pt → p), and distinguish 4-momentum P from its transverse

component p by using upper- and lower-case. We also use color ordering; i.e., we

examine only planar diagrams for each permutation of external lines (see subsection

VC9).

We begin by summarizing the spacecone rules for pure Yang-Mills found in sub-

section VIB6: The Lagrangian appearing in the action S = g−2tr
∫
dx L, writing

derivatives as momentum operators for later convenience, is

L = A+(−1
2P

2)A− + (p
−

p
A+)[A+, pA−] + (p

+

p
A−)[A−, pA+] + [A+, pA−] 1

p2
[A−, pA+]

Twistor notation (see subsection IIB6) is used:

〈pq〉 = −〈qp〉, 〈pq〉〈rs〉+ 〈qr〉〈ps〉+ 〈rp〉〈qs〉 = 0, 〈pq〉* = ε(p0)ε(q0)[qp]

p+ = 〈p−〉[−p], p− = 〈+p〉[p+], p = 〈+p〉[−p], p̄ = 〈p−〉[p+]

〈+−〉 = [−+] = 1
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The propagator and vertices are read from L in the usual way, but in addition we

have further simplification from the choice of external line factors

ε+ =
[−p]
〈+p〉

, ε− =
〈+p〉
[−p]

;
p−

p
ε⊕ =

p+

p
ε	 = 1

where ⊕ and 	 are the reference lines, with + and − helicity, respectively (not to

be confused with the earlier notation for spinor indices α = (⊕,	)). However, the

reference momenta for helicities ± are taken from lines with helicities ∓:

P⊕ = |−〉[−|, P	 = |+〉[+|

⇒ P a
⊕ = δa−, P a

	 = δa+

The reference external line factors occur only in the above combinations, because only

1 term of 1 of the 3-point vertices contributes to each.

The simplest examples are classes of diagrams that vanish by virtue of their

“maximal helicity violation”: By simple counting of +’s and −’s, we see that the tree

graphs with the fewest external −’s, those with only selfdual vertices (++−), have a

single external −. Thus the all + amplitude vanishes automatically. Furthermore, the

diagrams with a single external − must have that line chosen as one of the reference

lines. However, by the above rules that line can carry only the anti -selfdual vertex

(−−+), so those amplitudes also vanish.

The simplest nonvanishing amplitude is ++−−. We consider the case where the

helicities are cyclically ordered as ++−−; we label them 1234, and choose 1 and

4 as the reference lines; this amplitude can be denoted as ⊕+−	. (P4 = |+〉[+|,
P1 = |−〉[−|: The positive-helicity reference line gives the reference momentum for

negative helicity, and vice versa.) We label all external momenta as flowing inward.

There are only three diagrams; however, the + reference line uses only the ++−
vertex, while the − reference line uses only the −−+ vertex, so the 4-point-vertex

diagram vanishes, as does the diagram with both reference lines at the same vertex.

Thus, we are left with only 1 graph.

1

2+ 3

4

+

Furthermore, we know that the 3-point vertices contribute only 1 term to the

reference line, so this graph has only 1 term. This means we can immediately write
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down the answer (dropping the factors of −g at each vertex):

ε2+ε3−p2p3
1

1
2(P3 + P4)2

=
[−2]

〈+2〉
〈+3〉
[−3]

〈+2〉[−2]〈+3〉[−3]
1

〈34〉[34]

1

〈+−〉[−+]

=
[12]2〈34〉

[34][41]〈14〉
where we have restored helicity and dimensions (trees go as 〈 〉2−E+ [ ]2−E−), and used

p1 = p4 = 0. We have omitted the usual group theory factor (see subsection VC9).

(Note that the propagator is −1/1
2P

2, because of the signature for the ± spacecone

components. This extra sign cancels that coming from the fact that one vertex has

cyclic ordering and one anticyclic with respect to group theory, i.e., the commutators

in the action.) Using the identities, following from overall momentum conservation,

(P1 + P4)2 = (P2 + P3)2 ⇒ [41]〈14〉 = [23]〈32〉∑
|p〉[p| = 0 ⇒ 〈34〉[14] = −〈32〉[12]

this can be put in the standard form

[12]4

[12][23][34][41]

Exercise VIC1.1

Using similar manipulations, cast it into the form

〈34〉4

〈12〉〈23〉〈34〉〈41〉

Another simple form can be obtained from the original form by doing a little less

cancellation:
[12]2〈34〉2

〈34〉[34][41]〈14〉
= −tr[f*(1)f*(2)]tr[f(3)f(4)]

(1
2s)(

1
2t)

using f = i|p〉〈p| and f* = i|p][p| (from subsection VIB6). Unlike the others, this

form is directly in terms of physical quantities, namely momentum invariants and

(linearized) field strengths (see subsection VIB8). Although similar expressions hold

in other dimensions, where twistors may not exist, twistors allow for a simpler deriva-

tion.

Exercise VIC1.2

Repeat the calculation for the +−+− (color-ordered) amplitude:

a Find the form in terms of just 〈 〉’s, or just [ ]’s.

b Find the form in terms of momentum invariants and field strengths.
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The corresponding differential cross section is very simple: Using

〈pq〉* = −ε(p0)ε(q0)[pq] ⇒ |〈pq〉|2 = |[pq]|2 = −P ·Q

and momentum conservation, we find (after including the coupling g)

|T |2 = g4 s
2

t2
or g4 t

2

s2

depending on the orientation of the diagram with respect to time, for this color-

ordered contribution. (Depending on the color quantum numbers of the external

states, this can be the only contribution.) Then (see subsection VC7)

dσ

dt
= 2(2π)3g4 ×

(
1

t2
or

t2

s4

)
A more complicated example is the +++−− amplitude. Again taking color-

ordered (planar) amplitudes, we choose the amplitude cyclically ordered as +++−−
with lines labeled 12345, picking 1 and 5 as the reference lines, which we denote as

⊕++−	. Again dropping all graphs with a reference line at a 4-point vertex or 2

references lines at a 3-point, all 5 graphs with a 4-point vertex are killed, and only

3 of the remaining 5 survive. (We also need to consider various combinations of +

and − indices, but only 1 survives for each graph because of the chirality of 3-vertices

with reference lines.)

2+ 3+

4

5

+

+1

2+

3+

+ +
4

51

2+

3+

+

+

4

5
1

+ +

Since 3-point vertices with (without) a reference line have 1 (2) terms, we are left

with only 6 terms. The initial result for the amplitude is then

−ε2+ε3+ε4−

 p3
4

(
p−
2

p2
− p−

3

p3

)
(P2 · P3)(P4 · P5)

−
p2p

2
4

(
p−
2

+1

p2
− p−

3

p3

)
(P1 · P2)(P4 · P5)

+
p2

2p4

(
p−
2

+1

p2
− p−

3

p3

)
(P1 · P2)(P3 · P4)


where we have used the fact that the reference lines have trivial momenta: 1 for the

component with ± index opposite to its helicity, 0 for the remaining components.

The two terms for each diagram simplify to one, using

p−

p
=

[p+]

[−p]
⇒ p−2

p2

− p−3
p3

=
[2+][−3]− [3+][−2]

[−2][−3]
=

[23]

[−2][−3]
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(applying the cyclic identity) with our normalization. Using this result, we find the

similar result

p−2 + 1

p2

− p−3
p3

=
〈+−〉[−3] + 〈+2〉[23]

〈+2〉[−2][−3]
=

〈+4〉[34]

〈+2〉[−2][−3]

applying momentum conservation. We next translate the momentum denominators

into twistor notation, and also substitute the spacecone expressions for the polar-

izations and numerators. Canceling identical factors in numerator and denominator

(but no further use of identities), the amplitude becomes (+ = 5, − = 1)

〈+4〉3

〈+2〉〈+3〉

(
[−4]2

〈23〉[4+]
+

[−4][34]

〈2−〉[4+]
+
〈+2〉[−2]

〈2−〉〈34〉

)

=
〈+4〉3

〈+2〉〈+3〉

(
−〈+2〉[−4]

〈2−〉〈23〉
+
〈+2〉[−2]

〈2−〉〈34〉

)
= − 〈+4〉3

〈2−〉〈23〉〈34〉
= − 〈45〉4

〈12〉〈23〉〈34〉〈45〉〈51〉
applying momentum conservation twice, restoring normalization, and replacing the

numerals for ±.

Exercise VIC1.3

Using the spacecone gauge, evaluate all diagrams contributing to the six-point

gluon (Yang-Mills) scattering tree amplitude (T-matrix) with color-ordered

helicities ++++−−, that correspond to the symmetric diagram with a central

3-point vertex each of whose legs is connected to another 3-point vertex, each

of which carries 2 of the external lines.

These results can be generalized to arbitrary (color-ordered) n-point tree ampli-

tudes with two − helicities, labeled i and j, and the rest + (“Parke-Taylor ampli-

tudes”): The result is (in an obvious notation), including now the coupling (−g)n−2,

(+1 · · ·+i−1 −i +i+1 · · ·+j−1 −j +j+1 · · ·+n) = gn−2 〈ij〉4

〈12〉〈23〉 · · · 〈n− 1, n〉〈n1〉

Exercise VIC1.4

Rewrite this result in terms of field strengths and momenta. (Hint: Multiply

top and bottom by the complex conjugate of the bottom. Unlike the simpler

n = 4 case, there will be some momenta contracted with field strengths.)

Note that these “Maximal Helicity Violating” diagrams all have exactly 1 non-

selfdual vertex. Since the 	 reference line must be attached to an antiselfdual vertex,

no 4-point vertices contribute to any of these amplitudes (and only 1 antiselfdual

vertex).
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2. Recursion

A simple way to derive higher-point amplitudes is using the classical field equa-

tions. (See subsection VC3. In the literature, the field has often been mistaken for

the current, since φ ∼ δ/δJ , J ∼ δ/δφ. As usual, these are distinguished by the fact

the field always has an external propagator, while the current has it amputated, since

Kφ+ ... = −J .) The steps are:

(1) Calculate the first few terms in the series (enumerated by the number of external

lines).

(2) Guess the general result.

(3) Prove that it is correct by induction, using the classical field equations.

Of course, the second part is the hardest in general (at least when one simplifies the

third step by using spacecone methods), and has been possible for just a couple of

cases, only because the results for those cases are so simple. Since these results are for

off-shell fields, and not S-matrix elements, they are gauge dependent: For example,

if they are inserted into larger diagrams, the same choice of reference lines must be

used.

The solution to the classical field equations is given by tree graphs with all external

lines but one (the field itself) amputated and put on shell. (The usual external-line

wave functions describe the asymptotic field, which is free.) The two cases with

simple known solutions are those where all the on-shell lines have the same helicity,

or one different. Note that the field A± has a ∓ associated with the opposite end of

its external propagator. We then see in the former case, with all +’s on on-shell lines,

that A− vanishes because there are no fully-amputated diagrams, even off-shell, with

only +’s externally (again counting +’s and −’s on vertices). Similarly, for the latter

case, with only one − on an on-shell line, we see that A− has only ++− vertices;

but setting that one on-shell − to be a reference line (which by definition must be

on-shell), it is not allowed such a vertex, so A− vanishes also in this case. By similar

reasoning, we see that A+ in the former case consists entirely of ++− vertices; and

in the latter case consists of all ++− except for one −−+ (no ++−−), which must

have the − reference line directly attached.

The appearance of only the selfdual field (A+) and almost only the selfdual vertex

(++−) means that in both cases one is essentially solving equations in the selfdual

theory: If we take just the kinetic term and ++− vertex from the action, and make

the field redefinitions (see exercise VIB6.2)

A+ = pφ, A− = p−1φ̂
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we obtain (after integration by parts and rearrangement inside the trace)

L+−,++− = φ̂(1
2P

2φ+ [p−φ, pφ])

These redefinitions make the ++− vertex local. φ̂ appears only as a Lagrange mul-

tiplier, and its variation gives the selfdual field equation

1
2 φ+ i(∂	

.
αφ)(∂	 .

αφ) = 0

(which differs from the result of subsection IIIC5 by an i from the use of p instead of

∂ in the field redefinition, and ⊕ → 	 from the use of the spacecone instead of the

lightcone).

We now consider in more detail the simpler (former) example (the one which

does not directly give a nontrivial scattering amplitude). As a slight simplification,

we look at the recursion relation for the field φ as defined in the selfdual theory. The

recursion relation is now (see subsection VC3), scaling the coupling out of the kinetic

term,

φ(1, n) = − g
1
2P

2(1, n)

n−1∑
i=1

φ(1, i)φ(i+ 1, n)[p−(1, i)p(i+ 1, n)− p(1, i)p−(i+ 1, n)]

P (j, k) ≡
k∑

m=j

Pm

where we again use color ordering, number the external lines cyclically, and φ(j, k)

denotes the field with on-shell lines with momenta Pj through Pk. (Thus, on the

left-hand side of the equation the field has n on-shell lines, while on the right-hand

side the two fields have i and n− i.) Plugging in the twistor expressions for the vertex

momenta, we find

p−(1, i)p(i+ 1, n)− p(1, i)p−(i+ 1, n) =
i∑

j=1

n∑
k=i+1

〈+j〉[jk]〈+k〉

If we are clever we can guess the general result from explicit evaluation of the

lower-order graphs; instead we find in the literature, after the above redefinition,

φ(i, j) = (−g)j−i
1

〈+i〉〈i, i+ 1〉 · · · 〈j − 1, j〉〈+j〉

For the initial-condition case N = 1 this is simply the statement that the external

line factor for φ is now

εφ =
ε+
p

=
1

〈+p〉2
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The induction hypothesis is also easy to check: The product of the two φ’s from the

induction hypothesis gives the desired result by itself up to a simple factor:

φ(1, i)φ(i+ 1, n) = −1
g
φ(1, n)

〈i, i+ 1〉
〈+i〉〈+, i+ 1〉

(The algebra of the color indices works as usual.) We then perform the sum over i

before that over j and k (the complete sum is over all i, j, k with 1 ≤ j ≤ i < k ≤ n),

making use of the identity

〈ab〉
〈+a〉〈+b〉

+
〈bc〉

〈+b〉〈+c〉
=

〈ac〉
〈+a〉〈+c〉

⇒
k−1∑
i=j

〈i, i+ 1〉
〈+i〉〈+, i+ 1〉

=
〈jk〉

〈+j〉〈+k〉

Multiplying this by the vertex momentum factor gives a sum over j < k of 〈jk〉[jk] =

Pj · Pk, canceling the external propagator, yielding the desired result.

Exercise VIC2.1

Work out the analog of the above for the anti-selfdual case, paying careful

attention to signs.

This result gives the general perturbative solution to the selfdual field equations

as an expansion in free fields. By similar methods the more complicated case we

mentioned can also be solved, yielding the Parke-Taylor amplitudes given above,

when the one external line is amputated and put on shell. (For this simpler case that

gives zero, since there is no pole in that line.) We can see the same characteristic

denominator in both expressions.

3. Fermions

We have seen in subsection VIB7 how these methods can be applied to massless

spinors. Rather than applying the rules directly, in this subsection we examine the

relation of the results in QCD to those in pure Yang-Mills theory. We also saw in

subsection VIB7 how supersymmetry could be used to relate different QCD ampli-

tudes. However, in practice supersymmetry relations give only a few useful relations,

and only ones that can already be seen directly from the spacecone rules, which give

more results than can be seen by supersymmetry alone.

The simplest relations that follow from supersymmetry are the vanishing of tree

graphs with fewer than two negative helicities, which we saw in subsection VIC1

follows automatically from the spacecone rules. The remaining useful supersymme-

try relation for tree graphs is the relation between Parke-Taylor amplitudes for pure

Yang-Mills and those with one external line each of positive and negative helicity re-

placed with spinors or scalars. The easiest way to see this result is to make use of the
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conventions of the selfdual theory, as in the preceding subsection. In Parke-Taylor am-

plitudes only one vertex is a non-selfdual vertex, which accounts for the simplicity of

these amplitudes. (Tree amplitudes with only selfdual vertices vanish.) Furthermore,

after transforming to the selfdual conventions, all (nonvanishing) selfdual vertices are

identical — independent of spin. Finally, the nonselfdual 3-point vertex with one

negative-helicity gluon chosen as a reference line (the only non-selfdual vertex we’ll

need for this relation) is independent of the spins of the remaining two lines. Conse-

quently, the only difference between the two amplitudes we are relating comes from

the difference in normalization of external line factors for gluons and quarks (and

scalars).

We will not review the superspace formulation of selfdual supersymmetric theories

here. The main features will be evident from the example of supersymmetric QCD

that we now examine in more detail. The main result follows from treating the selfdual

field of the nonsupersymmetric theory as a spacecone (or lightcone) superfield, as in

subsection VIB7. Dimensional analysis then tells us that the field of helicity h has

dimension 1− h. The appropriate redefinitions of the spacecone fields are then

A+ → pA+, ψ+ → pψ+, φ→ φ, ψ− → ψ−, A− → 1

p
A−

for the Yang-Mills fields A±, spinors ψ±, and scalars φ. The resulting external line

factors are then simply

〈+p〉−2h

After these redefinitions, the kinetic terms, selfdual (++−) vertices, and antiselfdual

vertices for − gluon reference line (referencing positive helicity) are

L2 = A+ 1
2P

2A− + ψ+ 1
2P

2ψ−

L3,sd = (p−A+)([pA+, A−] + {pψ+, ψ−}) + (p−ψ+)[pA+, ψ−]

L3,sd,	 =

(
p+

p2
A−
)

([pA+, A−] + {pψ+, ψ−})

for supersymmetric QCD. (In the A3 term in the last line we have used integration

by parts, and dropped a (p+/p)A− term that vanishes for the reference line: There

(p+/p2)ε− = 1 now, so (p+/p)ε− = 0 vanishes for that line since p→ 0.)

Exercise VIC3.1

Apply these redefinitions to the full action for supersymmetric QCD given in

subsection VIB7:

a Find the action and external line factors (especially for reference lines).
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b Evaluate the 4-gluon tree amplitude for 2 positive and 2 negative helicities

with these modified rules.

We now see easily that the terms L2 and L3,sd that define the selfdual theory are

independent of whether boson or fermion is chosen for the positive helicity fields and

the negative helicity one (only the helicities of the fields must add up to 0 for L2 and 1

for L3,sd for Lorentz invariance). Thus, supersymmetry is a much stronger restriction

in a selfdual theory than a nonselfdual one. Finally, the current that couples to the

reference line (p+/p2)A− is also the same for bosons and fermions. We therefore have,

for example, the relation

(−,−1
2 ,+

1
2 ,+ · · ·+) =

〈13〉
〈12〉

(−−+ · · ·+)

for the color-ordered tree amplitudes (where we have labeled helicities ±1 by ±).

This follows from choosing line 1 as reference line 	 (for positive helicity, from a line

with negative helicity). For example, from our result for the 4-gluon tree, we have

the 2-quark, 2-gluon tree

(−,−1
2 ,+

1
2 ,+) =

〈12〉2〈13〉
〈23〉〈34〉〈41〉

Exercise VIC3.2

Repeat these calculations using scalars in place of the spinors.

In the maximally supersymmetric case (N=4 supersymmetric Yang-Mills), there

is a very simple form for the combined result of Maximally Helicity Violating am-

plitudes, n-point amplitudes whose external helicities sum to n−4 (or the opposite;

amplitudes of the selfdual theory would have helicities summing to n−2, except they

vanish). They can be derived by the methods described above. In the supertwistor

space of subsection IIC5, with coordinates

〈p| = pα, [p| = (p
.
α, pa)

(with pa = a†a in terms of the notation there) we can write the amplitude as

gn−2 δ(
∑
|i〉[i|)

〈12〉〈23〉 · · · 〈n− 1, n〉〈n1〉

where we have included explicitly the usual momentum conservation δ-function (which

is nontrivial in twistor space) as part of its supertwistor generalization. Note that

the actual supertwistor space used is more of a (anti)chiral supertwistor space, as is

appropriate for describing selfdual theories (in analogy to that described in subsection

IVC7 for ADHM twistors). For example, the 〈−−+ · · ·+〉 (Parke-Taylor) amplitude



540 VI. QUANTUM GAUGE THEORY

of subsection VIC1 is obtained since the helicity +1 appears at zeroth order in pa

in the external twistor superfields multiplying this amplitude, and helicity −1 at

highest. (If we interpret the amplitude itself as expressed in terms of field strengths,

as above for the nonsupersymmetric case, highest order in pa is lowest helicity. But

if we convolute with external-line wave functions and then integrate over pa, then

highest order in pa in those wave functions is highest helicity.)

Exercise VIC3.3

Extract from this amplitude the result for 〈−,−1
2 ,+

1
2 ,+〉 given above.

4. Masses

The spacecone formalism yields the simplest method for deriving S-matrix ele-

ments in massless theories (at least for trees; for loops it may be preferable to use

background field gauges, with a Lorenz gauge, like Gervais-Neveu, for the quantum

gauge and spacecone for the background gauge). The analogous method for the mas-

sive case is to use actions based on selfdual fields, as described in subsection IIIC4.

The advantage of these two methods is that they use fields that are representations of

the little group, so in the massive case fields have 2s+1 components and only undotted

spinor indices (SO(3)=SU(2)), while in the massless case they have only 2 components

and no indices (SO(2)=U(1)). Although the actions used are more complicated, this

is just a reflection of the fact that algebra that is usually done repetitively in graphs

has been performed once and for all in the action.

However, in the massive case the simplification is not as drastic as in the massless

one: S-matrix elements are just simpler in massless theories, with many vanishing;

the spacecone method takes advantage of this simplification in the final results by

simplifying the intermediate steps. The massive examples we will consider in this

subsection, taken from QED, are somewhat simple in any case, so we will stick to

the older methods (although the uses of methods based on selfduality are still being

explored).

The major difference in simplicity between the massless and massive cases (in any

approach) is in the external line factors. The ambiguity in the explicit expressions

for the external line factors is just the little group: In the massless case the solutions

to the field equations (one solution and its complex conjugate) are unique up to a

phase factor, which is why the twistor formalism is so useful. In the massive case the

solutions (2s+1) are ambiguous up to an SU(2) transformation, which means they are

messy for any choice. Just as in the massless case the twistor is part of the Lorentz

transformation from an arbitrary frame to the lightcone frame, in the massive case
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the solutions are part of the transformation to the rest frame. In other words, the

external line factors simply convert Lorentz indices to little-group indices; this makes

indices trivial for the massless case (in D=4), and not as nice for the massive.

The result is that in practice whenever any of the external particles are massive

their external line factors are left as implicit in S-matrix elements, and only their

squares are explicitly evaluated, in cross sections. This was common in older experi-

ments (especially QED), since recent experiments are mostly at energies so high that

masses of external, stable particles are usually neglected. This adds to the algebra,

since it means that Lorentz algebra is performed in each of n2 terms in the cross

section rather than n terms in the S-matrix.

Furthermore, the algebra is usually simplified by considering experiments where

polarization is determined in neither the preparation of the initial states nor the

measurement of the final states. This was also common in older experiments, when

devices for polarization were not well developed. The result is that one averages over

initial states and sums over final states, producing the same algebraic factors that

appear in the propagator, as described in subsection VB3: ∆ is replaced with ∆+.

One then applies the rules for Feynman diagrams for cross sections, as described in

subsection VC7.

The standard S-matrices in QED are the 4-point tree graphs, with 2 3-point

vertices and 1 internal propagator. There are just 2 graphs to consider, with various

labelings of momenta: (1) The graph with 4 external fermions (electrons/positrons)

connected by 1 internal photon describes both Møller (electron-electron) and Bhabha

(electron-positron) scattering, 2 labelings each. (2) The graph with 2 external photons

and 2 external fermions, as a continuous line that includes the 1 internal fermion,

describes Compton (electron-photon) scattering as well as electron-positron creation/-

annihilation, also 2 labelings each. In each case, the 1 S-matrix diagram results in 2

cross section diagrams, each with 2 momentum labelings (for a total of 2×2=4): 1

diagram from multiplying similar terms and 1 from cross-terms.

In Dirac spinor notation the Lagrangian for QED is (see subsection IIIA4)

1
8
F 2 + Ψ̄(i∂/ − eA/ +m)Ψ

where we have scaled the “e” into the vertex. The Feynman rules are now (Fermi-

Feynman gauge):

Photon propagator: ηab/
1
2p

2

Fermion propagator: 1
2(p/+m)/1

2(p2 +m2)

Vertex: eγa
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where we have used p/2 = −p2. (We use the Fermi-Feynman-gauge propagator also

for defining the cut propagator; ghosts decouple in QED.)

The cross section diagrams contain closed fermion loops, resulting in traces of

products of γ matrices (with a −1 for each loop by Fermi-Dirac statistics). The

algebra is manageable for the present case, using the 4D γ-matrix identities from

subsection IIA6:

γaγa = −4, γaa/γa = 2a/, γaa/b/γa = 4a · b, γaa/b/c/γa = 2c/b/a/

1
4
tr(I) = 1, 1

4
tr(a/b/) = −a · b, 1

4
tr(a/b/c/d/) = a · b c · d+ a · d b · c− a · c b · d

The traces encountered in the above processes are of the form

N1 = 1
16
tr(γaAγbB)tr(γaCγbD)

N2 = 1
16
tr(γaAγaBγ

bCγbD), N3 = − 1
16
tr(γaAγbBγaCγbD)

where A = a/ +m, etc. Using the above identities, these are evaluated as

N1 = 4m4 + 2m2(a · b+ c · d) + 2(a · c b · d+ a · d b · c)

N2 = 4m4 +m2[2(a+ c) · (b+ d)− a · c− 4b · d] + (a · b c · d+ a · d b · c− a · c b · d)

N3 = 2m4 +m2(a · b+ a · c+ a · d+ b · c+ b · d+ c · d) + 2a · c b · d

Exercise VIC4.1

Generalize the above identities and expressions for the N ’s to arbitrary di-

mension D.

s

1

3 4

2

t

1

3 4

2

Our first example is e+e− → e+e− (“Bhabha scattering”). We have aligned all

momenta to be that of the electrons (i.e., minus that of the positrons), so that all

numerator factors are 1
2(p/ + m) without signs. Specifically, we have chosen p1 for

the (positive-energy) momentum for the incoming electron, −p2 for the incoming

positron, p3 for the outgoing electron, and −p4 for the outgoing positron. With these

conventions,

−s = (p1 − p2)2 = (p3 − p4)2, −t = (p1 − p3)2 = (p2 − p4)2
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−u = (p1 + p4)2 = (p2 + p3)2 (p2
i = −m2, s+ t+ u = 4m2)

⇒ p1 ·p2 = p3 ·p4 = 1
2s−m

2, p1 ·p3 = p2 ·p4 = 1
2t−m

2, p1 ·p4 = p2 ·p3 = −1
2u+m2

For the squared amplitude we have for the average over initial polarizations and

sum over final

1
4

∑
pol

|T |2 =
N1(1342)

t2
+
N1(1243)

s2
+
N3(1243) +N3(1342)

st

= 1
2

f(s) + f(u)

t2
+ 1

2

f(t) + f(u)

s2
+
f(u)

st
not including the overall factor of e4, where

f(x) ≡ (x− 2m2)(x− 6m2)

Every other N term is the result of switching s ↔ t (p2 ↔ p3, or p1 ↔ p4) in the

previous, since that is the relation of the 2 Feynman graphs contributing to the S-

matrix. The N1 terms are the squared diagrams, while the N3’s are the cross terms.

The “−” in N3 comes from Fermi-Dirac statistics, switching two fermion lines. (This

is related to the relative “−” for the related S-matrix elements with 1 fermion loop

vs. 2, which also requires switching.)

N1(ijkl) N3(ijkl)

i

j

k

l

a b

i

l

j

k

a b

Finally, from subsection VC7 we have the factors to get the differential cross

section,

dσ

dt
= 1

2(2π)3|T |2λ−2
12 , λ2

12 = 1
4
[s− (m1 +m2)2][s− (m1 −m2)2]

so in this case(
dσ

dt

)
Bhabha

=
(2π)3e4

s(s− 4m2)

[
f(s) + f(u)

t2
+
f(t) + f(u)

s2
+ 2

f(u)

st

]
The probabilities |T |2 for e−e− → e−e− (“Møller scattering”), or e+e+ → e+e+, are

related by crossing symmetry s↔ u (p1 ↔ −p3 or p2 ↔ −p4):(
dσ

dt

)
Møller

=
(2π)3e4

s(s− 4m2)

[
f(s) + f(u)

t2
+
f(s) + f(t)

u2
+ 2

f(s)

tu

]
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A convenient frame for any of these cross sections is the center-of-mass frame

(subsection IA4). In these cases all the external masses are equal, so the Mandelstam

variables have simple expressions in terms of the energy (which is the same for all 4

particles) and the scattering angle:

s = 4E2, t = −4(E2 −m2)sin2 θ
2
, u = −4(E2 −m2)cos2 θ

2

s u

1 3

42

1 3

42

Another famous example is e−γ → e−γ (“Compton scattering”). Now we label

p1 for the incoming electron, p3 for the incoming photon, p2 for the outgoing electron,

and −p4 for the outgoing photon, so the Mandelstam variables are

−s = (p1 + p3)2 = (p2 − p4)2, −t = (p1 − p2)2 = (p3 + p4)2

−u = (p1 + p4)2 = (p2 − p3)2 (p2
1 = p2

2 = −m2, p2
3 = p2

4 = 0; s+ t+ u = 2m2)

⇒ p1 · p2 = 1
2t−m

2, p1 · p3 = −1
2(s−m2), p1 · p4 = −1

2(u−m2)

p2 · p3 = 1
2(u−m2), p2 · p4 = 1

2(s−m2), p3 · p4 = −1
2t

N2(ijkj) – N3(ijkl)

i

j

k

a

b

i

j

k

l
a

b

The probability is

1
4

∑
pol

|T |2 =
N2(1, 1 + 3, 2, 1 + 3)

(s−m2)2
+
N2(1, 1 + 4, 2, 1 + 4)

(u−m2)2

−N3(1, 1 + 4, 2, 1 + 3) +N3(1, 1 + 3, 2, 1 + 4)

(s−m2)(u−m2)



C. SCATTERING 545

= 1
2

m4 +m2(3s+ u)− su
(s−m2)2

+ 1
2

m4 +m2(3u+ s)− su
(u−m2)2

− m2(t− 4m2)

(s−m2)(u−m2)

where now every other term comes from switching s ↔ u (p3 ↔ p4), and the cross

section is, after some rearrangement,(
dσ

dt

)
Compton

=
(2π)3e4

(s−m2)2

[
4m4

(
1

s−m2
+

1

u−m2

)2

+ 4m2

(
1

s−m2
+

1

u−m2

)

−
(
u−m2

s−m2
+
s−m2

u−m2

)]
A useful frame is the lab frame (i.e., the rest frame of the electron), where in

terms of the initial and final (positive) energies (E and E ′) and scattering angle of

the photon we have

s = m2 + 2mE, u = m2 − 2mE ′, t = 2m(E ′ − E);
1

E ′
− 1

E
=

2 sin2 θ
2

m

By crossing symmetry, s ↔ t, we get e+e− → 2γ (“pair annihilation”) and

2γ → e+e− (“pair creation”):(
dσ

dt

)
annihil.

=
(2π)3e4

s(s− 4m2)

[
4m4

(
1

t−m2
+

1

u−m2

)2

+ 4m2

(
1

t−m2
+

1

u−m2

)

−
(
u−m2

t−m2
+
s−m2

t−m2

)]
(
dσ

dt

)
creation

=
(2π)3e4

s2

[
4m4

(
1

t−m2
+

1

u−m2

)2

+ 4m2

(
1

t−m2
+

1

u−m2

)
−
(
u−m2

t−m2
+
s−m2

t−m2

)]
Exercise VIC4.2

Calculate all the corresponding massless cross sections using the spacecone

gauge. Show they agree with the m = 0 case of the above.

Exercise VIC4.3

Calculate all the above massive cross sections using scalars in place of the

fermions.

Exercise VIC4.4

Calculate all the above massive cross sections replacing the photons with

massless

a scalars

b pseudoscalars (with a γ−1 at the vertex).
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5. Supergraphs

In supersymmetric theories the easiest way to calculate Feynman diagrams is in

superspace. Supersymmetric cancellations are then automatic, and new special prop-

erties of supersymmetric theories are revealed. The derivation of the “supergraph”

rules is similar to that of subsection VC1, except for some fine points in the treat-

ment of chiral superfields. The path integral required the explicit evaluation of only

a Gaussian for perturbation. Since we dropped proportionality constants, this was

equivalent to substituting the solution to the classical, free field equations back into a

quadratic action. For real scalar superfields (used for super Yang-Mills) this is trivial,

but chiral scalar superfields (used for scalar multiplets) satisfy the chirality constraint,

and have superpotential terms: integrals over chiral superspace (
∫
dx d2θ), not the

full superspace (
∫
dx d4θ).

We want to make use of the identity for evaluating the path integral (see subsec-

tion VC1)∫
du√
2π

e−uAu/2f(u+ v) =

∫
du√
2π

e−uAu/2eu∂vf(v) ∼ e∂vA
−1∂v/2f(v)

Then the “action” we need to integrate is

S̃ = −
∫
dx d4θ φ̄φ−

[∫
dx d2θ ( m√

2
)1

2φ
2 + h.c.

]
−
(∫

dx d2θ φ
δ

δϕ
+ h.c.

)
consisting of the (derivative part of the) kinetic term, mass term, and (minus the)

term that acts on e−SI [ϕ]. Solving the field equations (see subsection IVC2)

d̄2φ̄+ m√
2
φ+

δ

δϕ
= d2φ+ m√

2
φ̄+

δ

δϕ̄
= 0

we find

φ =
1

1
2(− +m2)

(
d̄2 δ

δϕ̄
− m√

2

δ

δϕ

)
, φ̄ =

1
1
2(− +m2)

(
d2 δ

δϕ
− m√

2

δ

δϕ̄

)
The propagator exponent

∫
1
2(δ/δϕ)(1/K)(δ/δϕ) thus becomes (putting back ϕ→ φ)∫

dx d4θ
δ

δφ̄

(
1

1
2(− +m2)

)
δ

δφ
−
[∫

dx d2θ 1
2

δ

δφ

(
m√

2

1
1
2(− +m2)

)
δ

δφ
+ h.c.

]
Before writing the Feynman rules, we first note that functional differentiation

with respect to a chiral superfield, as follows from the above variation, gives

δ

δφ(x, θ)
φ(x′, θ′) = d̄2δ4(θ − θ′)δ(x− x′)
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This means that there will be an extra d̄2 at the φ end of any chiral propagator and

an extra d2 at the φ̄ end. We could associate these directly with the propagator, but

we will use one factor of d̄2 to convert a
∫
d2θ into

∫
d4θ at any superpotential vertex,

and similarly for the complex conjugate. Therefore, we include such factors explicitly

as a separate Feynman rule for the ends of chiral propagators. However, this means

the φφ propagator (and similarly for φ̄φ̄) gets an extra factor of d2/1
2 to compensate

for the fact that we include two d̄2 factors, whereas it really had only one because

its integral was only d2θ. Furthermore, we Fourier transform x as usual, but not θ,

basically because there is no translation invariance in θ, but also for a better reason

to be explained soon. The Feynman rules of subsection VC4 are then modified as:

(A21
2) Theta’s: one for each vertex, with an

∫
d4θ.

(A3′) Propagators:

V V : − 1
1
2(p2 +m2)

δ4(θ − θ′)

φ̄φ :
1

1
2(p2 +m2)

δ4(θ − θ′)

φφ : − m√
2

(
d2

−1
2p

2

)
1

1
2(p2 +m2)

δ4(θ − θ′)

φ̄φ̄ : − m√
2

(
d̄2

−1
2p

2

)
1

1
2(p2 +m2)

δ4(θ − θ′)

(A41
2) Chiral vertex factors: d̄2 on the φ end(s) of every chiral propagator,

d2 on the φ̄ end(s), but drop any one such factor at superpotential vertex.

We next explain how θ integrations are performed on any connected graph. Con-

sider any two vertices directly connected by a propagator. All the spinor derivatives

acting on its δ4(θ− θ′) can be removed from that propagator by integration by parts.

We then can use that δ function to trivially integrate over θ′, removing the
∫
d4θ′ and

that δ4(θ − θ′), and replacing θ′ everywhere with θ. Effectively, those two vertices

have been contracted to the same point in θ space, eliminating that propagator as

far as θ dependence is concerned. We can repeat this procedure until all vertices are

contracted to a single point. However, we are then left with a “tadpole” for each

loop: Contracting propagators this way sequentially around a loop identifies all the

vertices of that loop, and leaves the loop as a single propagator with both ends at

that point. To evaluate this tadpole, we note that

[d̄2d2δ4(θ − θ′)]|θ′=θ = 1
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(θ′ derivatives can be converted into minus θ derivatives when acting directly on

the δ; this is basically integration by parts.) Fewer derivatives give 0; more can be

reduced to terms of 4 or less. This completes all the evaluation in θ space, leaving an

expression in terms of fields (some with d’s acting on them) with different momenta,

times the usual momentum factors, with the usual momentum integrals, but all at

the same θ, with a single
∫
d4θ. This means that the generating functionals W and

Γ are completely local in θ.

There is a further consequence of this evaluation. We have obtained terms with∫
d4θ, but none with

∫
d2θ. However, to do it we had to introduce the factors

d2/(−1
2p

2) into the φφ propagators. On the other hand, such a factor can easily

be killed by a d̄2 from a vertex: We sandwich the d2 between a d̄2 from each vertex,

using the identity d̄2d2d̄2 = −1
2p

2d̄2, and return the d̄2 to one vertex. The only time

we can’t do that everywhere is if every vertex is a superpotential (so every propagator

in the graph is φφ and every external field is φ), since otherwise we can inductively

borrow d̄2’s from some non-
∫
d2θ vertex. Any such 1PI graph always vanishes, be-

cause there are exactly enough d’s left to make the tadpoles nonvanishing, leaving an∫
d4θ of a product of φ’s with no d’s, which vanishes. On the other hand, for a tree

graph there is exactly one d2/p2 left, which converts the
∫
d4θ to an

∫
d2θ.

The net result is that not only are W and Γ local in θ, but only their classical

parts can have
∫
d2θ terms, and the spurious d2/p2 factors (which should not appear

in massive theories) are always canceled. In particular, this implies that all UV

divergences are
∫
d4θ terms: All terms in the superpotential are unrenormalized (no

loop corrections) to all orders in perturbation theory.

Exercise VIC5.1

Calculate all the contributions to W [φ, φ̄] from 4-point trees in massive super-

φ3 theory, and write the result in both p- and x-space (in analogy to the

nonsupersymmetric example at the end of subsection VC4).

Improvements again result from using background-field gauges. We have already

seen in subsection VIB10 the modification to the quantization for supersymmetric

background-field gauges. The background-field expansion can be defined by solving

the constraints on the full covariant derivatives in terms of quantum prepotentials V

(in the quantum chiral representation), but background potentials AA (in the back-

ground real representation), essentially by covariantizing dA to the background ∇A.

Then ∇α can be manipulated (integration by parts, etc.) in the graphs in the same

way as dα was, leaving only Aa (not Aα) and its derivatives (Wα, etc.) as background
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fields. This leads to improved power counting, and can be used to prove “superrenor-

malizability” (finiteness beyond one loop) for N=2 extended supersymmetric theories,

and finiteness for N=4.

This improved finiteness is even simpler to prove in N=2 superspace, a method

we haven’t developed in detail here. In analogy to the N=1 case, the super Yang-

Mills quantum field, the prepotential, is a real scalar V on real projective superspace

(see subsection IIC4), which also has only 4 θ’s, but in addition 1 internal coordinate

y. On the other hand, the background fields are again potentials AA on the usual

full superspace with 8 θ’s, but no internal coordinates y (and hence no Ay). Since

these all have positive dimension, while
∫
d4x d8θ is dimensionless, no local (including

divergent) terms can be generated in the effective action, except possibly at 1 loop,

due to the peculiarity of the rules for matter/ghost fields there (as for N=1).

As for other gauges (background-)chiral superfields need special treatment, now

to get the most out of background gauge invariance. Variation can be defined in the

obvious way, but now we also need the covariantized identity from subsection VIB10

D̄2D2φ = 1
2( + i[Wα,Dα])φ

The functional integral over the quantum background-chiral superfields can also be

performed in the same way as for other gauges, the only modifications being back-

ground covariantization (including the above “nonminimal” term for ), and the fact

that we can no longer neglect the “vacuum” contribution (one-loop diagrams with

only background fields externally). Specifically, if we look at the general derivation

of the Feynman rules in subsection VC1, we see it gave rules for all graphs except the

one-loop vacuum bubble, since this graph has no (quantum) vertices. These rules, as

adapted to superspace earlier in this subsection, are now modified only by the covari-

antization just discussed, which only adds background potentials (not prepotentials)

and field strengths to propagators and vertices. The background-covariantized prop-

agators then can be further expanded about the free . The net result is that in

all diagrams except (perhaps) these chiral one-loop vacuum bubbles the background

fields appear only in the form of potentials and field strengths. These vacuum bubbles

then can be evaluated by the usual methods, since the formerly neglected Gaussian

path integral for these “quantum-free” fields is just the usual one-loop path integral

for a chiral superfield with external Yang-Mills superfields, only the external fields are

now identified as background instead of quantum. In some cases, this last calculation

can be further simplified to again yield an expression directly in terms of potentials

without explicit prepotentials (see subsection VIIIA6 below).
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VII. LOOPS
Although our analysis so far is sufficient to evaluate the lowest-order term in the

h̄ expansion (“trees”), certain new features arise at higher orders.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . A. GENERAL . . . . . . . . . . . . . . . . . . . . . . . . . . . .

When infinities were first found in perturbative quantum field theory, they were

thought to be a serious problem. A prescription can be given to remove these in-

finities, called “regularization”. It was later shown that this regularization can be

defined in such a way as to preserve all the desirable physical properties of the theory,

called “renormalization”. Unfortunately, it seems that the original infinities, exiled

by renormalization from any finite order of perturbation theory, return to plague field

theory when all orders of perturbation theory are summed. Therefore, renormaliza-

tion should not be considered a cure to the disease of infinities, but only a treatment

that allows divergent theories to be more useful.

1. Dimensional renormalization

“Perturbative renormalization” is defined to preserve the three properties that

define relativistic quantum field theory (Poincaré invariance, unitarity, causality).

The most general prescription is to start with a classical theory that is causal, Poincaré

invariant, and satisfies the semiclassical part of unitarity (as described in subsection

VC5). This gives the tree graphs of the theory. One then applies unitarity to define

a perturbation expansion, determining the higher orders (loop diagrams) from the

lowest (trees). Although the usual loop diagrams are divergent, there is enough

ambiguity in the unitarity condition to allow removal of the divergences.

The only practical way to implement this procedure is to slightly modify the di-

vergent graphs one obtains from the naive use of the Feynman graph rules (obtained,

e.g., from path integral quantization of a classical action). The steps are: (1) “Reg-

ularize” each divergent graph by modifying the momentum integrals, introducing a

parameter(s), the “regulator(s)”, giving a finite result that reproduces the original

divergent integral in a certain limit. (2) “Renormalize” each regularized graph by

subtracting out the “divergent part” of the regularized graph, keeping only the “fi-

nite part”. Once the graph has been rendered finite, the regulator can be dropped.

One then has to check that the method of removing divergences, order-by-order

in the perturbation expansion, preserves the three properties of relativistic quantum
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field theory. The easiest way to do this is to use both a regularization scheme and a

subtraction scheme that preserve these properties manifestly. The standard way for

the subtraction scheme to do this is to change the coefficients of terms in the classical

action by (real) constants that depend on both the regulator and h̄. Since the classical

action already satisfies Poincaré invariance, causality, and the semiclassical part of

unitarity, this will automatically preserve all the desired properties. In this manner

of renormalization, there thus remains only two steps to prove that a theory can be

renormalized: (1) the existence of a regularization that manifestly preserves the three

properties, and (2) that the modification of the action by making the coefficients

regulator- and h̄-dependent is sufficient to cancel all divergences that might reappear

in the limit as the regulator is removed.

The latter step, discussed in subsection VIIA5 below, can be further divided into

substeps, proving: (a) The ultraviolet divergence in any graph corresponding to scal-

ing all internal (integration) momenta to infinity (the “superficial” divergence) comes

from a term in that graph polynomial in external momenta, and can therefore be can-

celed by a local term from the action; and (b) recursively in the number L of loops,

if the renormalization procedure has already been successfully applied through L−1

loops, the resulting modification of the action is sufficient to cancel all divergences

appearing at L loops except the superficial ones. The former substep is the one that

determines whether the theory can be renormalized.

The former step is satisfied by dimensional regularization, the standard method of

regularization in relativistic quantum field theory (and for practical purposes beyond

one loop, the only one). It is defined by writing the theory under consideration in

arbitrary dimensions D, and treating integrals over loop momenta as analytic func-

tions of D. These integrals are then analytically continued from lower D, where they

are (ultraviolet) convergent. The resulting expressions have pole singularities in D at

integer D, so these poles can be subtracted out as the divergent parts.

There are two main reasons why dimensional regularization is so useful: (1) Most

classical actions can be written as easily in arbitrary dimensions as in D=4. (The

important exception is those that in some way involve the Levi-Civita tensor εab...c.

The difficulty with such theories is not a drawback of dimensional regularization, but

a general property of quantum field theory, and is related to the quantum breakdown

of classical symmetries, to be discussed later.) In particular, this means it manifestly

preserves gauge invariance (which is a part of unitarity), the property of relativistic

quantum field theory most difficult to preserve. It is also the only workable scheme

of regularization to do so.
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(2) It requires only one regulator, the number of dimensions D itself. (Most other

regularization schemes require at least one regulator for each loop.) This is the main

reason why this scheme is the only practical method of regularization at higher loops.

(An enormous number of regularization schemes have been proposed, almost all of

which work well at one loop, but all of them are more difficult than dimensional

regularization already at two loops, and even worse at three loops and higher.)

The renormalization scheme based on this regularization is also very simple:

Defining D = D0−2ε (where D0 is the physical dimension, usually 4), we can Laurent

expand any L-loop amplitude in ε, starting at 1/εL. These 1/εn terms arise from n

or more divergent D-momentum integrals. If we cancel all the negative powers of ε,

we can take the limit D → D0 (ε→ 0) by just dropping all the positive powers of ε,

i.e., evaluating the remainder at ε = 0. The procedure is to modify the coefficients

of the terms in the “classical” action (couplings, masses, and field normalizations) by

making them ε- and h̄-dependent, giving them h̄L−1/εn (“counter”)terms. Such terms

can cancel any local divergence at L loops. One then has to show that they also can-

cel all nonlocal divergences at higher loops resulting from this divergence appearing

in an L-loop subgraph. Thus, the procedure is recursive: (1) apply the counterterms

obtained from calculations at less than L loops to cancel subdivergences; (2) cancel

the remaining, local, superficial divergences by introducing new L-loop counterterms.

The form of the superficial divergence can be determined by evaluating the divergence

coming from the region of momentum space where all loop momenta go to infinity

at the same rate. The superficial divergence is determined by 1/ε terms of this loop

and of subloop divergences; however, if the 1/ε piece of a prospective counterterm

vanishes at a certain loop order, so do all higher powers at that loop order. Thus, sim-

ple power counting (as well as global and local symmetries) is sufficient to determine

what counterterms can appear at any particular loop order.

These rules are sufficient for evaluating momentum integrals to the point where

renormalization can be applied. However, further simplifications are possible where

spin is involved: Techniques specific to D=4 are useful to simplify algebra in general,

and required to preserve manifest supersymmetry in particular. These methods treat

spin indices as 4D, in contrast to the vector indices on momenta (and coordinates),

which are analytically continued away from D=4 by the definition of dimensional

regularization. This is natural in 4D N=1 supersymmetric theories formulated in

superspace (or 4D N>1 in N=1 superspace), since there spins ≤ 1 are described by

scalar prepotentials: There the simple prescription is to continue in the dimension

of the commuting coordinates (x), while fixing the dimension of the anticommuting
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coordinates (θ). These rules, for either supersymmetric or nonsupersymmetric the-

ories, have a simple physical interpretation for integer D<4: dimensional reduction.

The reduced theories differ from those produced by simple dimensional regularization:

Vectors get (4−D) extra scalars; spinors may become multiple spinors. For super-

symmetric theories this is again natural, since vector and scalar multiplets remain

irreducible after dimensional reduction. Unfortunately, vectors in nonsupersymmet-

ric theories reduce to vectors plus scalars that are not related by any symmetry, so

their renormalization is independent. However, the complications produced by the

extra renormalizations are usually smaller than the algebraic simplifications resulting

from the restriction to 4D spin algebra, especially for lower loops. Another compli-

cation is that Levi-Civita (ε) tensors can’t be treated consistently in the dimensional

reduction scheme. Although serious in principle, in practice this is not a problem as

long as axial anomalies cancel, which is required anyway for unitarity. (See subsection

VIIIB3. Also, axial anomalies are easier to calculate using Pauli-Villars regularization

than with any form of dimensional regularization.)

Exercise VIIA1.1

Consider the identity

δ̂a[bpcqdresf ] = 0

which holds in D < 5, where δ̂ is a D-dimensional Kronecker δ, as appears

from momentum integrals (since momenta themselves are D-dimensional by

definition), and p, q, r, s are momenta. Show by index contraction that an

inconsistency arises when trying to analytically continue away from D = 4.

This difficulty in defining totally antisymmetrized D-dimensional objects is

why Levi-Civita tensors don’t exist in dimensional regularization.

2. Momentum integration

The first step in performing momentum integration is to make all integrals Gaus-

sian by exponentiating propagators using Schwinger parameters

1
1
2(p2 +m2)

=

∫ ∞
0

dτ e−τ(p2+m2)/2

The general momentum integral in an arbitrary Feynman diagram is then

A = N(p,−i∂x)
∫

dLDk

(2π)LD/2

∫
dP τ e−k

T ·A(τ)k/2−kT ·B(τ,p)+ikT ·x−C(τ,p,m)

∣∣∣∣
x=0

where A,B,C are first-order in τ ; B is first-order in p while C is second-order in p,m;

and L is the number of loops and P the number of propagators. Also, we have used
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matrix notation with respect to the L-dimensional loop-space, with respect to which A

is a matrix, B is a vector, and C is a scalar. Finally, N represents all “numerator” fac-

tors (propagator numerators and vertices; everything but propagator denominators)

and has been brought outside the integral by Fourier transformation (i.e., introducing

x to produce a generating functional for all numerators). The momentum integrals

are now Gaussian, and can be evaluated by the methods of subsection IB3 (and VA2):

A = N(p,−i∂x)
∫
dP τ (det A)−D/2e(B−ix)TA−1(B−ix)/2−C

∣∣∣∣
x=0

Some of the τ integrations can be performed by various scalings of subsets of the

τ ’s. For example, to see the superficial divergence of the graph we scale all of the τ ’s

and insert the identity as

1 =

∫ ∞
0

dλ δ

(
λ−

∑
i

τi

)
, τi = λαi

where α are “Feynman parameters”. The amplitude then becomes

A = N(p,−i∂x)
∫
dλ λP−1−LD/2 dPα δ

(
1−

∑
α
)

[det A(α)]−D/2

×eλ[B(α)TA(α)−1B(α)/2−C(α)]−iB(α)T ·A(α)−1x−xT ·A(α)−1x/2λ|x=0

(This method of introducing Feynman parameters is equivalent to directly changing

variables from τ ’s to λ and one less α, and finding the Jacobian.)

The x derivatives in N must now be taken. For a contribution from these deriva-

tives of order λ−n, we have λ integrals of the form∫
dλ λP−1−LD/2−neλ[BTA−1B/2−C] = Γ (P − 1

2LD − n)[C − 1
2B

TA−1B]−P+LD/2+n

where we have used the definition of the Γ function

Γ (z) =

∫ ∞
0

dλ λz−1e−λ

The argument P − 1
2LD − n of the Γ function counts (−1

2) the overall power of k in

the original momentum integral. The integral defining Γ converges only for Re z > 0,

but we can extend it to (almost) all z by analytic continuation: Using integration by

parts,

zΓ (z) =

∫ ∞
0

dλ e−λ
d

dλ
λz = (e−λλz)|∞0 +

∫ ∞
0

dλ λze−λ = Γ (z + 1)
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in the convergent region. Analytic continuation then says to evaluate the integral for

Γ (z) in the region 0 ≥ Re z > −1 as Γ (z+ 1)/z in terms of the integral for Γ (z+ 1),

and so on: ∫ ∞
0

dλ λz−1e−λ =

(
n∏
k=0

1

z + k

)∫ ∞
0

dλ λz+ne−λ

Thus, Γ (z) has simple poles in z at all the nonpositive integers.

Exercise VIIA2.1

Using the identity Γ (z + 1) = zΓ (z), derive the following special cases for

nonnegative integer n:

Γ (n+ 1) = n!, Γ (n+ 1
2) = (n− 1

2)(n− 3
2
)...12
√
π =

(2n)!

n!22n

√
π

Feynman parameter integrations give more complicated functions. A simple but

common example is the Beta function

B(x, y) =

∫ 1

0

dα αx−1(1− α)y−1 =
Γ (x)Γ (y)

Γ (x+ y)

The latter expression for the Beta function can itself be derived by similar methods:

Exercise VIIA2.2

Derive the following B function identities:

a Use the integral representation of the Γ function to write an expression for

Γ (a)Γ (b) as an integral over two Schwinger parameters, and introduce a scal-

ing parameter (as with general two-propagator Feynman graphs, except here

there is no momentum). Show the result is Γ (a+ b)B(a, b), where B is given

by the integral definition, thus proving the Beta function can be expressed in

terms of Gamma functions.

b Use the integral definition of B to prove

B(x, x) = 21−2xB(1
2 , x) ⇒ Γ (x)

Γ (2x)
=

21−2x
√
π

Γ (x+ 1
2)

Use this result to find the expression in exercise VIIA2.1 for Γ (n+ 1
2).

c Derive the identity ∫ ∞
0

dτ τa−1(1 + τ)−a−b = B(a, b)

from the substitution τ = z/(1− z). Use this to show

Γ (z)Γ (1− z) = π csc(πz)
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by changing variables τ = eu, and closing the contour in the complex plane

to pick up the contributions from the poles. We thus have

Γ (z + n)Γ (1− z − n) = (−1)nΓ (z)Γ (1− z)

(which is also seen inductively from Γ (z + 1) = Γ (z)). (Hint: To drop the

contour at∞ in various directions, it might help to work in a particular region

of the complex z (not u) plane, and analytically continue.)

In general UV divergences will come from powers of 1/ε in a Γ resulting from

integration over some scaling parameter. We thus need an expression for the Laurent

expansion of Γ (z). This can be obtained directly from the integral expression: Using

the definition of e as a limit,

Γ (z) = lim
n→∞

∫ n

0

dλ λz−1(1− λ
n
)n = lim

n→∞
nzB(z, n+ 1) = 1

z
lim
n→∞

nz
n∏

m=1

1

1 + z
m

from the change of variables λ = nα, and the above identities. Defining the “Euler-

Mascheroni constant” γ by

γ = lim
n→∞

(
−ln n+

n∑
m=1

1
m

)
= 0.5772156649...

⇒ e−γz = lim
n→∞

nz
n∏

m=1

e−z/m

we then can write

Γ (z) = 1
z
e−γz

∞∏
n=1

ez/n

1 + z
n

which is an alternate definition of Γ . We then have

ln Γ (1− z) = γz +
∞∑
n=1

[−ln(1− z
n
)− z

n
] ⇒

ln Γ (1− z) = γz +
∞∑
n=2

ζ(n)

n
zn, ζ(y) =

∞∑
m=1

1

my

by Taylor expansion of the ln, where ζ is the “Riemann zeta function”.

Exercise VIIA2.3

Derive the following Γ identities from the previous:

a Find the first two terms in the Laurent expansion of Γ (z):

lim
z→0

Γ (z) = lim
z→0

1
z
Γ (z + 1) = 1

z
− γ +O(z), γ = −

∫ ∞
0

dλ (ln λ)e−λ



A. GENERAL 559

b Do the same for expansions about other integers:

Γ (n+ 1 + ε) = n!

[
1 + ε

(
−γ +

n∑
m=1

1

m

)
+O(ε2)

]

Γ (−n+ ε) = (−1)n
1

n!

1

ε

[
1 + ε

(
−γ +

n∑
m=1

1

m

)
+O(ε2)

]
c Using the csc relation in exercise VIIA2.2c and the above expansion of

ln Γ (1− z), show that

cot z =
1

z

(
1− 2

∞∑
n=1

ζ(2n)

π2n
z2n

)

and thus ζ(2n) can be written as a rational number times π2n.

3. Modified subtractions

The convenient normalization for the quadratic part of the gauge-invariant action

for an arbitrary field theory we use is

S0 =
(1

2µ
2)(D−4)/2

g2

∫
dDx

(2π)D/2
1
2φKφ

for a real field φ and some coupling constant g, where for bosons

K = 1
2(− +m2) + ...

The explicit factor of 1/2 cancels the factor of 2 obtained when varying the action with

respect to φ. (Similar permutation factors are used for interaction terms.) Equiva-

lently, it gives the natural normalization for Gaussian functional integration over φ

in the field theoretic path integral. For complex fields we instead have φ̄Kφ without

the 1/2, since then φ and φ̄ can be varied (or integrated over) independently.

The “renormalization mass scale” µ has been introduced to preserve the mass

dimension of g in arbitrary spacetime dimension; it appears naturally with the nor-

malization 1
2µ

2 because the kinetic operator contains 1
2p

2 and 1
2m

2. Generally there

will be more than one coupling, but only one µ. For some purposes it may be con-

venient to scale the fields so that the coupling and µ dependence appear only in the

interaction terms. We will usually suppress the µ dependence, since it is determined

by dimensional analysis, and is relevant only for quantum corrections, where D 6= 4

becomes important.
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Note that our normalization differs from that normally chosen in the literature. It

has been chosen to give the normalization appropriate for Gaussian integrals, which

appear in both the first- and second-quantized theories. The first difference is the

factor of (2π)−D/2 for coordinate and momentum integration (rather than the usual 1

for coordinate and (2π)−D for momentum); the second is the factor of 1/2 multiplying

the kinetic operator p2 + m2 (contained in K), rather than 1. Our normalization is

more natural not only for Gaussian integration and Fourier transformation, but also

slightly simplifies perturbative field theory calculations, allowing one to ignore spuri-

ous factors of 2 and especially 2π. The net effect is only to change the normalization

of coupling constants, since such factors can be absorbed into the 1/g2 sitting in front.

For example, the most accurately experimentally verified prediction of quantum

theory is the anomalous magnetic moment of the electron, to be discussed later. The

result for the total magnetic moment, in various normalizations, to second order in

perturbation theory, is

µmag = 1 + e2 = 1 +
e2
m

2π
= 1 +

e2
ft

8π2

where “e” is for our normalization (obviously the simplest), “em” is the normalization

you first learned in classical mechanics (the one that gives e2
m/r

2 as the electrostatic

force between two electrons, assuming you used cgs units), and “eft” is the one you

would see in other quantum electrodynamics courses (or in classical mechanics in

mks/SI units, if you ignore the ε0). To complicate matters, you may have also seen

the definition α = e2
m = e2

ft/4π, of which the only merit is supposed to be that 1/α

is very close to the integer 137, which is silly since 1/e2 is even closer to the integer

861. (Actually, α is the natural expansion parameter for nonrelativistic quantum

mechanics, which is basically 3D, but our e2 is more natural for the loop expansion,

which is inherently 4D.) We have also used units h̄ = 1; restoring it introduces the

further complication α = e2
m/h̄ = e2

fth̄/4π because of the difference in the semiclassical

expansions for quantum mechanics and quantum field theory.

Furthermore, for nonabelian groups we have an extra factor of 1
2 compared to the

standard normalization because we normalize trD(GiGj) = δij instead of trD(GiGj) =
1
2δij: The latter originated from the case of SU(2), where it cancels the

√
2 in the

diagonal generator (and in the others, if one uses hermitian ones rather than raising

and lowering). Unfortunately, for SU(N) with N ≥ 3 this historical normalization

introduces a
√

2, while not canceling factors like
√
N (and making trD(GiGj) N-

dependent would wreak havoc when considering subgroups, as well as for raising and
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lowering operators). Thus, in the above notation,

nonabelian : g2 =
g2
ft

16π2

Although we have chosen a normalization for the coupling constants that is nat-

ural for Gaussian momentum integration, and for symmetry with respect to Fourier

transformation, in divergent integrals it has the disadvantage of having γ’s (Euler-

Mascheroni constant) in the finite parts. Another natural normalization that gets

rid of this irrational number from all graphs is to divide out the angular part of the

integrals: The volume of the unit D−1-dimensional sphere (the surface of unit radius

in D-dimensional Euclidean space), is easily evaluated with Gaussians:

1 =

∫
dDk

(2π)D/2
e−k

2/2 = (2π)−D/2
(∫

dD−1Ω

)∫ ∞
0

dk kD−1e−k
2/2

= 1
2Γ (D

2
)π−D/2

∫
dD−1Ω

We might therefore choose our normalization to cancel this factor in momentum

integrals, along with the (2π)−D from Fourier transformation. Then the action, e.g.,

for a massless scalar, might be normalized as (with conventional kinetic term)

S0 =
µD−4

g2

∫
dDx

(
∫
dD−1Ω)

(2π)D
1
2(∂φ)2 =

µD−4

g2

∫
dDx

(4π)D/2Γ (D
2

)
(∂φ)2

This differs from our previous normalization by a factor of 1/Γ (D
2

), which is 1 in

exactly D=4, but differs infinitesimally far away. The result is that the two schemes

will differ effectively by finite renormalizations: For example, in divergent one-loop

graphs the 1/ε divergences will have the same coefficient in the two schemes, but

the finite remainders will differ by constants, since effectively the coupling has been

redefined by a factor of 1+O(ε). Thus, the same result can be achieved by modifying

the counterterm to be proportional to 1/ε + constant. Hence, the earlier version of

dimensional regularization is called “minimal subtraction (MS)”, while the modifi-

cation inspired by the volume of the sphere is called “modified minimal subtraction

(MS)”.

We now examine explicitly the difference between the two schemes. As we can

see from our previous example, momentum integrals from scaling various subsets of

Schwinger parameters in a multiloop diagram will produce Γ function factors of the

form, with this new normalization,∏
i

[Γ (D
2

)]LiΓ (ni − Li D2 )
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for some integers ni, where
∑

i Li = L. In even dimensions D0 (especially 4), we

can use Γ (z + 1) = zΓ (z) to write each Li-loop factor as a rational function of

ε = (D0 −D)/2 times

[Γ (1− ε)]LiΓ (1 + Liε) ∼ (eγε)Lie−Liγε = 1

where we have written only the γ dependence. Thus all γ’s cancel. This modifica-

tion allows some further simplification by eliminating extra terms arising at 2 loops

involving ζ(2) (but this is only π2/6; see exercise VIIA2.3). Similar results can be

obtained by using Γ (1− ε) instead of Γ (D
2

).

Another subtraction scheme, the “G scheme”, is defined by normalizing momen-

tum integration so that the coefficient of the 1-loop massless propagator correction

in φ3 theory in 4 dimensions (see subsection VIIB4 below) is exactly 1/ε (without

extra finite terms) times a power of 1
2p

2, or that up to a sign in higher even dimen-

sions. (The normalization factor must be positive, and also finite and nonvanishing

as ε→ 0.) As for MS, we can also pull out rational factors to get just the Γ (1+nε)’s.

The net effect of these two schemes, as compared to MS, is to modify h̄, which appears

as
∫
dx/h̄ in the classical action or h̄

∫
dp for loop integrals, as

MS : h̄→ Γ (D
2

)h̄ or Γ (1− ε)h̄

G : h̄→ (−1)D0/2

εΓ (2− D
2

)B(D
2
− 1, D

2
− 1)

h̄ or
Γ (1− 2ε)

Γ (1 + ε)[Γ (1− ε)]2
h̄

(If we want to be picky, we can also normalize the former forms appropriately for

D = D0, by including an extra factor of 1/Γ (D0

2
) for MS and Γ (D0

2
− 1)/Γ (D0 − 2)

for G.)

Exercise VIIA3.1

Explicitly evaluate the difference between the MS, MS, and G schemes to

order ε, including the picky D0 factors.

This particular fix for eliminating irrational numbers works only for those arising

at one or two loops: In general, because subdivergences produce expressions of the

form Γ (1 + ε)/εL at L loops, we encounter finite terms involving ζ(L) at L loops,

which is irrational (worse than just π’s, e’s,
√

2’s, etc.) for odd L. So, for example,

ζ(3) appears at 3 loops, and it can be shown that ζ(3) (and higher ζ(n)) can’t always

be canceled.

The “momentum subtraction scheme (MOM)”, rather than simplifying numer-

ically, is designed to give a more physical interpretation of the coupling constants

appearing in the action: It is defined so that they take their on-shell values. Thus,
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it is particularly suited to low-energy calculations, which involve an expansion about

the mass shell. For example, consider the quantum kinetic operator K + ∆K, ap-

pearing in the quadratic part of the effective action. It depends on the momentum

through one variable: p2 or p/, etc. We then can consider Taylor expanding it in this

variable about its classical on-shell value. (For reasons to be explained later, this

can be dangerous for massless fields, when it requires infrared regularization.) This

is equivalent to expanding in powers of the classical kinetic operator K itself. The

MOM prescription is then to use subtraction terms −δK to cancel the terms in the

quantum correction ∆K to the kinetic operator that are linear in K:

∆K = a+ bK +O(K2) ⇒ δK = −a− bK

⇒ Kren ≡ K +∆K + δK = K +O(K2) ⇒ 1

Kren

=
1

K
+O(K0)

The two renormalizations are related directly to the “wave function” and mass renor-

malizations, one being proportional to the entire kinetic term, the other to the con-

stant (mass) term. The result is that the renormalized propagator has the same pole

and residue as the classical one.

Note that the MOM scheme, unlike the others, does not introduce an independent

mass scale µ: Only physical masses set the scale. This is a consequence of the fact

that the MOM scheme is designed for studying low-energy (near-mass-shell) behavior,

while the others are more suited for studying high-energy behavior. This will be

important for our explicit calculations later, when we see that MOM is more useful for

QED, which is better defined (and thus more useful), in terms of perturbation theory,

at low energies, while QCD is better defined at high energies. More precisely, the on-

shell values of QED masses and couplings are observed experimentally, whereas those

of QCD are almost meaningless, since the corresponding particles are not observed

as asymptotic states. On the other hand, in QCD the introduction of the arbitrary

scale µ allows the definition of a more physical mass scale, and its arbitrariness can

actually improve the accuracy of perturbative calculations.

4. Optical theorem

The optical theorem was originally derived in optics. This is due to the rela-

tionship of quantum mechanics to classical electromagnetism (and thus scattering

amplitudes in both), as described in exercise IIIA1.5:

wave function ↔ electromagnetic field (as complex 3-vector)

probability (density) ↔ energy (density)

Schrödinger equation ↔ (time-derivative 1
2 of) Maxwell’s equations
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As a result, the more modern, quantum mechanical derivation of the optical theorem

is simpler than the old optics one, even when applied to electromagnetism. (Similar

remarks apply to many other topics common to wave equations, such as expansions

in spherical coordinates.)

Writing the S-matrix as S = 1 + iT , unitarity can be written as

1 = S†S = (1− iT †)(1 + iT ) = 1 + i(T − T †) + T †T ⇒ T †T = i(T † − T )

(Actually, the more useful statement is in terms of S = eiT , since then T represents

the connected graphs, but the result of the argument is the same.) Summation of a

probability over final states then yields the “optical theorem”:∑
f

|Tfi|2 =
∑
f

〈i|T †|f〉〈f |T |i〉 = 〈i|T †T |i〉 = 2 Im Tii

Because the initial and final states are the same in Tii, this is “forward scattering”:

The “incoming” particles are undeflected, so their scattering angle vanishes. Applying

unitarity in terms of the cutting rules (subsection VC6), we see that this condition can

be applied to Tii diagram by diagram, using any combination of parts of Tfi and T †fi
that fit together to form the graph considered for Tii. (For example, the probability

coming from a tree graph with two final states is the imaginary part of a one-loop

graph with two intermediate states.) Separating out the momentum-conservation

δ-function for a connected S-matrix element, we have finally

T = δ
(∑

p
)
T ⇒

∑
f

δ
(∑

p
)
|Tfi|2 = 2 Im Tii

The simplest example of an experimental measurement of an interaction is a

decay rate. (The only particle properties contained in the free Lagrangian are mass

and spin.) For example, at the tree (classical) level, decay into 2 particles is described

by just the 3-pt. vertex, while for decay into 3 particles, it can be described by a 4-

pt. vertex or a tree graph with 2 3-pt. vertices. More generally, by the optical theorem

the decay probability is given by the imaginary part of the propagator correction,

evaluated on shell.

We then find the total decay probability per unit time by dividing the probabil-

ity by the spatial density ρ times the spatial volume times the time duration, and

summing over final states (see exercise VC7.1):

dP

dt
=
∑
f

P

ρVD
=

2 Im Tii
ω
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using the expressions for ρ, and P in terms of |Tfi|2, given in subsection VC7. The

optical theorem can be applied similarly for the total cross section:

σ = 2(Im Tii)
(2π)D/2

λ12

The decay rate for a particle is frame dependent, but we usually pick the rest

frame for massive particles, where ω = m. Alternatively, we can define the total

decay probability per unit proper time:

ω = m
dt

ds
⇒ dP

ds
=

2 Im Tii
m

(where s and t should not be confused with the Mandelstam variables). For the

massless case, we can use instead the parameter τ , as it appears in classical mechanics

in the gauge v = 1, or as the classical value of the Schwinger parameter from the

Landau equations:

pa =
dxa

dτ
⇒ dP

dτ
= 2 Im Tii

Exercise VIIA4.1

Compare this result for dP/ds with that of exercise VC7.1a to obtain an

explicit expression of Im Tii in terms of |Tfi|2 for the decay of a particle of

mass M into two particles of masses m1,m2. What happens to Im Tii for

M = m1 +m2, and for M < m1 +m2?

Now the decay rate of a particle can also be associated with the imaginary part

of the mass, since

M = m− ir ⇒ |ψ|2 ∼ |e−iMt|2 = e−2rt

so the wave function for the particle at rest automatically includes a decay factor.

The probability of decay, normalized by dividing by |ψ|2, is thus

dP

dt
=
d(1− |ψ|2)

|ψ|2dt
= 2r

The analogous statement in momentum space is found by Fourier transforming the

propagator/wave function from time to energy:

e−iMt → 1

E −M
=

1

E −m
+

1

E −m
(−ir) 1

E −m
+ ...

This expansion is in terms of the free propagator 1/(E−m) and the connected graphs

−ir.
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We now check that this result agrees with that obtained from the effective action.

The quantum propagator has a pole at p2 = −M2 for some complex constant M :

lim
p2→−M2

∆ =
1

1
2(p2 +M2)

We have normalized the propagator at the pole by rescaling the field; we also keep

the real part of the mass the same as the classical value through renormalization of

the mass term. (Only the real part can be renormalized consistently with unitarity.)

The on-shell condition is then at physical (real) momentum p2 = −m2, so the kinetic

operator on-shell is

1
2(p2 +M2) = −1

2m
2 + 1

2(m− ir)2 = −1
2r

2 − imr

Remembering that “interaction” terms from Γ contribute with a minus sign to am-

plitudes, we then have
dP

dt
=

2 Im Tii
m

=
2mr

m
= 2r

5. Power counting

We now consider why subtracting out divergences, as poles in D, can be imple-

mented by giving singular D-dependence to the coupling constants. This is based on

dimensional analysis, which tells us how divergent a graph is at large momenta: the

“ultraviolet” (UV) divergence. (There are also infrared divergences, which occur for

physical reasons, and do not require renormalization. They occur only for massless

particles, and will be considered later.) Consider first any 1-loop 1PI graph. In mo-

mentum space, it has an integral over the loop momentum,
∫
dDp. It will diverge

if the integrand (before introducing Schwinger parameters) goes as p−D or slower to

infinite momentum (UV limit). In this limit we can ignore masses. If we differentiate

this graph with respect to any of the external momenta, it will become more conver-

gent, since the power of momenta in the integrand decreases. (The numerator of the

integrand is a polynomial, while each factor in the denominator depends on the loop

momentum.) With enough derivatives, it becomes convergent. This means that the

divergent part of the graph is a polynomial in the external momenta. Similar remarks

apply to any 1PI graph, if we consider the divergence coming from letting all loop mo-

menta go to infinity, known as the “superficial divergence”. Of course, the superficial

divergence is also polynomial in the coupling constants, as is the graph as a whole;

but the superficial divergence is also polynomial in the masses, since differentiation

with respect to them has the same effect as with respect to external momenta.

We can determine several more properties of this local, but divergent, contribution

to the effective action. First of all, it is Poincaré invariant and invariant under all
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global symmetries of the classical action, since the effective action is invariant for all

values of D, so poles in D are also. (Consider, e.g., contour integration in D to pick

out the pole.) If we use the background field gauge (or consider only Abelian gauge

fields), then it is also gauge invariant. (However, possible exceptions are conformal

invariance and invariances involving γ−1, since those are not invariances of the classical

action for all D.) The other property we need is that the coefficient of the divergence

is real. This follows from the fact that the S-matrix satisfies unitarity, as preserved

manifestly by dimensional regularization. As discussed in the previous subsection, we

have unitarity

S†S = I, S = I + iT ⇒ i(T † − T ) = T †T

As we saw in subsection VC6, this identity actually can be applied to a single graph,

where the element of T on the left-hand side of the equation is that graph, while on

the right-hand side the summation over intermediate states gives a sum where each

term divides the graph into two parts, one for T and one for T †. We then see that

at any loop the imaginary part of a 1PI graph in T is given by “sewing” together

diagrams from lower loops. This means that any new divergence at any number of

loops must be real, since sewing doesn’t introduce new (UV) divergences: Sewed lines

are on shell, and phase space for on-shell states is always finite. (The 3-momentum

of each state is bounded by the energy, and each positive energy of an outgoing state

is bounded by the total energy of the system.)

Since Poincaré and gauge invariances, locality, and semiclassical unitarity were

used as properties to determine the classical action, this suggests that the divergent

terms in the effective action might all be of the form of terms already in the classical

action. Such a property is called (perturbative) “renormalizability”. When it holds,

all infinities can be absorbed by a redefinition of the coupling constants (and masses)

appearing in the classical action. This is physically important because all infinities

are defined only up to finite pieces: For example, in dimensional regularization, we

saw in subsection VIIA3 that the D-dependent normalization of the classical action

is ambiguous, resulting in an ambiguity in the finite pieces left over after subtrac-

tion of 1/ε terms. Since we now know that superficial divergences are local, we see

that renormalization can produce arbitrary finite, local terms in the effective action,

corresponding to the divergent terms. But if the divergent terms are all of the same

form as in the classical action, all such finite terms can be absorbed by a redefinition

of the coupling constants. On the other hand, if such finite terms did not already

appear in the classical action, we would be forced to introduce them, to make the

renormalization procedure unambiguous. (Of course, we could give an unambiguous
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prescription by definition, but from the point of view of another prescription this

would be the same as including the extra terms in the classical action, and using the

first prescription to arbitrarily fix the nonzero values of the couplings.) Thus, the

condition of renormalizability is necessary to prevent the appearance of an infinite

number of coupling constants, which would result in the loss of predictability. (If

divergences require only a finite number of such couplings to be added, we simply

include those, to obtain a renormalizable theory with a number of couplings that is

finite, although larger than that with which we started.)

Since dimensional analysis determines the form of the divergent terms of any

momentum integral, it also determines which theories are renormalizable. By appro-

priate rescaling of fields by constants, write the classical action in a form where the

derivative parts of the kinetic terms have no dependence on any couplings. Then de-

fine the couplings to be the coefficients of the interaction terms. It is easy to see that

the renormalizable theories are the ones that include all terms which satisfy all the

properties required of the classical action (including preservation of all appropriate

symmetries that are manifestly preserved by dimensional regularization), where all

couplings have engineering dimensions that are nonnegative powers of mass: Consider

first the case where all couplings are dimensionless (and there are no masses, or at

least we ignore them at high energies for purposes of considering UV divergences).

Then the theory is renormalizable simply because there are no dimensionful parame-

ters around, so any local term must be of the form of those originally in the classical

action. If we now introduce couplings with positive mass dimension, then perturba-

tively they can occur only to nonnegative power in any diagram, so any divergence

thus produced again has a coefficient with nonnegative mass dimension. Since the

fields themselves have positive mass dimension, there are only a finite number of such

terms possible. On the other hand, if we were to allow couplings with negative di-

mension, then terms with arbitrarily high powers of such couplings would also allow

arbitrarily high powers of fields, and thus lead to nonrenormalizability. (By similar

arguments, theories with only couplings of positive mass dimension, called “super-

renormalizable”, can have divergences only to a certain finite number of loops.)

In particular, in D=4 the derivative part of the kinetic term for bosons is of the

form
∫
d4x φ∂∂φ, and for fermions

∫
d4x ψ∂ψ, so bosonic fields have dimension 1 and

fermions 3/2. That means that bosons can appear only quartically and fermions only

quadratically. More specifically, renormalizable theories can only have terms of the

form

φ, φ2, φ3, φ4, φ∂φ, φ2∂φ, φ∂∂φ;ψ2, ψ∂ψ;φψ2
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(where each φ can be any boson with any spin, and each ψ any fermion). There can

also be constant terms (field-independent), which we always drop, since they don’t

contribute to perturbative amplitudes (after appropriate normalization). The terms,

and their relations, are restricted by Lorentz, gauge, and internal symmetries. The

potential for scalar fields must also be bounded from below, to allow the existence of

a vacuum (state with lowest energy); otherwise nothing would be stable, continually

decaying into states of lower energy (i.e, the energy of the scalars converting to other

particles): Thus, φ3 terms for scalars requires also φ4 terms.

Spin 1 can’t couple minimally to spins >1. (One way to show this is to covari-

antize the general field equation of IIB1 to Sa
b∇b + k∇a, and show the commutator

algebra of this constraint, and + ..., doesn’t close unless the spin ≤1 or the ex-

ternal field strength vanishes.) Furthermore, gauge invariance for spins >1 prevents

them from having renormalizable gauge couplings in D=4: For example, we saw in

subsection IIIA4 that spin-2 (gravity) couplings include terms of the form φ∂φ∂φ.

Renormalizability therefore restricts us to spins 0, 1/2, and 1. Using Poincaré and

gauge invariance, the most general action is then of the form

L = tr
{

1
8g2
F 2 + ψαi∇α

.
αψ̄ .

α + 1
4
(∇φ)2 + V (φ) + [1

2ψ
α(φ+ m√

2
)ψα + h.c.]

}
where all group matrices are implicit: They may appear in all fields, in m, and even

in g, which has independent values for the different factors of the Yang-Mills gauge

group. Also, the matrices may differ for the same field in different terms: A (in ∇)

has different Yang-Mills representations on different scalar and spinor fields, and φ

appears with some matrix in its Yukawa coupling ψφψ. (Of course, all matrices must

be chosen consistently with gauge and global invariances.) The potential V (φ) is no

higher than quartic. Note that the Higgs mechanism is required to give nonabelian

gauge fields mass: A2 is not gauge invariant, and (∇φ)2 is the only way to dress it up

with scalars in a renormalizable way. (For the Abelian case we can use Stückelberg

fields, with ∇ = ∂+mAT as in subsection IVA5. In the nonabelian case, introducing

scalars by a gauge transformation, as for Stückelberg, results in a nonrenormalizable

(e−iφ∇eiφ)2 term.) If we ignore gauge invariance, the A2 term produces unitary-gauge

propagators with bad high-energy behavior (see subsection VIB3), which leads to the

same nonrenormalizable behavior in the absence of a Higgs mechanism.

Exercise VIIA5.1

Show by power counting that interacting renormalizable theories with poten-

tials that are bounded from below exist only in D≤4. Show that for D≤2

there are an infinite number of possible renormalizable terms in the action.

What are the kinds of renormalizable terms possible in D=3?
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Exercise VIIA5.2

Superrenormalizable theories aren’t realistic, but they give oversimplified ex-

amples of many quantum features of field theory.

a What theories are superrenormalizable in D=3? Show that the only super-

renormalizable interaction in D=4 is (scalar) φ3.

b Let’s do power counting (dimensional analysis) for 4D φ3 theory. Write the

action in the form

S = 1
g2

∫
dx [−1

4
φ( −m2)φ+ φ3]

so g2 counts loops. (φ → gφ gives the form where g counts vertices.) What

are the dimensionless terms

∆S = (g2)L−1

∫
dx φn

for all n (including the vacuum bubbles n = 0; of course, L ≥ 0)? Since super-

ficial divergences are polynomial in everything (fields, momenta, couplings,

masses), this gives the maximum number of loops L(n) for a superficial di-

vergence to appear in an n-point 1PI amplitude. Make a similar analysis for

3D φ4 theory.

c Find all the divergent 1PI diagrams in 4D φ3 theory. (Hint: There are 6,

excluding the meaningless 1-loop graph with no vertices.) Which of these

are local, and thus can be completely renormalized away? What kind of

counterterms are required for the remaining graphs?

Such global and local symmetry requirements can also be applied to the effective

action. In background-field gauges Γ is gauge invariant (see subsection VIB8), which

restricts the form of the effective potential, and even nonlocal terms. In QED charge

conjugation, in addition to switching 2-spinors of opposite charge, changes the sign

of the electromagnetic potential: Consequently, any pure-A term in Γ must be even

in A’s (“Furry’s theorem”). Such classical symmetries can be applied at the quantum

level only in the absence of “anomalies”, quantum violations (discussed in chapter

VIII below). However, even the anomalies themselves are restricted by symmetries:

Anomalies occur only in symmetries that can’t be manifestly preserved by regular-

ization, which means only conformal or axial symmetries. Thus, when the couplings

of gauge vectors are parity invariant, the axial anomaly (which violates parity by

definition) is irrelevant.
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6. Infrared divergences

Although ultraviolet (UV) divergences represent a serious problem, in the sense

that they strongly restrict which theories can be useful, and require renormalization,

infrared (IR) divergences are merely a consequence of poor semantics: The definition

of the S-matrix assumes the existence of well-defined one-particle asymptotic states.

Unfortunately, these do not exist when massless particles are present, even in classical

mechanics: (1) Any particle can be accompanied by an arbitrary number of massless

particles with vanishing 4-momentum, and such a collection of particles can be indis-

tinguishable from the lone particle if the (measured) quantum numbers are the same.

(These are physical states, since pa = 0 → p2 = 0.) (2) Any massless particle can

be indistinguishable from an arbitrary number of massless particles, with the same

total 4-momentum, and each with the same sign energy, if their 4-momenta are all

proportional, since then they are all traveling in the same direction at the same speed.

(This situation is not important for QED, since the photon can’t decay directly into

two photons.)

Experimentally, because detectors have finite accuracy, in the first case there can

be such “soft” particles with total energy below some small upper limit, and in the sec-

ond case there can be such “collinear” particles within some small angle of resolution.

In principle this means we should change our definition of asymptotic (“coherent”)

states accordingly; in practice this is too complicated, but to any particular order

in perturbation theory only a finite number of such additional massless particles will

couple. The procedure is then to

(1) infrared regularize the S-matrix amplitudes (by dimensional regularization, or

introducing masses for all particles, or keeping massless particles off-shell);

(2) calculate probabilities/cross sections, including contributions from both soft and

collinear particles, as a function of some upper limit on their energy/angle (rep-

resenting the experimental accuracy); and

(3) remove the regularization.

No infrared renormalization is necessary. (See below. Of course, for total cross

sections, all energies and angles are integrated over anyway.) In general, such a

procedure must be applied to both initial and final states, but in QED (as opposed

to QCD) it is sufficient to treat only the final ones in cases of physical interest.

The reason why infinities appear in cross sections at finite order of perturbation

theory if we ignore this careful prescription, and in S-matrix elements at finite order

in any case, is the long range of forces mediated by massless particles. A cross section,
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although it represents a probability, is normalized in such a way that it is an area,

representing the effective cross-sectional area of a particle being targeted by another

particle. The range of the interaction sets the scale of this area; this is related to

the mass of the particle mediating the interaction. Since massless particles produce

infinite-range forces, the naive result is infinite cross sections. One might expect

that these infinities would appear only in total cross sections, where the momenta of

particles in the final state are integrated over. However, by the optical theorem, this

total cross section is given by the imaginary part of an S-matrix amplitude, which

thus must also have this infinity. On the other hand, since in quantum mechanics

one measures only probabilities, which are always ≤ 1, the naive infinite semiclassical

result must become finite when all quantum corrections are included.

The appearance of these infrared divergences also follows from the fact that these

kinematic situations occur in classical mechanics: In subsection VC8 we saw that

singularities occur in S-matrices for momenta that are allowed classically.

Exercise VIIA6.1

Consider 2→2 scalar scattering at the tree level (as in the example of sub-

section VC4). To get the point of this problem, it’s sufficient to look at the

case where a scalar is exchanged only in the t channel, representing a force

between 2 scalars.

a Evaluate the total cross section with all particles massless, and show it has

an infrared divergence. Relate this divergence to a classical situation.

b Do the same with external masses M and internal mass m, where there is

no divergence. Find first the explicit general result, then look at the limit

m2 � s− 4M2.

Although IR divergences necessarily appear in S-matrices, the fact that they

cancel in cross sections follows from a theorem that applies to quantum systems

in general: (We’ll simplify the argument by assuming the asymptotic states are the

same as the free states, through appropriate UV renormalization, which is OK for field

theory if we ignore bound states. We also ignore the usual divergences from energy

conservation δ-functions by considering the limit ti → −∞, tf → +∞.) The S-matrix

can be expressed in terms of the time-development operator U : In the interaction

picture (see subsection VA4),

S ≡ U(+∞,−∞) = U(+∞, t)U(t,−∞)

We also have for any operator

O(t) = U(t,−∞)O(−∞)U−1(t,−∞) = U−1(+∞, t)O(+∞)U(+∞, t)
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In particular, for the Hamiltonian we then have

HU = UH0

where

H ≡ H(t) = H0 + V (t), U ≡ U(t,−∞) or U−1(+∞, t), V (±∞)→ 0

The IR problem is then that U is singular when expanded perturbatively if the

eigenstates of the free energy H0 are degenerate.

These infinities can be canceled in probabilities if we sum over degenerate states,

considering

Tij(Ea) ≡
∑
{Ea}

UiaU*ja

where the sum is over a degenerate set of initial/final state energies {Ea}, and i, j

will be summed in operator products U(+∞, t)U(t,−∞) in S and S†.

The proof is by induction in powers of V (with which we can associate a coupling):

Expanding U and T (where U0,ij = δij), we then have from the definition of T and

HU = UH0

Tn,ij =
n∑

m=0

∑
{Ea}

Um,iaU*n−m,ja

(Ei − Ej)Un,ij = −
∑
k

VikUn−1,kj

T1 is essentially the tree S-matrix, which has no IR divergence. The induction hy-

pothesis then needs to be shown for the cases where neither, either, or both of

Ei, Ej ∈ {Ea}, by checking the factor Ei − Ej is invertible (for i 6= j). The first

2 cases are trivial, while for the last we can use unitarity of U to change the state

sum in T to those complementary to {Ea}, and thus reduce it to the former cases.

A simple example of this cancelation is nonrelativistic Coulomb scattering, to

all orders (“loops”) in the coupling. This can be calculated with the help of the

quantum mechanical JWKB approximation (subsection VA2) and the “eikonal (small

angle) approximation” (originating in optics). The JWKB approximation gives the

quantum mechanical S-matrix as ≈ e−iS/h̄. The eikonal approximation then says to

approximate the path of the particle as a straight line: This is the limit where the

change in momentum is small compared to the initial momentum, i.e., small angles.

In relativistic language, with the standard convention for Mandelstam variables (see

subsection VIC4), this would be the limit t/s→ 0. Since the Coulomb interaction is

essentially e2/t (in terms of coupling and propagator), and the quantum mechanical
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(as opposed to field theoretic) JWKB approximation is strong coupling (see subsection

IIIA3), this is consistent with the limit t→ 0, s fixed.

The procedure is thus to write the amplitude in position space to define the

straight path for the eikonal approximation, then Fourier transform to apply the

JWKB approximation. With the labels

Ā = 1
2(Af + Ai), ∆A = Af − Ai

defining average (Ā) and change (∆A) in terms of initial (Ai) and final (Af ), we have

the path

x(t) = x̄+∆x
t− t̄
∆t

The momentum space amplitude is found by applying initial and final Fourier

transformations using the factors

〈pf |xf〉〈xi|pi〉 = ei(xi·pi−xf ·pf ) = e−i(∆x·p̄+x̄·∆p)

and integrating over ∆x and x̄. Then JWKB is applied to this, including the Fourier

integral over ∆x. (Applying it to x̄ would conflict with the straight-line approxima-

tion.) Therefore, we also use the classical relation expressing ∆x in terms of p̄,

∆x =
p̄

m
∆t

We then have from S =
∫
dt[V (x) − 1

2m
.
x2], after including the term for the other

Fourier transform and amputating the external line propagators ei∆tp̄
2/2m,

S ≈ x̄ ·∆p+

∫ tf

ti

dt V
(
x̄+

p̄

m
(t− t̄)

)
S =

∫
dx̄ e−iS

for general potential energy V (x). The normalization is approximated to be V -

independent, and the V = 0 case gives the usual free δ(∆p). (Since x̄ is a dummy

variable, we might be tempted to change variables x̄→ x, trivializing the x integral.

However, the ranges of integration are not arbitrary: x should not be too small, else

the straight-line approximation would not be valid.) We now note that in the limit

(ti, tf )→ (−∞,∞), t can be redefined to absorb the component of x̄ in the p̄ direction

(as well as t̄ ). Then the integral over that component of x̄ becomes trivial, giving∫
dx̄||√

2π
e−ix̄||∆p|| =

√
2πδ(∆p||) = |p̄|

√
2πδ(p̄ ·∆p) = v̄

√
2πδ(∆E)



A. GENERAL 575

where v̄ ≡ |p̄|/m. Factoring out i
√

2πδ(∆E) to get T from S,

S ≈ x̄⊥ ·∆p+

∫ ∞
−∞

dt V (x̄⊥, v̄t)

T = −iv̄
∫
dx̄⊥ e

−iS

Exercise VIIA6.2

Some integrals using Γ functions (which will be generalized in the following

section), from applying methods of this section:

a Derive the position-space massless propagator in arbitrary dimensions:∫
dk eik·x

1
1
2k

2
=

Γ (D
2
− 1)

(1
2x

2)D/2−1

b Show this agrees with the result from Gauss’s law for the scalar potential due

to a point charge. (This requires knowing the area of a sphere in arbitrary

dimensions: See subsection VIIA3.)

c Derive the rule for exponentiating such expressions (e.g., for powers of momen-

tum-space propagators):

Γ (a)

(1
2x

2)a
=

∫ ∞
0

dτ τa−1e−τx
2/2

We now specialize to the Coulomb potential energy, which is the time integral of

the photon propagator times couplings (do the
∫
dt first):

V (x) = −e2

∫
dt

∫
dDk

(2π)D/2
eik·x

1
1
2k

2
= − g√

2π

Γ (D−3
2

)

(1
2~x

2)(D−3)/2
≈ − g

|~x|

in D − 1 = 3 − 2ε space + 1 time dimensions, where in our conventions g = 2πe2

for opposite unit charges. (This is the potential energy generated by a static point

charge: See subsection IIIB4 for the current normalization.) However, it’s easier to do

the
∫
dt for the action before the

∫
dk: Then the 2

∫
dt’s reduce

∫
dDk to

∫
dD−2k⊥

(by introducing 2 δ-functions), and one easily finds∫ ∞
−∞

dt V (x̄⊥, v̄t) = −g
v̄

Γ (D−4
2

)

(1
2 x̄

2
⊥)(D−4)/2

≈ −g
v̄

[
1

ε
− ln(µ2x̄2

⊥)

]
using MS and including dependence of the coupling on the renormalization scale µ.

Thus, in the same way that the Coulomb potential is the propagator in 1 fewer (time)

dimension, the potential’s contribution to the action is essentially the propagator in

2 fewer dimensions.
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Exercise VIIA6.3

Do the action’s
∫
dt after the

∫
dk, using the result of exercise VIIA2.2c.

Exercise VIIA6.4

Instead of dimensional regularization, use finite (but large) (tf , ti) as cutoffs

to the action’s
∫
dt. What replaces 1/ε?

The former (regularization-dependent) term gives an infinite phase, which cancels

in the cross section. This phase is proportional to g, so if this calculation had been

performed perturbatively (not a good idea, since JWKB is strong coupling), this

cancelation at each order in the cross section would be between products of different

orders in the S-matrix (from the squaring). The terms in the expansion can be

expressed as Feynman diagrams that look like ladders, with instantaneous photons as

the “rungs”, and the 2 sides of the ladder being the scattered particle and the much

more massive particle producing the potential. (For the nonrelativistic case we can

also use separation of variables, so here we solved for the relative motion, with m the

reduced mass, etc.)

The
∫
dx̄⊥ (over 1 less spatial dimension) can then be performed using exercise

VIIA6.2b: The exponential of the ln gives a power, which can be re-exponentiated;

the Gaussian
∫
dx̄⊥ is then performed; and finally the

∫
dτ gives another Γ . The

result (dropping the IR divergent phase) is

T = g
Γ [−α(E)]

Γ [2 + α(E)]
(1

2∆p
2)α(E)(1

2µ
2)−1−α(E)

α(E) = −1 + i
g

v̄
, E = 1

2mv̄
2

(We have used units h̄ = 1, but not c = 1, so g/v̄ = 2πe2/h̄v̄ = αc/v̄ =
√
E0/E,

E0 = 1
2α

2mc2, where this α is the fine-structure constant.) Due to a clever choice of

approximations and special properties of the 4D Coulomb potential (basically scale in-

variance of electromagnetism), this result is exact (as found by solving the Schrödinger

equation). In particular, the poles of Γ [−α(E)] give the usual bound-state poles: The

form of the free propagator 1/(E − p̄2/2m + iε) (so on shell p̄2/2m = E + iε) tells

us that for negative E, ig/v̄ is positive. Technically, it’s the cross section that gets

analytically continued to imaginary v̄: That tells us to drop the phase factors before

continuation, eliminating the infinite phase as well as the finite one, including all

µ dependence (i.e., the result is IR regularization independent and requires no IR

renormalization). Note that the regulator drops out in the tree contribution (lowest

order in g), which is simply (in our normalization)

Ttree =
g

1
2∆p

2
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Technically, the phase factors are physically meaningless in this example, since

they cancel in the cross section, but are illustrative of the kind of expressions appear-

ing in the relativistic case. A more conventional way to deal with the regularization

dependence is to replace the cutoff scale µ (which is actually a momentum nonrela-

tivistically), with a physical one

1
2µ

2 → 4mE

The resulting expression for the amplitude is then

T =
g

4mE

Γ [−α(E)]

Γ [2 + α(E)]

( 1
2∆p

2

4mE

)α(E)

= − i

(2m)3/2
√
E

Γ [−α(E)]

Γ [1 + α(E)]

( 1
2∆p

2

4mE

)α(E)

Another interesting property of this amplitude is that it also has a simple ex-

pression as a sum over the angular momentum of the bound states: Using the useful

identity (
1− x

2

)y
=
Γ (1 + y)

Γ (−y)

∞∑
J=0

Γ (J − y)

Γ (J + 2 + y)
(2J + 1)PJ(x)

(for Legendre polynomials PJ) as applied to

x = cos θ ⇒ 1− x
2

=
1
2∆p

2

4mE

and y = α(E), we have

T = − i

(2m)3/2
√
E

∞∑
J=0

Γ [J − α(E)])

Γ [J + 2 + α(E)])
(2J + 1)PJ(cos θ)

Note that the ratio of Γ ’s is just a phase factor for E > 0.

Exercise VIIA6.5

Prove the “useful identity”:

a Using the orthonormality condition of the Legendre polynomials∫ 1

−1

dx PJ(x)PJ ′(x) =
2

2J + 1
δJJ ′

express the coefficient (to be determined) in the expansion over PJ as an

integral of PJ(x)[(1−x)/2]y. Then replace PJ in this integral with its second-

order derivative using the definition (up to normalization) of PJ ,

d

dx

[
(1− x2)

d

dx
PJ(x)

]
+ J(J + 1)PJ(x) = 0

Integrate by parts twice to find a recursion relation in y for the coefficients.

Show the above expression satisfies it.
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b Check the overall (J-dependent, but y-independent) normalization by com-

paring the highest order in x for non-negative integer y, where

PJ(x) =
(2J)!

2J(J !)2
xJ +O(xJ−2)

This result can be generalized to the relativistic case, where the result is not exact,

by first-quantizing 2 particles interacting through photon propagators, corresponding

to not only ladder diagrams but also “crossed ladders”, since the photons are no

longer instantaneous. More generally, the exponentiation of IR divergences can be

proven for field theory S-matrices.
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22 M.E. Irizarry-Gelṕi, Eikonal scattering at strong coupling , Stony Brook University
Ph.D. thesis (2013);
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We now give some explicit examples of the evaluation of S-matrices and contri-

butions to the effective action — momentum integration, regularization, and renor-

malization — and some examples of their application.

1. Tadpoles

. . .

The simplest examples of dimensional regularization are one-loop “tadpoles”,

graphs with only one external line. By the Schwinger parameter method described

in subsection VIIA2, we find

A1(x,m2) =

∫
dk eik·x

1
1
2(k2 +m2)

=

∫ ∞
0

dτ τ−D/2e−(τm2+x2/τ)/2

Further evaluation requires Taylor expansion in x (which we’ll need anyway to eval-

uate a specific integral of k...k/(k2 +m2)):

A1 =
∞∑
n=0

1
n!

(−1
2x

2)n
Γ (1− D

2
− n)

(1
2m

2)1−D/2−n

The mass dependence, as well as the argument of the Γ function, are as expected by

dimensional analysis:
∫
dDk k2n/k2 is ultraviolet divergent (large k) for D ≥ 2(1−n),

and infrared divergent (small k) in the limit m→ 0 for D ≤ 2(1−n). The ultraviolet

divergence is reflected in Γ (z), which has poles at the nonpositive integers.

To analyze the massless case, we evaluate the τ integral for D < 2(1 − n) and

m > 0, where it is finite and well-defined, analytically continue to the region Re D >

2(1−n) (but not exactly at the points where D is an even integer), take the limit m→
0 there, and finally analytically continue this vanishing result to all D. Therefore, all

massless tadpoles can be taken to vanish in dimensional regularization:∫
dk

ka...kb
1
2k

2
= 0

or more generally ∫
dk

ka...kb
(1

2k
2)a

= 0
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(The neglect of massless tadpoles is not exactly correct when IR divergences are

involved. For example, the usual massless 1-loop tadpole in D=2 is both IR and

UV divergent. The whole graph can still be taken to vanish, but only because the

nontrivial IR and UV divergences cancel each other. But the UV divergence needs

to be renormalized, while the IR one must be canceled by other means. This can be

seen by the method described above: Taking the lim m2 → 0 is singular near D=2, as

there are both a 1/ε term and a ln(m2) term, representing the 2 types of divergences.

See the calculation below, but evaluate for D=2.)

This includes negative power a, particularly integrals of polynomials of momenta.

Such an integral can result from “measure factors”, as discussed in subsections VA2

and VC1: For example, if an auxiliary field appears in the action with its quadratic

term multiplied by a function of other fields, then functionally integrating it out of the

action results in a functional determinant (in addition to replacing it in the classical

action by the solution to its field equation). This is represented in terms of Feynman

graphs as one-loop diagrams whose propagators are all those of the auxiliary field,

namely 1. The result is then regularized as∫
dx 1 ∼ δ(0)→

∫
dk 1 = 0

consistent with the fact that such factors would cancel corresponding factors we should

include in the functional integration measure. (In other words, since we can always

arrange to have all δ(0) factors cancel, we ignore them.)

On the other hand, massive tadpoles contribute both divergent and finite pieces

under minimal subtraction: For example, for D = 4− 2ε,

A1(0,m2) =

∫
dk

1
1
2(k2 +m2)

= Γ (1− D
2

)(1
2m

2)D/2−1

= −1
2m

2{1
ε

+ [−γ + 1− ln(1
2m

2)]}

(see exercise VIIA2.3b), using A−ε = e−ε ln(A). The γ can be killed by using an MS or

G scheme (see subsection VIIA3): At 1-loop order any version of those schemes has the

effect of just canceling the γ (but differences appear at 2 loops: see subsection VIIB8

below). To include the µ dependence of the coupling, we just replace everywhere (see

also subsection VIIA3)

ln(1
2m

2)→ ln

(
m2

µ2

)
(and similarly for any momentum factors such as ln(1

2p
2) that might appear more

generally); effectively we are using units 1
2µ

2 = 1. Note that we are not allowed to

Taylor expand in m: Doing so before integration would give an incorrect result; after
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integration it’s impossible. Similar remarks apply to the exponential eik·x in A1 if we

interpret it as the definition by Fourier transformation of the propagator in position

space.

Exercise VIIB1.1

Find the 2D massless propagator in position space by Fourier transforma-

tion. (But don’t Taylor expand in x.) Note that this Fourier transform is

infinite, and requires “renormalization” (of a constant of integration). Com-

pare this with the result obtained by solving the integral form of the Klein-

Gordon (Laplace) equation (i.e., Gauss’s law in D=2: remember your fresh-

man physics for the scalar potential of a uniform cylindrical charge distribu-

tion).

Two-loop tadpole integrals are not much more difficult if one line is massive, or

two are massive with the same mass. (Again, tadpoles with only massless lines can be

taken to vanish in dimensional regularization.) If two propagators are massless, then

they can be treated first as a one-loop propagator graph: By dimensional analysis,

the result of that one-loop subintegral must be a power of the momentum squared.

(The explicit result will be calculated in subsection VIIB4.) We therefore consider

more general one-loop tadpole integrals with more complicated propagators that may

result from subintegrations in a higher-loop graph. For example, we consider

Â1(a, x,m2) =

∫
dk eik·x

Γ (a)

[1
2(k2 +m2)]a

Using the definition of the Γ function, we can write

Γ (a)

[1
2(k2 +m2)]a

=

∫ ∞
0

dτ τa−1e−τ(k2+m2)/2

Performing the resultant Gaussian momentum integration and Taylor expanding in

x, we easily find

Â1(a, x,m2) =
∞∑
n=0

1
n!

(−1
2x

2)n
Γ (a− D

2
− n)

(1
2m

2)a−D/2−n

A more complicated example is

Ǎ1(a, b,m2) =

∫
dk

Γ (a)

(1
2k

2)a
Γ (b)

[1
2(k2 +m2)]b
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=

∫ ∞
0

dτ1dτ2 τ
a−1
1 τ b−1

2

∫
dk e−[τ1k2+τ2(k2+m2)]/2

=

∫ ∞
0

dτ1dτ2 τ
a−1
1 τ b−1

2 (τ1 + τ2)−D/2e−τ2m
2/2

We then introduce a scaling parameter λ (also described in VIIA2), scaling τi = λαi

in the insertion

1 =

∫ ∞
0

dλ δ(λ− τ1 − τ2) =

∫ ∞
0

dλ λ−1δ(1− α1 − α2)

and integrating the δ over α2 to get α2 = 1− α1. This gives (with α1 = α)

Ǎ1(a, b,m2) =

∫ 1

0

dα αa−1(1− α)b−1

∫ ∞
0

dλ λa+b−D/2−1e−λ(1−α)m2/2

=
Γ (a+ b− D

2
)

(1
2m

2)a+b−D/2B(a, D
2
− a)

When two of the propagators in the two-loop tadpole graph have the same non-

vanishing mass, we consider directly the two-loop integral

A1,2(a, b, c,m2) =

∫
dk1dk2

Γ (a)

[1
2(k1 + k2)2]a

Γ (b)

[1
2(k2

1 +m2)]b
Γ (c)

[1
2(k2

2 +m2)]c

(This integral also represents the physically less interesting 2-loop “vacuum bubble”:

no external lines, and thus field independent.) Introducing the Schwinger parameters

and performing the momentum integration, we find∫ ∞
0

d3τ τa−1
1 τ b−1

2 τ c−1
3 [τ2τ3 + τ1(τ2 + τ3)]−D/2e−(τ2+τ3)m2/2

where we have included the power of det A for

A =

(
τ1 + τ2 τ1

τ1 τ1 + τ3

)
Since τ1 does not appear in the exponential we integrate over it first directly, using

the second integral form for the Beta function, from exercise VIIA2.2c. Then τ2 and

τ3 can be handled by introducing a scaling parameter for them only, leading to the

previous types of integrals. The result is then

A1,2(a, b, c,m2) =
Γ (a+ b+ c−D)

(1
2m

2)a+b+c−D B(a+ b− D
2
, a+ c− D

2
)B(a, D

2
− a)

2. Effective potential

A propagator in an external field represents a certain class of Feynman tree dia-

grams. Thus, some tree graphs can be described by quantum mechanics. (In principle
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this means we can start from classical mechanics and first-quantize, by either operator

or path-integral methods. However, as we’ll see in chapter XII, in practice we save

some effort if we start directly with the quantum mechanics.) If we take the ends

of such a propagator and sew them together, we can describe arbitrary 1PI 1-loop

graphs by the background field method. While tree graphs describe classical field

theory, one-loop graphs contain many of the important quantum properties, partly

because they are the lowest-order quantum correction, and partly because they are

associated with the functional determinant part of the (second-quantized) path inte-

gral. (In terms of the exponent, classical is the only negative power in h̄, 1-loop is

h̄-independent, and higher loops are positive powers.)

In quantum mechanics, the expansion in h̄ is an expansion in derivatives (since

it appears only as pa = −ih̄∂a). In terms of the contribution of one-loop graphs to

the effective action, this means an expansion in the number of derivatives acting on

the fields. This definition can be applied in general in quantum field theory, without

reference to quantum mechanics. However, the simplest one-loop calculations of this

expansion are most easily expressed in quantum mechanical terms. In practice, this

means expanding the external fields in x about some fixed point, expanding the

exponentiated (by a Schwinger parameter) propagator about the part Gaussian in p

and x, and using any of the usual methods to exactly evaluate the matrix element of

a polynomial times a Gaussian.

Since we generally want arbitrary orders in a field and some of its lower derivatives

for this method to have any advantage over the usual diagrammatic methods, in this

approach one generally cuts off the expansion at the approximation that gives just

the Gaussian. This means we can keep up to two derivatives of an external scalar, but

only a constant field strength for an external gauge vector. (See subsection VIB1.)

The simplest, and most useful, example is a constant scalar field. The part of the

effective action that consists of only scalars without derivatives is called the “effective

potential”, since it generalizes the potential term of the classical action. This potential

determines the quantum corrections to spontaneous symmetry breaking and the Higgs

effect, and this is important for describing mass generation for all spins.

Consider a complex scalar running around a loop, under the influence of an ex-

ternal real scalar. The Lagrangian is

L = ψ*[1
2(− +m2) + φ]ψ + Lφ

where the form of Lφ won’t be important for calculating the ψ loop. A constant

external scalar field is effectively the same as a mass term, modifying m2 → m2 + 2φ.
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Thus the effective potential in this case can be evaluated by summing tadpoles:

V = −
∞∑
n=1

1
n
(−1)nφn

∫
dp [1

2(p2 +m2)]−n

for our complex scalar; for a real scalar running around the loop there would be an

extra factor of 1/2. We can integrate before summing:

V = −
∞∑
n=1

(−1)nφn
Γ (n− D

2
)

n!
(1

2m
2)−n+D/2

Using the identities (from Taylor expansion in a/b, and Γ (z + 1) = zΓ (z))

(a+ b)x =
∞∑
n=0

(
x

n

)
anbx−n,

(
x

n

)
=

Γ (x+ 1)

n!Γ (x+ 1− n)
= (−1)n

Γ (n− x)

n!Γ (−x)

we have

V = −Γ (−D
2

)
[
(1

2m
2 + φ)D/2 − (1

2m
2)D/2

]
We can also integrate after summing: Using the identities

ln(a+ b)− ln b =

∫ a

0

du

u+ b
=

∫ a

0

du
1

b

∞∑
n=0

(−1)n
(u
b

)n
= −

∞∑
n=1

1
n
(−1)nanb−n

∫ a

0

du

u+ b
=

∫ a

0

du

∫ ∞
0

dτ e−τ(u+b) = −
∫ ∞

0

dτ

τ

(
e−τ(a+b) − e−τb

)
we have

V = −
∫ ∞

0

dτ

τ

∫
dp
(
e−τ [φ+(p2+m2)/2] − e−τ(p2+m2)/2

)
which gives the same result.

For D=4, we find (after subtracting divergent counterterms, and some correspond-

ing finite pieces, corresponding to a MOM type of subtraction)

V = 1
2(1

2m
2 + φ)2ln

(
1 +

2φ

m2

)
Since this modifies the classical potential, it demonstrates that quantum effects can

generate spontaneous symmetry breaking where there was none classically, or vice

versa (the “Coleman-Weinberg mechanism”).

Exercise VIIB2.1

Generalize this renormalized result to arbitrary even dimensions.

For more complicated cases we need a more general procedure: The basic idea

is that any Gaussian integral gives a (inverse) determinant, of which we must take

(minus) the logarithm for the effective action, and we use ln det = tr ln. (The trace
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includes integration over x or p.) After subtracting out the field-independent part

(vacuum bubble), this gives an expression as above: For a general kinetic operator

H = H0 + ... (generally H0 = 1
2(p2 +m2)), we want

Γ = −
[
tr ln(H−1)− tr ln(H−1

0 )
]

= −
∫ ∞

0

dτ

τ

∫
dx 〈x|e−τH − e−τH0|x〉

H (and H0) is now treated as an operator, in terms of the coordinate operator X

and momentum operator P , and X|x〉 = x|x〉. External fields depend on X, but are

Taylor expanded about x: e.g.,

φ(X) = φ(x) + (X − x) · ∂φ(x) + ...

We then can use translation invariance to write

〈x|e−τH[P,X−x,φ(x)]|x〉 = 〈0|e−τH[P,X,φ(x)]|0〉

When H is quadratic in P and X, we can use (see exercise VA2.5)

〈x|e−τH |y〉 =

√
det

∂2(−S)

∂x∂y
e−S

where S is the classical “action” corresponding to the “Hamiltonian” H. (Further

examples will be given in subsection VIIIB1.)

Note that the (one-loop) vacuum bubble, with no background fields of any kind,

must always be dropped, as it is totally meaningless (although how it is subtracted

may be regularization dependent): In terms of the graphs summed here, which have

equal numbers n of propagators and vertices (P−V = L−1 by the usual h̄ counting),

it is the term n=0. Thus, in a position space calculation, where there are also n

integrations dDx, this term would have no propagators, no vertices, and no integrals

(contrary to some statements in the literature, where this graph is misidentified as

a one-propagator graph with one integration). All that remains is the permutation

factor, 1/n, but in this case that is an undefined 1/0.

In actual applications, closer examination reveals the used graph to be the cut 1-

loop tadpole (P = V = L = 1). Since the cut propagator gives a sum over states, the

result is to evaluate the trace of the operator inserted at the vertex; in particular, a

trivial vertex yields str(I), i.e., the number of states, bosons minus fermions. Similar

use can be made of the cut propagator correction (P = V = 2) for (super)traces of

operator products or mass sum rules.

Another example is the graviton vertex (kk). The resulting tadpole gives the

cosmological constant term. This integral is sometimes called the “zero-point energy”,

and is often misattributed to graphs without external lines.
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3. Dimensional transmutation

The 2D version of the CP(n) model described in subsection IVA2 is an interesting

model in that it demonstrates generation of bound states at the one-loop level. Its

Lagrangian is:

L = 1
2 |∇φ|

2 + Λ(|φ|2 − 1
g2

)

where g is now dimensionless. For the effective potential for the Lagrange multiplier

Λ from a φ loop, we find (modifying the calculation of the previous subsection for

D=2)

V1 = −Λ
[
ln

(
Λ

1
2µ

2

)
− 1

]
after including the renormalization mass scale µ to make the argument of the loga-

rithm dimensionless, and the coupling dimensionless in all dimensions. Note that we

have effectively added a mass as an infrared regulator, then taken it to 0 at the end.

Equivalently, we treat Λ itself as a mass, as mentioned in the previous section. We

would miss this with dimensional regularization, which is OK for ultraviolet diver-

gences, but has some difficulty with infrared divergences, because of their nonlocality.

Now the coupling can be absorbed into the definition of this scale: Adding to the

classical term V0 = −Λ/g2, the total effective potential for Λ up to one loop is

V = −Λ
[

1

g2
+ ln

(
Λ

1
2µ

2

)
− 1

]
= −Λ

[
ln

(
Λ

1
2M

2

)
− 1

]
where M is the “renormalization group invariant mass scale”:

M2 = µ2e−1/g2

Since this was the only place the coupling g appeared in the action, the mass scale M

has now replaced it completely. This replacement of a dimensionless coupling (g) with

a dimensionful one (M) is called “dimensional transmutation”. It is also a common

feature of quantum high-energy behavior (see below); its importance at low energies

depends on whether the classical theory already has dimensionful parameters (like

masses).

Varying the effective potential to find the minimum, which we identify as the

(quantum) vacuum value of the field Λ,

ln

(
〈Λ〉
1
2M

2

)
= 0 ⇒ 〈Λ〉 = 1

2M
2

Because Λ has a vacuum value, φ now has a mass (as seen by expanding Λ about

its vacuum value). Furthermore, since Λ now has more than just linear terms in
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the effective action, it is no longer a Lagrange multiplier. In fact, by calculating a

massive φ loop with two external Λ’s, we see that Λ is now a massive physical scalar

also. Without a Lagrange multiplier, φ is now unconstrained, so it has an additional

physical degree of freedom. This leads to a restoration of the spontaneously broken

U(N) symmetry. This is related to φ gaining mass, since we no longer have Goldstone

bosons associated with the symmetry breaking. Finally, if we calculate a massive φ

loop with two external gauge vectors, we see that at low energies there is an F 2 term,

so A is now a physical, massive vector instead of an auxiliary field.

Exercise VIIB3.1

Expand V about 〈Λ〉 to show that Λ gets a mass term. Expand Λ(x) to

quadratic order in x according to the prescription of the previous subsection to

calculate the effective action in terms of Λ, ∂Λ, and ∂∂Λ (using the harmonic

oscillator result of exercise VA2.5) to show that a Λ Λ term is also generated,

so Λ becomes propagating.

4. Massless propagators

For the massless one-loop propagator corrections, we also introduce a scaling

parameter to convert to Feynman parameters (see the examples of subsection VIIB1,

or the general method in subsection VIIA2), with the result

A2(x, p) =

∫
dk eik·x

1
1
2(k + 1

2p)
2 1

2(k − 1
2p)

2

=

∫ ∞
0

dλ λ1−D/2
∫ 1

0

dα1dα2 δ(1− α1 − α2)×

× exp{−λ1
8
p2[1− (α1 − α2)2]− i1

2(α1 − α2)p · x− λ−1 1
2x

2}

Making the change of variables

α1 = 1
2(1 + β), α2 = 1

2(1− β)

the amplitude takes the form

A2 =

∫ 1

0

dβ 1
2(eiβp·x/2 + e−iβp·x/2)

∫ ∞
0

dλ λ1−D/2exp[−λ1
8
(1− β2)p2 − λ−1 1

2x
2]
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The integrals can be simplified if we make use of gauge invariance: For example,

the electromagnetic current for a complex scalar is of the form φ*
↔
∂φ, so the gauge

field couples to the difference of the momenta of the two scalar lines, which is 2k for

the above as applied to the scalar-loop correction to the photon propagator. On the

other hand gauge invariance, or equivalently current conservation, says that such a

vertex factor should give a vanishing contribution when contracted with the external

momentum, which is p in that case. Checking this explicitly, we do in fact find∫
dk

k · p
1
2(k + 1

2p)
2 1

2(k − 1
2p)

2
=

∫
dk

[
1

1
2(k − 1

2p)
2
− 1

1
2(k + 1

2p)
2

]
= 0

(even with an arbitrary additional polynomial factor in the numerator), using the

facts that the integral of the sum is the sum of the integrals when regularized, and

that massless tadpoles vanish. (This also tells us that replacing the numerator k · p
with k2 + 1

4
p2 gives 0. Furthermore, without an extra numerator factor the integral

vanishes by antisymmetry under k → −k.) Thus, if x is proportional to p in A2,

the only contribution is from the x = 0 term in the Taylor expansion. Since then

p · (∂/∂x)A2 = 0, it depends on only the “transverse” part of x. This implies that

the dependence on x is only through the combination

u = (p · x)2 − p2x2

so we can evaluate the integral by either of the substitutions

x2 → 0, p · x→
√
u or p · x→ 0, x2 → −u/p2

We’ll consider now the latter choice. (The former gives the same result: See the

exercise below.) Again, since we need to Taylor expand in x anyway to find the result

for a particular numerator, we expand and perform the λ integration:

A2 =
∞∑
n=0

1
n!

(
u

2p2

)n
(1

8
p2)n+D/2−2Γ (2− D

2
− n)

∫ 1

0

dβ (1− β2)n+D/2−2

Performing the change of variables β2 = γ to convert the remaining integral to a Beta

function, and using the identities

Γ (1
2) =

√
π, Γ (z)Γ (1− z) = π csc(πz)

(see the exercises in subsection VIIA2), the final result is

A2 = −1
2π

3/2csc(D π
2
)(1

8
p2)D/2−2

∞∑
n=0

1

n!Γ (n+ D
2
− 1

2)
{ 1

16
[p2x2 − (p · x)2]}n
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From the csc factor we see the integral is divergent for all evenD: These are ultraviolet

divergences for D ≥ 4 and infrared ones for D ≤ 4; dimensional regularization does

not carefully distinguish between the two, although the difference can usually be told

by examining momentum dependence (here from the exponent D/2− 2). Also notice

that the two can be mixed up by the conversion to Feynman parameters.

Exercise VIIB4.1

Evaluate the general massless one-loop propagator correction using x2 → 0,

p · x→
√
u.

a Show it gives the same result as p · x → 0, x2 → −u/p2 by using the Γ and

B identities in subsection VIIA2.

b Show it can also be written as (for convenience of expansion about D=4)

A2 = (1
2p

2)D/2−2Γ (D
2
− 1)Γ (2− D

2
)
∞∑
n=0

Γ (n+ D
2
− 1)

n!Γ (2n+D − 2)
{1

4
[p2x2 − (p · x)2]}n

As discussed in subsection VIIB1, sometimes certain subdiagrams of higher-loop

diagrams can be evaluated explicitly, particularly propagator corrections that them-

selves involve only massless propagators. Furthermore, such a formula might be used

recursively in appropriate diagrams. For example, a higher-loop diagram that is itself

a propagator correction might reduce, as a final integration, to something of the form∫
dk

Γ (a)

(1
2k

2)a
Γ (b)

[1
2(k + p)2]b

=
Γ (a+ b− D

2
)

(1
2p

2)a+b−D/2 B(D
2
− a, D

2
− b)

again using the above methods, finding similar integrals to the previous.

Exercise VIIB4.2

Let’s examine this integral more carefully.

a Evaluate it in two different ways: first, by the method used above; second, by

Fourier transforming each factor using∫
dk eik·x

Γ (a)

(1
2k

2)a
=

Γ (D
2
− a)

(1
2x

2)D/2−a

(derive this also) and its inverse, simply multiplying the resulting factors in

x space, and inverse transforming.

b Show that the MS scheme cancels γ’s and ζ(2)’s in iterated massless propa-

gator corrections to all orders in ε by examining

Γ (D
2

)

∫
dk

1

(1
2k

2)n1+L1ε[1
2(k + p)2]n2+L2ε
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where Li are the numbers of loops in the propagator subgraphs (show this by

dimensional analysis) and ni are other integers. Show the G scheme does the

same.

Exercise VIIB4.3

Calculate the “phase space” for n massless particles

VP =

∫ [ n∏ dD−1pi
(2π)D/2−1ωi

]
(2π)D/2δD

(
p−

n∑
pi

)

where p is the total momentum of the n particles, by using the optical theorem:

a Consider the scalar graph with n massless propagators connecting 2 vertices.

Show, both by induction in the number (n−1) of loops, and by Fourier trans-

formation (as in the previous problem), that this graph (for distinguishable

particles) gives
[Γ (D

2
− 1)]n

Γ [n(D
2
− 1)]

Γ [n− (n− 1)D
2

]

(1
2p

2)n−(n−1)D/2

b Wick rotate back to Minkowski space (p2 < 0) and take (twice) the imaginary

part to obtain the result for continuous real D > 2

VP = 2π
[Γ (D

2
− 1)]n

Γ [n(D
2
− 1)]Γ [(n− 1)(D

2
− 1)]

(−1
2p

2)−n+(n−1)D/2

which simplifies in D=4 to

VP = 2π
1

(n− 1)!(n− 2)!
(−1

2p
2)n−2

(Hint: (1
2p

2 − iε)r = (−1
2p

2)re−iπr.)

5. Bosonization

A common method in field theory is to consider simpler models where calculations

are easier, and see if they are analogous enough to give some insight. In particular,

two-dimensional models sometimes have perturbative features that are expected only

nonperturbatively in four dimensions: For example, we saw in subsection VIIB3

the generation of bound states at one loop in the 2D CP(n) model. Of course,

some of the features may be misleadingly simple, and may have no analog in D=4.

Two-dimensional theories, especially free, massless ones, are also useful to describe

the quantum mechanics of the worldsheet in string theory (see chapter XI). In this

subsection we consider free, massless 2D theories: Essentially, this means just the
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scalar and the spinor, since there are no transverse dimensions to give gauge fields

nontrivial components.

Spinor notation is very simple in D=2, since the Lorentz group is SO(1,1)=GL(1).

For that purpose it’s convenient to use lightcone notation. 2D γ matrices can be

chosen as

γ+ =
√

2
(

0
i

0
0

)
, γ− =

√
2
(

0
0
−i
0

)
, γ−1 =

(
1
0

0
−1

)
; Υ =

(
0
i
−i
0

)
= γ0

Ψ =

(
ψ⊕

ψ	

)
, Ψ̄ = ( iψ̄	 −iψ̄⊕ )

In general, even-D γ matrices can be constructed as direct products of D/2 sets of

2D γ matrices, so tr(I) = 2D/2. (For details, see subsection XC1.)

The Lagrangian for a massless, complex spinor can be written this way as

L = Ψ̄ i∂/Ψ = ψ̄⊕(−i∂		)ψ⊕ + ψ̄	(−i∂⊕⊕)ψ	

(This also follows from truncation of 4D spinor notation.) Note that ψ⊕ and ψ	

transform independently under proper Lorentz transformations, as do their real and

imaginary parts. Thus, we can not only impose a reality condition, but also a chirality

condition, dropping ψ⊕ or ψ	: A single real component is enough to not only define

a spinor Lorentz representation, but also construct an action.

Upon Wick rotation to Euclidean space, the lightcone coordinates become com-

plex conjugates of each other. These complex coordinates are convenient because they

are still null coordinates, and their derivatives occur separately in massless fermion

kinetic operators (and is just their product). For later application to string theory

it will prove convenient to avoid some
√

2’s, and define

z = x0 + ix1, z̄ = x0 − ix1

⇒ 1
2 = 2∂∂̄,

d2x

2π
= 1

2

dz dz̄

2πi
, δ2(x) = 2iδ(z)δ(z̄)

where ∂ ≡ ∂/∂z and ∂̄ ≡ ∂/∂z̄. (The sign for dz dz̄ depends as usual on order of

integration.)

The action for a real scalar is then

S =

∫
dz dz̄

2πi
L, L = 1

2φ(−∂∂̄)φ

For a chiral spinor we then use either of

L = ψ̄∂̄ψ or ψ̄∂ψ
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where the i from the usual energy operator −i∂0 has been absorbed into the normal-

ization of the fermions for later convenience. (Reality is funny anyway in Euclidean

space: ∂ vs. ∂̄; see section XIB.)

In Euclidean position space, the propagator for a massless scalar is (see exercise

VIIB1.1)

1

−1
2

2πδ2(x− x′) = −ln[(x− x′)2] = −ln[(z − z′)(z̄ − z̄′)]

up to a real, dimensionful constant: We use units µ = 1. The propagators for massless

spinors are then

1

∂̄
2πiδ(z − z′)δ(z̄ − z̄′) = ∂ ln[(z − z′)(z̄ − z̄′)] =

1

z − z′

1

∂
2πiδ(z − z′)δ(z̄ − z̄′) = ∂̄ ln[(z − z′)(z̄ − z̄′)] =

1

z̄ − z̄′
We then find

∂
1

z̄
= ∂̄

1

z
= 2πiδ(z)δ(z̄)

The apparent inconsistency of this result is resolved by noting the ε prescription

for the Euclidean spinor propagator: If we regularize

ln(zz̄) → ln(zz̄ + ε)

for any ε that is not 0 nor negative (i.e., is positive or complex), we find

1

z
→ 1

z + ε/z̄

and the wave equation for either propagator is satisfied, where the place of the δ

function is taken by

2πδ2(x) → 2ε

(x2 + ε)2

whose normalization is easily checked.

Exercise VIIB5.1

Show (e.g., by an infinitesimal Wick rotation) that the correct iε prescription

for the spinor propagator in Minkowski space is

−i
(x− x′)± − iεε(t− t′)

= θ(t− t′) −i
(x− x′)± − iε

+ θ(t′ − t) −i
(x− x′)± + iε

and that it satisfies the wave equation. (t− t′ can be replaced with (x− x′)∓

in the above.)



594 VII. LOOPS

As a simple example we consider the 2D phenomenon of “bosonization/fermioni-

zation”, that fermions and bosons can be converted into each other, even when they

are free. First we examine bosonic currents created from fermions: Taking the product

of 2 such currents inside the functional integral (as usual, time ordering is implicit),

J ≡ iψ̄ψ ⇒ J(z)J(z′) ≈ −
(

1

z − z′

)2

= ∂∂′[−ln(|z − z′|2)] ≈ J̃(z)J̃(z′), J̃ ≡ ∂φ

where “≈” means we look only at the most singular terms as z′ → z, from using all

these fields to generate propagators. From this we see that the fermionic current J =

iψ̄ψ (the i is from Wick rotation) has the same “propagator” as the bosonic current

J̃ = ∂φ (actually just the complete, chiral part of a boson). Thus, by integration we

can define a “chiral boson” in terms of fermions.

By being a little more tricky we can do the reverse, define the fermion in terms

of a boson. Unlike the previous procedure, this would seem to violate statistics, and

has no classical analog. We start by separating the scalar on shell into its “chiral”

and “antichiral” parts (which were left- and right-propagating in Minkowski space):

φ(z, z̄) = φ(z) + φ̄(z̄)

since ∂∂̄φ(z, z̄) = 0. (This can be accomplished by differentiating with respect to z or

z̄ and then integrating back. We use “φ” to represent either the full boson or its chiral

part, which should be unambiguous by context.) The chiral boson has propagator

(the chiral half of an ordinary boson’s) −ln(z − z′).

The inverse relation is (quantum mechanically, not classically)

ψ̄ = e−iφ, ψ = eiφ

Note that this implies φ is an angle; it’s periodic with period 2π. You might think

ψψ̄ = 1, but this product is singular, as we would expect if we are to get the correct

propagator. First, we find

φ(z)eiφ(z′) = : [φ(z)− i ln(z − z′)]eiφ(z′) :
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where this expression is exact, and we have used an explicit normal-ordering symbol

“: :” to indicate we have already evaluated all propagator terms, even though we still

have fields at different points. Similarly,

[φ(z)]neiφ(z′) = : [φ(z)− i ln(z − z′)]neiφ(z′) :

⇒ e−iφ(z)eiφ(z′) = : e−iφ(z)−ln(z−z′)eiφ(z′) : =
1

z − z′
: e−iφ(z)+iφ(z′) :

Taylor expanding both φ(z′) about z, and the exponential, we find in the short

distance limit

lim
z′→z

e−iφ(z)eiφ(z′) =
1

z − z′
− i∂φ(z)

The nonsingular, i.e., ψ-normal-ordered (not the same as φ-normal-ordered), term

agrees with the current defined above. Note that, in terms of 2D quantum field

theory, this calculation is a sum of diagrams to an arbitrary number of loops! Thus

ψ and φ are unrelated classically, and their quantum relation is another example of

duality: If we stick in the h̄ from the φ action as a factor in the φ propagator, the ψ

propagator looks like (z − z′)−h̄φ , whose expansion reproduces the powers of ln, and

which becomes 1 in the φ-classical limit.

Although this gives the appearance of a scalar being the bound state of spinors,

and vice versa, even in the free theory, there is a simpler interpretation, even clas-

sically: Massless particles in D=2 travel at the speed of light in one of two possible

directions. Thus, a collection of free “left-(or right-)handed” massless particles travels

along together, not separating, and thus acting like a bound state. (As shown in sub-

section VC8, singularities in perturbative quantum field theory directly correspond

to configurations in classical mechanics.)

A related calculation is for the energy-momentum tensor of the fermions, which

we’ll apply in section XIB to conformal transformations: By taking again the boso-

nized form of the point-split operator product above, and taking derivatives before

the short-distance limit, we find

lim
z′→z

1
2 [ψ̄(z)∂′ψ(z′)− ∂ψ̄(z)ψ(z′)] =

1

(z − z′)2
+ 1

2(∂φ)2

relating the tensors for bosons and fermions (after ψ-normal-ordering away the sin-

gular term).

Bosonization extends to massive fermions: The “massive Thirring model”

L = ψ̄⊕(−i∂		)ψ⊕ + ψ̄	(−i∂⊕⊕)ψ	 + m√
2
(ψ̄⊕ψ	 + ψ̄	ψ⊕) + gψ̄⊕ψ̄	ψ⊕ψ	
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(in Minkowski space) is equivalent to the “sine-Gordon model”

L = 1
β2 [1

4
(∂φ)2 + 1

2µ
2(1− cos φ)]

Since φ no longer satisfies a free equation, consider equal-time commutators. φ is still

an angle, but the canonical conjugate to φ is now π =
.
φ/2β2 (not just

.
φ/2), and the

chiral ∂φ gets replaced with π + φ′/2. (
.
φ and φ′ are the time and space derivatives.)

Then integrate this “∂φ” over space to get the analog (same equal-time propagators)

of the chiral φ. The relation between couplings is

1

β2
= 1 + 2g,

µ2

β2
∼ m

(Note in particular the free massive fermion for β = 1.) In this case the bound states

are dynamical. Note that the relation is between strong coupling in one theory and

weak in the other (“duality”).

6. Massive propagators

Another way to distinguish infrared divergences is by introducing masses (being

careful not to break any invariances, or restoring them in the massless limit). For

example, we again evaluate the one-loop propagator correction, without numerator

factors, but with different masses on the internal propagators. By the same steps as

before, the Feynman parameter integral is

Â2(p2,m2
1,m

2
2) =

∫
dk

1
1
2 [(k + 1

2p)
2 +m2

1]1
2 [(k − 1

2p)
2 +m2

2]

= Γ (2− D
2

)1
2

∫ 1

−1

dβ BD/2−2, B = 1
8
p2(1− β2) + 1

4
(m2

1 +m2
2) + 1

4
β(m2

1 −m2
2)

Now the β integral is harder for all D, but the masses eliminate the IR divergences

(and the UV divergences are already explicit in the Γ ), so we immediately expand

about D = 4− 2ε:

Â2 ≈ Γ (ε)1
2

∫ 1

−1

dβ (1− ε ln B)

We then use integration by parts∫ 1

−1

dβ ln B = (β ln B)|1−1 −
∫ 1

−1

dβ β
d

dβ
ln B

B = aβ2 + bβ + c = a(β − β+)(β − β−), β± =
−b±

√
b2 − 4ac

2a
=
m2

1 −m2
2 ± 2λ12

p2

⇒ β
d

dβ
ln B =

β

β − β+

+
β

β − β−
= 2 +

β+

β − β+

+
β−

β − β−



B. EXAMPLES 597

in terms of λ12(s) of subsection IA4 for s = −p2. Note that in Euclidean space

2λ12 =
√

(p2 +m2
1 −m2

2)2 + 4m2
2p

2 =
√

(p2 +m2
2 −m2

1)2 + 4m2
1p

2 ≥ p2 + |m2
1 −m2

2|

⇒ ±β± ≥ 1

where the strict inequality holds for both masses nonvanishing. The integrals then

take the simple form∫ 1

−1

dβ

(
β+

β − β+

+
β−

β − β−

)
= β+ln

(
β+ − 1

β+ + 1

)
+ β−ln

(
β− − 1

β− + 1

)
Putting it all together,

Â2 = Γ (1 + ε)

[
1

ε
− ln(1

2m1m2) + 2 + 1
2β+ln

(
β+ − 1

β+ + 1

)
+ 1

2β−ln

(
β− − 1

β− + 1

)]
(We can cancel the Γ (1 + ε) by nonminimal subtraction.) By analytic continuation

from Euclidean space, taking p2 from positive to negative along the real axis, we see

there is no ambiguity at p2 = 0 or −(m1 −m2)2, and Â2 remains real until we reach

p2 = −(m1 + m2)2, where it gets an imaginary part (whose sign is determined by

(m1 + m2)2 → (m1 + m2)2 − iε), corresponding to the possibility of real 2-particle

intermediate states.

Exercise VIIB6.1

Let’s consider some special cases:

a Show for equal masses m1 = m2 = m that this result simplifies to

Â2(p2,m2,m2) = Γ (1 + ε)

[
1

ε
− ln(1

2m
2) + 2 + β ln

(
β − 1

β + 1

)]

β =

√
p2 + 4m2

p2

b Consider the case with one internal particle massless, m1 = m, m2 = 0, and

find

Â2(p2,m2, 0) = Γ (1 + ε)

[
1

ε
− ln(1

2m
2) + 2− p2 +m2

p2
ln

(
p2 +m2

m2

)]
c Show both these results agree with the previously obtained massless result in

the limit m → 0. However, note that both these cases, unlike the massless

case, are IR convergent at p2 = −(m1 +m2)2.

Exercise VIIB6.2

Find the phase space for 2 massive particles, again using the optical theorem

(as in exercise VIIB4.3):
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a The calculation is easier if one takes the imaginary part before performing

the Feynman parameter integration: Show the result is then

VP = π
1

Γ (D
2
− 1)

∫ β−

β+

dβ (−B)D/2−2

In particular, show from the explicit parameter integral expression for the

propagator that the only cut is at −p2 ≥ (m1 + m2)2, as expected from the

optical theorem.

b Make the change of variables

α =
β − β+

β− − β+

to find the result

VP = 2π
Γ (D

2
− 1)

Γ (D − 2)
(−1

2p
2)1−D/2λD−3

12

which simplifies in D=4 to

VP = 2π
λ12

−1
2p

2

c Show this result (in all D) agrees with the result of the explicit phase space

integral of subsection VC7, using the expression for
∫
dD−2Ω from subsection

VIIA3. (Hint: Use the identity from exercise VIIA2.2b.)

d Show the massless case agrees with exercise VIIB4.3.

In subsection VIIA3 we considered the application of the MOM subtraction

scheme to propagator corrections. We assumed the propagator corrections were Tay-

lor expandable in the classical kinetic operator. From the above explicit expression

for the 1-loop correction in scalar theories, we see this is possible except near the

branch point at p2 = −(m1 + m2)2, i.e., when the external particle (whose propaga-

tor we’re correcting) has a mass equal to the sum of the internal ones. To analyze

this more carefully, let’s recalculate the propagator correction, performing the Taylor

expansion before evaluating the integrals. We consider the case with one vanishing

mass, m1 = m, m2 = 0, to generate an IR divergence. Assuming the external mass

is also m, we expand around the branch point in p2 + m2. The Feynman parameter

integral is then, to linear order in p2 +m2, in terms of α = 1
2(1 + β),

Â2(p2,m2, 0) = Γ (ε)

∫ 1

0

dα

[
1
2m

2α2

(
1 +

1− α
α

p2 +m2

m2

)]−ε
≈ Γ (1 + ε)(1

2m
2)−ε

∫ 1

0

dα

[
1

ε
α−2ε − (1− α)α−1−2εp

2 +m2

m2

]
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= Γ (1 + ε)(1
2m

2)−ε
[

1

ε

1

1− 2ε
−
(

1

−2ε
− 1

1− 2ε

)
p2 +m2

m2

]
≈ Γ (1 + ε)(1

2m
2)−ε

[(
1

εUV
+ 2

)
+ 1

2

(
1

εIR
+ 2

)
p2 +m2

m2

]
where we have distinguished the UV divergence (in the λ integral for ε ≤ 0) from the

IR one (in the α integral for ε ≥ 0). After including the (1
2µ

2)ε in the coupling, the

(1
2m

2)−ε converts each 1/ε into a 1/ε− ln(m2/µ2). (Of course, we can choose µ = m

for convenience.) Note that this infrared divergence was a consequence of trying to

Taylor expand about a branch point due to a massless particle.

Exercise VIIB6.3

Do MOM subtraction for external mass M = m1 +m2, with neither internal

mass vanishing, and show there is no divergence other than the UV divergence

of the minimal scheme.

Later, we will encounter propagator corrections in gauge theories with massive

internal lines, and with various numerators. Here, we examine these purely from the

point of view of the integrals. First, consider

Aa =

∫
dk

ka
1
2 [(k − 1

2p)
2 +m2

1]1
2 [(k + 1

2p)
2 +m2

2]

Since p is the only external momentum for a propagator, by Lorentz invariance we

have

Aa = pa
1

p2
p · A

so it is sufficient to evaluate the integral of p ·A. In analogy with the earlier massless

expression, we look at

1
1
2 [(k − 1

2p)
2 +m2

1]
− 1

1
2 [(k + 1

2p)
2 +m2

2]
=

k · p+ 1
2(m2

2 −m2
1)

1
2 [(k − 1

2p)
2 +m2

1]1
2 [(k + 1

2p)
2 +m2

2]

from which we find

Aa = pa
m2

1 −m2
2

2p2
[Â2(p2,m2

1,m
2
2)− Â2(0,m2

1,m
2
2)]

in terms of our result Â2 above for the integral without numerator.

As a more complicated (but important) example, we examine

Aab =

∫
dk

kakb
1
2 [(k + 1

2p)
2 +m2]1

2 [(k − 1
2p)

2 +m2]

Following our procedure of the previous example, we note∫
dk

(p · k)k
1
2 [(k + 1

2p)
2 +m2]1

2 [(k − 1
2p)

2 +m2]
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=

∫
dk

k
1
2 [(k − 1

2p)
2 +m2]

− k
1
2 [(k + 1

2p)
2 +m2]

=

∫
dk

k + 1
2p

1
2(k2 +m2)

−
k − 1

2p
1
2(k2 +m2)

= p

∫
dk

1
1
2(k2 +m2)

Thus transversality again determines the amplitude in terms of a scalar:

Âab =

∫
dk

kakb
1
2 [(k + 1

2p)
2 +m2]1

2 [(k − 1
2p)

2 +m2]
− ηab

1
2(k2 +m2)

= (ηabp
2 − papb)Ǎ(p2,m2)

(This amplitude actually will be more useful than Aab.) We also have the identity∫
dk

1
2(k2 +m2) + 1

8
p2

1
2 [(k + 1

2p)
2 +m2]1

2 [(k − 1
2p)

2 +m2]

= 1
2

∫
dk

1
1
2 [(k − 1

2p)
2 +m2]

+
1

1
2 [(k + 1

2p)
2 +m2]

=

∫
dk

1
1
2(k2 +m2)

Taking the trace of the previous expression,

(D − 1)p2Ǎ(p2) =

∫
dk

k2

1
2 [(k + 1

2p)
2 +m2]1

2 [(k − 1
2p)

2 +m2]
− D

1
2(k2 +m2)

= −(1
4
p2 +m2)

∫
dk

1
1
2 [(k + 1

2p)
2 +m2]1

2 [(k − 1
2p)

2 +m2]
− (D− 2)

∫
dk

1
1
2(k2 +m2)

= −(1
4
p2 +m2)Â2(p2,m2,m2)− (D − 2)A1(0,m2)

in terms of the φ3 propagator and tadpole graphs evaluated earlier. This result can

be reorganized if we make use of the p = 0 case:

0 = −m2Â2(0,m2,m2)− (D − 2)A1(0,m2)

(which also follows easily from the earlier explicit expression for Â1(a, 0,m2)). We

then find

Ǎ = − 1
4(D−1)

Â2(p2,m2,m2)− 1
D−1

m2 Â2(p2,m2,m2)− Â2(0,m2,m2)

p2

Exercise VIIB6.4

Check that these results are consistent in the massless limit with the expres-

sions obtained in the previous subsection, by relating the first two terms in

A2(x, p2) for arbitrary D.

Exercise VIIB6.5

Calculate the one-loop propagator corrections for Λ and A in the 2D CP(n)

model.
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7. Renormalization group

An interesting, useful, and simple application of the propagator correction is to

study the high-energy behavior of coupling constants. For example, we have seen that,

by a change in normalization of gauge fields A→ A/g, gauge couplings can be moved

from the covariant derivative to the kinetic term: ∇ = ∂+igA→ ∂+iA, L0 = 1
8
(∂A+

igAA)2 → 1
8g2

(∂A + iAA)2. Thus, quantum corrections to gauge couplings can be

found from just the propagator (kinetic-operator) correction. A simpler example is a

scalar field; a φ4 self-interaction has a dimensionless coupling in D=4, like Yang-Mills.

However, unlike Yang-Mills, this model has no cubic coupling, and thus no 1-loop

propagator correction. Furthermore, in Yang-Mills the one-loop propagator correction

contribution to the effective action gives a multiloop contribution to the propagator

itself, from the expansion of 1/(K +A). This corresponds to the graph consisting of

a long string of these corrections connected by free propagators. There is a 1-loop

4-point correction in φ4 theory, and this graph resembles a propagator correction,

but with two external lines at each vertex instead of one. Such corrections can also

be strung together, resembling the Yang-Mills string, but with no free propagators

inserted. Since all the intermediate states in this graph are 2-particle, it is 1PI, so the

effect of this string is not contained in just the 1-loop effective action, even though it

is an iteration of a 1-loop effect.

This difficulty can be avoided by introducing the φ4 interaction through an aux-

iliary field, just as it appears in supersymmetric theories (see subsection IVC2):

L = 1
2φ(−1

2 + χ)φ− 1
2g
χ2

where we have neglected the mass term since we will be concentrating on the high-

energy behavior. Here the coupling is introduced through the auxiliary-field “kinetic”

term. The diagrams just discussed now appear through the 1-loop correction to the

auxiliary-field propagator: Since its free propagator is just a constant, it can be

contracted to a point in these multiloop diagrams. The definition of 1PI graphs

has now changed, since we can now cut auxiliary-field propagators, which would not

exist in the usual φ4 form of the action. This modification of the effective action

simplifies the analysis of quantum corrections to the coupling, as well as making it

more analogous to gauge theories. Note in particular the change in interpretation
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already at the tree level: We have used the conventional normalization of 1/n! for

factors of φn in the potential, since canceling factors of n! arise upon functional

differentiation. However, the result of eliminating χ from the classical action produces
1
8
φ4 instead of 1

24
φ4. The reason is that in the diagrams with χ there are 3 graphs

contributing to the 4-φ-point tree, corresponding to χ propagators in the s, t, and u

“channels”. (See subsection VC4.) Although this is a trivial distinction for the trees,

this is not the case for the loops, where the propagator string consists of pairs of φ

particles running in one of these three channels.

The contribution to the 1-loop effective action for χ is then given by the above

calculations, after including the factors of 1/2 for symmetries of the internal and

external lines, and the usual −1 for the effective action:

L′ = −1
4
χ
[
Γ (ε)B(1− ε, 1− ε)(−1

2 )−ε
]
χ

where as usual ε = 2 − D/2. Expressing the Beta function in terms of the Gamma

function, and expanding as in previous subsections,

Γ (ε)B(1− ε, 1− ε)(−1
2 )−ε ≈ 1

ε
+ [−γ + 2− ln(−1

2 )]

Renormalizing away the constant pieces, we find for the classical action plus this part

of the 1-loop effective action

L+L′ = 1
2φ(−1

2 + χ)φ− 1
2χ
[

1
g
− 1

2 ln
(
−
µ2

)]
χ = 1

2φ(−1
2 + χ)φ+ 1

4
χ ln

(
−
M2

)
χ

where the renormalization group invariant mass scale M is given by

M2 = µ2e2/g

Thus, the constant coupling 1/g has been replaced by an effective “running coupling”

−1
2 ln(p2/M2), with energy dependence set by the scale M . (This is sometimes called

the “renormalization group”, the group being related to scale invariance, which is

broken by the introduction of the mass scale M .)

We saw the same dimensional transmutation occuring in the effective potential

in massless theories in subsection VIIB3. The form is similar because both are re-

lated to the appearance of the renormalization mass scale µ from the breaking of

scale invariance by quantum corrections, at either low or high energy: In both cases

dimensional transmutation comes from a finite ln µ2 term arising from the infinite

renormalization. The difference is that in the effective potential case we ignore higher

derivatives, so the µ2 must appear in a ratio to scalar fields, while in the high energy
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case we look at just the propagator correction, so it appears in the combination µ2/p2.

(More complicated combinations will appear in more general amplitudes.)

Exercise VIIB7.1

The analysis made for this model is actually a bit of a cheat, since each loop

in φ can be written equally well with χ running in the s, t, or u direction.

We can make this distinction more precise by generalizing to include inter-

nal symmetry, making the diagrams used above (all χ’s in the same channel)

larger by powers of symmetry factors. Write an analog to the scalar ana-

log to QCD discussed in subsection VC9, where the “quark” φ now carries

color and flavor indices, while the “gluon” χ (classically auxiliary) carries just

color. Find M , especially its dependence on the numbers n of colors and m

of flavors. Write the same model with the gluons replaced by “mesons” car-

rying just flavor indices (so that classical elimination of the auxiliary fields

yields the same action), and repeat the calculation. What are the different

approximation schemes relevant to the two approaches?

8. Overlapping divergences

We now perform some 2-loop renormalizations. Our first example is part of the

propagator correction in φ4 theory. By restricting ourselves to the mass renormal-

ization (coefficient of the mass term), we need evaluate the graph only at vanishing

external momentum. (It is then equivalent to a vacuum bubble in φ3 theory, or a

tadpole graph in the mixed theory.) Furthermore, we consider the case where some of

the fields are massless. In such a theory, we encounter (a special case of) the 2-loop

graph of subsection VIIB1, where 1 propagator is massless and 2 are massive. Ex-

panding in ε, and keeping only the divergent terms (1/ε2 and 1/ε), we find (including

a symmetry factor of 1/2 for the 2 massive scalar lines for real scalars)

T2 = 1
2

Γ (3−D)

(1
2m

2)3−DB(2− D
2
, 2− D

2
)B(1, D

2
− 1) = −

(1
2m

2)1−2ε

2(1− ε)(1− 2ε)
[Γ (ε)]2

≈ 1
4
m2[Γ (ε)]2[−1− 3ε+ 2ε ln(1

2m
2)]
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To this we need to add the counterterm graph, coming from inserting into the

1-loop massive tadpole T1 (with 2 external lines) the counterterm ∆4 (for renormaliz-

ing the φ4 term) from the 1-loop divergence in the 4-point graph with 1 massive and

1 massless propagator. (Since the massless tadpole vanishes in dimensional regular-

ization, we need not consider the counterterm from the 4-point graph with 2 massive

propagators.) From section VIIB6, we use the corresponding integral for a 1-loop

propagator correction A, which is

A = Γ (ε) + finite ⇒ ∆4 = −Γ (ε)

We use a “modified minimal subtraction”, using the Γ (ε) as the subtraction instead

of just the 1/ε part of Γ (ε) ≈ 1/ε− γ.

The 1-loop massive tadpole without coupling is

T1 =
Γ (1− D

2
)

(1
2m

2)1−D
2

= −
(1

2m
2)1−ε

1− ε
Γ (ε) ≈ −1

2m
2Γ (ε)[1 + ε− ε ln(1

2m
2)]

Combining these results, the divergent part of the 2-loop propagator correction,

with 1-loop coupling counterterm contributions included, is

T2 +∆4T1 = 1
4
m2[Γ (ε)]2[−1− 3ε+ 2ε ln(1

2m
2) + 2 + 2ε− 2ε ln(1

2m
2)]

= [Γ (ε)]2(1− ε)1
4
m2

Thus, the ln m2 divergences cancel, as expected. (Divergences must be polynomial in

masses as well as couplings.) The surviving divergence is the superficial divergence,

to be canceled by the 2-loop mass counterterm.

Exercise VIIB8.1

Calculate the p2 part of the 2-loop kinetic counterterm by writing the above

2-loop propagator graph with nonvanishing external momentum, introducing

the Schwinger parameters, doing the loop-momentum integration, taking the

derivative with respect to p2, and then evaluating at p = 0. Why is there no

subdivergence (1/ε2)?
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Exercise VIIB8.2

Calculate the complete (all graphs, infinite and finite parts of the) 2-loop

propagator correction for massless φ4. (See exercise VIIB4.3a.)

For our next example we consider massless φ3 theory, and work in 6 dimensions,

where the theory is renormalizable (instead of superrenormalizable, as in 4 dimen-

sions). For the 2-loop propagator correction, there are only two graphs (plus 1-loop

graphs with 1-loop counterterm insertions), one of which is simply a 1-loop propagator

graph inserted into another.

The other graph is

P =

∫
dk dq

1
1
2(k + q)2 1

2(k + 1
2p)

2 1
2(k − 1

2p)
2 1

2(q + 1
2p)

2 1
2(q − 1

2p)
2

(with a symmetry factor of 1
2 for real scalars). This graph can be rewritten as iterated

propagator corrections by use of integration by parts in momentum space. This is

legalized by dimensional regularization, since boundary terms vanish in low enough

dimensions. All invariants can be expressed as linear combinations of the propagator

denominators (there are 5 of each, not counting the square of the external momentum

p2), so any product of momentum times derivative acting on the integrand will give

terms killing one denominator and squaring another, except for p2 terms, which can

be canceled by appropriate choice of the momentum multiplying the derivative:∫
dk dq

∂

∂k
· k + q

1
2(k + q)2 1

2(k + 1
2p)

2 1
2(k − 1

2p)
2 1

2(q + 1
2p)

2 1
2(q − 1

2p)
2

= 0

This operation effectively gives the factor

∂

∂k
· (k + q)→ (D − 4) +

(q − 1
2p)

2

(k + 1
2p)

2
+

(q + 1
2p)

2

(k − 1
2p)

2
− (k + q)2

(k + 1
2p)

2
− (k + q)2

(k − 1
2p)

2

We thus have

(D
2
− 2)P = P1 − P2
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P1 =

∫
dk

1

[1
2(k + 1

2p)
2]2 1

2(k − 1
2p)

2

∫
dq

1
1
2(q + 1

2p)
2 1

2(q − 1
2p)

2

P2 =

∫
dk

1

[1
2(k + 1

2p)
2]2 1

2(k − 1
2p)

2

∫
dq

1
1
2(k + q)2 1

2(q + 1
2p)

2

The former term is the product of two 1-loop propagator graphs, the latter is the

insertion of one 1-loop propagator graph into another.

Both graphs can be evaluated by repeated application of the generalized massless

one-loop propagator correction (with arbitrary powers of free propagators) given at

the end of subsection VIIB4. The result can be expressed as

P1 = −(D − 3)
(P0)2

1
2p

2

P2 = cP1, c =
[Γ (D − 3)]2Γ (5−D)

[Γ (3− D
2

)]2Γ (3D
2
− 5)Γ (D

2
− 1)

in terms of the 1-loop propagator correction P0. We therefore modify our minimal

subtraction so that P0 has the simplest form (G scheme):

P0 = −1
6

1
ε
(1

2p
2)1−ε

where D = 6 − 2ε, and we calculated the coefficient of the 1/ε term and threw in a

normalization factor that canceled the rest:

h̄→ N h̄

N =
1

3(D − 6)Γ (2− D
2

)B(D
2
− 1, D

2
− 1)

= (1− 2
3
ε)(1− 2ε)

Γ (1− 2ε)

Γ (1 + ε)[Γ (1− ε)]2

Further evaluating c, we find

c = −1
3
ε

1− 2ε

(1− 3
2
ε)(1− 3ε)

[Γ (1− 2ε)]2Γ (1 + 2ε)

[Γ (1 + ε)]2Γ (1− 3ε)Γ (1− ε)

Using the expansion of ln Γ (1 − z) in terms of γ and ζ(n), it is easily checked that

this combination of Γ ’s is 1+O(ε3), so we can just drop them. Collecting our results,

we have

P =
1− c
D
2
− 2
P1 = − 1

36
1
ε2

3− 2ε

1− ε

[
1 + 1

3
ε

1− 2ε

(1− 3
2
ε)(1− 3ε)

]
(1

2p
2)1−2ε

Exercise VIIB8.3

Calculate the same graph in four dimensions. It’s finite there, so no countert-

erms are necessary. However, in this case integration by parts gives a factor

of 1/ε, and each of the two resulting graphs has an additional factor of 1/ε2.
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The result then has a factor of 1 minus the previously obtained combination

of Γ ’s, which we already saw was of order ε3. The final result is thus obvious

except for a factor of a rational number:

6ζ(3)
1

1
2p

2

(The on-shell infrared divergence is as expected from power counting.)

We next calculate the counterterm graphs. These are the ones that cancel the

subdivergences coming from the 1-loop 3-point subgraphs. We therefore need the

divergent part of this subgraph. This is easy to evaluate by our previous methods:

The result of Schwinger parametrization, scaling, etc., doing all integration exactly

except over the Feynman parameters is∫
dq

1
1
2q

2 1
2(q + k + 1

2p)
2 1

2(q + k − 1
2p)

2

=

∫ 1

0

d3α δ(1−
∑

α)Γ (3− D
2

)[1
2α+(1− α+)(k + 1

2p)
2 + 1

2α−(1− α−)(k− 1
2p)

2]D/2−3

= 1
2

1
ε

+ finite

by simply replacing the factor in brackets by 1 (since it is raised to the −ε power),

where we have used∫ 1

0

d3α δ(1−
∑

α) =

∫ 1

0

dα+

∫ 1−α+

0

dα− = 1
2

Since we know the divergence is momentum-independent, we can obtain the same

result from a (infrared regularized) tadpole graph with its propagator raised to the

third power: In the notation of subsection VIIB1,

1

Γ (3)
Â1(3, 0,m2) =

Γ (3− D
2

)

Γ (3)
(1

2m
2)D/2−3 = 1

2
1
ε

+ finite

The contribution of the 2 counterterm graphs (or one for the effective action if we

drop the symmetry factor) is thus

2∆3P0 = 2(−1
2

1
ε
)P0

Collecting terms, we have

P + 2∆3P0 = − 1
12

1
ε2

1− 2
3
ε

1− ε

[
1 + 1

3
ε

1− 2ε

(1− 3
2
ε)(1− 3ε)

]
(1

2p
2)1−2ε + 1

6
1
ε2

(1
2p

2)1−ε

After a little algebra, dropping terms that vanish as ε→ 0, we find

P + 2∆3P0 = (1
2p

2)[ 1
12

1
ε2
− 1

18
1
ε
− 1

12
(ln 1

2p
2)2 + 1

9
ln 1

2p
2 − 23

216
]
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Note that modifying minimal subtraction is equivalent to redefining 1
2µ

2, which

we have set to 1, but which appears only in the ln’s, as ln(1
2p

2)→ ln(p2/µ2). Thus,

modifyingN , which appears only in the combinationN (1
2p

2)−ε, is the same as shifting

ln 1
2p

2:

N → N eεa ⇒ ln 1
2p

2 → ln 1
2p

2 − a

For example, choosing a = −2
3
,

P + 2∆3P0 → (1
2p

2)[ 1
12

1
ε2
− 1

18
1
ε
− 1

12
(ln 1

2p
2)2 − 5

72
]

Only the O(ε) part of the normalization factor affects the final result: More generally,

(1
2p

2)ε → N (1
2p

2)−ε ⇒ ln 1
2p

2 → ln 1
2p

2 − 1
ε
ln N

Since after adding counterterms, which cancel nonlocal divergences arising from subdi-

vergences, ln’s appear only in finite terms, only the O(ε) part of ln N will contribute.

Thus, we can approximate any normalization factor as

N ≈ eεa, a = γ + rational

as far as the renormalized results are concerned. (The γ identifies this normalization

as modified minimal subtraction, as the MS or G schemes.) This is just the statement

of the renormalization group, that the final result in minimal subtraction schemes

depends only on the choice of scale: The complete normalization factor is really

Ntotal = N (1
2µ

2)ε ⇒ ln 1
2µ

2 → ln 1
2µ

2 + 1
ε
ln N

However, the higher-order terms can be convenient for intermediate stages of the

calculation. In this particular case, the nonlocal divergences appearing before cancel-

lation are of the form (1/ε)ln p2, so the O(ε2) part of N contributes at intermediate

stages. For example, replacing the original N with

N ′ = (1− 2
3
ε)(1− 2ε)Γ (1− ε)

would have given the same result even before cancellation, since the change is by

another combination of Γ ’s that give 1 +O(ε3).

Exercise VIIB8.4

Complete the 6D calculation of the exact 2-loop propagator correction in

φ3 theory, including the missing graph and counterterms, to find the total

renormalized 2-loop propagator and its 2-loop counterterms.



B. EXAMPLES 609

REFERENCES

1 Goldstone, Salam, and Weinberg, loc. cit. (IVA);
Jona-Lasinio, loc. cit. (VC):
effective potential.

2 S. Coleman and E. Weinberg, Phys. Rev. D7 (1973) 1888.
3 A. D’Adda, M. Lüscher, and P. Di Vecchia, Nucl. Phys. B146 (1978) 63;

E. Witten, Nucl. Phys. B149 (1979) 285:
quantum CP(n).

4 P. Jordan, Z. Phys. 93 (1935) 464;
M. Born and N.S. Nagendra Nath, Proc. Ind. Acad. Sci. 3 (1936) 318;
A. Sokolow, Phys. Z. Sowj. 12 (1937) 148;
S. Tomonaga, Prog. Theo. Phys. 5 (1950) 544:
early attempts at bosonization.

5 W. Thirring, Ann. Phys. 3 (1958) 91.
6 T.H.R. Skyrme, Proc. Roy. Soc. A262 (1961) 237;

D. Mattis and E. Lieb, J. Math. Phys. 6 (1965) 304;
B. Klaiber, The Thirring model, in Lectures in theoretical physics, eds. A.O. Barut and
W.E. Brittin (Gordon and Breach, 1968) v. X-A, p. 141;
R.F. Streater and I.F. Wilde, Nucl. Phys. B24 (1970) 561;
J. Lowenstein and J. Swieca, Ann. Phys. 68 (1971) 172;
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So far we have only assumed that confinement arises nonperturbatively in 4D

QCD. However, to connect with known, successful results of perturbation theory, we

need to understand how the same methods used to give these perturbative results

can be generalized to include the nonperturbative ones. The simplest method would

be to take the perturbation expansion as is, and find a good method for evaluating

(or perhaps redefining) its sum, with the hope that summation to all orders by itself

would reveal features invisible at finite orders.

Besides the technical difficulties associated with such an approach, the main prob-

lem is that the summation of the perturbation expansion does not converge. Parts of

this problem can be solved by appropriate redefinitions, but other parts indicate a se-

rious problem with perturbation theory, caused by the very renormalization that was

supposed to solve the main problem of finite-order perturbation theory (infinities).

1. Improved perturbation

We saw in the previous section that dimensional transmutation replaced the di-

mensionless coupling constant with a mass scale. In principle, we would like to

explicitly make this replacement as the basis of our perturbation expansion, not

only to make the perturbative parameter physical, but also to take into account

the running of the original coupling. Unfortunately, this is not possible in practice;

however, we can choose the arbitrary (unphysical) renormalization scale µ to be in

the range of energies in the problem at hand, so that the ln(p2/µ2) corrections are

small. A change in scale from one value of µ to another is related to a resummation

of graphs: Although the one-loop term in the effective action containing ln(p2/µ2)

comes from a single 1PI amplitude, it contributes an infinite number of terms at dif-

ferent loop orders to the propagator when inserted into any higher-loop 1PI graph,

as 1/(K +A) = 1/K − (1/K)A(1/K) + ... . Although K +A depends only on M , K

depends only on g and A depends only on µ. Thus, any redefinition of µ that leaves

the physical quantity M unchanged requires a corresponding redefinition of g:

M2 = µ2e−1/g2 ⇒ g2(µ2) =
1

ln
(
µ2

M2

)
and thus changing µ redistributes the contributions to 1/(K + A) (and therefore to

the summation of graphs in any amplitude) over the different loop orders. For exam-

ple, if the amplitude is most sensitive to the momentum in a particular propagator

(independent of loop momenta), and we choose µ2 ≈ p2, then although we can’t use
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the resummed perturbation expansion directly, we can at least push most of it into

the lower orders.

Things get more complicated at higher loops: It becomes difficult to associate

the running of the coupling with the resummation of a particular subset of all the

graphs. However, we already know that this effect can be derived from the breaking

of scale invariance by renormalization. For example, let’s consider Yang-Mills theory,

since gauge invariance restricts it to have only a single coupling parameter. (This

makes it the simplest case conceptually, although not computationally. Here we use

only the fact that it has a single coupling; its explicit renormalization constants won’t

be considered until chapter VIII. As an alternative, we can consider the scalar QCD

analog of subsections VC9 and VIIB7, a φ4 theory with an auxiliary field, if we ignore

mass renormalization, or arbitrarily renormalize the mass to zero.) For convenience

of dimensional analysis, we use only coupling constants that are dimensionless in all

dimensions, by scaling with an appropriate power of µ. (In general, we can do this

even for masses.) The classical Yang-Mills action, before and after the addition of

counterterms, is then

Sclass =
1

g2(1
2µ

2)ε

∫
dx tr 1

8
F 2, Sclass +∆S =

1

ĝ2

∫
dx tr 1

8
F 2

where
1

ĝ2
=

1

(1
2µ

2)ε

[
1

g2
+
∞∑
n=1

1

εn
cn(g2)

]
, cn(g2) =

∞∑
L=n

(g2)L−1cnL

for some numerical constants cnL. (We can also include h̄’s as g2 → g2h̄.) Here we

consider ĝ(M, ε) and g(µ,M, ε): ĝ’s independence from µ is the statement that the

physics is independent of the choice of µ. We use 1
2µ

2 to produce the combination

(1
2p

2/1
2µ

2)−ε in graphs. (In practice, one uses units 1
2µ

2 = 1 until the end of the

calculation, and restores units.) The µ dependence is then given by varying µ for

fixed ĝ:

µ2 ∂

∂µ2
g2 ≡ −εg2 − β(g2), µ2 ∂

∂µ2
ĝ2 ≡ 0

where the εg2 term is the classical contribution. β is independent of ε (except in-

directly through g2): By definition, g is finite for all D and µ, so β has no 1/ε

divergences. Also, β can have no positive powers of ε, since that would create such

contributions in the derivative of ĝ that could not be canceled at any finite order in

the loop expansion. (To see this, look at the equation order-by-order in g2; it then

follows inductively.) We then find

0 = µ2εµ2 ∂

∂µ2

1

ĝ2
⇒ β = g4 ∂

∂g2
(g2c1),

∂

∂g2
(g2cn+1) = −β ∂

∂g2
cn
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Thus, the coefficients of the 1/ε terms determine those of both the higher order terms

and β.

This gives us an expression for β,

β =
∞∑
L=1

(g2)L+1βL, βL = Lc1L

Since g2 is itself unphysical, the information we can get from analyzing the running

of this coupling is arbitrary up to redefinitions. For example, assume that all βL are

nonvanishing, and write the definition of β as (in D = 4→ ε = 0)

µ2 ∂

∂µ2

1

g2
= f =

1

g4
β =

∞∑
L=0

(g2)LβL+1

Then under a redefinition g2 → g2(g′2) we have

µ2 ∂

∂µ2

1

g′2
=

(
∂(1/g2)

∂(1/g′2)

)−1

f(g2(g′2)) ≡ f ′(g′2)

Now we consider a “perturbative” type of redefinition, as results from changing renor-

malization prescriptions, so g2 gets only “O(h̄)” corrections: Taylor expanding

g2 = g′2 + k1g
′4 + k2g

′6 +O(g′8)

⇒ 1

g2
=

1

g′2
+ constant+O(g′2)

we find
∂(1/g2)

∂(1/g′2)
= 1 +O(g′4), f(g2(g′2)) = f(g′2) +O(g′4)

⇒ f ′(g′2) = f(g′2) +O(g′4)

Thus, the first two coefficients of β (β1 and β2) are unaffected, while terms found at 3

loops and beyond can be modified arbitrarily, and even be set to vanish. In the more

general case of more than 1 coupling, it is sometimes possible to eliminate also some

of the 2-loop contributions.

Therefore, to consider the general behavior of the coupling as a function of energy

(µ2), it is sufficient to solve the equation

µ2 ∂

∂µ2
g2 = −β1g

4 − β2g
6

(using, e.g., the change of variables t = ln µ2 and u = 1/β1g
2) as

µ2

M2
= e1/β1g2

(
1

g2
+
β2

β1

)−β2/β2
1
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with M2 as the constant of integration. Using an allowed type of redefinition for g2,

and also redefining the arbitrary constant of integration M2, we can simplify this to

1

g2
→ 1

g2
− β2

β1

, M2 →M2eβ2/β
2
1

⇒ β =
β1g

4

1− β2
β1
g2
,

µ2

M2
= e1/β1g2(g2)β2/β

2
1

(This redefinition changes the range of what g2 is called negative and what positive.

However, g2 is just a parameter, not a physical coupling: As far as the unitarity of

the kinetic term is concerned, only the residues near the poles of the propagator are

relevant. Also, our allowed class of redefinitions does not affect behavior for small g2,

and thus perturbation theory.)

Exercise VIIC1.1

Let’s analyze this solution in more detail:

a Graph the function y(x) = eaxxb (or graph ln y to make it simpler) for a

and b positive, negative, and vanishing, to study the behavior of the function

µ2(g2). The analysis can be simplified (and the behavior for different values of

a and b related) by considering g2 positive and negative, and the symmetries

a→ −a, x→ −x, y → (−1)by

b→ −b, x→ −x, y → (−1)b
1

y

Note that g2 can be nonpositive for some values of µ2: For example, even for

β2 = 0, we have g2 = 1/β1ln(µ2/M2), which is negative for µ < M or for

µ > M . What happens for β2 6= 0?

b After applying the above redefinition, apply the second redefinition

1

g
→ 1

g
+
β2

β1

g

Find the new β and µ2(g2). Compare to the behavior of µ2(g2) before this

redefinition, for the cases β2/β1 < 0, noting the “duality” symmetry g ↔
(−β1/β2)/g.

Exercise VIIC1.2

Consider some theory with a single dimensionless coupling g2, but now also

a single mass m. By the above methods we find

µ2∂

∂µ2
m2 = m2[−1− βm(g2)]
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(The m dependence follows from dimensional analysis.) Solve for m2 as a

function of g2, as an integral over g2 in terms of β and βm. Show that after

an appropriate redefinition

µ2∂

∂µ2
m2 = m2(−1− βm1g

2)

for some constant βm1. Solve for m2 explicitly in terms of g2, when we have

also redefined β to β1g
4 + β2g

6. Then make the final redefinition 1/g2 →
1/g2 − β2/β1 used to simplify M2.

For purposes of perturbation theory, it is useful to invert this: For small g2, we

have approximately
1

g2
≈ β1ln

µ2

M2
+
β2

β1

ln

(
β1ln

µ2

M2

)
This implies that the terms in the effective action that carry the M dependence are

given by

ΓM ≈ tr

∫
dx 1

8
F

[
β1ln
−
M2

+
β2

β1

ln

(
β1ln
−
M2

)]
F

(We can also replace − → in this limit, ignoring iπ’s in comparison to ln’s.)

The general class of coupling redefinitions we considered are allowed by pertur-

bation theory: If we knew the exact solution to a field theory, we would be more

restrictive, requiring invertibility. However, in perturbation theory, given two renor-

malization prescriptions related by some such coupling redefinition, we might know

this redefinition only perturbatively, and perhaps only to a few orders. Even if we

knew it exactly, and knew it to be noninvertible, it still might not be clear which of

the two prescriptions were the correct one, if either. Therefore, the renormalization

group alone is sufficient to draw conclusions about the behavior of a theory only at

“small” (� 1) coupling.

Similar remarks apply to propagators, S-matrix elements, etc. Consider any renor-

malized function Gn appearing as the coefficient of n fields in a term in the effective

action. The renormalization of the unrenormalized Ĝn is taken care of by the com-

bination of the use of ĝ for the coupling and wave-function renormalization factors

Z:

Gn(g2, µ2) = Z−n(ĝ2(1
2µ

2)−ε, ε)Ĝn(ĝ2, ε),
µ2d

dµ2
Ĝ = 0

⇒
(
µ2∂

∂µ2
+ β

∂

∂g2
+ nγ

)
G = 0, γ =

µ2∂

∂µ2
ln Z

(Z is not required for pure Yang-Mills in the background gauge; or we can examine

ratios of such quantities where the Z’s cancel, which are more physical, such as S-

matrix elements.)
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Unfortunately, this behavior of the theory at high energy leads to problems upon

resummation of the perturbation expansion. The basic idea of dimensional trans-

mutation is that the effective action will depend on g and µ only through M . For

example, in a theory with β1 > 0 (“asymptotically free”), at high energies propaga-

tors (which are where this effect shows up) will depend on momentum as a function

of only p2/M2. More specifically, if we restrict ourselves to just the 1-loop contribu-

tion to the β function for simplicity, which will appear in the effective action as a

logarithmic correction, propagators will depend on

β1ln

(
p2

M2

)
=

1

g2
+ β1ln

(
p2

µ2

)
(In fact, at one loop in pure Yang-Mills, this is the exact modification of the kinetic

term.) We now consider analytic continuation of the propagators in this argument: If

we continue in p2, we know we must find the usual cuts from multiparticle intermediate

states, at negative p2, extending to p2 = −∞. But since the propagators depend on

g2 and p2 only through this combination, we must find the same result if we keep p2

fixed and analytically continue instead in g2: The cuts in g2 are thus located at

1

g2
= real + β1(2n+ 1)πi

for arbitrary integer n, where “real” means starting at some real value and running

to +∞. If we plot these in the complex g2 plane, we can recognize this equation as

describing circular arcs running through the origin, with centers on the imaginary

axis:

|z − ir|2 = r2 ⇔ 1

z
− 1

z*
=

1

ir
These arcs approach the origin from the positive side (but from either the upper or

lower plane), with radii 1/β1(2n + 1)2π. Normally one would like a small region of

analyticity about the origin for the perturbation expansion to converge (the nearest

singularity giving the radius of convergence). Barring that, a wedge of small angle

about the real axis will do (for a “Borel sum”: see subsection VIIC3). In this case,

any of these arcs prevent even that. In the following subsections we will examine and

interpret the causes and effects of this behavior.

2. Renormalons

The perturbation expansion in general can’t be resummed in the naive way be-

cause the number of diagrams increases as n!(constant)n at n loops. The simplest

example of this is a self-interacting scalar in D=0:

Z =

∫ ∞
−∞

dφ√
2π
e−

1
2φ

2−1
4
g2φ4 =

∞∑
n=0

g2nZn
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Note that Z = 1 for g2 = 0, and Z < 1 for g2 > 0, but Z = ∞ for g2 < 0. That’s

why the perturbation expansion doesn’t converge. It also suggests that for any fixed

g2 the expansion will start to diverge when n is of the order of 1/g2.

Exercise VIIC2.1

As a related example, consider an integral than can be evaluated in terms of

elementary functions,

〈|φ|〉 =

∫
dφ |φ|e−

1
2φ

2−1
4
g2φ4

(Alternatively, this could just be Z with a modified integration measure.)

Then allow φ2 to be either positive or negative, to obtain an
∫∞
−∞ du for

u ≡ 1
2φ

2.

a Discuss convergence for different signs of g2.

b Evaluate the integral explicitly. Expand the result in a Taylor’s expansion

to all orders by taking derivatives with respect to g2 and evaluating them at

g2 = 0. Discuss convergence of this sum.

c Relate this result to the corresponding (strong-coupling) expansion with re-

spect to 1/g2.

Since there is no momentum integration, each diagram is just 1 (times some

permutation factors), so Zn just counts the number of diagrams at n loops. This

integral can be evaluated exactly at any order of perturbation theory:

Zn =

∫ ∞
−∞

dφ√
2π

1
n!

(−1
4
φ4)ne−

1
2φ

2

= 1
n!

(−1)n 1√
π
Γ (2n+ 1

2) ≈ 1√
2π

(n− 1)!(−4)n

where we have used the Stirling approximation for Γ (z) at large z.

Exercise VIIC2.2

Find the following properties of the Γ function for large argument:

a Derive the Stirling approximation

lim
z→∞

Γ (z) ≈
√

2π

z

(z
e

)z
by applying the method of steepest descent to the integral definition of

Γ (z + 1). (See subsections VA2 and VA5.)

b Use this approximation, and limz→∞(1 + 1
z
)z = e, to show

lim
z→∞

Γ (az + b) ≈
√

2π(az)az+b−1/2e−az



618 VII. LOOPS

We use g2 so the coupling is similar to that in Yang-Mills: As usual, we can

rescale φ→ φ/g to recognize g2 as h̄:

φ′ = gφ ⇒ 1
2φ

2 + 1
4
g2φ4 = 1

g2
(1

2φ
′2 + 1

4
φ′4)

(Of course, we can be more explicit by writing h̄g2 in place of just g2 or h̄, but the

effect is identical, since they both appear only in that combination.)

Thus we might as well apply the steepest descent approximation directly to the

original integral: Using also an integral for h̄ (= g2 in this case),

Zn =

∮
dh̄

2πih̄n+1

∫
d

(
φ√
h̄

)
e−S/h̄

we first apply steepest descent to the φ integral, yielding the usual first two terms in

the JWKB expansion. Then the h̄ integral can be approximated as Γ (n) by keeping

only the part of the contour on the positive real axis:∮
dh̄

2πih̄n+1 e
−S/h̄

∣∣∣∣
dS/dφ=0

≈ 1

2πi
Γ (n)

(
1

S

)n∣∣∣∣
dS/dφ=0

⇒ Zn ≈
∑

dS/dφ=0
S 6=0

1

2πi

[
det

(
d2S

dφ2

)]−1/2

(n− 1)!

(
1

S

)n

(S = 0 solutions contribute only to Z0. A similar result can be obtained by simul-

taneously using steepest descent for the h̄ integral, yielding a “classical value” of h̄

in terms of S.) This approximation is the same poor approximation as that used for

the perturbation expansion: ignoring negative g2. In fact e−S/h̄ is not Taylor expand-

able, and the coefficients in its Taylor expansion (from doing the integral exactly)

all vanish! (Actually, in this case, doing the perturbation expansion after the JWKB

expansion, all the coefficients are infinite, because to get classical solutions we needed

complex φ, which makes S negative.) In the present case, the nontrivial classical

solutions are

S = 1
2φ

2 + 1
4
φ4 ⇒ φ = ±i

which gives the same Zn as previously (being careful to sum the two terms for the

two solutions). Thus, we see that in general we have to sum
∑∞

n=0 n!(h̄/S)n, which

does not converge. Furthermore, this divergence is associated with finite-action (“in-

stanton”) solutions to the classical equations of motion.

The simplest example of a “renormalon” problem is the one-loop propagator cor-

rection. We have seen that the classical and one-loop kinetic terms can be combined

to give a kinetic operator of the form β1K(p2)ln(−p2/M2) in massless theories, or
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at high energy in massive theories, where K is the classical kinetic operator. The

free (or asymptotic) theory has solutions where this kinetic operator has a zero (the

propagator blows up). Besides the classical solution at K(p2) = 0, there is another

at p2 = −M2:

1

β1K(p2) ln
(
− p2

M2

) =
1

β1K(p2) ln
(

1− p2+M2

M2

) ≈ − M2

β1K(−M2)
× 1

p2 +M2

This might be expected to be a bound state, called a “renormalon” because of its

relation to the renormalization group. However, the residue of this pole in the propa-

gator can have the wrong sign, indicating the appearance of a (“Landau”) ghost, and

thus a violation of unitarity.

Exercise VIIC2.3

The Landau ghost itself is not necessarily a problem in quantum field theory,

although it indicates the possibility of such problems. Examine the behavior

of this ghost after taking into account the 2-loop correction (β2), before and

after the simplifying redefinition of the previous subsection, for all the various

signs of β1 and β2. Since the expression for µ2(g2) can’t be inverted, use the

fact that the propagator follows from the coupling g2(µ2) as

∆ ∼ g2(p2)

p2

(Field redefinitions can’t remove the momentum dependence of couplings.)

Then new poles (or other singularities) in the propagator correspond to the

limit g2 →∞, so find p2(g2) there.

. . .

. . .

This causes problems similar to those from instantons when the quantum prop-

agator is inserted into another graph. Consider a 1PI loop diagram with l external

lines, consisting of a ring of l − 1 free propagators of mass m (to insure IR conver-

gence) and 1 all-loop gluon or similar massless propagator (e.g., in QCD or the scalar

analog with auxiliaries of subsections VC9 and VIIB7). Set external momenta to

vanish, as an approximation for high energy for the loop momenta, or to evaluate

low-energy quantities such as anomalous magnetic moments. Examine the term in

the gluon propagator consisting of a string of n 1-loop corrections. We then change

variables to u = ln(k2/µ2), and divide up the integral into parts for high energy
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and low energy (of the loop momentum), with corresponding approximations for the

massive propagators:

UV k2 +m2 ≈ k2 u ∈ [0,∞]

IR k2 +m2 ≈ m2 u ∈ [−∞, 0]

Then looking at just n dependence, for UV we get∫
d4k (k2)−l

[
−β1 ln

(
k2

µ2

)]n
∼ (−β1)n

∫ ∞
0

du e−(l−2)uun ∼ n!

(
− β1

l − 2

)n
(remembering Γ (n+ 1) = n!), while for IR,∫

d4k (m2)−(l−1)(k2)−1

[
−β1 ln

(
k2

µ2

)]n
∼ βn1

∫ 0

−∞
du eu(−u)n = n!βn1

Since the former comes from UV behavior it’s called a “UV renormalon”, while the

latter coming from IR behavior is called an “IR renormalon”. The essential difference

is the relative factor of (−1)n.

3. Borel

Since renormalons and instantons cause the perturbation expansion to diverge by

a factor of n!, we look for a method to formally sum such series, by relating them to

series that do converge. In general, we consider the series

A(h̄) =
∞∑
n=0

h̄nan

and define the “Borel transform” as:

Ã(z) =

∫ r+i∞

r−i∞

d(1/h̄)

2πi
ez/h̄A(h̄)

(for some real number r to the right of all singularities of A) in anticipation of

instanton-like contributions. The inverse is

A(h̄) =

∫ ∞
0

dz e−z/h̄Ã(z)

The inverse Borel transform is related to the Laplace transform (with the variable

change x = 1/h̄) and the Mellin transform (x = 1/h̄ and y = ez). Evaluating explicitly

for the above series,

Ã(z) = δ(z)a0 +
∞∑
n=0

zn 1
n!
an+1
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So the Borel-transformed sum converges faster by a factor of n!, which is just what

we need for perturbation theory. The idea for resumming the perturbation expansion

is to first do the Borel sum, then inverse Borel transform the resulting function. Of

course, this procedure does not necessarily fix the original problem, which might

merely be translated into problems of convergence or ambiguity for integration of the

inverse transform. In particular, we need Ã(z) to be well defined along the positive

real axis.

We saw that generically the sums involved were approximately of the form

A(h̄) ∼
∞∑
n=1

h̄n(n− 1)!(−k)n

for some constant k. In that case

Ã(z) ∼
∞∑
n=0

(−1)nznkn+1 =
1

z + 1
k

When k < 0, this leads to a singularity in the integral defining the inverse Borel

transform. It can be “regularized” by choosing a contour that goes around the pole,

but the choice of contour is ambiguous, and choosing an arbitrary linear combination

of the two contours introduces a free parameter. Explicitly, we have

A(h̄) = A0(h̄) + ζe−1/|k|h̄

where A0 is the result of a particular prescription (e.g., principal value), and ζ is the

new parameter. The ζ term is clearly nonperturbative, since each term in its Taylor

expansion in h̄ vanishes. This new parameter can be interpreted as a new (nonper-

turbative) coupling constant in the theory, just like ambiguities in renormalization of

new counterterms in perturbatively nonrenormalizable theories.

Now we more carefully analyze the explicit sums we found in the previous sub-

section. The first example is
√
h̄Z for D=0:

Ã(z) =

∫ r+i∞

r−i∞

d(1/h̄)

2πi
ez/h̄

∫ ∞
−∞

dφ√
2π
e−S/h̄ =

∫ ∞
−∞

dφ√
2π
δ(z − S) =

1√
2π

∑
S=z

(S ′)−1

(The contribution from S = 0 is artificial, coming from our using A =
√
h̄Z instead

of Z.) So, this integral can be explicitly evaluated. (For example, for the action we

used in the previous subsection, we can explicitly solve for φ at S = z.) However,

there is then a problem in inverting the Borel transform: Near z = z0 ≡ S(φ0) for

classical solutions φ0, we have

S(φ) ≈ S(φ0)+ 1
2S
′′(φ0)(φ−φ0)2 ⇒ S ′(φ) ≈ S ′′(φ0)(φ−φ0), z−z0 ≈ 1

2S
′′(φ0)(φ−φ0)2
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⇒ (S ′)−1 ≈ [2S ′′(φ0)]−1/2(z − z0)−1/2

Therefore, there are cuts with branchpoints at classical values of the action, leading

to ambiguities in the result for A(h̄). We thus see that new coupling constants are

introduced for each solution to the classical field equation with positive action. (For

our D=0 example S < 0, and there is no problem, but more realistic examples, like

Yang-Mills instantons, have S > 0.)

Exercise VIIC3.1

Consider the D=0 action

S = 1
2φ

2 − 1
4
φ4

which differs from our previous example by the sign of the interaction. Now

we have classical solutions with S > 0. (The interaction is the wrong sign for

the integral to be well defined, but the “kinetic” term is the right sign for it

to be defined perturbatively.) Explicitly evaluate φ(S) (i.e., φ(z)), and show

it has the above behavior near z = S(φ0).

In the previous subsection we saw renormalons from the large-n behavior of propa-

gator loop corrections, corresponding to singularities at values of z some integer times

1/β1. That momentum integral also is easier to evaluate after Borel transforming:

We consider a one-loop graph, but replace one internal line with the “full” quantum

propagator coming from the 1-loop effective action (the same as summing a string

of 1-loop propagator insertions), while using massive propagators for the remaining

lines. We thus examine first the transform of the quantum propagator∫
d(1/h̄)

2πi
ez/h̄

1

k2

1
1
h̄

+ β1 ln(k2/µ2)
=

1

k2

(
k2

µ2

)−β1z
by closing the contour on the left. Then inserting this transformed propagator into

the complete diagram,∫
d4k

1

(k2 +m2)l−1

1

k2

(
k2

µ2

)−β1z
∼
(
m2

µ2

)−β1z
Γ (1− β1z)Γ (l − 2 + β1z)

using the integrals of subsection VIIB1. (Here we treat only the gluon coupling as h̄,

ignoring any couplings to the particle of mass m.) This expression is the sum over n

of the UV/IR renormalon example at the end of the previous subsection, except that

we have done the summation over n as the first step (and used the Borel transform

to assist in the evaluation). The first Γ has poles at z = N/β1 for positive N ,

representing the IR renormalon, which are relevant for β1 > 0, but the second Γ has

poles at z = −(N + l− 3)/β1 for positive N (and l ≥ 3 for the original diagram to be

UV convergent), representing the UV renormalon, which are relevant for β1 < 0. To
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the one-loop approximation for the β-function we have used, the singularities are just

poles, but if the two-loop propagator insertions are used, these singularities become

the branchpoints for cuts.

The new coupling constants that appear nonperturbatively can be given a physical

interpretation in terms of vacuum values of polynomials of the fields. The basic idea

is analogous to perturbative tadpoles: In that case corrections to S-matrices due to

vacuum expectation values of scalar fields can be expressed by propagators that end

at a “one-point vertex”, whose coefficient is the vacuum value of the field:

〈φ(x)〉 =

∫
Dφ e−iSφ(x) = c

in position space for some constant c, or in momentum space as∫
Dφ e−iSφ(p) = cδ(p)

Similarly, we could expect graphs to have two propagators that end at a two-point

vertex representing the vacuum value of the product of the two fields associated with

the ends of the two propagators, and so on for higher-point vertices. For example,

for a φ2 vertex in a scalar theory, it would correspond to a contribution of the form∫
Dφ e−iSφ(x)φ(y) = (c2 + c′) + ...

in position space, or in momentum space∫
Dφ e−iSφ(p)φ(q) = (c2 + c′)δ(p)δ(q) + ...

where c2 is the contribution from 〈φ〉2, so c′ represents (∆φ)2 = 〈φ2〉 − 〈φ〉2. Such

vacuum values do not appear in perturbation theory for higher than one-point; we get

only one δ(p) for each connected part of any graph. However, such contributions would

be expected to give similar contributions to those we have found for renormalons: By

dimensional transmutation, a contribution to an amplitude of the form ζe−n/β1h̄ must

appear in the combination

ζe−n/β1h̄ → ζe−n/β1h̄
(
µ2

p2

)n
= ζ

(
M2

p2

)n
This is the type of contribution expected from a propagator with tadpole insertions,

or in the same way from any other type of vacuum value. In particular, in QCD

there are no fundamental scalar fields, but only scalar fields can get vacuum values,

by Lorentz invariance. Thus, the vacuum values come from composite scalars, like

tr(F 2), q̄q, etc.
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Note that renormalons are a feature of renormalizable theories: They do not

appear in superrenormalizable or finite theories. In particular, the path-integral

methods of “constructive quantum field theory” have been used to show that cer-

tain interacting field theories in lower dimensions can be proven rigorously to exist

— superrenormalizable theories with unique vacua.

4. 1/N expansion

Perturbation theory is insufficient to evaluate all quantities in quantum physics,

since

(1) such expansions don’t always converge;

(2) if they do converge, they might not converge to the complete result; and

(3) even if they do give the complete answer, their summation might not be practical.

There are many perturbative expansions in quantum field theory. When we say

“perturbation theory” in this context, we generally mean an expansion in the number

of fields (or, in diagrammatic terms, number of vertices), since in the path integral

we kept the exact quadratic part of the action but expanded in powers of the inter-

action terms (cubic and higher). (This is usually also an expansion in the coupling

constants, depending on how we define the fields, which can be redefined by factors

of the couplings.) One disadvantage of this expansion is that it violates manifest

gauge invariance: Nonabelian gauge transformations are nonlinear in the fields, and

thus mix diagrams with different numbers of fields. (These are the internal fields;

external fields are asymptotic, and approximated as free.) Graphs that are related by

gauge transformations must be added together to obtain gauge-invariant, and thus

physically meaningful, expressions. Also, in practice individual graphs contain “gauge

artifacts” that complicate them in certain gauges, but cancel in gauge-invariant ob-

jects, like S-matrix elements.

There can be a large number of graphs contributing to a particular physical

process (given set of external states) at any particular loop order. There is another

gauge-invariant expansion that can be applied to Yang-Mills theory to subdivide these

sets of graphs, based on the freedom of choice of the Yang-Mills group itself: We have

seen that the classical groups are defined in terms of N × N matrices, where N is

arbitrary. Clearly, S-matrix elements must depend on N , even if the external states

are restricted to be group singlets or representations of an N -independent subgroup,

since the number of internal states increases as some polynomial in N . We now

examine how this can be used to define a perturbation expansion in terms of N .



C. RESUMMATION 625

N 1

We have already seen in subsection VC9 that the group theory of any graph can

be detached from the momentum and spin (so we considered there a simple model

of scalars φ). We also saw there that the group theory of such matrices is most con-

veniently graphed by a double-line notation, where each line acts group-theoretically

as a bound (anti)quark, reducing the group theory to trivial Kronecker δ’s. We now

notice that in some loop graphs, depending on how the lines are connected, some of

the quark lines form closed loops. Again the group theory is trivial: There is a factor

of N for each such loop, from the sum over the N colors. We can also give a physical

picture to these numerical factors: Since we draw the scalar propagator as quark and

antiquark lines with finite separation, think of the scalar as a (very short) string,

with a quark at one end and antiquark at the other. This gives a two-dimensional

structure to the diagram, by associating a surface with the area between the quarks

and antiquarks (including the area at the vertices). We can extend this picture by

associating a surface also with the area inside (i.e., on the other side of) each closed

quark loop. In particular, for any “planar” diagram, i.e., any diagram that can be

drawn on a sheet of paper without crossing any lines, and with all external lines on

the outside of the diagram, the entire diagram forms an open sheet without holes,

and with the topology of a disk (simply connected). It is also clear that, for a fixed

number of loops and a fixed number of external lines, a planar diagram has the great-

est number of factors of N , since crossing lines combines quark loops and reduces the

power of N .

We can be more quantitative about this N dependence, and relate it to the

topology of the graph. In subsection VC2 we saw the number of propagators, vertices,

and loops were related by P −V = L− 1. This relation treats a Feynman diagram as

just a graph, points connected by lines. We now consider a diagram as a polyhedron,

with propagators as the edges, and closed quark loops as the faces, as defined by our

use of matrices for fields. We then have as an additional relation for closed, orientable

surfaces “Euler’s theorem”,

−F + P − V = 2(h− 1) ≡ −χ

(in terms of the “Euler number” χ), where F is the number of faces and h is the

number of “handles”: 0 for the sphere, 1 for the torus (doughnut), etc. (There
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are too many Euler’s theorems, so sometimes this is called “Euler’s formula”. The

Euler number is sometimes called the “Euler characteristic”.) This 2D topological

relation for surfaces is a generalization of the previous 1D one for graphs in that

we now count not only 0D elements (V ) and 1D elements (P ) but also 2D elements

(F ). Then the 1D topological number L is replaced by the 2D one h. (We can also

introduce more topological numbers by considering unorientable surfaces and surfaces

with boundaries as below, and in more detail in subsection XIA2.)

handle

or

2 faces

This follows from the previous relation: First combining them as

L = F + 2h− 1

we note that “cutting” any handle along a loop (without separating the pieces) pro-

duces 2 faces; in other words, introducing two faces (as a “lens”) into a loop that

circles a handle changes the surface without changing the diagram, replacing 1 han-

dle with 2 faces. (The group theory has changed, but not the number of loops.) The

last relation then follows from the case with no handles, where each face gives a loop,

except that the no-loop case corresponds to 1 face (or start with a less trivial case,

like a cube, if that’s easier to picture and count momenta for).

Using the fact that the g2 appears in Yang-Mills the same way as h̄, and that

each face gets a factor of N (where a tree is a closed surface with 1 face), we find the

g and N dependence of any graph is

(g2)L−1NL−2h = (Ng2)L−1N1−2h

We thus see that effectively Ng2 is the coupling squared suited to planar graphs,

counting the number of loops, while 1/N2 is a new coupling squared, counting the

number of handles. Therefore, we can sum over both Ng2 and 1/N2: Each Feynman

graph is a particular order in each of these two couplings. The sum of all graphs at

fixed orders in both couplings gives a gauge-invariant subset of the graphs contribut-

ing to a particular S-matrix element. (This is sometimes called “color decomposition”.

Note that g2 is the coupling normalized for matrices of the defining representation,

which was required here to define the 1/N expansion, while Ng2 = 1
2g

2
A is the coupling
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normalized for the adjoint: If we had used matrices for the adjoint representation, a

factor 1/g2
A would appear in front of the action, because of the difference in normal-

ization of the trace of the matrices.)

Exercise VIIC4.1

Consider φ4 theory in D=4, where φ is now an N × N hermitian matrix.

Generalize the auxiliary-field propagator correction calculation of subsection

VIIB7 to leading order in 1/N , showing the N -dependence at all steps. Show

that now, to this leading order, both the N - and g-dependence of the effective

action can be absorbed into M .

window

We can also consider more complicated models, such as chromodynamics, with

fields appearing in the defining representation of the group, such as quarks. When

a quark field makes a closed loop, it looks like a planar loop of a gluon, except that

the closed quark line is missing, along with a corresponding factor of N . Thus, there

is effectively a “hole” in the surface. Since only one factor of N is missing, a hole

counts as half a handle. We can also draw a flavor-quark line for the quark propagator

alongside the color-quark line. Since this line closes in quark-field loops, we also get

a factor of M (for M flavors) for each quark loop.

The fact that the 1/N expansion is topological (the power of 1/N is the number

of holes plus twice the number of handles) closely ties in with the experimental ob-

servation that hadrons (in this case, mesons) act like strings. Thus, we can expand

in 1/N as well as in loops. While the leading order in the loop (Ng2) expansion is

classical (particle) field theory, the leading order in the 1/N expansion is classical

open-string theory (planar graphs). However, seeing the dynamical string properties

requires summing to all orders in Ng2 for leading order in 1/N .

What do “strong” and “weak” coupling mean in the theory of ”strong inter-

actions”? There are 2 couplings relevant to confinement: Ng2 and 1/N . But by

dimensional transmutation (subsection VIIB3) Ng2 gets replaced by the QCD scale

M , which is a mass, not a coupling. (It is a property of free hadrons.) On the other
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hand, 1/N (where N is usually 3) is effectively small. So from the point of view of con-

finement, QCD describes a theory of somewhat weak interactions between hadrons.

But if we want to study chiral symmetry breaking (subsection IVA4), then we need

to consider the masses m of the quarks, and we then have the dimensionless coupling

M/m, which is large for the light quarks. (This is equivalent to the statement that

the running coupling Ng2 becomes large at small energies.) So the strong interactions

are actually strong only when considering the ground-state hadrons, whose proper-

ties are best described in terms of chiral symmetry breaking. But “confinement” is

a property of the excited states, where this coupling becomes weak. A related state-

ment is that any attempt to describe confinement will fail unless it takes dimensional

transmutation into account.

Thus, 1/N acts as the string coupling constant. (N appears nowhere else in the

action describing string states, since they are all color singlets.) The experimental fact

that the hadronic spectrum and scattering amplitudes follow so closely that of a string

(more on this later) indicates that the perturbative expansion in 1/N is accurate, i.e.,

that quantum corrections are “small” in that sense. One application of the smallness

of 1/N (largeness of N) is the “Okubo-Zweig-Iizuka rule”: A planar graph describes

classical scattering of open strings (mesons). It corresponds topologically to a disk,

which is a sphere with one hole, and is therefore order 1/N . Compare this to two

planar graphs connected by a handle. It describes classical scattering of open strings

with one intermediate closed string (glueball), where the handle is a closed-string

propagator connecting two otherwise-disconnected classical open-string graphs. It

corresponds to a cylinder, which is a sphere with two holes, and is therefore order

1/N2. In terms of flavor lines, the latter graph differs from the former in that it

has an intermediate state (the glueball) with no flavor lines. The OZI rule is that

amplitudes containing an intermediate glueball are always smaller than those with an

intermediate meson. This rule also has been verified experimentally, giving a further

justification of the 1/N expansion (though not necessarily of string behavior).

Generalizing to groups SO(N) and USp(2N) gives more varied topologies: Since

the left and right sides of propagators are no longer distinguishable, the string surface

is no longer orientable (the surface no longer has two distinguishable sides), so we

can also have unorientable surfaces such as Möbius strips and Klein bottles. One can

also perform a separate expansion in the number M of flavors.

The fact that the leading (planar) contributions are of order (Ng2)L−1 requires a

modification of the Borel transform of the previous subsection: We now identify

h̄ = Ng2
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instead of just h̄ = g2, so we can use the 1/N expansion in conjunction with the Borel

transform. In particular, this means removing the factor ofN from β1 and absorbing it

into h̄. The result is that the position of the renormalon singularities in the z plane is

independent of N . However, the same is not true for the instantons: A one-instanton

solution corresponds to choosing a single component of φ nonvanishing in our scalar

model, so that the classical solution φ0 for the action S[φ0] has no N -dependence.

(Choosing φ proportional to the identity matrix yields an N -instanton solution.) The

analog in the Yang-Mills case is using just a (S)U(2) subgroup of the full U(N) to

define the instanton. (Note that the structure constants for U(N) are N -independent

for the defining representation: See exercise IB5.2.) Then S/g2 = NS/h̄. The result

for the positions of the singularities in z is then at integer multiples (positive or

negative, depending on considerations given in the previous subsection) of z0, where

z0 =

{
1/β1 for renormalons

NS[φ0] for instantons

where β1 and the one-instanton action S are N -independent.

The net result is that instantons are unimportant for large N . Thus, if we take

the 1/N approach of using a resummation to define a string theory, the instantons

do not take a role in defining the string. (They might return in another form when

considering classical solutions to the string theory, or their contribution might be

just a small part of the total nonperturbative contribution.) On the other hand,

approaches that analyze just the low-energy behavior of a theory can make use of the

instantons: If the physical value of N is small, or the U(N) theory is spontaneously

broken to give a small effective N at low energies (as in GUTs), then instantons may

be treated as the dominant nonperturbative contribution to low-energy effects such

as chiral symmetry breaking. This can be sufficient for studying low-energy bound

states, but is insufficient for studying confinement, whose physical definition is the

existence of bound states of very high energy.
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VIII. GAUGE LOOPS
Gauge invariance plays an important role in quantum corrections. It not only

simplifies their form, but leads to new effects. In particular, it not only improves

high-energy behavior, but can eliminate divergences altogether, in the presence of

supersymmetry.

In general, the first thing to calculate in quantum field theory is the effective

action. Once this has been calculated, other properties can be determined: the

vacuum, S-matrix, etc. In particular, in spontaneously broken theories, the effective

action should be calculated with the symmetric (unbroken) vacuum, which has simpler

Feynman rules; once the effective action has been calculated, vacuum values of the

fields can be determined, and the S-matrix can be calculated as a perturbation about

this quantum vacuum. (The alternative of defining Feynman rules for the classical

broken vacuum and then calculating quantum corrections doubles the work in finding

vacuum values.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . A. PROPAGATORS . . . . . . . . . . . . . . . . . . . . . . .

We first consider propagator corrections in some specific theories with spin. In

the following calculations we assume the gauge coupling appears only as an overall

factor in the classical action: It thus also counts loops, so our 1-loop graphs are

coupling-independent. All the integrals have been performed in subsections VIIB4

and VIIB6; all that remains is the numerator algebra, which follows the examples

of subsection VIC4. As we have seen, such corrections are important in analyzing

high-energy behavior; as we’ll see in the following section, they are also important

for low energy. (Of course, for massless particles the two are related by conformal

invariance, even when quantum corrections break it.)

1. Fermion

Our first calculation is the one-loop correction to the electron kinetic operator in

QED: The S-matrix element is

A2e =

∫
dk

γa 1
2(k/ + 1

2p/+m)γa
1
2(k − 1

2p)
2 1

2 [(k + 1
2p)

2 +m2]
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At this loop level the only difference between using D-dimensional γ-matrix algebra

(dimensional regularization) and 4-dimensional (dimensional reduction) is an unphys-

ical finite renormalization, so for simplicity we’ll use the latter method. Then the

numerator is

k/ + 1
2p/− 2m

The result of the integral is then

A2e = −p/m
2

2p2
[Â2(p2, 0,m2)− Â2(0, 0,m2)] + (1

2p/− 2m)Â2(p2, 0,m2)

in the notation of subsection VIIB6. The UV divergent part follows from

Â2(p2, 0,m2) = 1
ε

+ finite

The contribution to Γ is minus the S-matrix element, but the counterterm has a

second minus sign to cancel the divergence:

∆S = h̄
ε

∫
dx Ψ̄(−1

2i∂/ − 2m)Ψ

The calculation for the quark self-energy in QCD is the same except for group-theory

factors (see subsection VIIIA5).

Exercise VIIIA1.1

Repeat the calculation with D-dimensional γ-matrix algebra. What is the

difference in the finite part, and why doesn’t it matter?

In subsection VIIB6 we considered MOM subtraction (see subsection VIIA3) for

scalar propagators. The analysis in this case is similar, but now we expand in p/

instead of p2:

∆K = a+ b(m− p/) +O[(m− p/)2]

However, since ∆K is normally expressed as functions of p2 times 1 and p/, we need

to translate: Using (m+ p/)(m− p/) = p2 +m2,

∆K = a+ b′(m− p/) + c1
2(p2 +m2) +O[(m− p/)(p2 +m2), (p2 +m2)2]

= a+ (b′ +mc)(m− p/) +O[(m− p/)2]

We next reevaluate the fermion propagator correction, to linear order in m − p/.
Starting with

Ã(x, p2,m2
1,m

2
2) =

∫
dk eix·k

1
1
2 [(k + 1

2p)
2 +m2

1]1
2 [(k − 1

2p)
2 +m2

2]
=

∫
d2τ λ−D/2e−E

E = 1
2

1
λ
x2 + ix · 1

2βp+ 1
8
λ(1− β2)p2 + 1

4
λ[(m2

1 +m2
2) + β(m2

1 −m2
2)]
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we keep only linear order in x and p2 +m2, and set m1 = m, m2 = 0 (switching back

to α = 1
2(1 + β)):

E ≈ ix · (α− 1
2)p+ 1

2λα(1− α)(p2 +m2) + 1
2λm

2α2

To clearly separate UV divergences (from λ ≈ 0) and IR divergences (from α ≈ 0),

we scale

λ→ λ

α2
⇒ E ≈ (α− 1

2)ix · p+ 1
2λ( 1

α
− 1)(p2 +m2) + 1

2λm
2

Ã ≈
∫ ∞

0

dλ λε−1e−λm
2/2

∫ 1

0

dα α−2ε[1− (α− 1
2)ix · p][1− 1

2λ( 1
α
− 1)(p2 +m2)]

The integrals are easily performed in either order:

Ã ≈ Γ (1 + ε)(1
2m

2)−ε
[

1

εUV

1

1− 2ε
+ 1

2

1

(1− ε)(1− 2ε)
ix · p

+

(
1
2

1

εIR
+

1

1− 2ε

)
p2 +m2

m2
+

(
1
4

1

εIR
+ 3

2

1

1− 2ε
− 1

2

1

1− ε

)
ix · p p

2 +m2

m2

]
and in the limit ε→ 0,

Ã ≈ Γ (1 + ε)(1
2m

2)−ε
[

1

εUV
+ 2 + 1

2ix · p+

(
1
2

1

εIR
+ 1

)
p2 +m2

m2

+

(
1
4

1

εIR
+ 1

)
ix · p p

2 +m2

m2

]
The electron propagator correction to linear order in m− p/ is then

A2e ≈ Γ (1 + ε)

(
m2

µ2

)−ε{[
1
2 +

(
1
4

1

εIR
+ 1

)
p2 +m2

m2

]
p/

+

[
1

εUV
+ 2 +

(
1
2

1

εIR
+ 1

)
p2 +m2

m2

]
(1

2p/− 2m)

}
≈ Γ (1 + ε)

(
m2

µ2

)−ε
(−1

2)

[
m

(
3

1

εUV
+ 5

)
+

(
1

εUV
+ 2

1

εIR
+ 5

)
(m− p/)

]
The 1/εUV terms are the same as the 1/ε terms obtained above for minimal subtrac-

tion. In the MOM scheme, this entire contribution (O(K0) and O(K1)) is canceled

by counterterms.

Exercise VIIIA1.2

Repeat the above calculations replacing the fermion with a scalar.

Exercise VIIIA1.3

Repeat the above calculations replacing the photon with a (massless)

a scalar

b pseudoscalar (with a γ−1 vertex).
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2. Photon

We next calculate the spin-1/2 contribution to the photon (or gluon) self energy:

The S-matrix element is∫
dk
tr[−γa 1

2(k/ − 1
2p/+m)γb

1
2(k/ + 1

2p/+m)]
1
2 [(k − 1

2p)
2 +m2]1

2 [(k + 1
2p)

2 +m2]

The result of the trace (again using 4-dimensional algebra) is

−2[kakb − ηab 1
2(k2 + 1

4
p2 +m2)]− 1

2(ηabp
2 − papb)

The first part is the expression appearing in Âab in subsection VIIB6, once we recog-

nize its ηab terms as the average of the denominator factors, yielding tadpoles. The

integral thus gives

(ηabp
2 − papb)(−2Ǎ − 1

2Â2) ≈ (1
ε
− ln p2)(−1

3
)(ηabp

2 − papb)

for the divergent and high-energy terms. Using

Aa(−p)(ηabp2 − papb)Ab(p) = 1
2F

ab(−p)Fab(p)

in terms of the linearized field strength F , the corresponding contributions to the

unrenormalized one-loop effective action are (including a factor of 1
2 for identical

external lines)

Γ1 ≈ h̄2
3

∫
dx 1

8
F ab(1

ε
− ln )Fab

(neglecting the “−1” part of ln(− )) and the counterterm is thus

∆S = h̄
ε
(−2

3
)

∫
dx 1

8
F abFab

in the case of QED. For QCD, we must include the group-theory factor tr(GiGj)

multiplying F iabF j
ab. (Examples will be given in the following subsections.)

This propagator correction is easier to analyze in the MOM scheme than the

electron propagator, since there are no internal massless particles, and thus no IR

divergence to distinguish from the UV one. We therefore just take the explicit ex-

pressions for the integrals from subsection VIIB6 and Taylor expand in p2 about 0

(or actually in 1/β of VIIB6.1a, substituting for p2 only at the end). The low-energy
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part of the renormalized effective action for the photon, exhibiting the momentum

dependence of the coupling, is then

Γ0+1,2γ,r ≈
∫
dx 1

8
F ab

(
1

e2
+ 2

15m2

)
Fab

where we have applied MOM subtraction by canceling constant (infinite and finite)

contributions to the coupling.

Exercise VIIIA2.1

Evaluate this contribution to the unrenormalized effective action to this or-

der. Show that the constant contributions to the coupling (to be canceled by

renormalization) are

1
e2
→ 1

e2
+ 2

3
[1
ε
− γ − ln(1

2m
2)]

3. Gluon

The most interesting case is the propagator of the Yang-Mills field, in a theory

of Yang-Mills coupled to lower spins. There is an important simplification in this

calculation in the background field gauge: Writing the classical Yang-Mills Lagrangian

as tr F 2/g2, the covariant derivative appears as∇ = ∂+iA without coupling constant,

so the gauge transformation of A is coupling independent, as in general for the matter

fields. (In terms of a group element g, φ′ = gφ and∇′ = g∇g−1.) The effective action

is gauge invariant, which means the only divergent terms involving the Yang-Mills

field are the gauge-covariantized kinetic (less mass) terms of the various fields. The

divergences for the non-gauge fields are not so interesting, since they can be absorbed

by rescaling those fields (“wave-function renormalization”), but the divergence of

the tr F 2/g2 term can be absorbed only by rescaling the coupling g itself. (On the

other hand, if we use ∇ = ∂ + igA, then renormalization of g requires the opposite

renormalization of A to preserve gauge invariance.) Thus this divergence is related

to the UV behavior of this coupling (as discussed in subsection VIIB7, and further

later). The important point is that there is no wave-function renormalization for the

Yang-Mills field (since there is no corresponding gauge-invariant counterterm), so the

coupling-constant renormalization (like mass renormalizations) can be found from

just the propagator correction, while in other gauges one would need also a much

messier vertex (3-point) correction: BRST invariance is not enough to give the result

from a single graph.



636 VIII. GAUGE LOOPS

We now consider the contributions of spins 0 (including ghosts) and 1 (including

gluon self-interactions), and redo the spin-1/2 contribution in a way that resembles

the bosons. It is based on the observation that there is a universal form for the gauge-

covariantized Klein-Gordon equation for spins 0,1/2,1, which can also be shown by

supersymmetry. The kinetic operator in a background Yang-Mills field is

K = −1
2( − iF abSba)

where now = (∇)2 is gauge covariantized. This form is true in arbitrary dimensions.

For spin 0 it is obvious. For spin 1/2, we use the fact that the one-loop contribution

to the functional integral is the trace of the logarithm of the propagator, as follows

from Gaussian integration,∫
Dψ Dψ̄ e−ψ̄Kψ = det K = etr ln K

where the trace is over all indices, including the coordinates. Then the contribution

to the effective action from kinetic operator K is 1/2 the contribution from K2. (See

also exercise VIA4.2.) We then use (see subsection IIIC4)

−∇/ 2 = −(γ · ∇)2 = −1
2({γa, γb}+ [γa, γb])∇a∇b = + iSabFab

where we have used

S
(1/2)
ab = −1

4
γ[aγb], {γa, γb} = −2ηab

In the case D=4, this is equivalent to the result obtained in subsection IIIC4 in terms

of just the undotted spinor, but there the 1/2 is automatically included because there

are half as many fields, so the range of the trace is half as big.

For spin 1, we use the result of the background-field version of the Fermi-Feynman

gauge: At quadratic order in the quantum fields, from exercise VIB8.1 we have

1
8
F 2 + 1

4
(∂ · A)2 →

{
1
8
(D[aAb])

2 + i1
4
Fab[Aa, Ab]

}
+ 1

4
(D · A)2

= −1
4
A · A− i1

2A
a[Fab, Ab] = −1

4
A · ( − iFabSba)A

where = (D)2 contains only the background gauge field, and in the last step we

have written the quantum field A as a column vector in the group space and the
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background fields (like F) as matrices for the adjoint representation (which replaces

commutators with multiplication), and used the explicit expression

S
(1)
ab = |[a〉〈b]|, 〈a|b〉 = ηab

To this order in the quantum fields, the kinetic operator for the two ghosts looks just

like that for two physical scalars, but gives a contribution to the effective action of

opposite sign because of statistics.

This method can be used for arbitrary one-loop graphs with external gluons,

and easily generalizes to massive fields; we now specialize to propagator corrections.

There are two kinds of vertices, the spin-0 kind and the vertex with the spin operator.

Since tr Sab = 0, we get only graphs with either 2 spin vertices or none. There is

only one spin graph, with 2 internal free propagators; the 2 spinless graphs include

such a graph but also a tadpole, which vanishes by dimensional regularization in the

massless case. Since the spinless graphs give the complete result for internal spin-0,

their sum is separately gauge invariant; the spin graph is obviously so, since it is

expressed directly in terms of the field strength. (We refer here to the Abelian part

of the gauge invariance, which is all you can see from just 2-point graphs.) As far

as Lorentz index algebra is concerned, we need to evaluate only tr(SabScd). For the

vector, we have

tr(S
(1)
ab S

(1)
cd ) = 2ηb[cηd]a

For spin 1/2, the traces are the same as in D=4 except for overall normalization;

using earlier identities, or using the same methods for this case directly,

tr(S
(1/2)
ab S

(1/2)
cd ) = 1

4
tr(I)ηb[cηd]a

where tr(I) is the size of the spinor.

Exercise VIIIA3.1

Let’s look at other ways to interpret the last two identities:

a Use the double-line notation (subsection VC9) for the defining representation

of the orthogonal group to derive the above expression for the trace of two

S(1)’s.

b Use the fermion action of IIIC4 in terms of just undotted spinors for D=4.

Evaluate

tr(S
(1/2)
αβ S

(1/2)
γδ )

using both bra-ket notation and double-line notation for SL(2,C). Show the

result is the same as from vector notation (by relating Fab and fαβ).
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All diagrams will also have a group-theory factor of tr(GiGj) ∼ δij. We’ll be

interested mostly in SU(N) for Yang-Mills theory (as appropriate to describe color in

the Standard Model for N=3, or arbitrary N for applying the 1/N expansion). Then

the most interesting representations are the adjoint (for the gluons and their ghosts)

and the defining (for the quarks). As explained in subsection IB2, or as follows from

the double-line notation of subsection VC9, we use the normalization

trD(GiGj) = δij ⇒ trA(GiGj) = 2Nδij

Finally, there are the momentum-space integrals, which have already been eval-

uated in subsection VIIB4 for the massless case (which is sufficient for determining

the high-energy behavior, and thus the UV divergences) and VIIB6 for the massive

case. The integral for the spin graph is the same as that for φ3 theory (using the Sab

vertex from −1
2 − 1

2iF
abSab). As labeled there, the external line has momentum p

and the internal lines k ± 1
2p. Then the vertex factors in the spinless graph with two

propagators are both simply −k (from −1
2 = −1

2∂
2 + 1

2A · (−i∂)+ 1
2(−i∂) ·A+ 1

2A
2),

giving Aab, while the addition of the tadpole, with vertex factor −η, converts it to

Âab. (By comparison, the tadpole graph that was apparently avoided in the Dirac-

spinor calculation of the previous subsection appeared anyway after evaluating the

trace algebra.) This contribution also gets an overall tr(I) factor, simply counting

the number of degrees of freedom. Note that the scalar factor Ǎ that appears in Âab
is the sum of a divergent term proportional to the φ3 graph and a convergent term

that vanishes in the massless case.

We now combine all factors to obtain the contributions to the two-gluon part of

the unrenormalized 1-loop effective action (including the −1 for getting the effective

action from the S-matrix, a −1 for internal fermions, either spin 1
2 or ghost, the 1

2

for identical external gluon lines, the 1
2 for the spinor to compensate for squaring the

propagator, and yet another 1
2 for identical internal lines if the group representation

was real.) The result is the sum of contributions of the form

Γ1,2g = h̄ tr

∫
dx 1

8
F ab(1

2cR)(−1)2s[ 1
D−1
B1(− )− 4s2B2(− )]Fab

where cR is the group theory factor from the trace, which for the interesting cases is

cR =

{
2 for N ⊕ N̄ (defining)

2N for adjoint (real)

This result applies to spins s = 0, 1
2 , 1, with the understanding that it is the result

for two polarizations, so there is an implicit extra factor of 1
2 for a single scalar,
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while for massive spin 1 (spontaneously broken gauge theories) the third polarization

in the (background-field) Fermi-Feynman gauge is carried by a scalar field. (The

result above for s=1 is the sum of the contributions from the vector field and the two

fermionic ghosts.) The functions B1 and B2 are the spinless and spin contributions,

related to the massive φ3 propagator correction Â2(p2,m2,m2) as

B2(p2) = Â2(p2,m2,m2), B1(p2) = B2(p2) + 4m2B2(p2)− B2(0)

p2

Note that

B1 ≈ B2 ≈ 1
ε
− ln p2

as far as divergent (at D=4) or high-energy (i.e., massless) terms are concerned. Also

note that all contributions exactly cancel if all spins are in the adjoint and have the

same mass, and appear in the ratio 1:4:6 for spins 1 (including ghosts), 1
2 , 0: For the

massless case, this is N=4 super Yang-Mills, which is also the massless sector of the

dimensional reduction of the open superstring from D=10. The massless sector of

the reduction of the open bosonic string from D=26 yields Yang-Mills plus 22 adjoint

scalars, which cancels near D=4 up to a finite, local term (F 2), which can be removed

by a nonminimal renormalization. While the coefficient of a leading divergence is the

same upon dimensional reduction, it appears at a different order in momentum. But

dimensional regularization shows only logarithmic divergences. So, e.g., to find the

leading, p22 divergence in D=26 via dimensional regularization, one needs to evaluate

the same graph (after dimensional reduction) in D=4, since it corresponds to an

integral dDp/p4. Similarly, if one wants to analyze a quadratic divergence in D=4,

one needs to look at the theory dimensionally reduced to D=2.

In examining the contribution of this term to the running of the coupling constant

with energy, we see that the vectors contribute with opposite sign to lower spins. In

particular, in terms of the coefficient β1 (of subsection VIIC1), only nonabelian vec-

tors make positive contributions (since Abelian vectors are neutral). This means that

nonabelian vectors are responsible for any weakening in a coupling at high energies,

known as “asymptotic freedom”, an important experimental feature of the strong

interactions (see section VIIIC). Note that while the sign of β1 for φ4 theory, using

the method of subsection VC9, is independent of the coupling (since all 1-loop correc-

tions are coupling-independent when the coupling appears as an overall factor in the

classical action, like h̄), changing the sign of the coupling changes its sign relative to

β1: The result is that this theory can be made asymptotically free only if its potential

has the wrong sign (negative for large φ). Thus, although nonabelian vectors are

required for asymptotic freedom in physical theories, “wrong-sign φ4” can be used
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as a toy model for studying features associated with asymptotic freedom (especially

resummation of the perturbation expansion: see section VIIC).

Note that for (massless) fermions that couple chirally to vectors (as in electroweak

interactions), cR consists of the contribution from a complex representation but not its

complex conjugate: Only one of the two Weyl spinors of the Dirac spinor contributes.

The result is that the contribution to the vector propagator is half that of the parity-

invariant case. This fact follows from comparing the calculations of the chiral and

nonchiral cases without the squared-propagator trick: In Dirac (4-component) spinor

notation, the γ−1’s drop out of the calculation; in Weyl (2-component) spinor notation,

the left- and right-handed-spinor diagrams are identical except for (internal) group

theory. (Things are more complicated for higher-point functions, because the group

theory gives more than just trR(GiGj): See subsection VIIIB3.)

Exercise VIIIA3.2

Find the conditions for exact cancellation if spins 1
2 and 0 include both adjoint

and defining representations. Find the weaker conditions if only the divergent

(and therefore also high-energy) terms cancel.

Exercise VIIIA3.3

Use the optical theorem to find the decay rate for a massive vector (e.g., Z

boson) into massive particle-antiparticle pairs of various spins.

Exercise VIIIA3.4

Find the propagator correction for internal particles of different masses on

each of the two lines (e.g., for a W boson propagator).

In the case of QCD, with color gauge group SU(Nc) and Nf flavors of quarks in

the defining representation of color, the divergent and high-energy contributions to

this term in the unrenormalized 1-loop effective action are

Γ1,2g,QCD ≈ h̄ tr
∫
dx 1

8
F ab 1

3
(2Nf − 11Nc)(

1
ε
− ln )Fab

At higher loops the effective action will still be gauge invariant in background-field

gauges (for the quantum fields), so the renormalization of the Yang-Mills coupling

can still be determined from just the gluon propagator correction. On the other hand,

in other gauges a three-point vertex must also be calculated: It can be shown that

the gauge-fixed classical action, including counterterms, is BRST invariant only up

to wave-function renormalizations; i.e, the most general counterterms needed (with

a BRST preserving regularization) are BRST-invariant terms with additional mul-

tiplicative renormalizations of the quantum fields. Thus, BRST invariance, unlike
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gauge invariance, is not strong enough to relate the gluon coupling and wave-function

renormalizations. Not only does this mean evaluating many more graphs, but graphs

which make the propagator correction look easy by comparison. (This is not so dif-

ficult for just the one-loop divergences we have considered, but the difficulty grows

exponentially with the number of loops.)

However, in the background-field gauge the L-loop propagator correction has

(L − 1)-loop vertex subdivergences, similar to those in other gauges. The net re-

sult is: (1) We still have a BRST-invariant “classical” action, containing the same

(counter)terms that appear in other gauges (including quantum ghosts), but covari-

antized with respect to background gauge fields (and including coupling to other

background fields). However, the coefficients need be calculated only to order L− 1

for the L-loop effective action, one loop less than in other gauges. (2) In addition,

we have background-field-only terms in the classical action whose L-loop coefficients

do need to be calculated, but with a relatively small amount of additional effort,

due to gauge invariance. Thus renormalization consists of two steps: (1) adding

BRST-invariant counterterms for the quantum fields (background covariantized) to

cancel subdivergences, and (2) adding gauge-invariant counterterms for the back-

ground fields (which can be interpreted as vacuum renormalization for the quantum

fields) to cancel superficial divergences. Consequently, background-field gauges save

about one loop of difficulty as far as renormalization is concerned. Furthermore,

similar simplifications occur for calculations of finite parts (e.g., effective potentials),

because of simplifications from gauge invariance.

4. Grand Unified Theories

The best result of GUTs is their prediction that the gauge couplings of the Stan-

dard Model coincide at some high energy, as a consequence of the running of the

couplings with energy. (Mixed results have been obtained for masses, arguably be-

cause renormalization group arguments are accurate only for high energies, and thus

leptons with large masses. A “failed” prediction is proton decay, which has already

eliminated the nonsupersymmetric SU(5) model with minimal Higgs.) The numerical

details of this prediction are model dependent (and thus easy to fudge, given enough

freedom in choice of nonminimal fields), but the fact that all three couplings come

close together at high energies is already strong evidence in favor of unification.

Thus we make only the crudest form of this calculation, using only the one-loop

results of the previous subsection. The main assumption is that there is a “desert”

between the Standard Model unification scale (around the masses of the intermediate
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vector bosons W and Z) and the Grand Unification scale MGUT , with no fundamental

particles with masses in that range (although, of course, a huge number of hadrons

appear there). This allows us to crudely approximate all fundamental particles below

that region (i.e., those of the Standard Model) as massless, and all above as infinitely

massive. In particular, in the framework of the minimal SU(5) GUT, this means all

the fermions are treated as massless.

Therefore the calculation is to use the one-loop results to calculate the running

of the couplings in the Standard Model, and use the relation of the gauge couplings

in the SU(5) GUT to identify those of the Standard Model in terms of that of this

GUT. From the previous subsection, the running of the couplings is given by

1

g2(−p2)
≈ 1

g2
0

− β1ln

(
M2

GUT

−p2

)
, β1 =

∑
R,s

1
2cR(−1)2s(4s2 − 1

3
)

for two helicities of spin s (with an extra factor of 1
2 for only 1 helicity of spin 0),

where g0 ≡ g(M2
GUT ).

If we use g1, g2, g3 to label the couplings of U(1), SU(2), and SU(3) that are

identified with the single SU(5) gauge coupling at the unification scale, then their

relation to those of the Standard Model (as normalized in exercise IVB2.1) is

1

g2
1

= 6
5

1

g′2
= 6

5

cos2θW
e2

,
1

g2
2

=
1

g2
= 2

sin2θW
e2

,
1

g2
3

=
1

g2
s

where gs and g the usual SU(3) and SU(2) couplings, and the factor of 6
5

is because

the U(1) generator (see subsection IVB4) satisfies trD(G2) = 5
6

in terms of SU(5)

matrices. (We generally normalize to trD(G2) = 1 for each generator. Physical

couplings are preserved if changes in normalization of generators are accompanied by

changes in coupling normalization so as to preserve giGi.)

Then the values of the β1’s for the Standard Model are

β1,1 = 0− 4− 1
10

= −41
10
, β1,2 = 22

3
− 4− 1

6
= 19

6
, β1,3 = 11− 4 + 0 = 7

where we have listed the contributions from spins 1, 1
2 (for 3 families), 0, respec-

tively. (Note that the spinors contribute the same to each because they are all

effectively massless: They don’t notice the SU(5) breaking. Also, we can ignore

SU(2)⊗U(1) breaking when calculating these β’s, since we have neglected the corre-

sponding masses.)

Exercise VIIIA4.1

Calculate the contribution of the spinors to the β1’s, in terms of both SU(5)

and SU(3)⊗SU(2)⊗U(1) multiplets. (Note the chiral couplings for spinors,



A. PROPAGATORS 643

so for cR a complex representation and its complex conjugate might not both

contribute.)

The experimental values of the couplings (in the MS prescription) at µ = MZ ≈
91 GeV are

1

e2
≈ 804, sin2θW ≈ .231,

1

g2
s

≈ 106

Unfortunately, taking any two of the equations for 1/g2
i gives widely varying answers:

e.g.,

MGUT ≈ 1015±2GeV

Alternatively, since we have used only two parameters to fit three experimental num-

bers, we can try to predict the value of any one of e, θW , or gs from the rest: e.g.,

from e and gs we can find

sin2θW ≈ .207

which shows the same disagreement (but looks better than the exponentiated error

for MGUT ).

The result is not very accurate, since we have made many approximations, which

can be improved with some effort: Two-loop corrections add ln ln terms to the one-

loop ln terms; including the mass dependence of the effective couplings also adds

significant corrections. But the most important approximation assumption we made

was the desert: Undiscovered particles, such as new fermions, nonminimal Higgs, or

supersymmetric partners, change even the one-loop expressions β1. Specifically, since

by definition the unification scale is where the masses of all unobserved vectors reside,

these new particles will all have spins 0 or 1
2 , and thus make the β’s more negative.

In particular, supersymmetrization yields a result consistent with experiment, with

MGUT ≈ 2.2× 1016GeV

(This has been interpreted as the only experimental verification of supersymmetry.)

Exercise VIIIA4.2

Let’s examine the effects of supersymmetry:

a Supersymmetrize the Standard Model contributions to β1 by adding the su-

persymmetric partners to each spin: 1→ 1⊕ 1
2 , 1

2 →
1
2 ⊕ 0⊕ 0, 0→ 1

2 ⊕ 0⊕ 0

(where the Higgs scalars have doubled because chiral scalar superfields can’t

satisfy reality conditions) to find the result

β1,1 = 0− 6− 3
5

= −33
5
, β1,2 = 6− 6− 1 = −1, β1,3 = 9− 6 + 0 = 3
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b Solve for 1/g2
0, ln(M2

GUT/M
2
Z) (and thus MGUT ), and sin2θW in terms of 1/e2

and 1/g2
s . Then plug in to find the numerical values.

c Show the consistency condition relating the 3 couplings is

β1,2 − β1,3

g2
1

+
β1,3 − β1,1

g2
2

+
β1,1 − β1,2

g2
3

= 0

and that the closest integer values for the couplings from the above data,

1

g2
1

= 742,
1

g2
2

= 371,
1

g2
3

= 106

satisfy it exactly. (OK, so this is just a numerical coincidence, considering

experimental inaccuracies and theoretical approximations, but isn’t it still

nice?) Also, note that

1

g2
1

= 2
1

g2
2

⇒ sin2θW = 3
13

d Drop the contributions of the Higgs (and its superpartners) to the β’s in both

the supersymmetric and nonsupersymmetric cases, and reevaluate sin2θW ,

showing both give the same (poor) value. (Thus, Higgs can make a difference.)

5. Supermatter

Although the problem with infrared renormalons may be only technical, the ap-

pearance of this same problem in several different approaches (including a nonper-

turbative one; see subsection VIIIB7) strongly suggests that the “correct” approach

to quantum field theory, in the sense of a practical method for unambiguously (i.e.,

with predictive power) calculating perturbative and nonperturbative effects, might

be to consider only theories that are perturbatively finite. In this subsection we will

analyze general properties of supersymmetric field theory using superspace, and in

particular improved UV behavior, concentrating on finite theories.

Finite supersymmetric theories must be in particular one-loop finite. This turns

out to be enough to guarantee finiteness to all loops: Two-loop finiteness is automatic,

while an appropriate renormalization prescription is required to guarantee finiteness

is preserved order by order in perturbation theory. (No constraints on the coupling

constants are needed beyond those found at one loop, but without the renormalization

prescription infinities cancel between different loop orders.) Of course, wave-function

renormalizations are gauge dependent: N=1 supersymmetric gauges eliminate some

of these unphysical divergences (and gauges with higher supersymmetry more), as



A. PROPAGATORS 645

do background-field gauges even in nonsupersymmetric theories. So, “finite theory”

in general gauges refers only to the “physical” divergences — those that affect the

high-energy behavior of the theory, namely those that appear in couplings and masses.

Because of the nonrenormalization of chiral terms in the action (see subsection

VIC5), it might seem that the corresponding couplings and masses are always un-

renormalized. However, the kinetic terms of chiral superfields can receive quantum

corrections, and the true couplings are defined by field redefinitions that eliminate

these rescalings. This means that all such renormalizations are related, and given

by the wave function renormalizations. The only other couplings are the Yang-Mills

ones, whose renormalization is also given by kinetic terms in background-field gauges.

Thus, all “physical” renormalizations in supersymmetric theories can be found from

just propagator corrections. In particular, this means that if the effective action is

calculated with background-field supergraphs, then it is completely finite in a finite

theory.

A possible exception to our statement of all physical renormalizations coming from

propagator corrections would seem to be the Fayet-Iliopoulos tadpole term
∫
d4θ V .

However, massless tadpoles vanish in dimensional regularization, and massive ones

require real representations, which cannot generate explicit-prepotential terms. (In

particular, at more than one loop such terms never appear in the background-field

gauge for any representation.)

The simplest one-loop propagator correction is to φ̄φ. (The φφ correction van-

ishes, since
∫
d4θ φ2 = 0: See subsection VIC5.) There are two graphs to consider,

one with two internal φ̄φ propagators, and one with internal φ̄φ and V V propagators.

The d algebra for the two graphs is identical: Both get a d2 and a d̄2 inside the loop,

exactly enough to give a nonvanishing graph (using [d̄2d2δ4(θ − θ′)]|θ′=θ = 1). There

is also a symmetry factor of 1
2 for the two φ̄φ propagators, and a −1 for the mixed

graph because the two different types of internal propagator have opposite sign (and,

as usual, an overall −1 to get Γ from the T-matrix). Thus, the supersymmetry (spin)

part of the algebra is almost trivial in this case.

Exercise VIIIA5.1

Use component methods to evaluate the first graph with external fermions:

the contribution of the Yukawa interaction to the fermion propagator. Show

it agrees with the supergraph evaluation.
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On the other hand, the internal group theory is slightly messy, so we treat the

general case immediately: We take vector multiplets V i for an arbitrary group (though

we will need a semisimple group for finiteness, since Abelian groups are not even

asymptotically free). Sums
∑

G are over each simple subgroup (or each Abelian

factor), since they can have independent coupling constants gRG for representation R

(especially gAG for the adjoint, which we use for the pure super Yang-Mills term for

definiteness; except for the Abelian factors, where a nontrivial representation should

be substituted). Similarly, sums
∑

R are over irreducible representations of the group;

ΠRI
J is the corresponding projection operator. For the simple (or single-component

Abelian) factors of the group

ηGij = cAGΠGij

is used (but again, with a different normalization for the Abelian factors). We also

use the group theory identities (normalizations) from subsection IB2, now generalized

to these nonsimple groups and reducible representations:

GiI
KGjK

JΠRJ
I =

∑
G

cRGΠGij =
∑
G

cRG
cAG

ηGij

GiI
KGjK

JηijG =
∑
R

kRGΠRI
J =

∑
R

cRGdAG
cAGdR

ΠRI
J

Then from the Lagrangian

L = −
∫
d4θ φ̄I(eV )I

JφJ +

(∫
d2θ 1

6
λIJKφIφJφK + h.c.

)
−
∑
G

1

g2
AG

∫
d2θ 1

2W
iαW j

αηGij

(ignoring mass terms) the result is simply

Γ1,φφ̄ = h̄

∫
d4θ φ̄IMI

JÂ2φJ , MI
J =

∑
R,G

g2
AG

cRGdAG
cAGdR

ΠRI
J − 1

2 λ̄IKLλ
JKL

where again Â2 is the operator representing the one-loop propagator correction (T-

matrix) for self-interacting scalars. (Of course, this operator may vary depending on

the internal masses; here we are concerned mostly with the divergences and leading

high-energy behavior, which is mass-independent. As usual, we can rescale the gauge

fields by their couplings in the Lagrangian; this moves these couplings from the propa-

gators into the vertices, giving the same result for this term in Γ , since it has no V ’s.)

Of course, this is the identical group theory that appears in the nonsupersymmetric

case; we have been more general here because we want to consider exact cancellation,

while in the nonsupersymmetric case simplicity is usually more important.
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6. Supergluon

The supergluon self-energy calculation is similar to the nonsupersymmetric cases

considered in subsections VIIIA2-3. Examining the Feynman rules, we see that those

for the vector multiplets are similar to the nonsupersymmetric ones for vectors (as

expected), while those for the scalar multiplets are similar to those for spinors: d2

and d̄2 are analogous to (in 2×2 matrix notation) ∂ and ∂*, etc.

There are now only two kinds of loops to consider, vector and scalar multiplets:

As for the nonsupersymmetric case, ghosts in background-field gauges couple the

same as matter, since at one loop the only coupling is to background fields and thus

covariant, even for ghosts. For the real scalar superfield describing the quantum

vector multiplet, looking at the terms in the action quadratic in V (from subsection

VIB10)

S2V =

∫
dx d4θ 1

4
V ( + 2iWαDα + 2iW

.
αD̄ .

α)V

we see that vertices have only 1 spinor derivative at most. However, we need at

least 4 spinor derivatives (2 d’s and 2 d̄’s) per loop (see subsection VIC5), since the

result of reducing any loop to a point in θ space always leaves the tadpole θ-integral

[d...dδ4(θ − θ′)]|θ′=θ, which vanishes for fewer than 4 derivatives. Thus, a V loop in

a super Yang-Mills background vanishes for fewer than 4 external lines. This means

the entire contribution of quantum super Yang-Mills to the supergluon propagator

correction (or 3-point correction from real representations) in the background-field

gauge comes from the 3 ghosts (including the Nielsen-Kallosh ghost), which couple

the same as −3 scalar multiplets in the adjoint representation. Thus, for example,

we see without evaluating a single graph that this correction vanishes for N=4 super

Yang-Mills, which has also 3 physical adjoint scalar multiplets. (See subsection IVC7.)

For the scalar multiplets, we can find the analog of the squared-propagator trick:

The easiest way is by the method of subsection IIIC4, which automatically takes

care of factors of 1
2 , and can be applied classically, without worrying about functional

determinants. This method requires we consider the massive theory at intermediate

stages of the calculation, although the mass can be dropped at the end. The only

resulting limitation is that we must restrict to real representations of the gauge group.

(In other words, the couplings must preserve parity: For these terms, CP invariance is

automatic, and reality means C invariance, so P invariance is implied.) However, this

is a restriction of the usefulness of the squared-propagator trick anyway: Otherwise we

get expressions like (∂/+ iA/ )(∂/− iA/*) which do not yield useful simplifications. (They

require as much work as without the trick.) In such cases we are stuck with doing the

calculations the hard way. This is not just a technical difficulty, it is a consequence
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of the final result being messier in such cases: For example, for real representations

there is no possibility of anomalies. However, we can separate the generators into

the real (scalar) and imaginary (pseudoscalar) ones: Then this trick simplifies the

real (polar vector) couplings but not the imaginary (axial vector) couplings. (As for

Pauli-Villars in subsection VIIIB2 below, but also for the physical fields before taking

the mass to vanish after the trick has been applied, the mass term can be chosen to

preserve the polar symmetries and thus violate the axial ones.)

However, by comparison of the propagator correction for complex and real rep-

resentations without (the supersymmetric version of) the squared-propagator trick,

we see that the only difference between the two is in the (Yang-Mills) group theory.

Thus, we can calculate for real representations first, using the trick, and then for

complex representations by simply replacing the group-theory factor in the result for

the real ones.

Repeating the procedure of subsection IIIC4 with spinors replaced with chiral

superfields, we begin with the Lagrangian (S =
∫
dx L)

L = −
∫
d4θ φ̄φ+ m√

2

(∫
d2θ 1

2φ
2 +

∫
d2θ̄ 1

2 φ̄
2

)
where the chiral superfields are covariantly chiral (or background-covariantly chiral)

∇ .
αφ = ∇αφ̄ = 0

Treating φ̄ as auxiliary (the φ̄2 term has no Yang-Mills coupling, as can be seen, e.g.,

in an “antichiral” representation), we eliminate it by its algebraic field equation

φ̄ =
√

2
m
∇2φ

After a trivial rescaling

φ→ 2−1/4
√
mφ

(and using
∫
d4θ =

∫
d2θ ∇2

) we obtain the action

Lφ = −
∫
d2θ 1

2φ(∇2∇2 − 1
2m

2)φ = −
∫
d2θ 1

4
φ( −m2 + i[Wα,∇α])φ

( = ∇a∇a) using an identity from subsection VIC5. (You may include an “i” in

the rescaling of φ. Then the propagator has the same sign as the usual. The vertices

will then also get an extra sign, so the net result cancels in the loop.)

In the chiral vacuum-bubble loop, we no longer have an explicit chiral superfield

to convert ∇2∇2 to + .... However, using the chiral representation ∇2
= d̄2, we can

write the kinetic operator as

d̄2∇2 = d̄2d2 + d̄2(∇2 − d2)
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to separate the truly free part from the background interactions. Then quantization

can be preformed as usual (see subsection VIC5): Essentially, we can now use the

free − 0 + m2 = p2 + m2 as kinetic operator, since at each vertex there is a d̄2 to

project back to chiral superfields. Of course, in general we need only one projector in

any trace over a subspace: In this case that result is obtained by integrating the d̄2’s

by parts in the loop back and forth across the free propagators, since sandwiching

any ∇2 − d2 between them produces

d̄2(∇2 − d2)d̄2 = 1
2( − 0 + i[Wα,∇α])d̄2

Repeating the procedure till only one d̄2 is left, the Feynman rules for this loop become

propagator :
1

1
2(p2 +m2)

δ4(θ − θ′)

one vertex : d̄2(∇2 − d2)

other vertices : 1
2( − 0 + i[Wα,∇α])

(One can also consider the relevant term in the Lagrangian as
∫
d4θ φ∇2φ. Then

there’s a d̄2 on δ4(θ) associated with each propagator, and a ∇2 − d2 for each vertex,

with an
∫
d4θ.)

We thus see that one vertex has at most 3 derivatives (d̄2d) while the other has

at most 1 (d):

d̄2(∇2 − d2) = d̄2[iAαdα + 1
2i(d

αAα)− 1
2A

αAα]

1
2( − 0 + i[Wα,∇α]) = iWαdα+ 1

2i(d
αWα)− 1

2 [Wα, Aα]+ iAa∂a+ 1
2i(∂

aAa)− 1
2A

aAa

exactly the minimum needed. (Thus, there are insufficient derivatives for a tadpole

contribution to the propagator.) The result for this diagram is then the same as the

corresponding diagram in bosonic ϕ3 theory, with a group theory factor tr(GiGj),

and replacing ϕ(−p)ϕ(p) with∫
d4θ d4θ′ 1

2 [iW iα(−p, θ′)d′αδ4(θ − θ′)][iAjβ(p, θ)d̄2dβδ
4(θ − θ′)]

=

∫
d4θ 1

2W
iα(−p, θ)Ajα(p, θ) =

∫
d2θ 1

2W
iα(−p, θ)W j

α(p, θ)

using dδ = −d′δ, integration by parts, [d̄2d2δ4(θ−θ′)]|θ′=θ = 1, and Wα = d̄2Aα (chiral

representation). Written in the notation of subsection VIIIA3, the 2-supergluon part

of the unrenormalized 1-loop effective action is then

Γ1,2sg = −h̄ tr
∫
dx d2θ 1

2W
α(1

2cR)Â2Wα
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for a scalar multiplet, and exactly −3 times that for a vector multiplet, including the

massive case. Thus, cancellations again survive the introduction of masses. Also, if

the masses of the various scalar multiplets are equal the entire propagator correction

is canceled in such theories, while for unequal masses only the divergence, and the

corresponding leading (logarithmic) high-energy term, is canceled.

Exercise VIIIA6.1

Show this result agrees with the restriction to N=1 supersymmetric theories

of the component result of subsection VIIIA3.

Exercise VIIIA6.2

Take the result of subsection VIIIA3 literally for all spins s (arbitrarily large).

Using the fact that multiplets with N+1 supersymmetries can be written as

2 multiplets with N supersymmetries, differing in maximum helicity by 1/2,

recursively find the result for general s (now labeling maximum helicity) for

all values of N≥ 1, and show it vanishes for N≥ 3.

Exercise VIIIA6.3

Calculate the chiral scalar contribution to the one-loop supergluon propagator

correction without the squared-propagator trick. (Hint: There are 8 spinor

derivatives in the loop. Integrating them by parts off one propagator produces

3 terms, since the number of d’s and d̄’s inside must be equal, because what’s

left is always spacetime derivatives on [d̄2d2δ4(θ − θ′)]|θ′=θ.)

Generalizing the group theory as in the previous subsection, we have the total

result

Γ1,V V = −h̄
∫
dx d2θ

∑
G

1
2W

iα(1
2MG)ηGijÂ2W

j
α, MG =

∑
R

cRG
cAG
− 3

(For Abelian factors, irrelevant for finiteness, we should take the cAG factor out of

ηGij and put it into MG; then cAG = 0 for Abelian groups, so MG →
∑

R cRG > 0.)

Therefore, combining with the results of the previous subsection, the conditions for

finiteness are ∑
R

cRG
cAG

= 3,
∑
R,G

g2
AG

cRGdAG
cAGdR

ΠRI
J = 1

2 λ̄IKLλ
JKL

In particular, for the case of N=4 super Yang-Mills written in terms of N=1 superfields

(see subsection IVC7), we have 3 adjoint chiral scalars φI with I = iI ′, where i is

the adjoint label and I ′ = 1, 2, 3 (which appeared as the label I in subsection IVC7,

where the adjoint label was implicit in matrix notation). Then

λIJK = gAf
ijkεI

′J ′K′
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and the above two finiteness conditions reduce to

δI
′

I′ = 3, δJ
′

I′ = 1
2εI′K′L′ε

J ′K′L′ (δji = fiklf
jkl)

As explained in the previous subsection, in the general case the finiteness conditions

may receive quantum corrections at 3 loops and beyond, depending on the model and

renormalization prescription, but no new conditions are added.

Presently there is no deep understanding for the finiteness of these models (at

least, not deep enough to always avoid the quantum corrections to the finiteness con-

ditions). Note that they are finite for arbitrary values of the couplings, up to the

two above restrictions: For example, we can scale all the couplings by a common

factor. Thus, they are finite order-by-order in perturbation theory (loops). Non-

supersymmetric theories can also be finite, but only for specific numerical values of

the coupling, i.e., not for arbitrarily small values of the coupling, and thus not order-

by-order in the loop expansion; they therefore suffer from the renormalon problem.

(The renormalon-like behavior of instantons is not a problem in the framework of the

1/Nc expansion.) The finiteness of theories with extended supersymmetry has been

explained by various arguments (in particular, for N=2 there are no divergences be-

yond 1 loop even for theories that are just renormalizable), but none of these applies

to the general case of simple supersymmetry.

To obtain more realistic models, we may want to consider adding “soft” super-

symmetry breaking terms (those which have little effect on high-energy behavior), as

introduced in subsection IVC6, to these finite theories. Finiteness can be maintained,

but the conditions become considerably more complicated in the general case. Note

that spontaneous breaking of supersymmetry is not allowed, because the first condi-

tion prohibits U(1) factors (with cAG = 0; thus no
∫
d4θ V terms), while the second

prohibits gauge-singlet matter (with cRG = 0; thus no
∫
d2θ φ terms).

7. Schwinger model

The simplest interacting model in D=2 is the “Schwinger model”, massless QED.

This theory is even simpler than scalar theories because its interactions occur only

through a massless gauge vector, which has no physical polarizations in two dimen-

sions (D−2=0).

The most interesting feature of the Schwinger model is that all amplitudes with

external vectors can be calculated exactly. In fact, the only nonvanishing 1PI vector

amplitude is the one-loop propagator correction, which gives just a mass term. In

that sense the theory is trivial, and describes just a massive vector. However, the
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methods of calculation are instructive. We first consider some simple methods of

calculation of just the propagator correction, and then show that it is the only 1PI

vector graph. One method we have already considered is dimensional regularization;

from subsection VIIIA2-3 we have the contribution to the effective action (correcting

for the 2D normalization tr(I) = 2)

Γ1 =

∫
dx F

1
F

where we write Fab = εabF in D=2. Although this calculation needs no renormal-

ization, regularization is still necessary to allow naive manipulation of the integrand:

Using dimensional regularization, we see from the result of subsection VIIIA3 that

we get a factor of 1
D−1
− 4s2 ∼ ε in D = 2 + 2ε, canceling the 1/ε pole from the scalar

integral.

It can also be calculated in position space, using the methods of subsection VIIB5.

The Lagrangian in lightcone notation is

L = − 1
4e2
F 2 + [ψ̄⊕(−i∂		 + A		)ψ⊕ + ψ̄	(−i∂⊕⊕ + A⊕⊕)ψ	]

F = ∂⊕⊕A		 − ∂		A⊕⊕

We can calculate separately the contributions of ψ⊕ and ψ	 to fermion loops. The

“photon” propagator correction consists of the product of two fermion propagators,

as given in subsection VIIB5. We then find for the effective action (including another

−1 for T → Γ and a 1
2 for identical external lines), after including a finite counterterm

to restore gauge invariance,

1
2A−(∂+)2 1

−1
2

A− + 1
2A+(∂−)2 1

−1
2

A+ − A+A− = F
1
F

(after integration by parts).

This same calculation also gives the “axial anomaly”: Consider an axial vector

gauge field B that couples to the current ±ψ̄αψα (not summed), in addition to A’s

coupling to ψ̄αψα. (In D=2, Wa = εa
bVb ⇒ W± = ±V±. Here we use α = ⊕ or 	 to

correlate with ±.) The contribution to the 1-loop effective action with one of each

vector externally is, after including a counterterm to preserve A gauge invariance

(and therefore break B gauge invariance),

−B−(∂+)2 1

−1
2

A− +B+(∂−)2 1

−1
2

A+ +B−A+ −B+A− = −(∂ ·B)
1

−1
2

F

The anomaly is the breaking of B gauge invariance,

δB = −∂λ ⇒ δΓ =

∫
λ∂ · δΓ

δB
= −2

∫
λF
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An anomaly is by definition a quantum effect: As we have seen from the 2D

axial anomaly, it is related to a divergence that violates naive classical arguments,

since the regulator itself violates the symmetry. In the axial case there is no actual

divergent term in the effective action, but a finite term results from a ε/ε type of

cancellation. Dimensional analysis immediately reveals that the propagator correction

is the only graph in D=2 that can contribute such a term from the fermion loop.

(Fermion propagators go as 1/p, while the vertex is a constant: The electric charge

has dimension in D6=4.)

The complete one-loop effective action for the vectors then follows directly from

the complete anomaly for the axial current, and the vanishing of the anomaly for the

polar current: By separating out the anomalous term in the effective action,

Γ =

∫
F

1
F +∆Γ ; J =

δΓ

δA
, ∆J =

δ(∆Γ )

δA

∂ · J = 0, ∂ × J = −2F ⇒ ∂ · (∆J) = ∂ × (∆J) = 0 ⇒ ∆J = 0 ⇒ ∆Γ = 0

(up to an irrelevant constant), where ∂ × J = εab∂aJb is the curl of the polar current,

but also the divergence of the axial current. (There are some questions of boundary

conditions in solving the divergence- and curl-free conditions as ∆J = 0, but these

are resolved by working in Euclidean momentum space.)

Similar remarks apply to external gravity: From a similar calculation, replacing

the vector current with the energy-momentum tensor, we find

∂mT
mn = 0, ∂mε

m
nT

np ∼ εpm∂mR ⇒ Tmm ∼ R, Γ ∼ R
1
R

where R is the 2D curvature (which is just a scalar, as the vector field strength is

a pseudoscalar). While in the vector case the finite local counterterm was chosen to

preserve polar gauge invariance and thus violate axial, for the tensor case a term is

chosen to preserve local conservation of energy-momentum and thus violate conformal

invariance Tmm = 0. (The above expressions are linearized, but the results can be

generalized to fully nonlinear gravity.)

Exercise VIIIA7.1

Calculate the gravitational anomalies from a massless spinor loop in D=2,

using the classical expressions (as follow from dimensional and Lorentz anal-

ysis)

T++ = ψ̄⊕(−1
2i)
↔
∂+ψ⊕, T−− = ψ̄	(−1

2i)
↔
∂−ψ	, T+− = 0

(If you work in terms of Γ you can define the perturbative field hab such that

δΓ/δhab = T ab.)
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The simple form of the effective actions in the Schwinger model is a consequence

of bosonization: Thus, including coupling to electromagnetism and gravity, the action

for the massless spinor is equivalent to

L = −1
4
φ φ+ (F +R)φ

Integrating out the scalar generates the above effective actions classically .

Exercise VIIIA7.2

The above action is dual to the mass term of the Stückelberg action:

a Consider the first-order Lagrangian

L = −G2 +Ga(mAa + ∂aφ)

Eliminating the auxiliary field Ga by its field equation yields the usual mass

term for the Stückelberg model. Show that if we vary φ instead and solve

the resulting constraint on G, we obtain (the nongravitational part of) the

previous action.

b Generalize this construction to D=4, where the field dual to the Stückelberg

scalar is now an antisymmetric tensor gauge field. (See exercise IIB2.1.)

c Solve the field equation for φ in the Stückelberg model, and show it gives the

nonlocal mass term of the Schwinger model, for any D. Do the same for the

action of part b.
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In general, the only loop corrections that can be evaluated exactly in terms of el-

ementary functions are the one-loop propagator corrections. However, limiting forms

of vertex corrections, for various low- or high-energy limits, explicitly yield the most

important pieces for certain applications.

1. JWKB

Some low-energy contributions to the effective action can be obtained by vari-

ous quantum mechanical JWKB approximations. This involves an expansion of the

external field about its vacuum value in spacetime derivatives (momenta). Such an

expansion makes sense if this field is massless, since then small spatial momentum

means also small energy, in the relativistic sense. (Otherwise one needs to expand

nonrelativistically, about ~p = 0 but E = m. Such treatments were considered in sub-

section IIB5, and will be applied to loops in subsection VIIIB6.) It also can be useful

when the mass of the external field is small compared to the mass scale relevant to

the interactions, such as for chiral symmetry breaking in the low-energy description

of light mesons (subsection IVA4).

On the other hand, the fields we are integrating out must be massive, with a mass

greater than the energy we want to investigate: Otherwise, the internal particles

would show up as poles (and cuts) in the amplitudes, where Taylor expansion in

momenta would be a poor approximation. The basic principle for analyzing the

behavior of such a theory in a certain energy range is thus to first find contributions

to the effective action where: (1) only particles with masses of lower energy appear

on external (background) lines, and (2) only particles with masses of higher energy

appear on internal (quantum) lines. These contributions are approximated by Taylor

expansion to finite order in external momenta, yielding a local effective action. We

could then consider finishing the functional integration by integrating out the lighter

particles on internal lines: However, in this approximation it would be inaccurate to

consider such particles in loops, since there they would include energies above the

approximation scale. Thus, the effective action obtained by integrating out just the

heavier fields is useful only when the lighter fields are treated classically. We apply

the same approximation scheme to the classical action: Eliminate the heavier fields by

their classical equations of motion, and Taylor expand their propagators in momenta

to the desired order to get a local result.
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In subsection VIIB2 we saw the simplest example, the effective potential: In that

case the constant background scalar field acted as just a correction to the mass. We

now consider more complicated cases, where spin and gauge invariance play roles for

the internal or external fields. In particular, adding coordinate dependence to the

background fields means we need to consider more general propagators for quadratic

kinetic operators, such as harmonic oscillators.

We saw in subsection VIB1 the most general relativistic particle action for a scalar

in external fields that was quadratic in x and
.
x. We now consider such actions in more

detail: They are the most general ones for which we can derive one-loop results to all

orders in the external fields (i.e., without performing the JWKB expansion beyond the

first quantum correction, which requires Taylor expanding the exponential in terms

that are beyond quadratic, thus expanding in the number of external fields).

Without loss of generality, we can consider Lagrangians that are homogeneous

of second order in x and
.
x: Terms linear in

.
x are boundary (in τ) terms, and were

already eliminated by a gauge transformation (radial gauge). Terms linear in x can

be removed by a translation, in the presence of an x2 term (which is needed to bound

an x term in the potential). (Both these kinds of terms can be restored trivially at

the end.) A constant term is also trivial, giving a contribution to the classical action

that is just that times T (after integration
∫ T

0
dτ), and can be treated separately. (It

doesn’t contribute to the equations of motion.) The remaining contribution to the

mechanics action is then of the form (as usual, in the gauge v = 1)

S =

∫ T

0

dτ 1
2 [− .

x2 + xA .
x+ xBx] ⇒ ..

x+A .
x+ Bx = 0

⇒ S =

∫ T

0

dτ 1
2(− .

x2 − x..
x) = −1

2(x
.
x)|T0

where A is an antisymmetric matrix and B symmetric. The steps to this contribution

to the one-loop effective field action are then:

(1) Solve the equations of motion, which are homogeneous second-order differential

equations.

(2) Change variables from the two parameters used for each x to x(0) and x(T ).

(Second-order differential equations require two initial conditions, or one initial

and one final.)

(3) Find S(x(0), x(T )), including separately the contribution from the constant term

in the Lagrangian.

(4) Find the propagator for “time” T , including the e−iS and the van Vleck determi-

nant. (See exercise VA2.1.)
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(5) Integrate the propagator over T to find Γ . (See subsection VIIB2.)

For example, consider in QED the contribution to Γ from a fermion loop. If we

are interested in only the properties of photons, then this gives the entire contribu-

tion to the functional integral from integrating out the fermions: This contribution,

plus the classical (free) Maxwell action, gives a nonlocal “classical” action of self-

interacting photons, which can itself be quantized to give the exact QED result for

external photons. Although this one-loop effective action is too difficult to calculate

exactly, the first-quantized JWKB approximation can give an accurate description

at energies small compared to the electron mass. Note that we are simultaneously

approximating to the first quantum correction in JWKB expansions of both the field

(second-quantized) type (one-loop) and the mechanics (first-quantized) type.

The mechanics action for a massive particle in a constant external electromagnetic

field strength (the lowest nontrivial order, but also the highest that keeps the action

quadratic), in the radial gauge for the background field and affine parametrization of

the worldline, is (see subsection VIB1)

S =

∫
dτ 1

2(− .
x2 + xaFab

.
xb +M2)

To include spin, we identify (see subsection VIIIA3)

M2 = m2 − iSabFab

Since the only appearance of spin operators in the calculation of the propagator

(denominator) is this constant matrix, it commutes with everything, so we can treat

it as a number till the last step. The equation of motion

..
x+ F

.
x = 0

is easily solved in matrix notation. (Hint: Solve for
.
x first.) Finding xi = x(0) and

xf = x(T ) in terms of our integration parameters and inverting, then expressing
.
x(0)

and
.
x(T ) in terms of xi and xf (and T and F ), and making use of the antisymmetry

of F , the result is

S = −1
4
(xf − xi)F coth(FT

2
)(xf − xi)− 1

2xfFxi + 1
2M

2T

The propagator is then given by (see subsections VA2 and VIIB2)

〈xf |e−iTH |xi〉 =

√
det

∂2(−iS)

∂xf∂xi
e−iS
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Plugging in, and then Wick rotating T → −iT , we find for the propagator with ends

tied together

〈x|e−TH |x〉 =

√
det

iF

1− e−iFT
e−M

2T/2

Finally, the contribution to the effective action is (see subsection VIIB2)

Γ = −c
∫
dx

∫ ∞
0

dT

T
tr

(√
det

iF

1− e−iFT
e−M

2T/2 −
√
det

I

T
e−m

2T/2

)

= −c
∫
dx

∫ ∞
0

dT T−D/2−1e−m
2T/2

[√
det

iFT

1− e−iFT
tr(eiS·FT/2)− tr(I)

]
where c = −1

2 for fermions, for statistics and squaring the propagator. (The “det” is

for the vector indices on Fa
b, the “tr” is for the spin indices from powers of Sab in

“S · F ”.)

Exercise VIIIB1.1

Explicitly evaluate the determinant and trace for D=2.

Exercise VIIIB1.2

Expand Γ in F and show the resulting F 2 terms agree with those obtained

in subsection VIIIA2-3.

Exercise VIIIB1.3

Consider the quadratic action

S =

∫
dτ 1

2 [− .
x2 + x(a− aT )

.
x− xaaTx]

where the matrix a commutes with its transpose ([a, aT ] = 0). Solve the field

equations for S(xi, xf ;T ). Find 〈x|e−TH |x〉.

2. Axial anomaly

The axial anomaly comes from a finite graph, as we have already seen in subsection

VIIIA7 for the case D=2. However, the naive manipulations that would show the

graph to preserve gauge invariance involve evaluating the finite difference between

divergent graphs, each of which needs regularization. Although in some cases the

graph can be evaluated explicitly, and then shown to be anomalous, it is generally

easier, and more instructive, to analyze the anomaly by itself.

The axial anomaly is associated with the use of ε tensors. In renormalizable

theories in D=4, these occur only through γ−1’s for spinors. (In nonrenormalizable

theories, or in D=2, ε tensors can occur in scalar theories. There is also the term
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εabcdFabFcd, which is a total divergence, and has no effect in perturbation theory.)

In general even dimensions, the massless kinetic term for a spinor is invariant under

transformations generated by γ−1, but the mass term is not. Chiral symmetry is thus

related to masslessness; this is also true for conformal invariance, so it’s not surpris-

ing that quantum corrections can break both. (In fact, in supersymmetric theories

conformal symmetry is related to a particular chiral symmetry by supersymmetry, so

breaking of one requires breaking of the other if supersymmetry is to be preserved.)

Dimensional regularization manifestly preserves neither conformal nor chiral in-

variance; no regularization does. The existence of these anomalies proves the impos-

sibility of such a regularization. Furthermore, dimensional reduction has difficulty

dealing with γ−1; it even has inconsistencies in the presence of axial anomalies. On

the other hand, Pauli-Villars regularization is especially convenient for dealing with

axial anomalies because it regularizes by introducing masses. Thus, it breaks chiral

symmetry explicitly but softly, conveniently parametrizing the breaking by mass pa-

rameters. We therefore will use Pauli-Villars regularization for the single purpose of

evaluating the axial anomaly.

The basic idea of Pauli-Villars regularization is to include massive “ghost” fields

which would cancel graphs from physical fields if they had the same mass. But the

masses of the ghosts are used as regulators; after subtracting local divergences, the

regulator mass is taken to infinity. In our case, as we’ll see by explicit evaluation, the

anomaly itself is finite, so no subtraction is necessary.

The graph whose anomaly we want to evaluate is a one-loop 1PI graph with

external vectors and a massless internal spinor. Of the vectors, all but one is a

“polar” vector, coupling to ψ̄γaψ, while the last is an “axial” vector, coupling to

ψ̄γ−1γaψ. These are the currents associated with the symmetries ψ′ = eiθψ and

ψ′ = eiθγ−1ψ (γ2
−1 = 1). We add to this graph a similar one, but with a massive

spinor, and give the second graph an overall relative minus sign. Since the mass

breaks chiral invariance, we have explicitly broken the gauge invariance of the axial

vector, while preserving those of the polar vectors. Note that this is a feature of the

regularization: If a regularization existed that preserved chiral symmetry, then we

could freely move the γ−1 around the graph from one vertex to the next using the
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usual naive anticommutation relations, thus moving also the anomaly from one vertex

to the next (i.e., violating gauge invariance in any vector we choose).

Gauge invariance is represented by vanishing divergence of the corresponding

current: At each vertex we have the coupling
∫
A ·J , with gauge invariance δA = ∂λ,

implying ∂ ·J = 0 by integration by parts, where J may be polar or axial depending on

the vertex. These currents are conserved classically. We know they are also conserved

quantum mechanically in the absence of γ−1’s, since dimensional regularization and

renormalization preserve the gauge invariance of the effective action. In graphical

terms, taking the divergence at a vertex kills a propagator (since ∂ ·J is proportional

to the field equations of the internal field), and this can be shown to lead to vanishing

of the graph.

However, with the Pauli-Villars regulator, the classical conservation of the axial

current is explicitly broken. The result is that the complete axial anomaly can be

found by looking at just the contribution coming from this explicit classical violation

of current conservation (inserted into the one-loop graph). (The classically vanish-

ing contributions are actually nonvanishing because of the anomaly, but they cancel

between the physical and regulator fields, precisely because the regularization allows

the naive manipulations that justify dropping them.)

We therefore want to evaluate the anomaly

∂aJ a(x) ≡ ∂a
δΓ

δAa(x)

where we start with a term in the classical action
∫
A · J , so classically J = δS/δA,

and then evaluate its quantum correction by looking at J ≡ δΓ/δA in terms of the

one-loop part of the effective action Γ . Classically, we find a contribution from only

the regulator,

∂ · J ≡ ∂ · (−ψ̄γ−1γψ) = −2imψ̄γ−1ψ

So, all we need to evaluate is a one-loop diagram with the axial vector coupling to the

regulator replaced with a pseudoscalar coupling
∫
φψ̄γ−1ψ, and look at the graphs

with one external pseudoscalar and the rest polar vectors. Clearly this is the same

as coupling the pseudoscalar to the propagator of a bosonic spinor regulator in an

external vector field:

∂ · J = −2im tr

(
γ−1

1

i∇/ +m

)
= −2im tr

[
γ−1

1
2(−i∇/ +m)

1
1
2(∇/ 2 +m2)

]

= −im2 tr

(
γ−1

1
1
2(∇/ 2 +m2)

)
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where the trace is in the γ-matrix space. In the limit m → ∞, graphs with more

external lines vanish more rapidly. On the other hand, we need at least D/2 fac-

tors of Sab (D γ-matrices) to give a nonvanishing γ-matrix trace. Thus, the leading

contribution will be, using −∇/ 2 = + iSabFab from subsection IIIC4,

∂ · J = −im2 tr

[
γ−1

1
1
2(m2 − 0)

1
2iS

abFab
1

1
2(m2 − 0)

· · · 1
2iS

abFab
1

1
2(m2 − 0)

]
with D/2+1 propagators, where 0 = (∂a)

2.

Thus, the only Feynman diagram we actually need to evaluate is the one-loop 1PI

diagram with external and internal scalars. The limit internal m → ∞ is the same

as the limit external p→ 0. (The result does not depend on the internal momentum,

which is integrated over, nor the external mass, which would appear only in external

propagators.) Thus, this is just an effective potential calculation. We therefore have

the integral (see subsection VIIB1)∫
dk

1

[1
2(k2 +m2)]D/2+1

=
1

Γ (D
2

+ 1)1
2m

2

⇒ ∂ · J = −i 2

(D
2

)!
tr[γ−1(1

2iS
abFab)

D/2]

Exercise VIIIB2.1

Check this result by using the expression from subsection VIIIB1 for the

propagator in a constant external electromagnetic field (strength).

To evaluate in arbitrary even D, we note that the normalization of γ−1 is such

that we can choose

(γ−1)2 = 1 ⇒ γ−1 = (−i)(D−2)/2γ0γ1 · · · γD−1

tr(I) = 2D/2, ε01···D−1 = −1 ⇒ −i tr[γ−1(1
2iS

abFab)
D/2] = (1

2)D/2εab···cdFab...Fcd

⇒ ∂ · J = 2
1

2D/2(D
2

)!
εab···cdFab...Fcd

Thus, for example, for the Schwinger model (D=2) we have

∂ · J = −2F

in agreement with subsection VIIIA7, while for D=4

∂ · J = 1
4
εabcdFabFcd
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3. Anomaly cancellation

When the anomaly occurs in a current that couples to a gauge field, unitarity

is destroyed, since gauge invariance implies current conservation. This is a poten-

tial problem, since axial vector couplings occur in the Standard Model. (Actually,

they are “V−A”: (vector)−(axial vector).) The only way to avoid this problem is

to have an anomaly cancellation between the different spinors: The coefficient of

the anomaly is given purely by group theory, as tr(A{B,C}), where A,B,C are

the matrices representing the couplings of the three vectors to all spinors, and the

anticommutator comes from Bose symmetrization (from the crossed and uncrossed

graph in the S-matrix, or the single contribution multiplying commuting fields in the

effective action). We therefore require this trace (which represents the sum over all

spinors) to vanish. (See exercises IB5.3 and VC9.2d for an example of the calculation

of this trace.) The representations in the Standard Model have been chosen so this

cancellation occurs in each family.

We already know in terms of Dirac notation that axial anomalies appear only

in the presence of γ−1’s. An absence of γ−1’s is equivalent in terms of Weyl no-

tation to the use of a (pseudo)real representation for undotted Weyl spinors. For

example, consider a real representation that is reducible to a smaller (by half) rep-

resentation “R” and its complex conjugate “R̄”: Then we can complex conjugate

the complex-conjugate representation to produce a dotted Weyl spinor that is the

same representation as the undotted spinor. The undotted and dotted spinor can

then be combined, as usual, to form a Dirac spinor, which transforms as the complex

representation, without γ−1’s, and thus the same goes for the coupling of the gauge

vector:

ψRα ⊕ ψR̄α → ψRα ⊕ ψ̄R .
α → ΨR

So, in Dirac notation we can see that such representations do not contribute to anoma-

lies because of the absence of γ−1’s. Similar remarks apply to general real or pseudo-

real representations: We can take an arbitrary (pseudo)real representation and make

a Majorana spinor, as

ψRα → ψRα ⊕ ψ̄R .
α → ΨR

where now ψ̄R .
α is simply the complex conjugate of ψRα since R = R̄.

This cancellation also can be seen directly in terms of Weyl spinors: The (pseudo)-

reality of the representation is charge conjugation invariance (which is equivalent to

parity invariance for spin-1 couplings to spinors, since such couplings are always CP

invariant). Anomaly cancellation is then a generalization of Furry’s theorem (see
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subsection VIIA5). Real and pseudoreal representations of the generators (including

complex + complex conjugate) are antisymmetric, up to a unitary transformation,

since they are hermitian:

GT = G* = −UGU−1

(so δψ = iGψ preserves reality or pseudoreality). Thus

tr(A{B,C}) = tr(−AT{−BT ,−CT}) = −tr(A{B,C}) ⇒ tr(A{B,C}) = 0

In particular, any mass term (without Higgs) ψTαψα requires a real representation (so

its variation yields G + GT = 0); a pseudoreal representation won’t work because it

uses an antisymmetric metric which, when combined with Cαβ, makes ψTαψα vanish

by symmetry (since ψ is anticommuting). A related way to see in Weyl (or Dirac)

notation that real representations are nonanomalous is to use the same squared-

propagator trick we used for the propagator correction in subsection VIIIA3 (or re-

lated complex action from subsection IIIC4), which resulted in simplified Feynman

rules only for real representations: With those rules, there are no potentially diver-

gent 3-point graphs other than those that already occur for scalars (as part of the

covariantization of the propagator divergence).

The absence of γ−1’s is a special case of parity invariance. However, even par-

ity invariance is not enough to enforce cancellation of anomalies, since some parity

invariant theories have axial gauge vectors, which couple to axial currents Ψ̄γ−1γaΨ ,

and the appearance of these γ−1’s can be sufficient to introduce anomalies. In these

anomalous cases, even if there is a C, the charge conjugation argument above does

not apply because the C following from the usual CP and the obvious P does not

simply replace A → −AT , but is some other permutation of similar representations.

Thus, in general P (and C) invariance is unrelated to anomaly cancellation: We can

have one without the other. Having real representations (i.e., no γ−1’s) is a special

case of both.

Exercise VIIIB3.1

Consider chiral symmetry (as in subsection IVA4 or IVB1) for a single flavor

— U(1)L⊗U(1)R. Now gauge that symmetry:

a In Weyl spinor notation, write the action for massless Weyl spinors ψLα, ψRα

each coupled to their own gauge vector. Clearly there is one anomaly for 3

external ALa’s, due to ψL, and another for ARa, due to ψR, and no mixing.

Now assume the left and right coupling constants are equal (so the anomalies

are equal). Write the resulting symmetry transformations on all fields under

CP, C, and P.
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b Rewrite this theory in Dirac notation. Using P, find the combinations of AL

and AR that are (polar) vector and axial vector. Relate the anomaly cal-

culations in the two notations. Show that dropping the axial vector gives

(massless) QED. Find the theory that results from dropping the vector in-

stead: Give the gauge symmetry, and show it is anomalous, and explain the

anomaly (vs. the cancellation of the anomaly in QED) in both Weyl and Dirac

language.

c Generalize all the above results to U(n)L⊗U(n)R. (Note that C will now

include complex conjugation on the hermitian matrices for the vectors, so

that P won’t.)

The simplest way to prove anomalies cancel in the Standard Model is to use our

previous results for GUTs (subsection IVB4): (1) One way is to consider the GUT

gauge group SU(4)⊗SU(2)⊗SU(2). First, we note that tr(Gi) = 0 because the group

is semisimple, so there are no mixed anomalies. Then we see that the SU(4) couplings

are the usual “color”-type couplings, without γ−1’s (i.e., 4⊕ 4̄), so it has no anomalies.

On the other hand, SU(2) has only (pseudo)real representations, so neither SU(2)

has anomalies. Thus, anomalies cancel in the SU(4)⊗SU(2)⊗SU(2) GUT. Finally,

breaking to SU(3)⊗SU(2)⊗U(1) (which also spontaneously breaks parity) leaves an

extra singlet per family, which decouples, showing the cancellation for the Standard

Model.

(2) Another way is to start with SO(10), which is anomaly free for any represen-

tation of fermions:

tr(Gab, {Gcd, Gef}) = 0

simply because there is no combination of Kronecker δ’s with the appropriate sym-

metry (and similarly for SO(N), except for N=2 or 6, where such a term can be

produced with the ε tensor). Breaking to the Standard Model again drops just

a singlet (as does breaking to SU(5), showing its anomaly cancellation; breaking

to SU(4)⊗SU(2)⊗SU(2) drops nothing, again showing its cancellation). In general,

proving anomaly cancellation requires (a) using such arguments about real represen-

tations, or (b) the absence of anomalies for certain groups (namely, only SU(N) for

N>2, or U(1), can have anomalies), or (c) explicitly calculating the relevant traces.

4. π0 → 2γ

When an anomalous axial symmetry appears only as a global symmetry classi-

cally, unitarity is preserved, since no gauge field couples to that current. This can be
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a useful way to explain approximate global symmetries. The fact that the anomaly

is always a total derivative (because of the ε tensor and the Bianchi identity for F )

means that the global symmetry is not broken perturbatively. (However, when the

external vectors are nonabelian, there can be contributions from field configurations

like instantons: See subsection IIIC6.) In subsection IVA4, we saw that the neutral

pion (π0), the lightest hadron, could be considered as the pseudogoldstone boson of

an axial U(1) symmetry. We also want to consider the pion as a bound state of a

quark and antiquark: If we knew the wave function, we could write the coupling,

and calculate directly the decay of the neutral pion into two photons (π0 → 2γ) via

quark-antiquark annihilation, or at least find the leading low-quark-energy contribu-

tion from the δ-function part of the wave function (in the relative coordinates of the

quark and antiquark), corresponding to the coupling to ψ̄γ−1ψ. (An expansion of

the wave function in derivatives of the δ function would give coupling to currents

containing derivatives.)

Lacking such detailed information, the best we can do is extend the nonlinear σ

model approach, which is to look for the terms in the phenomenological Lagrangian

(expressed in terms of composite meson fields, not fundamental quark fields) with

fewest derivatives (i.e., those most important at low energy), applying the condition

of (approximate) chiral symmetry. Specifically, the global axial symmetry π′ = π−2θ,

where A′ = A for the photon field, along with the electromagnetic gauge invariance

for A, under which the neutral pion field is invariant, would suggest couplings of pion

to photon involving only ∂π and F .

However, the anomaly allows the existence of another term: Since by definition

(from considering coupling to an unphysical axial gauge field) the anomaly is given

from a local axial transformation, while the pion field transforms in a trivial way

under this transformation, we can attribute the anomaly to the pion coupling as

δπ = −2θ, δΓ = −
∫
θ∂ · J , Γ = Γ0 +∆Γ, δ(∆Γ ) = 0

⇒ Γ0 =

∫
1
2π∂ · J =

∫
π

1

2D/2(D
2

)!
εab···cdFab...Fcd

(Another way to understand the coupling is to interpret A = 1
2∂π, since they have

the same gauge transformation. Thus, A is pure gauge, i.e., longitudinal.) Thus, in

four dimensions we find the contribution

Γ0 =

∫
π 1

8
εabcdFabFcd
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Using the abelian form of the Chern-Simons form (subsection IIIC6), we also can

write this as

Γ0 = −
∫

1
6
εabcd(∂aπ)Bbcd

(In the nonabelian case, we can neglect the surface term only if the vacuum value of

π has already been subtracted.) Adding this term to those found previously (the π

and A kinetic terms, as well as the quark terms that define the normalization of the

π field through its coupling), the decay rate for π0 → 2γ can be calculated (including

the 2 relevant flavors of quarks, and 3 colors, using the values of their electromagnetic

charges), and is found to agree closely with the experimental value.

Exercise VIIIB4.1

What is Γ0 in D=2? What is the interpretation of the pion field in terms of

the fields of the Schwinger model (subsection VIIIA7)?

The global anomaly in the nonperturbative case can be applied to the strong

interactions (QCD), although not as straightforwardly: Considering the external vec-

tors to be gluons (so there is an implicit trace above over the group indices), Γ0 gives

a coupling of a neutral meson to a pseudoscalar glueball, as discussed in subsection

IC4. If the vacuum gives a nontrivial value to tr(εabcdFabFcd) (as for instantons), this

also leads to anomalous CP violation in the strong interactions.

5. Vertex

One-loop triangle graphs can’t be evaluated in terms of elementary functions.

However, in QED the most important effects are at low energy. We therefore will

evaluate the effective action in the quantum mechanical version of the JWKB ex-

pansion, as an expansion in derivatives. The resulting approximation to the effective

action thus will be local, but include terms of higher dimension than the classical

action, whose coefficients are therefore finite and unrenormalized: By dimensional

analysis, this means their coefficients will have powers of the inverse electron mass,

which can be considered as the expansion parameter. (See also subsection VIIB8,

where a scalar 1-loop vertex divergence was evaluated.)
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The propagator corrections have been found already in subsection VIIIA1; now

we calculate the vertex correction. The integral is

Aa,3,QED =

∫
dk
Na
D

Na = γb 1
2(k/+ p/′+m)γa

1
2(k/+ p/+m)γb, D = 1

2k
2 1

2 [(k+ p′)2 +m2]1
2 [(k+ p)2 +m2]

Without loss of generality, we can drop terms that vanish by the free fermion field

equations; this corresponds to canceling them by fermion field redefinitions. We then

evaluate the numerator by applying the identities

p2 = p′2 = −m2, q = p′ − p ⇒ (p+ p′)2 = −4m2 − q2

v/γv/ = v2γ − 2vv/

as well as the identities of subsection VIC4 for γb...γb, and the field equations p/ = m

on the far right and p/′ = m on the far left, to obtain

N = 1
2(k/ + p/)γ(k/ + p/′) + m2

2
γ +m(2k + p+ p′)

(k/ + p/)γ(k/ + p/′) = (k/ + p/+ p/′)γ(k/ + p/+ p/′)− p/γp/− p/′γp/′ − p/′γp/− k/γp/− p/′γk/

= [k2 +2k ·(p+p′)−4m2−q2]γ−2(k+p+p′)(k/+2m)+2m2γ+2m(p+p′)−m2γ+2mk

⇒ N = (1
2k

2γ − kk/) + [k · (p+ p′)γ − (p+ p′)k/ +mk]− (m2 + 1
2q

2)γ

For the momentum integral we evaluate

A3(x,m2, q2) =

∫
dk

eik·x

D
=

∫
d3τ λ−D/2e−E

E = 1
2

1
λ
x2 + ix · 1

2 [(α1 + α2)(p+ p′) + (α1 − α2)q] + 1
2λ[(α1 + α2)2m2 + α1α2q

2]

again on the fermion mass shell. We also have∫
d3τ =

∫ ∞
0

dλ λ2

∫ 1

0

d3α δ
(

1−
∑

α
)

=

∫ ∞
0

dλ λ2

∫ 1

0

dα1

∫ 1−α1

0

dα2

using, e.g., the definitions∫ b

a

dx δ(x)f(x) = θ(−a)θ(b)f(0),

∫ ∞
−∞

dx θ(x− a)θ(b− x)f(x) =

∫ b

a

dx f(x)

As for the fermion propagator, we clearly separate UV and IR divergent integrals by

the changes of variables

α = α1 + α2, β = α1 − α2 ⇒
∫
d3τ =

∫ ∞
0

dλ λ2

∫ 1

0

dα 1
2

∫ α

−α
dβ
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followed by

λ→ λ

α2
, β → αβ ⇒

∫
d3τ →

∫ ∞
0

dλ λ2

∫ 1

0

dα α−5 1
2

∫ 1

−1

dβ

which modifies the integral to

A3 =

∫ ∞
0

dλ λε
∫ 1

0

dα α−1−2ε 1
2

∫ 1

−1

dβ e−E

E = 1
2{

1
λ
α2x2 + iαx · (p+ p′ + βq) + λ[m2 + 1

4
(1− β2)q2]}

We now expand to O(x2) and O(q2). The β integral is then trivial (the integrand

becomes quadratic in β), the λ integral gives the usual, and the α integral is similar

to the case of the fermion propagator. The result is

A3 ≈ −1
2Γ (1 + ε)(1

2m
2)−ε

{
−1

6

q2

m2
+

(
1− 1

6

q2

m2

)[
1

εIR
+ ix · (p+ p′)

+ 1
8
(x · (p+ p′))2 + 1

4
m2x2

]
+ 1

24
(x · q)2 +

1

εUV
1
4
m2x2

}
This leads to the expression for the vertex correction

A3,QED ≈ Γ (1 + ε)(1
2m

2)−ε
{[(

1 + 1
3

q2

m2

)
1

εIR
+ 1

2

1

εUV
+ 7

2
+ 1

12

q2

m2

]
γ

+ 1
2

(
1− 1

6

q2

m2

)
p+ p′

m

}
where we have used

δaa = D

in evaluating the contribution from the k2 term. (Remember that all algebra from

indices on the fields is done in 4 dimensions, while all algebra from indices on momenta

is done in D dimensions. Since the two parts of the calculation are usually done

separately, this should cause no confusion; however, the difference in evaluating δaa is

the main thing to watch.) Using the on-shell identity

4mγ = {p/+ p/′, γ}+ [q/, γ] = −2(p+ p′) + [q/, γ]

we can rewrite this as (again keeping only O(q2))

A3,QED ≈ Γ (1 + ε)(1
2m

2)−ε
{[(

1

εIR
+ 1

2

1

εUV
+ 5

2

)
+

(
1
3

1

εIR
+ 1

4

)
q2

m2

]
γ + 1

4

[q/, γ]

m

}
(Note that the separation used here into spinless + magnetic moment contributions

is exactly the one used in subsection VIIIA3 into + FS.)
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The next step is to cancel the UV divergence by adding the counterterm for

electron wave-function renormalization from subsection VIIIA1:

A3,QED,r = A3,QED + δA3,QED ≈
[

1
3

(
1

εIR
− ln m

2

µ2

)
+ 1

4

]
q2

m2
γ + 1

4

[q/, γ]

m

Equivalently, we can take the q = 0 piece of A3,QED, and note that it combines with

A2e of subsection VIIIA1 to gauge-covariantize the term proportional to p/→ p/+ A/ .

(The unrenormalized effective action is thus automatically gauge invariant, as is the

counterterm.) At this point we can see the anomalous magnetic moment: Combining

the tree and 1-loop result (including coupling), and writing as spinless + magnetic

moment contributions, we have

γ + e2A3,QED,r ≈
{

1 + e2

[
1
3

(
1

εIR
− ln m

2

µ2

)
+ 1

4

]
q2

m2

}
(−1

2)
p+ p′

m
+ (1 + e2)1

4

[q/, γ]

m

We can translate these 1-loop corrections into a contribution to the effective action

as (with the usual −1 for the effective action)

Γ1,3,QED,r = −Ψ̄(−p′)A3,QED,rΨ(p) · A(q)

We then note, again using the spinor (free) field equations to imply (p + p′) · q = 0,

to O(q2),

−2mqaγbq[aAb] ≈ qa(p+ p′)bq[aAb] = q2(p+ p′) · A

The low-energy part of the renormalized effective action exhibiting up to order q2/m2

corrections to the coupling is then, in gauge invariant form,

Γ0+1,2e,r ≈
∫
dx Ψ

{
i∂/ − A/ +m− e2

2m
iSabFab

− e2

m2

[
1
3

(
1

εIR
− ln m

2

µ2

)
+ 1

4

]
γa(∂bFab)

}
Ψ

Exercise VIIIB5.1

Perform the supergraph version of this calculation: a massless Abelian vector

multiplet coupled to a massive chiral scalar multiplet.
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6. Nonrelativistic JWKB

As for other processes, the application of quantum field theory to bound states has

two steps: (1) Calculate the (gauge-invariant) effective action; (2) find solutions to

the field equations following from the effective action (“on-shell” states). For bound

states such solutions are nonperturbative; however, their determination is easier for

nonrelativistic systems, since we can ignore production and annihilation of additional

nonrelativistic (massive) particles in the second step because their effect already has

been included as small corrections to the effective action.

The Lamb shift is the (field theoretic) quantum contribution to the energy levels

of the hydrogen atom, which is described accurately even at one loop. The relativistic

solution is found by perturbing the relativistic effective action in derivatives about

the nonrelativistic one, whose solutions are the usual exact ones of the nonrelativistic

Schrödinger equation. For atoms the electron speed p/m is of the order of α (= 2πe2),

so the loop and derivative expansions are in the same small parameter.

The effective action is more conveniently calculated with manifestly relativistic

methods, since the internal (“virtual”) particles can be relativistic (especially those

that contribute to the UV divergences). On the other hand, the solutions to the field

equations are more conveniently calculated in a representation that takes better ad-

vantage of the nonrelativistic expansion, since the external particles are nonrelativis-

tic. Therefore, the second step begins by performing a field redefinition that converts

the manifestly Lorentz invariant effective action to a form recognizable as nonrel-

ativistic field theory with low-energy relativistic and loop corrections. (Originally

the Lamb shift was calculated without this transformation. Higher-order calculations

then required use of the relativistic Bethe-Salpeter equation, which made collection

of terms of a given order more difficult.) In subsection IIB5 we considered the gen-

eralized Foldy-Wouthuysen transformation and its application to minimal coupling;

we now apply it to the nonminimal coupling introduced by loop corrections. (In the

literature this step has been performed on the Feynman diagrams themselves; how-

ever, as usual we can save some effort by working directly with the effective action.)

Here the nonminimal correction to the transformation is easy, since the nonminimal

terms are already near the order to which we work.

We first perform some dimensional analysis, using the fact that the leading be-

havior is given by the usual nonrelativistic Schrödinger equation. Then the only

parameters in units h̄ = 1 (but there is no c in the nonrelativistic theory with just

Coulomb interaction) are the mass m and speed e2, so (in the notation of subsection
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IIB5)

πi ∼ me2, π0 ∼ me4

(neglecting the rest mass contribution). It is then convenient to reorganize the ex-

pansion in 1/m to relate to the expansion in e2: For example, we can identify the two

by choice of units
1
m
∼ e2 ⇒ πi ∼ 1, π0 ∼ 1

m

along with c = 1 (since we will include relativistic corrections).

The relativistic form of the Schrödinger equation is obtained by multiplying 2γ0

in front of the kinetic operator of the electron in a background electromagnetic field,

as obtained from the effective action. Approximating the proton as infinitely massive

(for which we can partially correct by using the reduced mass for the electron), we

take the electric field as described by the usual static “scalar” potential, and drop the

magnetic field along with the “vector” potential.

We therefore modify the expansion of subsection IIB5 by

(1) reorganizing the 1/m expansion according to our dimensional analysis,

(2) using only a static electric background, and

(3) working directly in terms of γ matrices: We can either plug in the Dirac case of

the spin operators into the expressions of subsection IIB5, including the reality-

restoring transformation of subsection IIB4,

Sab → −1
4
γ[aγb], S−1a → −1

2γ
a

or just expand the Dirac operator directly,

γ0(−π/ +m) = π0 − γ0γiπi +mγ0

(and similarly for the loop correction terms).

From the results of the previous subsection, we thus choose to order 1/m4

E−1 = γ0, O0 = γipiγ0, E1 = mπ0

O3 = −m2e2 1
2iγ

iF 0i, E4 = m2e2

[
1
3

(
1

εIR
− ln m

2

µ2

)
+ 1

4

]
∂iF 0i

(others vanishing), where we have included explicit m dependence so that the coeffi-

cients En and On are of order m0 according to our above dimensional analysis (so our

expansion in m makes sense). Using

tanh x ≈ x− 1
3
x3
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the relevant commutators from IIB5 are then, for the nonvanishing generators to this

order

mG = −1
2{[G,∆E ] + LGcoth(LG)O}E−1

⇒ G1 = − 1
2O0E−1

G3 = − 1
2([G1, E1] + 1

3
[G1, [G1,O0]])E−1

G4 = − 1
2O3E−1

and for the transformed kinetic operator

F ′ = E + tanh(1
2LG)O

⇒ F ′1 = E1 + 1
2 [G1,O0]

F ′3 = 1
2 [G3,O0]− 1

24
[G1, [G1, [G1,O0]]]

F ′4 = E4 + 1
2 [G1,O3] + 1

2 [G4,O0]

Remembering that E−1 commutes with even and anticommutes with odd, we have

identities like

(LG1)
nO0 = (−1)n(n−1)/2(O0)n+1(E−1)n, (E−1)2 = 1

Substituting for G into F ′:

F ′1 = E1 + 1
2(O0)2E−1

F ′3 = − 1
8
[O0, [O0, E1]]− 1

8
(O0)4E−1

F ′4 = E4 + 1
2{O0,O3}E−1

The final result is, using

(O0)2 = (pi)2, me2[O0, E1] = −2O3E−1

and setting E−1 = −1 on the right for positive energy,

F ′1 = mπ0 − 1
2(pi)2

F ′3 = − 1
4
m[1

2(∂iF 0i)− iSij{F 0i, pj}] + 1
8
(pi)4

F ′4 = m2e2

[
1
3

(
1

εIR
− ln m

2

µ2

)
∂iF 0i + i1

2S
ij{F 0i, pj}

]
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As expected from dimensional analysis, F ′1 is the nonrelativistic result, F ′3 is the

lowest-order relativistic correction, and F ′4 is the lowest-order part of the one-loop

correction. Putting it all together, to this order we have

F ′ ≈ π0−
[

(pi)2

2m
− (pi)4

8m3

]
− 1

8m2

[
1− 8

3
e2

(
1

εIR
− ln m

2

µ2

)]
∂iF 0i+

1 + 2e2

4m2
iSij{F 0i, pj}

Exercise VIIIB6.1

Find the additional terms in F ′ to this order when the electromagnetic field

is arbitrary (magnetic field, time derivatives of background), assuming the

same dimensional analyis for the background.

7. Lattice

Integrals are defined as limits of sums. For some cases it can be convenient to

define quantum theories on discrete spacetimes (“lattices”), perform all calculations

there, and then take the limit of continuous spacetime. Two types of such lattices

will be considered here: (1) Physical four-dimensional spacetime can be treated as a

regular hypercubic lattice. Then the existence and uniqueness of a continuum limit

where Lorentz invariance is restored must be proven. (2) In first-quantization of par-

ticles or strings, the worldline or worldsheet can be approximated as a random lattice

(see subsection XIA7). Integration over the metric of the worldline or worldsheet is

then replaced with summation over lattices with different geometries. The continuum

limit is not required by physical criteria, but only for purposes of comparison to the

theory as defined in the continuum.

The use of a regular 4D lattice for quantizing QCD has three main advantages:

(1) The lattice acts as a gauge invariant regulator for UV divergences (and, if the

lattice is finite, also IR ones).

(2) Gauge fixing is no longer necessary, since the path integral can be performed

without it.

(3) Nonperturbative calculations are possible, some analytically and some numeri-

cally (if the lattice is small enough).

Gauge fields are associated with translations through the covariant derivative.

However, on a lattice, even a regular one, infinitesimal translations are no longer

possible: For example, scalar fields are defined only at vertices of the lattice. We

therefore consider covariantizing finite translations, as in subsections IIIA5 and IIIC2,

e−k
m∇m = P

[
exp

(
−i
∫ x

x−k
dx′ · A

)]
e−k·∂ = Ux,x−ke

−k·∂
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Without loss of generality, we can restrict ourselves to translations along links, from

one vertex straight to an adjacent one (keeping all coordinates but one constant),

and successive combinations of these. Then the gauge field is replaced with the group

element Ux,x−k associated with each link, where k is now any of the 4 orthonormal

basis vectors (in Euclidean space). The gauge transformation of this representation

of the gauge field follows from either the path-ordered definition or the covariant-

translation definition:

e−k·∇(x)′ = g(x)e−k·∇g−1(x) ⇒ U ′x,x−k = g(x)Ux,x−kg
−1(x− k)

Note that, while the gauge field is a group element associated with a link, the gauge

transformation is a group element associated with a vertex. Furthermore, the field

strength can be associated with the product of these group elements of the links

bounding a “plaquet”:

Ux,x−kUx−k,x−k−k′Ux−k−k′,x−k′Ux−k′,x = P
(
e−i
∮
dx·A
)

= e−k·∇e−k
′·∇ek·∇ek

′·∇

≈ e[k·∇,k′·∇] ≈ 1 + ikak′bFab

where we have used

eBeC = eB+C+
1
2 [B,C]+...

(In general, there is a geometric prescription associating a scalar with a point, a vector

with a line, a second-rank antisymmetric tensor with a surface, etc.)

We now define a gauge-invariant action by looking for an expression in terms of

these group elements that approximates the usual Yang-Mills action to lowest order in

the lattice spacing, while involving the least number of factors of the group elements.

The result is:

S = − 1
g2
tr
∑

plaquets

(Ux,x−kUx−k,x−k−k′Ux−k−k′,x−k′Ux−k′,x − 1)

≈ − 1
g2
tr
∑

plaquets

1
2(ikak′bFab)

2 ∼ 1
g2
tr
∑
x

F 2(x)

(expanding the exponential as above to quadratic order, and noting that total commu-

tators vanish when traced). Since our fields are now represented by group elements,

we no longer need to fix the gauge to make the functional path integral well defined:

In contrast to the continuum case, where integrating a gauge-invariant action over

gauge transformations would produce an infinite factor, here such an integral at any

one point is just an integral over the group space, which is finite (for compact groups,

which have finite volume). The functional integration is now integration over U for
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each link, where the range of U is the group space (which is finite, since the group is

compact).

Matter can also be introduced: Scalars are naturally associated with vertices,

just as vectors are with links, and second-rank antisymmetric tensors with plaquets.

However, fermions do not have such a natural geometric interpretation. In particular,

it has been proven (the “Nielsen-Ninomiya theorem”) that massless fermions can’t be

defined in a useful way on the lattice without “fermion doubling”: There must be a

multiple of 2D massless fermion fields for D lattice dimensions. This is closely related

to the existence of axial anomalies: The absence of an anomaly is implied by the

existence of a regularization that manifestly preserves a symmetry (in this case, chiral

symmetry as a consequence of the existence of lattice-regularized fermions). However,

massless fermions can be defined as limits of massive ones (so chiral invariance is not

manifest). Alternatively, nonlocal spinor kinetic operators can be found that preserve

masslessness and chirality without doubling. (The nonlocality can be controlled, but

at the cost of a significantly more complicated action.)

Exercise VIIIB7.1

For the lattice action for a spinor in D=1, use

S = 1
2i
∑
n

ψn+1ψn

where ψ is a real one-component fermion.

a Show this has the correct continuum limit.

b Find the equations of motion.

c Solve the equations of motion for both the lattice and continuum cases, and

show the lattice has twice as many solutions.

d Repeat all the above for the single-component complex (Dirac) fermion,

S = i
∑
n

(ψ̄n+1 − ψ̄n)ψn

e Make the same analysis for the D=1 scalar, and show it has no such problems.

Exercise VIIIB7.2

In the book by Feynman and Hibbs, exercise 2-6 states rules for the path

integral for a Dirac spinor in D=2. These rules are equivalent to the use of

a lightlike lattice, where the lightcone coordinates are discretized. The rules

are to consider all paths that are piecewise lightlike forward in time, with a

factor of imε for each right-angle “kink” (where m is the mass and ε the lattice
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spacing). Show these rules follow from the 2D action for a Dirac spinor (see

subsection VIIB5, and include a mass term), using a term as in the previous

exercise for the derivative term for each of the two component fields (each of

which has a derivative in only one of the two lightlike coordinates).

In general, fermions are more difficult to integrate over, particularly when using

“numerical methods” (computers), since fermions are not numbers. In principle one

can integrate out the fermions analytically to produce functional determinants in

terms of bosonic fields, but nonlocality makes them hard to evaluate by iterative

schemes. In practice fermion loops are usually ignored (“quenched approximation”),

which corresponds to leading order in an expansion in the inverse of the number

of flavors, or the approximation of heavy quarks. The resulting accuracy of QCD

calculations for low-energy parameters (masses of light hadrons, decay constants, etc.)

is of the order of 5-10%. (Getting good numbers in nonperturbative calculations is

significantly harder than in perturbative ones. The situation is expected to improve

somewhat with the advent of faster computers.) Finding scattering amplitudes, or

other properties that involve high-mass hadrons, is presently beyond the scope of

lattice methods. However, lattice QCD is one of the few methods so far to obtain

numbers for comparison with experiment from nonperturbative calculations with the

QCD action. (Other nonperturbative methods have also been restricted to low-mass

hadrons, and basically study effects of chiral symmetry breaking, not confinement.)

The spacetime lattice allows a direct nonperturbative analysis of confinement.

For example, consider the potential between a heavy quark-antiquark pair. The

heaviness again allows us to ignore pair creation, and to treat the quarks as static.

For simplicity, consider scalar quarks, as described by first-quantization. Since we

approximate the quarks as static, the only relevant term in the quark mechanics action

is the interaction term
∫
dτ

.
x · A =

∫
dx · A. Taking into account the nonabelian

nature of the group, and ignoring the first-quantized path integration Dx (since x is

assumed fixed), the factor e−S for the quark becomes just the path-ordered expression

P(e−i
∫
dx·A) we have been considering, while for the antiquark we get the inverse

expression. To get a gauge-invariant expression, we connect the paths at top and

bottom, since the fields will be fixed at the boundaries at t = ±∞. (Functional

integration over any gauge-field link picks out just the singlet part of the integrand,

since the integral is over the group, and nonsinglet representations can be rotated to

minus themselves by an appropriate group element, canceling the contribution.) The

result is a “Wilson loop”

tr P
(
e−i
∮
dx·A
)
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The strong-coupling expansion is applied by expanding the functional integrand

e−S in powers of S, which is an expansion in powers of 1/g2, and which is also an ex-

pansion in the number of plaquets. Clearly the dominant term in this expansion is the

one with the fewest factors of S. To be nonvanishing, each link variable must appear

in a singlet combination: The function of that link, when expanded in irreducible

group representations, must include a term that is proportional to the identity. For

example, for any unitary group, this is true for the product Ui
j(U−1)k

l, where the two

U ’s are for the same link, and the indices are the group indices; this has the constant

piece Ui
j(U−1)j

i. For the case of the Wilson loop, if we assume the simplest case

where the path is a rectangle, then we need at least a factor of S for each plaquet

enclosed by the loop, so there will a UU−1 for each link on the boundary (one factor

from the loop, one from S), as well as for each link enclosed by it (both factors from

the contribution to S from either side). The result for the path integral is then

A =
〈
tr P

(
e−i
∮
dx·A
)〉
∼ e−V t ∼

(
1

g2

)rt
where V is the (potential) energy (S =

∫
dt(V + T ) in Euclidean space), t is the

time separation between the top and bottom of the rectangle, and r is the spatial

separation between the two sides. We thus have a linear quark-antiquark potential

V (r) ∼ (ln g)r

so the quark-antiquark pair is confined.

Note that perturbation with respect to this potential is reliable only for ln g small.

This suggests confinement can be treated only for g ≈ 1. Various other approaches

(such as random lattice quantization of strings and supersymmetric nonlinear σ mod-

els) suggest that g ≈ ∞, the theory related to g ≈ 0 by electric-magnetic duality, is

likewise a normal field theory, not exhibiting confinement perturbatively in 1/g.

Unfortunately, we can get a similar result from QED, by defining the U(1) group

in terms of a phase factor (so effectively the range of group integration is 2π, defining

a “compact” group). The reason is that for this U(1) theory this strong coupling

expansion is not accurate. The approximation is better for nonabelian theories, but

the persistence of confinement has not been proven in the continuum limit (small

coupling). In fact, while the transition to deconfinement in Abelian theories has been

found at finite coupling, it has been proven that such a phenomenon can occur in

the nonabelian theory only near zero coupling. However, the perturbative properties

of the continuum theory show that this is exactly where one expects the appearance

of ambiguities in the theory (known in lattice terminology as “nonuniversality”): As
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seen in subsection VIIC1, analytic continuation of the coupling near the positive real

axis runs into trouble only near g=0. Although these problems might be resolved in

finite theories, such theories require supersymmetry, which is difficult to treat on a

lattice because of its problems with fermions, as discussed above.
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The sign of the one-loop correction to the gauge coupling is opposite in QCD to

that of QED: The photon coupling is weak at “low” energies (actually, any observable

energy, since the coupling runs so slowly), while the gluon coupling is weak at high

energies (with respect to the hadronic mass scale). Thus, typically perturbation in

loops is used to study high-energy behavior of QCD, while the low-energy behavior

awaits the discovery of a general nonperturbative approach. Although such an ap-

proach is usually referred to as “perturbative QCD”, it is really a mixed approach,

where amplitudes are generally factored into a high-energy piece, which is calculated

with the usual Feynman diagrams, and a low-energy piece, which is found only from

experiment. The “high” and “low” energy here refers to a parton that is liberated

from a hadron, having low energy before and high energy after. In the processes that

are best understood, this liberation is performed by an electroweak boson (photon,

W, or Z), so one is actually calculating the electroweak interactions of a strongly

interacting particle (quark), and its QCD corrections.

1. Conformal anomaly

Symmetries of the classical action that are violated at the quantum level are called

“anomalous”. There are two major sources for such “anomalies” in renormalizable

quantum field theory: (1) There are anomalies associated with the totally antisym-

metric matrix εa1...aD , called “axial” (see subsections VIIIA7 and VIIIB2-4). When

they occur, they are found in graphs with at least (D+2)/2 external lines. They are

associated with graphs that have no divergences, yet require regularization. (2) The

existence of divergences requires the introduction of a mass scale even in theories

that are classically conformal. If anywhere, these show up at least in the most diver-

gent graphs, the propagator corrections. Normally, both kinds of anomalies will first

appear at one loop.

When anomalies are associated with global symmetries, they provide a natural

way to explain approximate symmetries, in the sense of the perturbative approx-

imation. However, when they occur in local symmetries, they destroy the gauge

invariance needed to prove unitarity. The latter type of theory therefore must be

avoided by applying the condition of anomaly cancellation in local symmetries.

We have already seen the appearance of the conformal anomaly in our renormal-

ization of divergent loop graphs: The introduction of a renormalization mass scale
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breaks the scale invariance of a classically scale-invariant theory. The simplest ex-

ample, and generally the most important, is the one-loop propagator correction. If

we examine only high-energy behavior, then we can neglect masses from the classical

action.

Using dimensional regularization, the generic effect on the effective action of the

complete one-loop propagator correction is to modify the kinetic term of an arbitrary

massless theory to
1
2φK

(
1

g2
+ β1 ln

µ2

)
φ

where φ is an arbitrary-spin field that we have normalized φ→ φ/g for some appro-

priate coupling g (like the Yang-Mills coupling if φ is the Yang-Mills vector), K is the

classical kinetic operator, µ is the renormalization mass scale, and β1 is a constant

determined by the one-loop calculation. As long as β1 is nonvanishing (i.e., the theory

is not finite) we can rewrite this as

1
2φKβ1 ln

M2
φ

where

M2 = µ2e−1/β1g2

is a renormalization-independent mass scale: Any physical measurement will observe

g and µ in only this combination. A choice of different renormalization mass scale

is equivalent to a finite renormalization of g2, such that M is unchanged. In the

case where g is dimensionless (the relevant one, since we are studying the conformal

anomaly), the coupling constant has undergone dimensional transmutation, being

replaced with a dimensionful constant.

Exercise VIIIC1.1

Show this is the case for massless (scalar) φ3 theory in D=6 from the explicit

one-loop correction.

If there is more than one coupling constant, things are more complicated, but

the same phenomenon occurs: One dimensionless coupling is replaced with a mass.

A particularly interesting case is pure Yang-Mills theory: Then we can write an

important contribution to the effective action as

Fβ1 ln
M2

F

where F is now the complete nonabelian field strength, and is the square of the

covariant derivative. Since this contribution by itself gives the complete 1-loop con-

formal anomaly, the rest of the 1-loop effective action is conformally invariant. (All

its M dependence cancels.)
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Note that the (one-loop) anomaly itself is local: If we perform an infinitesimal

conformal transformation on the one-loop part of the effective action, this variation

gives a local quantity. This is clear from the way this anomaly arose in dimensional

regularization: If there were no infinities, there would be no anomaly, since the naive

conformal invariance of the classical theory would be preserved at each step. However,

to regularize the divergence we needed to continue the theory to arbitrary dimensions,

and the theory is not conformal away from 4 dimensions. The scale variation of a

4D conformal action in 4 − 2ε dimensions is proportional to ε times that action, as

follows from dimensional analysis; this scaling can be associated with the nonvanishing

(engineering) dimension of the coupling away from D=4. (Usually, we write the

coupling as gµε, where g is dimensionless. The fields have engineering dimension

independent of D, defined by the value in D=4: E.g., in ∇ = ∂ + A, A has the same

dimension as ∂.) However, the one-loop effective action is coupling independent;

thus, when dimensionally regularized but unrenormalized, it’s scale invariant. For

example, in the propagator correction discussed above, we get a regularized term

−1
ε
β1φK(1

2 )−εφ, which is scale invariant but divergent. On the other hand, the

counterterm added to make it finite is from the 4D conformal action, and thus is not

scale invariant in D 6=4; so the breaking of scale invariance can be associated entirely

with the counterterm. (I.e., the anomaly coming from the renormalized, nonlocal

effective action is equal to that coming from the infinite, local counterterm.) Since

the counterterm is local, the anomaly is local. It’s also finite, since it’s proportional

to ε (from the variation) times 1/ε (from the divergent coefficient of the counterterm).

In our propagator example, we have

−1
ε
β1φK(1

2 )−εφ+ 1
ε
(1

2µ
2)−εβ1φKφ ≈ β1φK ln

µ2
φ

A similar situation occurs for the axial anomaly with Pauli-Villars regularization:

After regularization, the anomaly comes entirely from the regulator graph, which is

not only finite by power counting, but local in the infinite-mass limit because that is

the zero-momentum (effective potential or JWKB) limit.

There is a physical significance to the sign of the constant β1. (We saw some

evidence of this already in our analysis of renormalons in section VIIC.) Instead of

thinking in terms of the renormalization-independent mass scale M , we can treat g

as an effective energy-dependent (“running”) coupling,

1

g2(p2)
=

1

g2
+ β1 ln

p2

µ2
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In the case β1 > 0 the coupling gets weaker at high energy (“asymptotic freedom”),

while for β1 < 0 the coupling gets stronger at high energy (until it reaches the Lan-

dau ghost). (For low energy the situation is generally more subtle, since we usually

have complications from physical masses.) For QCD, this weakening of the cou-

pling at high energy allows the separation of an amplitude into a nonperturbative

low-energy piece (describing the observed particles, the bound-state hadrons), which

is determined experimentally, and a perturbative high-energy piece (describing the

non-asymptotic, fundamental “partons”, gluons and quarks), which can be calculated.

(This sometimes goes under the somewhat misleading name of “perturbative QCD”.)

This strongly contrasts with QED, where the weakening of the coupling at low en-

ergy means both fundamental particles (photons, electrons, etc.) and bound states

(positronium, atoms, etc.) can be treated perturbatively, and the only experimentally

determined quantities are the values of masses and the electron charge (coupling at

low-energy). Thus, in QED one in principle can calculate anything, while in QCD

one is restricted to parts of certain amplitudes. (Various nonperturbative methods

also have been developed for QCD, but so far they have successfully calculated only a

few low-energy constants, as used in σ models, i.e., masses and low-energy couplings.)

Although experimental verification of these results is sufficient to confirm the QCD

description of hadrons, a practical description of hadronic cross sections at all ener-

gies would seem to require a string model that can incorporate behavior attributed

to both strings and partons.

2. e e → hadrons

If quarks and gluons are confined, how can QCD be useful? QED is useful be-

cause the coupling is small: e2 ≈ 1/861 is the perturbation parameter in relativistic

(quantum field theory, or 4D) calculations, α = 2πe2 ≈ 1/137 in nonrelativistic

(quantum mechanics, or 3D). Energy levels of the hydrogen atom can be calculated

quite accurately, without the question of freely existing electrons and protons coming

up. The speed of the bound electron is also α, another way to understand why pair

creation/annihilation and other relativistic or multiparticle effects are small, and can

be treated perturbatively.

Therefore, the real usefulness of a field theory depends not on how “physical” the

choice of fields is, but how accurate the perturbation expansion is. “Nonperturba-

tive” results may give some nice qualitative features, but they are ultimately useless

unless they can be used as the basis of a new perturbation expansion. (Attempts

at nonperturbative approaches to 4D quantum field theory continue, but so far the
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results are meager compared to perturbative results, or to nonperturbative results in

quantum mechanics or 2D quantum field theory.)

The simplest application of QCD is to the production of hadrons by a photon

created by the annihilation of an electron and a positron. The total cross section for

such an event is given (according to the optical theorem) by the imaginary part of

quark contributions to the photon propagator: Since hadrons are made up of partons

(quarks and gluons), we assume a sum over hadrons can be written as a sum over

partons. This assumption, that hadrons can be described by a resummation of the

perturbation expansion, should be good at least at high energies, where the partons’

asymptotic freedom takes effect (and perhaps at lower energies by an appropriate

extrapolation). To lowest order for the process under consideration this is a 1-loop

graph, with a quark in the loop. If we compare this to the production of, e.g., muon-

antimuon pairs (but not back to electron-positron pairs, because that includes the

crossed diagram) by the same procedure, and we neglect masses (at high enough

energies), then the only difference should be in the group theory: Hadron production

should be greater by a factor of the number of colors times the sum over flavors of

the square of the quark’s electric charge:

R ≡ P (e+e− → h)

P (e+e− → µ+µ−)
≈ Nc

∑
f

q2
f

Experimentally this relation is confirmed for Nc = 3, if the only flavors included in

the sum are those with masses below the photon energy ((2mf )
2 < s).

This result can be extended to the case where the momenta of hadrons are ob-

served (not summed over): Although individual partons are not observed as asymp-

totic states, the dominant contribution to the cross section at high energies is given

by the conversion of the quarks into hadrons by the creation from the vacuum of

parton pairs with energies, and angular deviation from the partons created by the

photon, smaller than experimental accuracy. We treat all partons as approximately
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massless, with respect to the energy scale of the photon. Thus, each parton created

by the photon starts out initially as free, is then accompanied by parallel partons of

small energy to form hadrons, and then these hadrons may further decay, but with a

small angular spread with respect to the directions of each of the initial partons. Such

collections of final-state hadrons are called “jets”. For high-energy electron-positron

annihilation, the dominant hadronic decay mode of this off-shell photon is thus into

two jets. This experimental result is further verification of QCD, and in particular a

jet is the most direct observation of a parton. Of course, even for asymptotic states

the directness of experimental observations varies widely: For example, compare a

photon or electron to a neutrino. A closer analogy is unstable particles: For example,

the neutron is observed as a constituent of the nucleus (as quarks are constituents of

hadrons), but eventually decays outside (as quarks “decay” into jets of hadrons).

A similar analysis can be applied to the creation of any electroweak boson by

annihilation of a lepton with an antilepton.

Exercise VIIIC2.1

Find the corresponding process (particles) for positron-neutrino annihilation.

Find the expected numerical value of both this and the above R in the Stan-

dard Model for energies well above the masses of all the fundamental particles.

3. Parton model

We have already seen that in quantum field theory coupling constants are usually

energy-dependent. However, the dependence is only logarithmic, and thus can be

treated as perturbative unless the relevant energy scale is within a few orders of

magnitude of the mass scale that appears by dimensional transmutation. In QED,

the value quoted for the electron charge is at the scale of the electron mass m. Using

the result of subsection VIIIA2 (or VIIIA3) for the 1-loop propagator correction, we

find (neglecting higher-loop corrections)

MQED

m
= e3/4e2 = 2.8380185(62)× 10280 ⇒ MQED = 1.4502244(32)× 10277GeV

(where for fun we have included the 1-standard-deviation uncertainties for this 1-loop

result as the figures in parentheses; the e in the exponent is the electron charge).

Since the mass of the observable universe is of the order of 1080 GeV, and the Planck

mass (beyond which a particle will gravitationally collapse from its Compton radius

falling within its Schwarzschild radius) is of the order of “only” 1020 GeV, there is

little worry of observing the QED Landau ghost, even if QED were correct to that

scale.
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On the other hand, the mass scale for QCD is (in the MS scheme)

MQCD = .217(24) GeV

(This result depends on renormalization scheme, and is also an effective mass in

the sense that the usual experimental energy scale is among the quark masses, so

the high-energy approximation of the renormalization group is inaccurate, and the

full propagator correction with quark mass dependence should be used. The above

number is for above the bottom but below the top threshold.) This indicates that

perturbative QCD is inadequate to describe properties for which the energy of the

quarks is low, such as hadron masses (although nonrelativistic quark models have had

partial successes).

Exercise VIIIC3.1

Take masses into account in the simplest approximation: Treat particles as

massless for energies above (twice) their mass, infinitely massive for ener-

gies below. Approximate the masses of Higgs and superpartners of Standard

Model particles as about the mass of the Z boson. Then graph the strong

coupling 1/g2 in the supersymmetric Standard Model (see subsection VIIIA4)

as a function of the ln of the energy from the Grand Unification scale down

to where it vanishes (g =∞), MQCD.

However, in certain processes a single “parton” (quark or gluon) in a hadron is

given a high energy with respect to the other partons, usually a quark by electroweak

interaction. In those cases, the “strong” (chromodynamic) interaction of that par-

ton with the others in its original hadron is negligible: It has been liberated. The

approach is then to factor the amplitude into a piece with the electroweak and high-

energy (“hard”) chromodynamic interactions of this parton, which can be calculated

perturbatively, and the low-energy (“soft”) chromodynamic part of the remaining

partons, which is left as an unknown, to be experimentally determined. (Thus, the

hard part is the easy part, while the soft part is the difficult part.) The predictive

power is thus limited to the dependence of the amplitude on the energy of this parton,

and on the particulars of the electroweak particles involved.

Another possible complication would be the effect of exciting many partons within

a hadron, indirectly through the first parton’s interactions with the rest: Then one

would have several terms to sum in an amplitude, each with a different unknown

soft factor, making the approach useless. Originally, it was thought that the high

energy alone was enough to explain the parton acting as free once liberated from the

hadron (based on “intuitive” arguments), but soon it was realized that this possibility
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depended totally on the high-energy behavior of the theory: It requires the decrease of

the coupling with increasing energy, asymptotic freedom (or superrenormalizability,

or finiteness with effective asymptotic freedom through the Higgs effect). Based on

this property, one can show from the usual perturbation expansion that one soft factor

(per each hadron with an excited parton) is sufficient as a leading approximation, a

property known as “factorization”. This feature is a consequence of the fact that the

dominant contributions to Feynman graphs in this high-energy limit are those where

the values of the momenta of some of the partons are those corresponding to their

classical mechanics, as described in subsection VC8 and VIIA6.

This new approximation scheme is effectively a perturbation expansion in the

inverse of the energy being channeled into this parton. One neglects terms that are

smaller by such powers (including those from masses and renormalons), but incorpo-

rates logarithms through the renormalization group and other loop corrections to the

hard factor. Since available energy scales are much nearer to MQCD than to MQED in

QED, such an approximation scheme tends to break down around two loops, where

the corrections compete with the neglected terms, ambiguities in renormalization

schemes, and the relative size (convergence) of successive terms in the expansion. Al-

though the accuracy of the predictions of this approach cannot compare numerically

with those of QED, it is the only method to describe such processes that can lay

claim to being a theory, and provides direct experimental evidence of the validity of

QCD, both as a qualitative description of nature and as a valid perturbation scheme.

(As in the previous subsection, we also have processes where all the partons appear

only in intermediate states, or effectively so for final states in total cross sections via

the optical theorem, so factorization is unnecessary.)

hard

soft

k

p

ξ p

k

ξ p

≈ q

The most effective application of factorization is to “Deep(ly) Inelastic Scattering

(DIS)”. (An equivalent method for this process is the “operator product expansion”,
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but unlike factorization there is no useful generalization of it to general processes.)

In this process a high-energy photon (or intermediate vector boson) is exchanged

between a lepton (usually an electron) and a quark. (This is the leading-electroweak-

order interaction of a lepton with a hadron.) The quark and rest of the hadron

do not interact again: Color singlets are obtained by the creation of soft partons

from the vacuum, which split from their own singlets and eventually combine with

the separated quark and hadron. For this process one calculates only the total cross

section, at least as far as all the strongly interacting particles are concerned (“inclusive

scattering”) but again this can be generalized to the observation of jets (“exclusive

scattering”). Applying the optical theorem, and ignoring the leptons, the leading

contribution to this process is given by the tree graph for scattering of a vector

boson off a quark, where the intermediate quark has a cut propagator. This is the

perturbatively calculated hard part, which is later attached to the soft factor. Thus

the hard part is the lepton-parton cross section, while the soft part is the “parton

distribution”, giving the probability of finding a parton in the hadron with a particular

fraction ξ (≥ 0, ≤ 1) of its momentum p. To leading order this fraction is determined

by kinematics: Since the hadron and scattered parton are treated as on-shell and

massless,

p2 = (q + ξp)2 = 0 ⇒ ξ = x ≡ − q2

2q · p
so the “(Bjorken) scaling variable” x is a useful dimensionless parameter even when

(at higher orders) ξ 6= x. The energy scale is set by the square of the momentum q

of the vector boson.

There are several approximations used in this analysis, all of which can be treated

as the beginnings of distinct perturbation expansions:

(1) The hard part is expanded in the usual (loop/coupling) perturbation expansion

of field theory. The leading contribution is that of the naive (pre-QCD) parton

model (“leading order”), where the quark that scatters off the photon is treated

as free with respect to the strong interactions. One-loop corrections (“next-to-

leading-order”) introduce the running of the coupling associated with asymptotic

freedom, which justifies the validity of the parton picture. This is usually the

only perturbation expansion considered, because such corrections are logarith-

mic in the energy of the exchanged parton (rather than powers), and thus more

important and easier to isolate from the data. Furthermore, by the usual renor-

malization group methods such logarithmic corrections can be reduced by careful

choice of renormalization scale (µ2 close to q2 in ln(q2/µ2)). Two-loop corrections

lead to various ambiguities, and have not proven as useful yet. In particular, the
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β function is scheme-dependent past two loops, making the dependence on the

separation between hard and soft harder to fix.

(2) In calculating the hard part “light” quarks are approximated as massless. One

can rectify this by also perturbing in the masses, as a Taylor expansion in the

square of each mass divided by the square of the vector boson’s energy (m2/q2).

(3) In the explicit calculation the momentum ξp of the excited parton is assumed to

be proportional to the momentum p of the initial hadron. In the rest frame of the

initial hadron (which is massive in real life), this corresponds to the nonrelativistic

approximation of motionless quarks; one quark is then set into relativistic motion

by the photon, liberating it from the hadron. Thus the parton model simulta-

neously uses a nonrelativistic approximation for a parton before it’s scattered,

and an ultrarelativistic (near-speed-of-light) approximation after it’s scattered.

This nonrelativistic approximation can be corrected by a JWKB expansion (ex-

pressed in operator language, the operator product expansion), also known as

an expansion in “twist” (effectively, the power of momentum transverse to p).

However, this means a separate soft part for each term in the expansion: Since

these are determined experimentally, such an expansion would lead to a loss of

predictability. Thus generally (with few exceptions), parton model predictions

are restricted to high enough energies (q2) that such corrections can be neglected.

In this sense, this approach is very similar to low-energy approaches to hadronic

physics, e.g., nonlinear σ models: Useful results are obtained at lowest order for

describing physics in a certain energy range, but outside that range the increas-

ing loss of predictability, e.g., nonrenormalizability, makes the approach less and

less applicable. (Another, related, similarity between this approach and nonlinear

σ models is that both were originally described in the language of the operator

product expansion, as applied to currents. However, this language was later re-

placed in both cases because of the difficulty of evaluating operator products of

more than two currents.)

(4) Expansions in renormalons (see subsections VIIC2-3) introduce new coupling con-

stants, effectively nonperturbative corrections to the otherwise perturbative hard

part. Like all but the first of these expansions, this leads to correction terms that

are down by powers of 1/q2. This type of correction could be absorbed into the

previous one, since in principle the soft parts should contain all nonperturbative

corrections by definition. However, this would be begging the question, since it

would mean more parameters to be determined by experiment.
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soft

hard

soft

p

p'

ξ a p

ξbp'

≈ q

A

a

b

B

fBb

fAa

dσab

ξbp'

ξ a p

The other common application of the parton model is to “Drell-Yan scattering”:

In this case two hadrons scatter producing, in addition to hadrons, a photon (or other

electroweak boson) that decays into a lepton-antilepton pair. To lowest order, the

relevant diagram is the same as for DIS (crossing some of the lines). Because both of

the initial particles are hadrons, 2 soft parts are required; however, each of these is the

same as that used in DIS (“universality”) so they do not need to be redetermined. In

fact, there is a direct progression from e+e− to DIS to Drell-Yan: The above diagrams

are similar except for the number (0 → 1 → 2) of soft parts (corresponding to the

number of initial hadrons); the leading contribution comes from the same diagram,

rotated to various positions (crossing).

More generally, we can consider not only hard parts involving identified quarks

in the initial state of the hard part, but also in the final state, by examining jets.

Thus, for soft parts we have not only the “parton distribution functions”, which are

energy-dependent probabilities to find specific partons in specific hadrons, found from

amplitudes for an initial hadron → parton + anything (summing over anything), we

have “fragmentation functions”, which are probabilities from amplitudes for parton

→ final hadron + anything. In principle these are related by crossing symmetry:

The diagrams are similar to the previous, with the partons connecting to the hard

part, but the external hadron lines may be either initial or final (and the opposite

for the corresponding parton with respect to the hard subgraph). As for the parton

distributions, the fragmentation function for any particular parton and hadron is

measured in one particular experiment, then used universally. (The simplest is deep

inelastic scattering for the parton distribution, and e+e− annihilation with one of the
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two jets→ hadron + anything for fragmentation.) Then the cross section is generally

of the form

dσA...B =
∑
a...b

∫
dξa · · · dξb fAa(ξa) · · · fBb(ξb)dσa...b(ξi)

where dσA...B is the observed (differential) cross section, a...b (not to be confused with

vector indices) label the different partons and A...B their hadrons (we leave off the

labels for non-strongly interacting particles), the sum is over different kinds (and fla-

vors) of partons (and perhaps over different hard parts, if corrections down by powers

are desired), ξa is the momentum fraction for parton a of hadron A’s momentum, fAa

is either the parton distribution function for A → a + X (X = “anything”) or the

fragmentation function for a→ A+X, and dσa...b is the hard cross section (calculated

perturbatively), which is just the original with all the hadrons replaced by partons.

For the parton distributions we integrate
∫ 1

0
dξ, while for fragmentation we integrate∫∞

1
dξ, or change variables to the hadron’s fraction of the parton’s momentum ζ = 1/ξ

and integrate
∫ 1

0
dζ.

Note that, while physical cross sections are independent of the renormalization

mass scale µ, the same is not true of the hard cross sections calculated perturbatively

in the above factorized expressions, since they are expressed in terms of unphysical

quark “states”. However, these hard parts satisfy renormalization group equations, as

calculated in the usual perturbative way. (Of course, nontrivial contributions require

calculating beyond leading order.) This implies corresponding renormalization group

equations (see subsection VIIC1), the “evolution” or “Gribov-Lipatov-Dokshitzer-

Altarelli-Parisi (GLDAP) equations”, to be satisfied by the parton distributions, so

that µ dependence cancels in the complete cross sections. This determines the energy

dependence of the parton distributions. The equations take the form

µ2 d

dµ2
fAa(ξ, µ

2) =
∑
b

∫ 1

ξ

dζ

ζ
fAb(ζ, µ

2)Pba

(
ξ

ζ
, g2(µ2)

)
where fAa describes A→ a+X, fAb describes A→ b+X ′, the “splitting functions” Pba

describe b→ a+X ′′ (X = X ′+X ′′), and the sum is over the intermediate parton b. For

hadron A with momentum p, the intermediate parton b has momentum ζp, and parton

a has momentum ξp, so ξ/ζ is a’s fraction of b’s momentum. The kinematics are such

that 0 ≤ x ≤ ξ ≤ ζ ≤ 1 (momentum is lost to X’s as A → b → a). The splitting

functions can be calculated perturbatively from the corresponding renormalization

group equation for the hard part, since the combined µ dependence must cancel

in the physical cross section. Specifically, one considers the same equation with A
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replaced by another parton: Since Pba is independent of A, it can then be found from

a completely perturbative equation.

For similar reasons, the hard cross sections are infrared divergent; the soft parts

of the complete cross sections deal with low energies. This leads to complications

beyond next-to-leading order, due to the fact that the renormalization group scale µ,

which relates to ultraviolet divergences (high-energy behavior), and the “factorization

scale”, which relates to infrared divergences (it determines the division between hard

and soft energies), are in principle independent scales. This allows an ambiguity in

factorization prescriptions, in addition to the usual ambiguity in UV renormalization

prescriptions. (In more general processes there can be other energy scales than just

q2, each with its own factorization scale, further complicating matters.)

4. Maximal supersymmetry

The results of loop calculations simplify when the amount of supersymmetry is

increased; in particular, more things vanish. We have already seen this with respect

to divergences in subsections VIIIA5-6. Furthermore, in the massless case, vanishing

of propagator divergences implies vanishing also of the finite parts of propagator

corrections, since the unrenormalized corrections are always proportional to −ε/ε

(except in D=2 from anomalies: see subsection VIIIA7). These simplifications make

supersymmetric theories useful models; if supersymmetry is used to eliminate the

renormalon problem, these results are also physically relevant. (We have already seen

that supersymmetric methods are useful to derive nonsupersymmetric results for tree

graphs, where unwanted particles can decouple. Similar results can hold in 1-loop

graphs, where supersymmetric results can be used to trade particles with spin in the

loop for scalars, which are easier to calculate.) In this subsection we will examine this

behavior in 3- and 4-point functions. We will find cancellations from just algebra,

without momentum integration. In general our analysis will apply to any D ≤ 10

(since super Yang-Mills doesn’t exist in D > 10).

Specifically, we will calculate amplitudes for external gauge bosons, using the same

methods as for propagator corrections in subsection VIIIA3. There we found a unified

kinetic operator in background Yang-Mills, allowing us to separate the coupling into

spinless (covariant ) and spin (F abSab) pieces. In general the contributions will differ

in form depending on the number of S vertices that contribute, so we will require

separate cancellation for each case. We now consider these contributions order-by-

order in S, but with an arbitrary number of non-S vertices (i.e., whatever number

is needed to give an n-pt. graph for whatever n we are considering). Since the no-S
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terms are by definition spin-independent, they cancel for supersymmetric theories.

(The ghosts, together with the −1/2 factor for spinors, guarantee that the trace for

spin gives the supertrace for physical degrees of freedom.) Cancellation of S1 terms is

trivial, since tr S = 0 (trace in states, not indices). As we saw in subsection VIIIA3,

tracing the S2 terms gives the usual Casimir of SO(D):

tr(SabScd) = ηb[cηd]a ×


0 for spin 0
1
4
tr(I) for spin 1

2

2 for spin 1

Its cancellation fixes the number of spinors to be that of maximally supersymmet-

ric Yang-Mills. The S3 terms (in 3-point and higher graphs) can be separated into

tr(S[S, S]), which reduces to S2 (already canceled), and tr(S{S, S}), as in 4D anoma-

lies for internal group SO(D). The latter could give ε terms, but only in D = 2 or

6. We would miss them because of our (parity) doubling, but such parity invariance

occurs anyway in maximally supersymmetric Yang-Mills in D < 10. The net result

is that the 1-loop graphs completely cancel at less than 4-point, and the 4-point con-

tribution comes completely from S4 terms, but only for maximally supersymmetric

Yang-Mills. (For these calculations we needed only the same field content, but su-

persymmetry will then kill these lower-point graphs with fields other than Yang-Mills

externally.) The amplitude is then proportional to F 4 times a scalar box graph. This

F 4 factor turns out to be the same one (including Lorentz index structure) that ap-

pears in the tree amplitude (although the tree factor requires much more work to

derive, except when one uses methods specific to D=4, even though it is the same as

for pure Yang-Mills).

For example, representing group theory by the ’t Hooft double-line notation, let’s

look specifically at the graphs with 2 external fields on one line and 2 on the other.

Then we get tr(FF )tr(FF ) for the internal symmetry traces. By Bose symmetry, the

4-Lorentz-index color singlet tr(FF ) can consist only of the symmetric part of the

direct product of 2 2-forms, i.e., a tensor with the symmetry of the Riemann tensor

(Young tableau a 2×2 box, including traces) and a 4-form (single column of 4). First

consider the case where the 2 F ’s in a trace are adjacent on the loop. Then the form

of Sab for spin 1 requires its spin trace always to give traces for those 2 F ’s, and thus

contributes only to “graviton” (traceless symmetric tensor) and “dilaton” (scalar)

type couplings to these singlets. On the other hand, the form of S for spin 1/2 always

gives forms (times traces) for these 2 F ’s, and thus contributes only to dilaton and

“axion” (4-form) type couplings. (In D=4 this axion is the usual pseudoscalar; for

the relation to the usual string 2-form by duality see subsection XIC6.) For the case

where the 2 F ’s are not adjacent, we commute the corresponding S’s so that they are:
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The commutator terms give traces of fewer S’s, which cancel from our conditions, so

the result is the same. (In the string case the momentum integral is different, so these

graviton, dilaton, and axion couplings actually couple to those states, appearing as

poles: see subsection XIC6.)

Exercise VIIIC4.1

Work out all the explicit Lorentz and group theory traces for all graphs.

Exercise VIIIC4.2

For D=4, reproduce these results using the methods of subsection VIIIA6,

thus automatically including external fermions.

Similar methods can be applied when coupling gravity externally, essentially by

replacing the Yang-Mills generators by a second set of spin operators, and the field

strength with the Weyl tensor W . (Without loss of generality, we can drop the Ricci

tensor, since it vanishes by the free field equations, allowing us to drop other terms,

not of this form, that might appear. These tensors are discussed in subsection IXA3.)

This is not surprising if we know string theory, where gravity vertex operators are

obtained as the product of left and right-handed Yang-Mills vertex operators.

Explicitly, if we perform the same procedure for external gravity as for external

Yang-Mills (background gauge fixing, squaring fermion kinetic operators), we find a

universal kinetic operator

+ 1
4
W abcdSabScd

when coupling to spins 0, 1/2, 1 (or arbitrary forms), 3/2, and 2. (For spins 3/2 and

2, we need to introduce “compensators” for local S-supersymmetry and Weyl scale

symmetry: see subsections IXA7, IXB5, and XA3.) In particular, the WSS term

vanishes for spins 0, 1/2, and 1 (and forms) by explicit evaluation. (W is traceless

and has no 4-form piece. However, there are still S terms in from ωS in ∇.)

We can then write all these spins as linear combinations of direct products of just

spins 0, 1/2, and 1:

Sab = SLab + SRab

(This approach is suggested by string theory, where the supergravity coupling of

closed strings can be obtained from direct products of Yang-Mills couplings of open

superstrings, leading to the above universal coupling: see subsection XIB9.) But

when we plug this into the WSS term above, only the cross terms will contribute.

Thus the kinetic operator becomes

+ 1
2W

abcdSLabS
R
cd
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Consequently, all vertex operators for all interesting spins (as in supergravity) can

be expressed as direct products of those for spins 0, 1/2, and 1 (as for super Yang-

Mills). (Note that pL = pR, the connection term in the covariant derivative becomes

ωa
bc(SLbc + SRbc), and ω2 terms contribute at least 2 external lines per vertex.)

For example, taking the direct product of left and right maximally super Yang-

Mills of either the same or opposite chirality, we find the simple result W 4, with no

lower-point diagrams, for maximal supergravity (twice the number of supersymme-

tries of maximally super Yang-Mills).

5. First quantization

In subsection VIIIB1 we found some simple low-energy results for gauge loops

applying JWKB methods. The approach was essentially quantum mechanical, us-

ing the Hamiltonian formalism. Here we use the quantization procedure in a more

explicit way: We work now in the 1D Lagrangian formalism, using 1D propagators

and vertices, for calculating complete loops. This method will be the most useful one

when applied in chapter XI to 2D Lagrangians for strings.

The propagator

1

H
=

1

H0 + V
=

1

H0

− 1

H0

V
1

H0

+
1

H0

V
1

H0

V
1

H0

− ...

gives the N -point graph

AN = (−1)N−2〈−kN |VN−1
1

H0

VN−2
1

H0

...V3
1

H0

V2|k1〉

(We can see see this from the usual Feynman diagrams, or by the relativistic gener-

alization, along the lines of section IIIB, of the nonrelativistic quantum mechanics of

subsection VA4, especially exercise VA4.2.) Restricting all states to scalars,

H0 = 1
2(p2 +m2), Vi = geiki·x

The initial and final states can also be defined by the same vertex operators that

created the external states:

p|k〉 ≡ k|k〉 ⇒ |k〉 = eik·x|0〉
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(We have used −kN so all states propagate inward:
∑
k = 0.)

We now translate this to the interaction picture (see subsection VA4) by absorbing

the free propagators 1/H0 into τ dependence for the V ’s: First we introduce Schwinger

parameters,
1

H0

=

∫ ∞
0

dτ e−τH0

⇒ AN = (−1)N
∫ ∞

0

dN−3τ〈−kN |VN−1e
−τN−2H0 ...e−τ2H0V2|k1〉

Then we change variables from the “relative” τ ’s τi to the “absolute” τ ’s τ̃i,

τi ≡ τ̃i+1 − τ̃i, τ̃N−1 ≡ 0 ⇔ τ̃i ≡ −
N−2∑
j=i

τj

and use the τ̃ -dependent (interaction picture) V ’s

V (τ̃) = eτ̃H0V (0)e−τ̃H0 , V (0) = V

to write

AN = (−1)N
∫
−∞≤τ̃i≤τ̃i+1≤0

dN−3τ̃ 〈−kN |VN−1(0)VN−2(τ̃N−2)...V2(τ̃2)|k1〉

when the initial and final states are on shell,

H0|k〉 = 0 ⇔ k2 +m2 = 0

This is the same form that appears in nonrelativistic quantum mechanics (in the

interaction picture), simply evaluating operators for the potential at arbitrary times,

where one time is not integrated over because of time translation invariance. (Its

integral gives the usual δ function for energy conservation. See subsection VA4.)

We can also write the initial and final states in terms of the same vertices, for

arbitrary τ̃ ’s:

V (τ̃)|0〉 = eτ̃H0V e−τ̃H0 |0〉 = eτ̃H0V |0〉e−τ̃m2/2 = geτ̃H0|k〉e−τ̃m2/2 = |k〉ge−τ̃m2/2

Then the amplitude is

AN = (−1)Ng−2 lim
τ̃1→−∞
τ̃N−1=0

τ̃N→+∞

e(τ̃1−τ̃N )m2/2

∫
dN−3τ̃ 〈0|VN(τ̃N)VN−1(τ̃N−1)...V2(τ̃2)V1(τ̃1)|0〉

(where τ̃1 is chosen to be earlier than τ̃2, and τ̃N is chosen for convenience). This is the

form of the amplitude we might have expected from a first-quantized path integral
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in terms of X(τ), with an interaction term −
∫
dτ V (τ), except that 3 of the V ’s are

not integrated.

Now we can easily evaluate the S-matrix element by path integration, since X

appears everywhere in exponentials. We saw in subsection VIIB5 that multiplication

of 2 exponentials inside a path integral for a free theory yields their “normal-ordered”

product times the exponential of a Green function. Since all the vertex operators

(including those for initial and final states) are exponentials, we can also see this

result from completing the square in the functional integral. Either way, the result is〈∏
i

: exp[iki ·X(τ̃i)] :

〉
= exp

[
−
∑
i<j

ki · kj〈X(τ̃i)X(τ̃j)〉

]

(The normalization is clear from Taylor expansion.) As a consequence of normal

ordering each vertex, we drop any terms coming from connecting a vertex to itself

with a Green function.

We normalize the Green function as

〈X X〉 = 1
2G

Then the amplitude is simply

AN = (−g)N−2 lim
τ̃1→−∞
τ̃N−1=0

τ̃N→+∞

e(τ̃1−τ̃N )m2/2

∫
τ̃i≤τ̃i+1

dN−3τ̃ exp

[
−1

2

∑
i<j

ki · kjG(τ̃i, τ̃j)

]

We can use the propagator for X(τ)

−1
2

..
G = δ ⇒ G(τ, τ ′) = −|τ − τ ′|

where we have applied translation invariance in τ and the “boundary conditions”

G(τ, τ ′) = G(τ ′, τ), G(τ, τ) = 0

by momentum conservation to drop homogeneous solutions (which depend on only

τ̃i or only τ̃j), and symmetry of how G appears. (This is the Stückelberg-Feynman

propagator in 1 dimension: see exercise VIIA6.2. It’s also the solution to Gauss’s law

you found in freshman physics for a uniform planar charge distribution.) We then get

AN = (−g)N−2 lim
τ̃1→−∞
τ̃N−1=0

τ̃N→+∞

e(τ̃1−τ̃N )m2/2

∫
τ̃i≤τ̃i+1

dN−3τ̃ exp

[
1
2

∑
i<j

(τ̃j − τ̃i)ki · kj

]
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At this point we could convert back to the original τ ’s to make the integrals easier

and arrive essentially at the starting point.

Now that we understand the approach for trees, we can analyze loops. 1-loop 1PI

graphs are easy to relate to the tree graphs we have considered: Starting with a tree

graph with 1 long line out of which branch external lines (but no trees), we connect

the 2 ends of the long line with another propagator. (There are fancier arguments,

but they are less convenient: Unitarity gives only the imaginary part of the loop, and

requires then a dispersion relation. Feynman’s tree theorem gives a cut propagator,

plus additional multi-cut graphs that must be argued away.) This is obvious from the

diagrammatic point of view; the reason we start from a tree is that normally quantum

mechanics is just matrix mechanics, and is geared toward sandwiching a product of

matrices (operators) between 2 vectors (states). A loop is then a trace of a product

of matrices, where the initial and final states have been replaced by a sum over all

states (trace), and the initial and final “times” have been identified, making “time”

periodic.

We thus start with an amplitude of the form

A(1)
N = (−1)N tr

(
VN

1

H0

...
1

H0

V1
1

H0

)
; H0 = 1

2(p2 +m2), Vi = geiki·x

This is the same expression we used earlier for trees, except for the extra propagator

1/H0 and the trace, explained above. Again as for trees, we introduce Schwinger

parameters
1

H0

=

∫ ∞
0

dτ e−τH0

and change variables from the N “relative” τ ’s, τi, to the N − 1 “absolute” τ ’s, τ̃i,

and the “overall” τ , T :

τi ≡ τ̃i − τ̃i−1, τ̃N ≡ 0 ⇔ τ̃i ≡ −
N∑
j>i

τj, T ≡ −τ̃0 =
N∑
1

τi

and use the τ̃ -dependent V ’s

V (τ̃) = eτ̃H0V (0)e−τ̃H0 , V (0) = V
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to write

A(1)
N = (−1)N

∫
−∞≤−T≤τ̃i≤τ̃i+1≤0

dT dN−1τ̃ tr[VN(0)VN−1(τ̃N−1)...V1(τ̃1)e−TH0 ]

= (−1)N
∫
−∞≤−T≤τ̃i≤τ̃i+1≤0

dT dN−1τ̃
∑
n

〈n, 0|VN(0)VN−1(τ̃N−1)...V1(τ̃1)|n,−T 〉

where we have written the trace as a sum over all states to show that the effect of

the surviving propagator is to guarantee that there is a length of “time” T between

the initial and final times, which are sewn.

The amplitude can now be evaluated by 1D Feynman graphs (by operator or path

integral methods) as (compare the tree result above)

A(1)
N = (−g)N

∫
−∞≤−T≤τ̃i≤τ̃i+1≤0

dT dN−1τ̃ V(T )exp

[
−1

2

∑
i<j

ki · kjG(τ̃i, τ̃j)

]

where the Green function G is the X-propagator for this worldline (see below).

The “volume element” V(T ) (called the “partition function” in statistical mechanics,

where T is the “inverse temperature”) comes from the “vacuum” amplitude found by

evaluating the general amplitude for N = 1 and V1 = 1 (k1 = 0), which is related

to 〈1〉. (In the path integral approach, it comes from the determinant of the Green

function.) It depends only on the parameter T that defines the geometry (i.e., the

range of “time” for G). Comparing our “result” to the original expression, we see

V(T ) = tr
(
e−TH0

)
=

∫
dDp

(2π)D/2
e−T (p2+m2)/2 = T−D/2e−Tm

2/2

We have evaluated this amplitude by 2 complementary methods: In the language

of the JWKB expansion, we evaluated the Green function contribution as the classical

piece, whose explicit form will be obtained by solving the classical (2D) field equations

(with source), but for the geometry of the 1-loop graph. On the other hand, the

quantum correction (for quadratic action, order h̄ only) was determined by an explicit

sum over states, for a special case, thus fixing its normalization.

A standard change of variables for loops is to factor out the scale T from the

times:

τ̃i = −Tαi ⇒

A(1)
N = (−g)N

∫
0≤αi+1≤αi≤1

dN−1α

∫ ∞
0

dT TN−1V(T )exp
[
−1

2

∑
ki · kjG̃(αi, αj, T )

]
where αi are (some linear combination of) the Feynman parameters.
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At this point we need to note that the Green function can’t be defined in the

strict sense, since we now have closed lines: In a closed space, the total “charge”

must vanish, by comparing Gauss’s law inside and outside any closed “surface”. This

is related to the existence of “zero-modes”, functions that are killed by the wave

operator (d’Alembertian), on which this operator therefore has no inverse. If you try

to invert a Hermitian matrix M with some vanishing eigenvalues, the best M−1 you

can get can satisfy only MM−1 = projection operator killing those eigenvectors. For

the tree and 1 loop, the only such zero-mode is a constant. For the loop, a constant is

the only periodic function that is a homogeneous solution to the wave equation. This

zero-mode corresponds to an invariance (translations), and must drop out anyway. It

appears in general when solving the wave equation

−1
2 2X = j ⇒ 2X =

1

−1
2

j,
1
j = j

where the kills any zero-modes mistreated by 1/ . More explicitly, this is satisfied

for any space with coordinates τ if

−1
2 G(τ, τ ′) = δ(τ − τ ′) + h(τ)

⇒ −1
2

∫
dτ ′G(τ, τ ′)j(τ ′) = j(τ) + h(τ)

∫
dτ ′j(τ ′)

for some h, since the latter term vanishes by momentum conservation, the aforemen-

tioned invariance: Since the source comes from vertex operators eik·X ,

j =
∑

kiδ(τ − τi) ⇒
∫
j =

∑
k = 0

The Green function G(τ, τ ′) should be symmetric in τ and τ ′, since only the sym-

metric part contributes to j(1/ )j. For the loop the only choice for h is a constant,

representing a constant “background charge” distribution in addition to the point

charge represented by the δ function in G’s wave equation. The value of the constant

follows from integrating the Green function’s equation over the loop (just τ):

h = − 1

length

(or “length”→ “volume” for a general space) so the total charge vanishes. The Green

function itself is now determined up to a constant.

We easily modify our earlier tree result for G(τ, τ ′) = G(τ − τ ′) to

−1
2

..
G = δ(τ)− 1

T
⇒ G = −|τ |+ τ 2

T
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We have written the result in a form valid for |τ | ≤ T , which is sufficient in terms

of τ − τ ′ for 0 ≤ τ, τ ′ ≤ T . This function is a repeating parabola, rather than the

“V”-shape of the tree case. T then scales out of G in a simple way:

G(τ̃i − τ̃j) = −T [|αi − αj| − (αi − αj)2]

Using the result for the volume element above, the T integration is then of the form∫ ∞
0

dT TN−1−D/2e−TF (αi,m
2) = Γ (N − D

2
)FD/2−N

for a function F found from the above prescription, where the Γ function shows

the usual divergence structure for
∫
dDp p−2N (N propagators with no derivatives at

vertices). All that remains are the usual, messy Feynman parameter integrations.

Exercise VIIIC5.1

Use this method to explicitly evaluate the propagator correction.

Finally we consider generalization from scalars to vectors. The basic idea is to

make a “stringy” generalization of the exponent of eik·x: In terms of some σ-dependent

parameter P (σ), ∫
dσ

2π
P (σ) ·X(σ)→ k ·X + κ · ∂X

keeping only the first “excitation” (so we can describe massless vectors), where the

mode expansion is implemented as a Taylor expansion of X about the center (in

σ). The first term gives just the momentum dependence we have already used for

the scalar vertex while the second term, if expanded in the exponential to lowest

nontrivial order, gives the vector vertex. (Ghost dependence can be included by the

same method.) In a more general approach, this corresponds to introducing arbitrary

external states with a “source” P (σ) by writing the wave functional Ψ [X(σ)] in terms

of its functional Fourier transform Ψ̃ [P (σ)].

Although this derivation was motivated by string theory, this result can be applied

to particles. In fact, the usual contribution of an external vector to the particle action

is g
∫
dτ

.
X · A(X), which upon Fourier expansion in X gives vertices

Vi,vector = gκi ·
.
Xeiki·X

where κ is the polarization vector. This is the same result obtained by expanding the

exponential described above to first order in κ, zeroth order reproducing the scalar

vertex. (The σ derivative gets replaced by a τ derivative for X satisfying the 2D wave

equation: see chapter XI.)
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Evaluation of the amplitude is simpler if we keep the original exponential in both

k and κ,

Vi = gei(k·X+κ·
.
X)

Then the only change in the amplitude is the replacement

ki · kjGij → ki · kjGij + κi · kj∂Gij + ki · κj∂′Gij + κi · κj∂∂′Gij

where ∂ is the derivative with respect to τ̃i and ∂′ to τ̃j. Since G depends on them

only through the difference τ̃i − τ̃j, we can write ∂′ = −∂. (For some applications it

may be useful to integrate these derivatives by parts in the amplitude.)

For a tree, the last term gives a simple expression:

∂∂′G = −∂2G = 2δ(τ)

in terms of τij ≡ τ̃i − τ̃j. Unlike the other κ-dependent terms, this piece gives direct

contraction of vector indices on polarizations, instead of contraction of them with

momenta. The δ term makes the 2 vertices corresponding to the 2 polarizations

coincide: It corresponds to the A2 term in the coupling of an external electromagnetic

field to this scalar.

A simple example of this method is to keep the full exponential in κ, but choose

κi = ±ki

in some units. This describes a scalar, but appearing as longitudinal polarizations.

It can be considered a more “stringy” model with higher-derivative couplings. The ±
will be interpreted as corresponding to the 2 boundaries of the string: We have written

X → X±∂X as an infinitesimal expansion of X at either boundary about the center

of an infinitesimal string. We can enforce this interpretation with group theory by

using the ’t Hooft double-line notation, so the “inside” and “outside” vertices couple

to different lines, i.e., with different group theory factors. The above modification for

a 1-loop graph is now

Gij → Gij + (±i −±j)
.
Gij + (±i±j)2

[
δ(τij)−

1

T

]
where ±i indicates which boundary the vertex is on. After again scaling τ̃i = −Tαi,
the first term goes as T again, the second is T -independent, the last goes as 1/T .

Ignoring the uninteresting 4-point contribution (which results in terms in the ampli-

tude similar to those for fewer external lines), the most important new contribution
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for small T is the αi-independent 1/T term. It modifies the T integration for small

T : Using ∑
i<j

(±i±j)ki · kj = 1
2

∑
i,j

(±i±j)ki · kj = 1
2

(∑
i

±iki

)2

= 1
2

(∑
I

kI −
∑
I′

kI′

)2

= 2

(∑
I

kI

)2

≡ −2s

writing i = (I, I ′) for the two “sides” of the particle, and choosing the external

particles to be massless (k2
i = 0), we find∫ ∞

0

dT TN−1−D/2e−2s/T =

∫ ∞
0

dT ′ T ′D/2−N−1e−2T ′s = Γ (D
2
−N)(2s)N−D/2

where T ′ = 1/T . (Note that the divergences in the Γ function are IR, because we

neglected masses to simplify the calculation, while those at s = 0 are UV, in terms of

the integral over loop momentum or T .) Thus, for the interesting case of the 4-point

amplitude in 10 dimensions, we find a massless pole 1/s replacing the usual 1-loop

divergence, which now appears only for the “planar” case where all vertices are on

the same “side”.

If we had included masses, the effects would be (1) inside: IR regularization by a

factor of e−Tm
2/2, and the same near s = 0; (2) outside: the pole shift s→ s−Nm2/4.

Exercise VIIIC5.2

To what explicit modification of the field action for a scalar does this stringy

vertex correspond?

The above method gives coupling of external vectors to an internal scalar. Gen-

eralizing the internal particle to a spinor or vector is not as simple classically, but we

can make the generalization from what we know about such coupling from the field

theory methods of subsection VIIIA3: Using the universal kinetic operator

+ igF abSab

with quantum spin operator

Sab =


0 for spin 0

−1
4
γ[aγb] for spin 1

2

|[a〉〈b]| for spin 1

we expand to linear order in the vector field:

−1
2( + igF abSab) ≈ −1

2 0 + g[A · (−i∂) + (−i∂aAb)Sab]
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where 0 is the free , and for convenience we have ignored ordering by using the

(background) gauge ∂ ·A = 0. Choosing the external field to have definite momentum,

Aa(x) = κae
ik·x

In terms of the momentum p of the internal particle and k of the external field, we

then have

V = gκaeik·x(pa − kbSab)

In Lagrangian language, we simply replace p→
.
X:

V = gκaeik·x(
.
Xa − kbSab)

Applying these couplings to generalize the stringy model of the previous page to

maximally supersymmetric Yang-Mills, we see from subsection VIIIC4 that a physical

graviton, axion, and dilaton are generated in D=10, appearing as massless, color-

singlet poles.
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PART THREE: HIGHER SPIN
Higher-spin (unstable) particles have been observed experimentally. Whether

they are considered elementary depends on how their theory is formulated. In partic-

ular, a description of hadrons in terms of strings would have many advantages, such

as unification of all hadrons, manifestation of duality symmetry, and calculability

through an accurate perturbation scheme.

Gravity and supergravity also include higher-spin particles. String theory might

also yield some solutions to some of their problems, especially renormalizability and

unification of all particles. (Interacting theories of spin higher than 1 are nonrenor-

malizable because they require higher-derivative couplings, as a consequence of gauge

invariance/current conservation, and more vector indices: see subsection IIIA4.) Such

gravitational strings would differ from hadronic strings in their mass scale and in the

appearance of massless particles, including the graviton itself (in contrast to the mas-

sive “pomeron”, the analog of the graviton in hadronic strings). Gravitational strings

might require supergravity.

For these and other reasons supergravity and strings are two of the major areas of

research in theoretical high energy physics today (although not the only ones). Most

of the discussion of this part is introductory, and can be covered earlier, but it is not

essential to the course; however, its inclusion in a field theory text is essential at least

for reference.

Gravity is uniquely defined as the force carried by a massless spin-2 particle:

There are no such particles other than the graviton, and there is no massless spin-0

particle. Similarly, the photon is the only massless spin-1 particle. (Gluons do not

appear outside of hadrons.) Thus, gravity and electromagnetism are the only long-

range forces. But there are massive strongly interacting particles of all spins. Thus,

at short distances gravity might not be so clearly defined: Hadrons couple to sums

of various spin-2 fields, weighted by various functions of spin-0 (scalar) fields, and

in a way that depends on the type of hadron. This means that the “equivalence

principle”, which basically says to replace the flat-space Minkowski metric with the

“curved” metric of gravity as a type of minimal coupling, holds only at macroscopic

distances. (Similar remarks apply to nonminimal coupling, involving adding to the

metric some function of the curvature tensor, which involves derivatives of the metric,

and its covariant derivatives, which is possible even for weakly interacting particles.)

Furthermore, ”geometry” is a classical concept. With respect to quantum theory,
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it’s therefore more applicable to long-distance (low energy) behavior. For these and

similar reasons, the success of general relativity at macroscopic distances should not

be taken too seriously when applied to interactions at the submicroscopic scale, as

in the earliest stages of cosmology (“inflation”) or the latest stages of gravitational

collapse of stars (“black holes”).

IX. GENERAL RELATIVITY
Before discussing supergravity we need to study ordinary gravity. Both can be

treated as generalizations of Yang-Mills theory. We use this approach rather than

the traditional one, based on the metric, which is insufficient for describing spinors or

supersymmetry: There is no useful definition of distance in anticommuting directions

in curved (super)space.

Gravity is the only observed long-range (massless) force mediated by a higher-

spin (2) field. It is relevant for astrophysics, cosmology, and unification, all of which

have applications to particles of lower spin.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . A. ACTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We begin with the general principles that define pure gravity as a nonabelian

gauge theory, and use them to derive actions and couple to matter.

1. Gauge invariance

General relativity can be described by a simple extension of the methods used to

describe Yang-Mills theory. The first thing to understand is the gauge group. We start

with coordinate transformations, which are the local generalization of translations,

since gravity is defined to be the force that couples to energy-momentum in the same

way that electromagnetism couples to charge. However, these are not enough to define

spinors. This is easy to see already from the linear part of coordinate transformations:

Whereas SO(3,1) is the same Lie group as SL(2,C), GL(4) (a Wick rotation of U(4))

does not have a corresponding covering group; there is no way to take the square root

of a vector under coordinate transformations. So we include Lorentz transformations

as an additional local group. We therefore have a coordinate transformation group,

which includes translations and the orbital part of Lorentz transformations, and a

local Lorentz group, which includes the spin part of Lorentz transformations.
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Thus our coordinate space is defined implicitly by a similar construction to that

for the coset Poincaré/Lorentz, as discussed in subsection IC6: While there are coor-

dinates for the full Poincaré group, dependence on the Lorentz coordinates is fixed,

and they serve only to define how the spin operators act. However, although the

Lorentz covariant derivatives are fixed as for coset space, the translation ones are

not. Furthermore, there are no symmetry generators in general: Arbitrary curved

spaces may lack symmetry.

Clearly the translation coordinates xm themselves, and therefore their partial

derivatives ∂m, are not affected by the (spin) Lorentz generators. We indicate this

by use of “curved” vector indices m,n, .... On the other hand, all spinors should be

acted on by the Lorentz generators, so we give them “flat” indices α, β, .., and we

also have flat vector indices a, b, ... for vectors that appear by squaring spinors. Flat

indices can be treated the same way as in flat space, with metrics Cαβ and ηab to

raise, lower, and contract them.

Some gravity texts, particularly the more mathematical ones, emphasize the use

of “index-free notation”. An example of such notation is matrix notation: Matrix

notation is useful only for objects with two indices or fewer, as we saw in our treatment

of spinor indices in chapter II. Such mathematical texts consider the use of indices

as tantamount to specifying a choice of basis; on the contrary, as we have seen in

previous chapters, indices in covariant equations usually act only (1) as place holders,

indicating where contractions are made and how to associate tensors on either side of

equations, and (2) as mnemonics, reminding us of representations and transformation

properties. Thus, the full content of the equation can be seen at a glance. In contrast,

many mathematical-style equations (when indeed equal signs are actually used) say

little more than “A = B ”, with the real content of the equation buried in the text of

preceding paragraphs.

We therefore define the elements of the group as

g = eλ, λ = λm∂m + 1
2λ

abMba

where ∂m acts on the usual “translation” coordinates, including the arguments of the

real gauge parameters λm and λab and any fields. Mab = −Mba are the covariant

derivatives for Lorentz transformations, in the sense of subsection IC6: They act on

all flat indices, including those on λab and any fields that carry flat indices. In the

language of subsection IC6, all objects with flat indices (including λab) have implicit

dependence on the coordinates for Lorentz transformations, fixed by how Mab acts

on them. As a shorthand notation, sometimes we will also write

1
2λ

abMba = λIMI
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(and similarly for other appearances of the antisymmetric index pair ab). We thus

have derivatives that act on all Poincaré coordinates, both translation coordinates

(∂m) and Lorentz coordinates (Mab).

Exercise IXA1.1

Sometimes it’s more convenient to perform explicit finite coordinate transfor-

mations in terms of new coordinates as functions of old, as in subsection IC2.

As an example for curved space we consider the sphere in arbitrary dimen-

sions. Rather than the usual cumbersome angles, which introduce trigono-

metric functions into measurements of distances, we use coordinates which

manifest the slightly smaller rotational invariance of the corresponding flat

space, as we did for scalar fields in subsection IVA2.

a As in subsection IVA2, we can derive coordinates for the sphere by constrain-

ing flat space in Cartesian coordinates to have unit radius. Rather than

looking for an explicit solution as in subsection IVA2, we can enforce the

constraint by the replacement

x→ y

|y|

so the flat coordinate “vector” x automatically has magnitude |x| = 1 at the

expense of introducing the scale invariance

y′ = λ(y)y (x′ = x)

Show the infinitesimal distance ds is given by

ds2 = dx2 =
dy2

y2
− (y · dy)2

y4
=

(y[adyb])2

2y4

Check scale invariance of the last form.

b Ultimately we’ll need to use the scale invariance to eliminate one coordinate.

Writing ya = (y0, yi), consider the coordinate transformation

y0 = (z0)2 − (zi)2, yi = 2z0zi

(This is just a generalization of the substitution used in subsection IVA2.)

What is the interpretation in two dimensions (yi = y1) in terms of complex

coordinates? (This generalizes to quaternions in four dimensions.) Show that

this results in

ds2 =
(2z[0dzi])2

[(z0)2 + (zi)2]2



712 IX. GENERAL RELATIVITY

Compare the result on ds2 of the scale gauge y0 = 1 (on the previous form)

to that of z0 = 1 (on this form).

Exercise IXA1.2

More general scale gauges for the previous problem come from considering

the kind of projections made in map making, looking at the result of shining

a point light source through a transparent globe onto a plane, where the ray

from the source through the center of the globe exits it at the point tangent

to the plane. Instead of looking at the geometry of the rays, we consider

expanding this globe of unit radius through the plane in such a way that

the source remains at the same scaled position inside the globe. (The center

of the sphere moves while the source and plane remain fixed, at least with

respect to each other.) The globe continues to expand until it intersects a

chosen point on the plane. Explicitly, in terms of coordinates y of that point

with respect to the origin of the expanded globe, the distance on the original

(unit-radius) globe is

ds2 = dx2 =

(
d
y

|y|

)2

while the position of the source is

x0
s = −a, xis = 0 ⇒ ys = (−a|y|, 0)

in terms of the constant a that defines the gauge (projection), so the condition

that it hasn’t moved relative to the plane is

y0 + a|y| = 1 + a

a Show the solution is

y0 =
(1 + b)− (1− b)

√
1 + b(yi)2

2b
, b =

1− a
1 + a

or

z0 =
√

1 + b(zi)2

b Find ds2 in terms of both yi and zi for the special cases

gnomonic : a = 0 (b = 1)

stereographic : a = 1 (b = 0)

orthographic : a =∞ (b = −1)
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The normalization of Mab is chosen so that it acts the same way on flat indices as

x[a∂b] acts on x and ∂ (in flat space). The action of the Lorentz generators on vector

indices is thus given by

[Mab, Vc] = V[aηb]c ⇒ λI [MI , Va] = 1
2λ

bc[Mcb, Va] = λa
bVb

This implies the commutation relations

[Mab,M
cd] = −δ[c

[aMb]
d]

(This means Mab is defined with an extra sign compared to the usual Lorentz covariant

derivatives, whose structure constants have a sign opposite to those of the symmetry

generators: See subsection IC6.) In explicit calculations, only two indices in the

commutator will match, and they reduce to simple expressions such as

[M12, V2] = η22V1, [M12,M23] = η22M13

As for derivatives, when acting on functions instead of operators we can write the

action of the Lorentz generator as simply MabVc without the commutator.

When spinors are involved in four dimensions, it’s simpler to convert all flat

indices to spinor indices. In that case, we can write

λ = λm∂m + λIMI , λIMI = 1
2λ

abMba = 1
2λ

αβMβα + 1
2λ

.
α
.
βM.

β
.
α

[Mαβ, ψγ] = ψ(αCβ)γ ⇒ λI [MI , ψα] = 1
2λ

βγ[Mγβ, ψα] = λα
βψβ

[Mαβ,M
γδ] = δ

(γ
(αMβ)

δ)

in terms of the SL(2,C) generators Mαβ = Mβα. Note that (Mαβ)† = +M .
α
.
β

because

(Mab)
† = −Mab. We have used conventions consistent with OSp generators

1
2λ

BC [MCB, ψA} = λA
BψB, ηAB = (ηab, Cαβ, C .

α
.
β
)

Relating vector to spinor indices as usual as Va = Vα .
α, etc., then fixes the Lorentz

subgroup of the OSp group as (see exercise IIB7.2a)

M
α
.
αβ

.
β
Vγ .γ = Vα .

αCβγC.
β
.
γ
− V

β
.
β
CαγC .

α
.
γ

= −1
2(C .

α
.
β
V(α

.
γCβ)γ + CαβVγ(

.
αC.

β)
.
γ
) = −1

2(C .
α
.
β
Mαβ + CαβM .

α
.
β
)Vγ .γ

⇒ M
α
.
αβ

.
β

= −1
2(C .

α
.
β
Mαβ + CαβM .

α
.
β
)

⇒ λ
α
.
αβ

.
β

= C .
α
.
β
λαβ + Cαβλ .

α
.
β
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For most of the remaining discussion of gravity, we’ll limit ourselves to bosonic fields

in vector notation, which is easy to generalize to arbitrary dimensions. For spinors,

we must either choose a dimension and use its corresponding spinor notation (for

D ≤ 6), or work in mixed spinor-vector notation (which is much messier).

Matter representations of the group work similarly to Yang-Mills. We define such

fields to have only flat indices. Then their transformation law is

ψ′ = eλψ

where the transformation of a general Lorentz representation follows from that for a

vector (or spinor, if we include them), as defined above. Alternatively, the transforma-

tion of a vector could be defined with curved indices, being the adjoint representation

of the coordinate group:

V = V m∂m ⇒ V ′ = V ′m∂m = eλ
m∂mV e−λ

m∂m

However, as in Yang-Mills theory, it is more convenient to identify only the gauge

field as an operator in the group. In any case, only the adjoint representation (and

direct products of it) has such a nice operator interpretation.

As an example of this algebra, we now work out the commutator of two transfor-

mations in gory detail: We first recall that the coordinate transformation commutator

was already worked out in subsection IC2, using the usual quantum mechanical rela-

tions (see also subsection IA1)

[f, f ] = [∂, ∂] = 0, [∂, f ] = (∂f)

for any function f . For the Lorentz algebra we will use the additional identities

[Mab, ∂m] = [Mab, λ
m] = [Mab, λ

cdMdc] = 0

all expressing the fact the Lorentz generators commute with anything lacking free flat

indices (i.e., Lorentz scalars). The commutator algebra is then

[λm1 ∂m + 1
2λ

ab
1 Mba,λ

n
2∂n + 1

2λ
cd
2 Mdc]

= λm[1 [∂m, λ
n
2]]∂n + λm[1 [∂m,

1
2λ

ab
2] ]Mba + 1

2λ
ab
1 [Mba,

1
2λ

cd
2 ]Mdc

= (λn[1∂nλ
m
2] )∂m + 1

2(λm[1∂mλ
ab
2] + λac[1 λ2]c

b)Mba

One fine point to worry about: We may consider spaces with nontrivial topologies,

where it is not possible to choose a single coordinate system for the entire space. For

example, on a sphere spherical coordinates have singularities at the two poles, where
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varying the longitude gives the same point and not a line. (However, the sphere can

be described by coordinates with only one singular point.) We then either treat such

points by a limiting procedure, or choose different sets of nonsingular coordinates on

different regions (“patches”) and join them to cover the space.

2. Covariant derivatives

We can also define covariant derivatives (for translations) in a manner similar to

Yang-Mills theory; however, since ∂m is now one of the generators, the “∂” term can

be absorbed into the “A” term of ∇ = ∂ + A:

∇a = ea
m∂m + 1

2ωa
bcMcb

in terms of the“vierbein (tetrad)” ea
m and “Lorentz connection” ωa

bc. Now the action

of the covariant derivative on matter fields looks even more similar to the gauge

transformations: e.g.,

δφ = λm∂mφ, ∇aφ = ea
m∂mφ

δVa = λm∂mVa + λa
bVb, ∇aVb = ea

m∂mVb + ωab
cVc

δψα = λm∂mψα + λα
βψβ, ∇aψβ = ea

m∂mψβ + ωaβ
γψγ

I.e., the covariant derivative ∇a is essentially D elements (labeled by “a”) of the

gauge algebra.

Exercise IXA2.1

Write the transformation law and covariant derivative of an antisymmetric

tensor in spinor notation (fαβ), and compare to vector notation as above.

Note that the free index on the covariant derivative is flat so that it transforms

nontrivially under

∇′a = eλ∇ae
−λ

Explicitly, for an infinitesimal transformation δ∇ = [λ,∇] we have

δea
m = (λn∂nea

m − ean∂nλm) + λa
beb

m

δωa
bc = λm∂mωa

bc + (−eam∂mλbc + ωa
d[bλd

c] + λa
dωd

bc)

This commutator is the same as for [λ1, λ2] in the previous subsection, except for the

two additional terms coming from the Lorentz generators acting on the free index on

∇a. In particular, the vierbein ea
m transforms on its flat index as the vector (defining)

representation of the local Lorentz group, and on its curved index (and argument)
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as the vector (adjoint) representation of the coordinate group. Also, it should be

invertible, since originally we had ∇ = ∂ + A: We want to be able to separate out

the flat space part as ea
m = δma + ha

m for perturbation theory or weak gravitational

fields. That means we can use it to convert between curved and flat indices:

V m = V aea
m ⇔ V a = V mem

a

where em
a is the inverse of ea

m. Furthermore, if we want to define the covariant

derivative of an object with curved indices, we can simply flatten its indices, take the

covariant derivative with ∇, and then unflatten its indices.

Flat indices are the natural way to describe tensors: (1) They are the only way

to describe half-(odd-)integer spin. (2) Even for integer spin, they correspond to the

way components are actually measured. In fact, the above conversion of vectors from

curved to flat indices is exactly the one you learned in your freshman physics course!

The special cases you saw there were curvilinear coordinates (polar or spherical) for

flat space. Then ea
m was the usual orthonormal basis. Only the notation was different:

Using Gibbs’s notation for the curved but not the flat indices, ~V = V a~ea, where, e.g.,

a = (r, θ, φ) for spherical coordinates and ~ea = (r̂, θ̂, φ̂) are the usual orthonormal

basis. Thus, you probably learned about the vierbein years before you ever saw a

“metric tensor”. Similarly, when you learned how to integrate over the volume element

of spherical coordinates, you found it from this basis, and only learned much later (if

yet) to express it in terms of the square root of the determinant of the metric. (With

the orthonormal basis, there was no square root to take; the determinant came from

the cross product.) You also learned how to do this for curved space: Considering

again the sphere, vectors in the sphere itself can be expressed in terms of just θ̂ and

φ̂. And the area element of the sphere (the volume element of this smaller space) you

again found from this basis.

For example, consider nonrelativistic momentum in two flat spatial dimensions,

but in polar coordinates: Now using xm to represent just the nonrelativistic spatial

coordinates,

xm = (r, θ), pm = m
dxm

dt
= (m

.
r,m

.
θ) = paea

m

ea
m =

(
1 0

0 r−1

)
, pa = (m

.
r,mr

.
θ) = δabpb

em
a =

(
1 0

0 r

)
, pm = (m

.
r,mr2

.
θ) = em

apa

Then the two components of pa (with the simplest choice of ea
m) are the usual com-

ponents of momentum in the radial and angular directions. On the other hand, one
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component of pm is still the radial component of the momentum, while the other

component of pm is the angular momentum — a useful quantity, but not normally

considered as a component along with the radial momentum, which doesn’t even have

the same engineering dimensions. In writing the Hamiltonian, one simply squares

pa in the naive way, whereas squaring pm would require use of the metric. (Since
.
xmpm = δabp

apb/m = pmpm/m, we have the usual quantum mechanical association

pm ↔ −i∂m, which is why a component of pm is associated with angular momentum

−i∂θ.)

Exercise IXA2.2

Show that the above choice of ea
m actually describes flat space: Use the fact

that pa transforms as a scalar under the coordinate transformations that ex-

press r and θ in terms of Cartesian coordinates x and y, and as a vector under

local “Lorentz” transformations, which are in this case just 2D rotations, to

transform it to the usual Cartesian p′a = (m
.
x,m

.
y).

This direct conversion between curved and flat indices also leads directly to the

covariant generalization of length: In terms of momentum (as would appear in the

action for the classical mechanics of the particle),

pm = m
dxm

ds
, −m2 = p2 = papbηab ⇒ −ds2 = dxmdxnem

aen
bηab ≡ dxmdxngmn

Equivalently, the metric tensor gmn is just the conversion of the flat-space metric ηab

to curved indices. Also, in terms of differential forms,

Ωa = dxmem
a ⇒ −ds2 = ΩaΩbηab

These curved generalizations of the energy-momentum relation and definition of

proper time imply the corresponding generalization of the definitions of timelike,

lightlike, and spacelike.

The field strengths are also defined as in Yang-Mills:

[∇a,∇b] = Tab
c∇c + 1

2Rab
cdMdc

where we have expanded the field strengths over ∇ and M rather than ∂ and M so

that the “torsion” T and “curvature” R are manifestly covariant:

M ′ = eλMe−λ = M ⇒ T ′ = eλTe−λ, R′ = eλRe−λ

The commutator can be evaluated as before, with the same change as for going from

[λ1, λ2] to [λ,∇a] (i.e., now there are two free indices on which the Lorentz generators
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can act), except that now we rearrange terms to convert ∂m → ea
m∂m → ∇a. Making

the further definitions

ea = ea
m∂m, [ea, eb] = cab

cec ⇒ cab
c = (e[aeb]

m)em
c = −eamebn∂[men]

c

for the “structure functions” cab
c, we find the explicit expressions

Tab
c = cab

c + ω[ab]
c = −eamebn(∂[men]

c + e[m
dωn]d

c)

Rab
cd = e[aωb]

cd − cabeωecd + ω[a
ceωb]e

d = ea
meb

n(∂[mωn]
cd + ω[m

ceωn]e
d)

If we ignore the action of∇ on curved indices (it doesn’t act on them, but alternatively

we could flatten them, act, then curve them back), we can also write

Tmn
a = −∇[men]

a, [∇m,∇n] = 1
2Rmn

abMba

where

∇m = em
a∇a = ∂m + 1

2ωm
abMba

is essentially a covariant derivative for the Lorentz group only. We can similarly write

Tab
m = +∇[aeb]

m

From this expression for the torsion we find the following expressions for the curl

and divergence of a vector in terms of curved indices: Defining

e ≡ det ea
m

⇒ cba
b = (e[b

m∂mea]
n)en

b = (eb
m∂mea

n)en
b− eam[(∂meb

n)en
b] = ∂mea

m− eam∂mln e

we have

ea
meb

n∂[mVn] = e[a(eb]
mVm)− cabcecmVm = ∇[aVb] − TabcVc

e ∂me−1V m = ea
m∂mV

a + cba
bV a = ∇aV

a + Tba
bV a

Exercise IXA2.3

Relate the two above identities by comparing (in D=4) ∇[aVbcd] (generalizing

∇[aVb]) and ∇aV
a for Vabc = εabcdV

d.

In practice, a useful way to evaluate the commutator is to first evaluate the com-

mutators of the Lorentz generators with the whole covariant derivative, and then

subtract out the double-counted [M,M ] term. This is particularly convenient when

considering some explicit solution to the field equations with a reduced set of com-

ponents (e.g., spherically symmetric), so that explicit indices may be lost except on

the Lorentz generators. Schematically, we then calculate
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[∇1,∇2] = [e1 + ω1, e2 + ω2]

= {[e1, e2] + (e1ω2)M2 − (e2ω1)M1}+ {ω1[M1,∇2]− ω2[M2,∇1]− ω1ω2[M1,M2]}

This method turns out to be one of the two simplest ways to calculate explicit solutions

(as opposed to discussing general properties). (For examples, see subsection IXC5

below.)

The covariant derivative satisfies the Bianchi (Jacobi) identities

0 = [∇[a, [∇b,∇c]]] = [∇[a, Tbc]
d∇d + 1

2Rbc]
deMed]

= (∇[aTbc]
d)∇d + 1

2(∇[aRbc]
de)Med − T[ab|

e(Te|c]
f∇f + 1

2Re|c]
fgMgf )−R[abc]

d∇d

⇒ R[abc]
d = ∇[aTbc]

d − T[ab|
eTe|c]

d, ∇[aRbc]
de − T[ab|

fRf |c]
de = 0

To make the transformation laws manifestly covariant we can define instead

λ = λa∇a + 1
2λ

abMba

which is just a redefinition of the gauge parameters. The infinitesimal transformation

law of the covariant derivative is then

δ∇a = [(δea
m)em

b]∇b + 1
2(ea

mδωm
bc)Mcb = [λb∇b + 1

2λ
bcMcb,∇a]

= (−∇aλ
b + λcTca

b + λa
b)∇b + 1

2(−∇aλ
bc + λdRda

bc)Mcb

⇒ (δea
m)em

b = −∇aλ
b + λcTca

b + λa
b, ea

mδωm
bc = −∇aλ

bc + λdRda
bc

Another useful expression is the commutator of 2 gauge transformations in co-

variant form. This provides an alternate definition of torsion and curvature:

(A · ∇)Ba − (B · ∇)Aa = [A,B]a − AbBcTbc
a

[A · ∇, B · ∇] = [A,B]a∇a + AaBbRab
IMI

where [A,B]m is defined with A = Am∂m.

Exercise IXA2.4

By examining AaBb∇[aCb], use this definition of torsion (rather than its ex-

pression in terms of cab
c) to derive an expression for the covariant curl.

Exercise IXA2.5

Show that a finite local Lorentz transformation takes the form

∇′a = Λa
b[∇b − 1

2(∇bΛ
cf )ΛdfMdc]
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in the case of vanishing torsion by starting with the more general expression

∇′a = Λa
b∇b + 1

2∆a
bcMcb

examining the commutator [∇′,∇′], and applying T ′ = 0 to determine ∆.

A “Killing vector” is a transformation that leaves the covariant derivative invari-

ant:

[K,∇a] = 0, K = Ka∇a + 1
2K

abMba

(The term is usually used to refer to just the general coordinate part Km of the

transformation, but we’ll use it in a generalized sense to refer to the complete K.)

It represents a symmetry; the existence of Killing vectors depends on the particular

space described by the covariant derivative. It then follows from the Jacobi identity

for [K1, [K2,∇]] that the Killing vectors form a group, the symmetry group of that

space. Invariance of the covariant derivative requires:

−∇aK
b+KcTca

b+Ka
b = 0 ⇒ ∇(aKb) = KcTc(ab), Kab = 1

2∇[aKb]− 1
2K

cTc[ab]

−∇aK
bc +KdRda

bc = 0 ⇒ ∇aK
bc = KdRda

bc

These equations are referred to as the “Killing equations”. (Again, usually it is just

the first equation, on Ka, that is called by this name, but we’ll use it to refer also

to the equations for Kab, which are needed to describe the symmetry when acting on

spinors, etc.)

Exercise IXA2.6

Express the Hamiltonian of the classical relativistic particle in terms of the

vierbein:

ea = ea
mpm, H = 1

2(ηabeaeb +m2)

Doing the same for general coordinate transformations K = Kaea, examine

the condition for invariance [K,H] = 0 using the Poisson bracket. Using the

commutation relations for the ea’s, show that this implies the Killing equation

∇(aKb) = KcTc(ab).

Exercise IXA2.7

Solve the Killing equations explicitly in the case of flat space ∇a = ∂a. Show

this gives the Poincaré group, including both orbital and spin pieces. (Note:

The spin piece has a negative sign to cancel that in the definition of Mab.)

This is the curved-space generalization of the treatment of subsection IC6 of flat

space as the coset Poincaré/Lorentz (or similar for the other maximally symmetric

spaces). In particular, the symmetry generators of subsection IC6 are then identified
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as the Killing vectors of flat space found in exercise IXA2.7. Poincaré is the symmetry

group of flat space, but for any field in curved space we fix the representation of

the Lorentz covariant derivative (spin) ∇ab to be the same as that for the coset by

setting the commutators [∇ab,∇cd] and [∇ab,∇c] to be the same as in flat space. The

generalization to curved space then comes directly from leaving [∇a,∇b] arbitrary.

Also, the implicit dependence on the Lorentz coordinates in the gauge parameters

λab (Kab), as Lorentz group elements, is precisely that needed to convert the Lorentz

covariant derivatives ∇ab into (the spin term of) the Lorentz symmetry generators

Sab, from the identity relating the corresponding “vielbeins”, LR−1 = g.

3. Conditions

There are two kinds of conditions we can impose to eliminate some degrees of

freedom: gauge choices and constraints . Gauge choices explicitly determine degrees

of freedom that drop out of the action anyway. If the gauge is not completely fixed,

the form of the residual gauge transformations may change, since using particular

gauge parameters to fix the gauge, rather than eliminating those parameters, may

just determine them in terms of the remaining parameters: We require that the

residual transformations do not violate the gauge conditions that have already been

applied. Similar remarks apply to global symmetries: If they do not commute with

the gauge transformations for the gauge that was fixed, then they may acquire extra

gauge-transformation terms to preserve the gauge choice. On the other hand, con-

straints are chosen to be covariant under the transformation laws, and thus do not

alter them, while eliminating degrees of freedom that might otherwise appear in the

action (although not in all possible terms). Furthermore, the simplest explicit solu-

tion to constraints can itself introduce new gauge invariances. (An example of this

situation is supersymmetric Yang-Mills: see subsections IVC3-4.) In this subsection

this analysis will be applied to Lorentz invariance: We already saw that global Lorentz

transformations are included in coordinate transformations, and that local Lorentz

invariance is unnecessary when only integer spin (and in particular, pure gravity) is

treated. We now examine the consequences of eliminating this useful but redundant

invariance and the gauge field associated with it.

Of course, we can eliminate local Lorentz transformations by hiding flat indices:

For the vierbein itself, we have the local Lorentz invariant

gmn = ηabea
meb

n

which is the inverse “metric tensor” (no relation to the group element “g”). However,

we have seen that tensors with flat indices have simpler coordinate transformations,
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and there is no way to get rid of flat indices when spinors are involved. Furthermore,

the metric has the constraint that it have Minkowski signature: This constraint is

solved by expressing the metric in terms of the flat-space Minkowsi metric η and the

vierbein. Thus, solving the constraint introduces local Lorentz invariance. (However,

in this case the constraint does not eliminate degrees of freedom, but only limits their

range.)

The Lorentz transformations in λab are redundant to those in λm. The extra

gauge parameters also can be fixed by an appropriate gauge choice: For example,

consider the gauge

δea
m = λa

beb
m ⇒ Lorentz gauge ηm[aeb]

m = 0

A coordinate transformation takes us to a different Lorenz gauge, since the Lorenz

gauge condition is not a scalar. This means that any coordinate transformation λm

must be accompanied by a Lorentz transformation λab to preserve this gauge, where

this λab is completely determined in terms of λm. This is easy to see perturbing ea
m

about δma : To lowest order we have simply

0 = δ(ηm[aeb]
m) ≈ −2λab + ∂[aλb] ⇒ λab ≈ 1

2∂[aλb]

Exercise IXA3.1

Let’s further analyze this gauge condition:

a By looking at the transformation of a vector, identify the specific terms in

the Taylor expansions of λm and λab whose coefficients can be identified with

global Lorentz transformations, in the approximation used above.

b Using the same methods as exercise IVC4.3, and writing in matrix notation

ea
m = (eh)a

m for some matrix h, solve explicitly for λab in terms of λm and

ea
m to all orders.

Similarly, the Lorentz connection ωa
bc that gauges the λab transformations is

redundant to the vierbein that gauges λm: ω can be completely determined in terms

of e by constraining the torsion to vanish. To see this, we first notice that in the

general case the expression for the torsion in terms of the structure functions and

connection can be inverted to give the connection in terms of the other two. One

way to do this is to use the definition and permute the indices a → b → c (odd

permutations are redundant because of the antisymmetry of the equation in the first

two indices):

Tabc = cabc + ωabc − ωbac, Tbca = cbca + ωbca − ωcba, Tcab = ccab + ωcab − ωacb
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Using the antisymmetry of the connection in its last two indices, we add the first and

last equation and subtract the second to obtain

ωabc = 1
2(c̃bca − c̃a[bc]), c̃abc = cabc − Tabc

Since the torsion is a covariant tensor, we can freely set it to vanish without affecting

the transformation laws of the remaining objects (it’s a covariant constraint, not a

gauge condition):

Tab
c = 0 ⇒ ωabc = 1

2(cbca − ca[bc])

From now on we assume this constraint is satisfied. This simplifies the form of curls

and divergences, which implies that ∇ can be integrated by parts in covariant actions

(see below). However, we have already seen that the torsion is nonvanishing in su-

perspace (subsection IVC3): In that case the symmetry on flat indices is constrained,

so the connection has fewer components than the torsion, and can be determined by

setting only part of the torsion to vanish. (See subsection XA1 below.)

Exercise IXA3.2

Show explicitly that when the torsion vanishes the Killing equations from

δea
m = 0 imply those from δωm

ab = 0:

∇(aλb) = 0, λab = 1
2∇[aλb] ⇒ ∇aλ

bc = λdRda
bc

Exercise IXA3.3

Consider using the group GL(D) on the flat indices instead of SO(D−1,1).

(This construction is not useful for fermions.) Compensate for the extra gauge

invariance by replacing the Minkowski metric ηab with a “flat”-index metric

gab (and its inverse gab) that is coordinate dependent , but covariantly constant:

λ = λm∂m + λa
bGb

a; λa
b[Gb

a, Vc] = λc
aVa, λa

b[Gb
a, V c] = −V aλa

c

∇a = ea + ωab
cGc

b, [∇a,∇b] = Tab
c∇c +Rabc

dGd
c

gmn = gabea
meb

n, ∇ag
bc = 0

where now there is no (anti)symmetry associated with the indices on Ga
b (or

λa
b, etc.). As a result, gab transforms nontrivially under both coordinate and

GL(D) transformations. Use it (in place of η) to raise and lower flat indices.

a Find the explicit expressions for the torsion and curvature in terms of the

vierbein and connection. Solve these, and ∇g = 0, for the connection in

terms of the torsion and vierbein as

ωabc = 1
2(c̃bca − c̃a[bc]) + 1

2(ecgab − e(agb)c), c̃abc = cabc − Tabc
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Show that there exists a GL(D) gauge

gab = ηab

(assuming gab has the right signature), that gauge has as a residual flat-index

invariance SO(D−1,1), and the resulting covariant derivative is identical to

that used earlier in this subsection.

b Show that one can instead choose a GL(D) gauge

ea
m = δma ⇒ gmn = gab

and that this completely fixes the GL(D) invariance. Since the vierbein has

a curved index, the covariant derivatives are no longer covariant: Unlike the

previous gauge, to maintain this gauge any coordinate transformation must

be accompanied by a GL(D) transformation whose parameter is determined

by the coordinate transformation parameter. Find the solution for λa
b in

terms of λm in the infinitesimal case. Compare with the transformation law

for curved indices (see subsection IC2). In this gauge the connection is known

as the “Christoffel symbols”.

The vanishing of the torsion simplifies the Bianchi identities on the curvature:

Tab
c = 0 ⇒ R[abc]d = ∇[aRbc]de = 0 ⇒ Rabcd = Rcdab

In terms of SU(N)-like Young tableaux, this means the curvature is of the form .

For SO(N) Young tableaux, we subtract out the trace pieces:

Rabcd → ⊕ ⊕ •

where the first term is the “Weyl tensor” Wabcd (traceless), the last two terms combine

to give the “Ricci tensor” Rab ≡ Ra
c
bc, and the last (singlet) term is the “Ricci scalar”

R ≡ Ra
a = Rab

ab. They’re simpler in spinor notation in D = 4: Since [ab] → (αβ)

and (
.
α

.
β),

Rabcd → R
(αβ)(

.
α
.
β)
⊕ (R(αβ)(γδ) = W(αβγδ) + C(α(γCδ)β)R)

in terms of Weyl W(αβγδ), the traceless part of Ricci R
(αβ)(

.
α
.
β)

, and the Ricci scalar

R. Later we’ll see that the Ricci tensor is fixed exactly by the equations of motion.

That leaves the Weyl tensor as the on-shell field strength. As explained in subsection

IIB7, it describes helicity ±2.

Exercise IXA3.4

Prove that Rabcd = Rcdab follows from the Bianchi identity R[abc]d = 0 and the

antisymmetry of Rabcd in both ab and cd.
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Exercise IXA3.5

Consider the independent components of the curvature in lower dimensions:

a Show the curvature vanishes in D=1.

b Show the curvature reduces to just the Ricci scalar in D=2. (Hint: Use ε

tensors.)

c Show the Weyl tensor vanishes in D=3.

4. Integration

The antihermitian form of the group generators was a convenient choice because

partial derivatives are antihermitian, and the generators of the Lorentz group (which

is real and orthogonal) are antisymmetric in the vector representation. Thus, the

generators are real. However, the group elements are not unitary, since hermitian

conjugation reorders λm with respect to ∂m. The fix comes from noticing that

e = det ea
m ⇒ δ ln e = em

aδea
m = λm∂mln e− ∂mλm

⇒ δ(e−1) = e−1
←
λ = e−1λm

←
∂m ⇒ (e−1)′ = e−1e

←
λ

where the derivatives
←
∂ act on everything to the left, λ now includes just coordinate

transformations, and we have exponentiated by the same method as for Lie groups

in subsection IA3. (Note that if we expand the exponential in a Taylor series such

derivatives in all but the first factor will hit λ’s, just as for those in eλ acting to the

right.) Any function that transforms in this way is known as a “density” (see subsec-

tion IIIB1 for the 1D case). We can easily see from the infinitesimal transformation

that a density times any scalar is also a density. This allows invariant actions to be

constructed as

S =

∫
dx e−1L

for any scalar L. For cases without spinors we can also use

g ≡ det gmn = −e−2 ⇒ e−1 =
√
−g

where gmn is the inverse of gmn. (In spaces of general signature, i.e., arbitrary numbers

of time dimensions, we should write
√
|g| so, e.g., in Euclidean space we actually use

√
g. If we were even more general, and used |det η| 6= 1, then it would also appear.)

This can also be understood in terms of differential forms, since

Ωa = dxmem
a ⇒ Ω4 = dxmdxndxpdxqem

0en
1ep

2eq
3 = d4x e−1
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Ω′a(x′) = Ωa(x) ⇒
(∫

Ω4L

)′
=

∫
Ω4L

under coordinate transformations.

Exercise IXA4.1

Let’s look at some properties of transformations acting backwards:

a Show that for any function f

λf = [λ, f ] = [f,
←
λ] ⇒ eλf = eλfe−λ = e−

←
λ fe

←
λ

and use it to show that the product of e−1 with any scalar transforms the

same way as e−1 (i.e., is a density) under a finite coordinate transformation.

b Derive

fe
←
λ =

(
1 · e

←
λ

)
(eλf)

(where the derivatives in each factor of
←
λ act on everything to the left, but

vanish on “1”).

Exercise IXA4.2

We now examine finite transformations in terms of transformed coordinates

(see subsection IC2):

a Show that

det

(
∂x′

∂x

)
= 1 · e−

←
λ

by evaluating∫
dx e−1(x) =

∫
dx′ e′−1(x′), dx′ = dx det

(
∂x′

∂x

)
b Show that

det

(
∂x̃

∂x

)
= 1 · e

←
λ

by similarly evaluating∫
dx e−1(x) =

∫
dx̃ e−1(x̃) =

∫
dx e′−1(x)

From the results of subsection IXA2, we then have that covariant derivatives can

be integrated by parts in such actions, since

Tba
b = 0 ⇒

∫
dx e−1∇aV

a =

∫
dx ∂me−1V m
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Exercise IXA4.3

Let’s look at the d’Alembertian.

a Derive the expression for the covariant divergence in terms of e and the partial

divergence by assuming integration by parts:∫
e−1φ∇aV

a = −
∫

e−1V a∇aφ

Use this to find a simple form for the covariant d’Alembertian on a scalar:

φ ≡ ∇2φ =
1√
−g

∂m
√
−ggmn∂nφ

b As a simple example, find the Laplacian in flat 3D Euclidean space in spherical

coordinates directly from the metric. (This is much simpler than deriving it

by coordinate transformation from Cartesian coordinates.)

Actions for matter are constructed in a similar way to Yang-Mills: Starting with

the flat-space action, replace ordinary derivatives with covariant derivatives. The new

ingredient is the extra factor of e−1. This prescription, as for Yang-Mills, is unam-

biguous up to only field-strength (curvature) terms, which can usually be eliminated

by symmetry requirements and dimensional analysis. (At least for low energies, we

want terms of the lowest mass dimension.) This uniqueness (at low energies or long

distances) is known as the “equivalence principle”: Inertial “mass” (really energy,

but also momentum), as determined by the kinetic term, is the same as gravitational

mass, as determined by the coupling of the gravitational field.

A simple example of matter is a real scalar field:

S =

∫
e−1 1

4
[(∇χ)2 +m2χ2 + aRχ2]

The constant a can sometimes be fixed by symmetry: In the massless case, to preserve

the global symmetry δχ = ε, we must have a = 0. (For self-interacting scalars, this

generalizes to a global nonabelian symmetry.) To preserve conformal symmetry (see

subsection IXA7), also for the massless case, we need a = 1
4
D−2
D−1

.

This form of actions in terms of scalar Lagrangians also suggests we modify the

definition of functional variation for convenience and covariance:

δS =

∫
dx e−1(δφ)

δS

δφ

or, equivalently, we use the covariant form of the δ function,

δφ(x)

δφ(x′)
= e(x)δ(x− x′)
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As in flat space, the action for electromagnetism follows from gauge invariance:

S = 1
8e2

∫
e−1F 2

ab = 1
8e2

∫ √
−ggmngpqFmpFnq

where Fmn = ∂[mAn]. Integration by parts then gives a simple form for Maxwell’s

equations. Such simple covariant equations of motion that don’t require explicit

expressions for the Lorentz connection appear only for antisymmetric tensors (which

in practice means just spin 0 and 1 in 4D).

Exercise IXA4.4

Methods related to differential forms can be applied to these special cases:

a Rewrite the above action for electromagnetism in terms of Aa and covariant

derivatives. Find the field equations following from both forms of the action,

and use this to find a simple expression for the covariant divergence of an

antisymmetric tensor with curved indices using just the metric. Compare the

results of the previous exercise.

b By converting flat indices on the covariant tensor εabcd to curved, show that

√
−gεmnpq and

1√
−g

εmnpq

are also covariant tensors. Use these, and the covariance of the curl (see

subsection IC2), to arrive at the same expression for the covariant divergence

of an antisymmetric tensor.

Another example is a Dirac spinor:

S =

∫
e−1Ψ̄(γai∇a +m)Ψ

where γa are the usual constant Dirac matrices, in terms of which the spin operator

appearing in ∇ is the usual −Mab → Sab = −1
4
γ[aγb]. In 4D, we can rewrite this in

spinor notation by simply replacing ∂
α
.
β
→ ∇

α
.
β

in the flat-space expressions given in

subsection IIIA4, and replacing Mab →Mαβ as described in subsection IXA1, as well

as
∫
d4x→

∫
d4x e−1.

5. Gravity

The Einstein-Hilbert action for gravity follows from choosing the only available

scalar second-order in derivatives, the Ricci scalar:

LG = −1
4
R = −1

4
Rab

ab
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This action normally has a coefficient of 1/κ2 (compare Yang-Mills), but we’ll gener-

ally use (natural/Planck) units κ = 1; then κ is used only to parametrize expansion

about the vacuum and define the weak-field limit. (Actually, Planck units normally

use G = 1, whereas in our conventions κ = 1 → G = π.) In any case, the κ’s can

always be absorbed (unlike Yang-Mills) by a field redefinition of ea
m, and then appear

only in the definition of the “vacuum” (perturbative ground state, or solution that

defines the boundary conditions at infinity):

〈eam〉 = κ2/(D−2)δa
m

This makes ea
m∂m, and thus dxmem

a and ds2, dimensionless. In this sense, gravity is

a theory with “spontaneous breakdown” of conformal invariance: Coordinate trans-

formations include conformal transformations, but this invariance is broken by the

vacuum, which introduces a length scale (κ).

Exercise IXA5.1

Consider the covariant derivative for nonvanishing torsion. By solving for the

Lorentz connection in terms of the structure functions and torsion, express the

covariant derivative in terms of the torsion-free covariant derivative
◦
∇ and the

torsion. Thus, any action in terms of ∇ can be rewritten in terms of
◦
∇ and T ,

so any theory with a nonvanishing torsion is equivalent to a similar one with

vanishing torsion (assuming the action is only second-order in derivatives of

the vierbein, and thus algebraic in the torsion). Take the commutator of two

∇’s to find the curvature in terms of the torsion-free curvature
◦
Rabcd. Write

the Einstein-Hilbert action with nonvanishing torsion in terms of
◦
R,

◦
∇, and

T , to find:

R =
◦
R− (Tab

b)2 − 1
2T

abcTbca + 1
4
T abcTabc − 2

◦
∇aTab

b

Since the last term vanishes upon integration, T appears as an auxiliary field,

so R is equivalent to just
◦
R.

Exercise IXA5.2

For some general applications, where the form of the vierbein is not specified,

it is useful to have a more explicit expression for the action in terms of the

vierbein. We found in subsection IXA2 that for vanishing torsion

∇aV
a = e ∂m(e−1ea

mV a) = eaV
a − cabbV a

Use this to show

R = (cab
b)2 + 1

2c
abccbca − 1

4
cabccabc − 2e ∂m[eam∂n(ea

ne−1)]
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We can drop the last term in the action integral under appropriate boundary

conditions. (Hint: Use the result of the previous exercise for ω = 0.)

Exercise IXA5.3

In two dimensions there is a single Lorentz generator,

Mab = εabM ⇒ ∇a = ea + ωaM, [∇a,∇b] = −1
2εabRM

a Show that the connection and the only surviving part of the curvature then

take the simple forms

ωa = −εabe∂me−1ebm, R = −2e∂m[eam∂n(e−1ea
n)] = −2e−1←e a

←
e ae

b Derive, for the sphere in spherical coordinates,

ea
m =

(
1 0

0 1
sin θ

)
(Hint: First use ds2 = dxmdxngmn in 3D flat space.) Then show the covariant

derivative is

∇θ = ∂θ, ∇φ =
1

sin θ
∂φ + cot θ Mθφ

c Use these results to calculate
∫
dx e−1R for the sphere in two ways: (1) by

showingR is a constant and pulling it out of the integral, and (2) by converting

it into a boundary term, where the “boundary” consists of infinitesimal circles

around the coordinate singularities at the poles. (In general, even for spaces

without true boundaries, one has to treat the boundaries of patches as such.)

It’s also possible to add a “cosmological term” to the gravitational action:

Scos = Λ

∫
dx e−1

with the “cosmological constant” Λ. This term has no derivatives, and is thus anal-

ogous to a mass term. However, it only contributes to the nonpropagating spin-0

mode of the vierbein (see later), so it doesn’t give a physical mass, but does modify

the vacuum.

Exercise IXA5.4

Show that the action for gravity can be made polynomial in ea
m by a field

redefinition (rescaling) of the form

ea
m → ekea

m
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when k takes the values

k = − n+ 1

D − 2
, n = 2, 3, 4, ...

and that the resulting action is order Dn+ 2 in the field. In what cases (of n

and D) is the cosmological term also polynomial?

The variation of the curvature can be obtained directly by varying its definition

in terms of [∇,∇]. We start with the definition

δea
m ≡ ζa

beb
m ⇔ ζa

b ≡ (δea
m)em

b

and work in terms of the flattened object ζab. Then we drop its Lorentz piece, choosing

ζab = ζba. We find:

δ∇a = ζa
b∇b + 1

2ζa
bcMcb

⇒ 1
2(δRab

cd)Mdc = [∇[a, δ∇b]] = (∇[aζb]
c)∇c− ζ[a

c 1
2Rb]c

deMed + 1
2∇[aζb]

cdMdc + ζ[ab]
c∇c

⇒ ∇[aζb]
c + ζ[ab]

c = 0, δRab
cd = ∇[aζb]

cd − ζ[a
eRb]e

cd

⇒ ζabc = ∇[bζc]a

⇒ δRab
cd = 1

2{∇[a,∇[c}ζb]d] − 1
2(ζ[a

eRb]e
cd + ab ↔ cd)

δe−1 = −e−1δ ln e = −e−1em
aδea

m = −e−1ζaa

⇒ δ(e−1R) = 2e−1[(ηab −∇a∇b) + (Rab − 1
2η

abR)]ζab

where ≡ ∇a∇a. Thus for pure gravity we have the field equations

δSG = 0 ⇒ Rab − 1
2ηabR = 0 ⇒ Rab = R = 0

while with a cosmological constant we have

δSG+δScos = 0 ⇒ Rab− 1
2ηab(R−4Λ) = 0 ⇒ Rab− 1

D
ηabR = 0, R = 4 D

D−2
Λ

Note that calculating a variation is the same as performing a perturbation to

lowest order: We will use this result in subsection IXB1.

Exercise IXA5.5

For gravity, a first-order formalism follows from not imposing the torsion con-

straint (see exercise IXA5.1), so either the torsion or the Lorentz connection

can be treated as the auxiliary variable.

a Find a first-order action for gravity (in all D) by treating em
a and ωm

ab as the

independent variables. In D=4, using εmnpq, write this action as polynomial

in these variables, eliminating the explicit e, to obtain

SG =

∫
d4x 1

16
εmnpqεabcdem

aen
bRpq

cd
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with Rpq
cd in terms of just ω.

b Vary this action with respect to both e and ω (independently) to find the

field equations, expressed in terms of torsion and curvature, using δ[∇m,∇n]

to find the variation of Rpq
cd (see subsection IXA2).

Exercise IXA5.6

As discussed in subsection IIIC4 for Yang-Mills, in four dimensions we can

write a complex first-order action for gravity that yields the usual gravity

action up to a surface term. For Yang-Mills, the complex action was obtained

by starting with a normal first-order formalism and replacing the auxiliary

field with its selfdual part.

a Starting with the first-order action of the previous problem, find the analog for

gravity by keeping just the part of ωm
ab selfdual in ab, using spinor notation.

b Associate the coupling κ with the term quadratic in ω (analogously to the

Yang-Mills case). As for Yang-Mills, associate the selfdual theory with the

limit κ → 0. Find the equation for em
a that follows from varying ω in this

case, and show that it is equivalent to setting the selfdual part of
◦
ωm

ab to zero,

where
◦
ω is the usual torsion-free connection. Show this is equivalent to setting

the selfdual part of the curvature Rmn
ab to vanish, in an appropriate gauge.

(Technically, this means we must either complexify the fields, or Wick rotate

to 4+0 or 2+2 space+time dimensions, where the Lorentz group factorizes.)

6. Energy-momentum

In subsection IIIB4 we saw that in the same way as a current in electrodynam-

ics or Yang-Mills is defined as the matter contribution to the gauge field’s equation

of motion, δSM/δAa = Ja (in that case SM excludes only the pure Yang-Mills ac-

tion), the “energy-momentum tensor” is defined as the matter contribution to the

gravitational field equation (in this case SM excludes only the pure gravity action):

δSM =

∫
e−1ζabTab = 1

2

∫ √
−g(δgmn)Tmn = −1

2

∫ √
−g(δgmn)Tmn

The case where ζab represents the invariances of the action implies restrictions on this

tensor: Using the separate gauge invariance of the matter action δgaugeSM = 0 and

the matter field equations δSM/δ(matter) = 0 (as for the Yang-Mills case), gauge

variation of the gravity fields in SM implies

ζab =

{
λab = −λba ⇒ T [ab] = 0 : Lorentz

−1
2∇(aλb) ⇒ ∇aT

ab = 0 : coordinate
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so coordinate invariance of the action implies local conservation of energy-momentum.

For example, for a real scalar field:

S =

∫
e−1 1

4
[(∇χ)2 +m2χ2 + aRχ2]

⇒ 2Tab = (∇aχ)(∇bχ)− 1
2ηab[(∇χ)2 +m2χ2] + a[(ηab −∇a∇b) + (Rab − 1

2ηabR)]χ2

Notice that for a 6= 0, the energy-momentum tensor gets extra total-derivative terms

which are separately conserved in flat space (since they come from the Rχ2 term,

which is separately covariant).

Exercise IXA6.1

Show that for a = 1
4

(using the scalar’s free field equation) one obtains a result

in agreement with that at the end of subsection IIIA4 in flat space. This is the

simplest form of the energy-momentum tensor, and the most physical (since

it involves only the relative momentum of the two fields, not the total). This

choice for a is also favored by string theory, as we’ll see later.

Exercise IXA6.2

Using the action given in subsection IXA4 and the variation of the covariant

derivative from subsection IXA5, find the energy-momentum tensor for the

Dirac spinor, and use its field equations to show this tensor is conserved.

Note that this is not the same as ordinary conservation ∂mT
mn = 0:

∫ √
−gT 0n

does not define a conserved total energy-momentum. This is in contrast with the

conserved current in electrodynamics, since we then can derive the usual global con-

servation law

0 =

∫
dDx e−1∇aJ

a =

∫
dDx ∂me−1Jm ∼ d

dt

∫
dD−1x e−1J0

On the other hand, it’s closely related to Yang-Mills, where δAa = −∇aλ leads to

∇aJ
a = 0 in terms of the derivative ∇ covariantized with respect to the Yang-Mills

field (as well as gravity, if in curved space), so ∂me−1Jm = −e−1[iAm, J
m] 6= 0 (see

subsection IIIC1).

However, if there is a Killing vector Ka, then the component of momentum in

that direction is conserved:

Ja ≡ KbT
ba ⇒ ∇aJ

a = (∇aKb)T
ba +Kb(∇aT

ba) = 0

(Remember ∇(aKb) = 0.) Some simple examples of this in flat space are (Ka)
b = δba

(translational invariance), for which the corresponding “charge” is the total momen-

tum, and (Ka)
bc = δ

[b
a xc] (Lorentz invariance), for which the charge is the total angular

momentum.
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Including the variation of the gravitational action, we get the gravitational field

equations

Rab − 1
2ηabR = 2Tab

Coordinate invariance of SG implies ∇a(R
ab − 1

2η
abR) = 0, which also follows from

the Bianchi identities: In that sense gauge invariance is said to be “dual” to Bianchi

identities, one implying the other through variation of the action: In general, for any

gauge field φ with gauge parameter λ

δφ = Oλ, 0 = δS =

∫
dx (Oλ)

δS

δφ
⇔ OT δS

δφ
= 0

where the “transpose” OT is defined by integration by parts. Positivity of the energy

(contained in any infinitesimal volume) is the condition T 00 ≥ 0. The addition of

the cosmological term modifies the left-hand side of the above equation of motion by

adding a term 2ηabΛ.

Although there is no covariant definition of total energy-momentum, in the case

where spacetime is asymptotically flat (the metric falls off to the flat metric sufficiently

fast at infinity), one can define a noncovariant energy-momentum tensor tab for gravity

itself which is covariant with respect to coordinate transformations that themselves

fall off at infinity. (See exercise IIIC1.2 for the analogous Yang-Mills case.) This

tensor satisfies ∂m(Tmn + tmn) = 0 (where Tmn is the usual tensor for matter), so the

usual conservation laws can be derived for the total energy-momentum coming from

integrating T + t. Many equivalent expressions exist for t. One way to derive it is to

expand the field equations order-by-order in h as

1
2(Rab − 1

2ηabR) ≡ Lab − tab

where Lab is the linearized part of the field equations (see subsection IXB1) and −tab
is the quadratic and higher-order parts. By the linearized Bianchi identities, we know

0 = ∂aL
ab ≡ ∂a(

1
2R

ab − 1
4
ηabR + tab) = ∂a(T

ab + tab)

where we used the field equations in the last step. Note that there is a great deal

of ambiguity here: We could have linearized by expanding the metric around its flat

space value instead of the vierbein, or by expanding Rmn or Rmn instead of Rab, etc.

Because of the expression in terms of Lab ∼ ∂∂h, the integral of T + t, which gives the

total energy-momentum vector, can be expressed as a surface term, just as Gauss’s

law in electrodynamics. Since space was assumed to be asymptotically flat, only the

quadratic part of t contributes in the surface integral, which is why there is so much

freedom in the definition of t. Since t is not covariant, the energy-momentum of
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the gravitational field is not localized (coordinate transformations shift it around).

However, since the total energy-momentum is invariant, one can ask questions about

how much energy is radiated to infinity, etc.

7. Weyl scale

The simplest way to describe conformal transformations in field theory is as a

local scale transformation. If the theory is not coupled to gravity, we couple it to

gravity as in Yang-Mills theory by replacing a Poincaré invariant Lagrangian L(∂, ψ)

with L(∇, ψ) (where all fields ψ have flat indices), but also including the e−1 factor

in the action. We then transform the fields as

ea
m → Φea

m, ψ → Φw+(D−2)/2ψ

where Φ is the gauge parameter and w + D−2
2

is the engineering dimension (scale

weight) of the field ψ. (See subsection IIB1.) Effectively, ea
m has dimension 1, since

it’s the only field with curved indices, and thus any derivative must appear in the

combination ea
m∂m, while the measure appears as dx e−1. Of course, the action

won’t be locally scale invariant unless it is globally scale invariant, i.e., has only

dimensionless coupling constants (and thus no masses).

If the gravity-coupled theory is invariant under this local scale transformation,

then the theory will be conformally invariant after decoupling gravity. This follows

from the fact that the most general combined coordinate and local scale and Lorentz

transformation that preserves the flat-space vierbein ea
m = δma is exactly a conformal

transformation. This is equivalent to our previous definition in terms of the scal-

ing of the flat-space ds2 under conformal transformations, since dx′mdx′ng′mn(x′) =

dxmdxngmn(x) under coordinate transformations.

Exercise IXA7.1

Derive the usual conformal transformations by finding the most general local

scale + Lorentz + coordinate transformation that preserves the flat-space

vierbein.

A simple example is Yang-Mills theory. We look at the Yang-Mills field with

curved index, since its gauge transformation does not depend on the vierbein. (δAm =

−∂mλ+ ... vs. δAa = −eam∂mλ+ ....) To avoid interference with the Yang-Mills gauge

transformation, the Yang-Mills field with curved index must be scale invariant. Then

the action

S = 1
8e2

∫
e−1eamebnea

peb
qFmnFpq
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transforms with a factor Φ4−D, and so is invariant in D = 4 only.

Exercise IXA7.2

Consider a more general gauge field A and field strength F defined by

δAm1···mN = − 1
(N−1)!

∂[m1λm2···mN ], Fm1···mN+1
= 1

N !
∂[m1Am2···mN+1]

where A is totally antisymmetric in its N indices. (Such theories were en-

countered in exercise IIB2.1b.)

a Define an action in terms of F 2. In what dimension D(N) is it conformally

invariant?

b Show that this theory is related by a “duality transformation” (switching

Bianchi identities and field equations) to the theory with N ′ indices on a new

A, where N ′ = D − 2−N , and D(N ′) = D(N).

c Examine the cases N = D,D − 1, D − 2. Note that the scalar obtained by

duality does not have an Rφ2 term in its action, and thus is conformal only

in D = 2.

Gravity is not scale invariant, but it will prove useful to examine its scale breaking

explicitly. To preserve gauge covariance and dimensional analysis, the scale transfor-

mation law of the covariant derivative must take the form

∇′a = Φ∇a + k(∇bΦ)Mab

where the Φ scaling of ea
m was defined above, and the linearity of δω in Φ follows

from the homogeneity of ∇ in e. (Alternatively, we could put in something more

arbitrary, but it would be eliminated by the rest of the procedure anyway.) From the

variation of commutation relations we then find

1
2R
′
ab
cdMdc = [∇′a,∇′b]

= Φ2[∇a,∇b] + (1− k)Φ(∇[aΦ)∇b] + kΦ(∇[a∇cΦ)Mb]c + k2(∇Φ)2Mab

⇒ k = 1, R′ab
cd = Φ2Rab

cd + Φδ
[c
[a∇b]∇d]Φ− δc[aδdb](∇Φ)2

If we make the redefinition (at least for Φ positive)

Φ = φ−2/(D−2)

then we find the very simple scaling law for the integrand of the Einstein-Hilbert

action:

(e−1R)′ = e−1(φ2R− 4D−1
D−2

φ φ)
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Exercise IXA7.3

Show this transformation of ∇ (with k = 1) is consistent with (covariant)

integration by parts.

Exercise IXA7.4

Consider a scale factor that is invariant under a Killing vector (see subsection

IXA2).

a Show the Killing vector survives the scale transformation; i.e.,

∇′a = Φ∇a + (∇bΦ)Mab, [K,∇a] = [K,Φ] = 0 ⇒ [K,∇′a] = 0

directly using commutators (rather than the Killing equations).

b Although the operator K is the same, the Killing vector is different:

K = Ka∇a + 1
2K

abMba = K ′a∇′a + 1
2K
′abMba

Find K ′a and K ′ab in terms of Ka and Kab.

Exercise IXA7.5

Consider “conformal Killing vectors”, defined as preserving covariant deriva-

tives up to Weyl scale. Write this definition as a commutator (modifying

that in subsection IXA2 by the definition of Weyl scale above). Find the

“conformal Killing equations”.

Exercise IXA7.6

Covariant derivatives for flat space in spherical coordinates can be obtained

from those of Cartesian coordinates by a combination of coordinate and lo-

cal Lorentz (rotation) transformations. However, there are simpler methods,

using a combination of transformations of a single coordinate and Weyl scale

transformations:

a Take the direct product of a sphere with metric dΩ2 (in arbitrary coordinates

and dimensions) and a line as

d
◦
s2 = d(ln r)2 + dΩ2

Then derive flat space in spherical coordinates by making a scale transforma-

tion

Φ = 1
r

to yield the metric

ds2 = dr2 + r2dΩ2
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Show that the resulting covariant derivatives are

∇r = ∂r, ∇i = 1
r
(
◦
∇i +Mri)

where
◦
∇i are the covariant derivatives on the sphere corresponding to the

metric dΩ2.

b Find ∇ in D=3 in terms of (r, θ, φ) using the result of exercise IXA5.3.

Many special cases of covariant derivatives can be derived completely by Weyl

scalings. This includes the most commonly used ones, for cosmology and for static

spherical sources. The general procedure uses the following facts in the following

order:

(1) In a space of one dimension, we can choose

D = 1 ⇒ ∇ = ∂

(There is no curvature in D = 1.)

(2) For a direct product space, i.e., where the metric ds2 can be written as the sum

of the metrics of two (or more) spaces, the problem for solving for the covariant

derivatives is separable. We can divide up the components into the covariant

derivative for one space and that of the other, each using only its own coordinates

and flat indices (and thus Lorentz generators):

ds2 = ds2
1 + ds2

2 ⇒ ∇ = (∇1,∇2)

and similarly for the curvature.

(3) Under a coordinate transformation, each component of the covariant derivative

(and of the curvature) transforms as a scalar. We need only apply the redefinitions

of the coordinates, including those that appear in the partial derivatives:

∇a(x)→ ∇a(x
′)

(This actually applies the alternative x̃ definition of coordinate transformation of

subsection IC2.)

(4) Under a Weyl scale transformation,

ds′2 = Φ−2ds2 ⇒ ∇′a = Φ∇a + (∇bΦ)Mab,

R′ab
cd = Φ2Rab

cd + Φδ
[c
[a∇b]∇d]Φ− δc[aδdb](∇Φ)2

These steps can then be repeated as necessary. (The first two steps alone lead to

Cartesian coordinates for flat space.)
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Exercise IXA7.7

Use this method (as opposed to that of exercise IXA5.3) to derive the covariant

derivatives for the sphere in the usual spherical coordinates:

a Use steps (1) and (2) to find ∇ for the flat space with metric

ds2 = du2 + dφ2

b For step (3), apply the transformation

du =
dθ

sin θ
(u = ln tan θ

2
)

c For step (4), use

Φ =
1

sin θ

to get the usual metric and covariant derivatives for the (2-)sphere. We also

note that exercise IXA7.6a is just a repetition of these steps, for a new 1D

coordinate v which is redefined as v = ln r, with a new Φ = 1/r.

Consider a field theory without gravity that has a conformally invariant action.

Spontaneous breakdown of scale invariance produces a Goldstone boson for that sym-

metry, the “dilaton” (see subsection IVA7). Any theory can be made globally confor-

mally invariant trivially by performing a local scale transformation and making the

parameter the dilaton field.

The dilaton can also act as a Higgs field: If we couple the dilaton to conformal

gravity (gravity with local Weyl scale invariance), the Higgs effect reduces conformal

gravity to ordinary (Einstein) gravity. For example, if we introduce the dilaton into

pure gravity by the local scale transformation above (in analogy to the Stückelberg

model),

SG = 4D−1
D−2

∫
dx e−1 1

4
φ( − 1

4
D−2
D−1

R)φ

Up to an (important) overall negative factor, this is the action for a conformal scalar.

The dilaton field φ is a compensator for local scale transformations, and acts as a Higgs

field for this gauge symmetry: By gauging it to its vacuum value 〈φ〉 = 1
κ
, we regain

the usual form of the gravity action. (Alternatively, we can set 〈φ〉 = 1, and introduce

κ through the proportionality constant in 〈eam〉 ∼ δa
m.) In this formalism, where

we require the action to be locally scale invariant, the terms which were conformally

invariant before coupling to gravity are easy to recognize: They’re just the ones which

have no φ-dependence. (This may require some field redefinition: typically rescaling

the matter fields according to their weight as above.) The cosmological term becomes

Scos =
∫

e−1Λφ2D/(D−2), which is a conformal self-interaction term for a scalar.
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Because what was the vierbein now appears only in the combination ea
m →

φ−2/(D−2)ea
m, there is now the local scale invariance

ea
m → Φea

m, φ→ Φ(D−2)/2φ

since this transformation leaves the combination invariant. Gauge invariance of the

matter action is then (using the infinitesimal parameter Φ = 1 + ζ):

0 = δSM ∼ ea
m δSM
δeam

+ D−2
2
φ
δSM
δφ

⇒ T aa = −D−2
2
φ
δSM
δφ

Thus, conformal matter has vanishing T aa, since it decouples from φ. (Actually, we

also need to scale the matter as above to achieve this decoupling, and there is a

corresponding δSM/δψ term in the above derivation, so the trace may vanish only

after applying the matter field equations, as in the derivation of ∇aT
ab = 0 from

coordinate invariance in the previous subsection.) In particular, this is easy to check

for the massless point particle, where T aa ∼
.
Xm

.
Xngmn = 0.

An interesting effect is obtained by eliminating the compensator by its field equa-

tion. (We’ll consider just the classical theory here: In the quantum case, integrating

out this field produces an additional 1-loop contribution to the effective action.) Be-

cause this manipulation involves integration by parts, we first expand the compensator

about its vacuum (asymptotic) value:

φ = 1 + 1
2χ ⇒ L = 1

4
[χ(D−1

D−2
− 1

4
R)χ−Rχ−R]

Then eliminating χ by its field equation,

L→ 1
4

(
R

1

R− 4D−1
D−2

R−R

)
This action still describes Einstein gravity, but is locally scale invariant (though

not globally, because of the extraction of the vacuum value, and the way boundary

terms were neglected). Of course, it is nonlocal, and the nonlocality becomes more

complicated if nonconformal matter is included. Such terms also appear quantum

mechanically: In two dimensions, dimensionally regularizing D=2+2ε, in a Weyl scale

invariant theory we can get a divergent, yet still Weyl scale invariant, contribution to

the effective action proportional to

1

ε

(
R

1

R− 4D−1
D−2

R−R

)
≈ −1

ε
R− 1

2R
1
R
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After renormalizing the divergent term, which is topological and thus locally scale

invariant in exactly D=2, but not in D=2+2ε, the remaining finite term contributes

a conformal anomaly (see subsections VIIIA7 and C1).

To summarize the various manifestations of conformal invariance:

flat space: conformal invariance

curved space: Weyl invariance

dilaton: dilaton decoupling

Exercise IXA7.8

The statement that the R term is topological in D=2 neglects boundaries. In

general the topological invariant (the “Euler number”) is (the “Gauss-Bonnet

theorem”)

χ =

∫
d2x

2π
1
2e−1R +

∮
1

2π

εabt
aDtb

ηabtatb

where ta is a tangent vector to the boundary Xm(τ), as for the worldline of

the particle, and D is the covariant differential (as for the particle equation

of motion and the radial gauge; see subsections IXB2 and 4 below):

tm = v−1
.
Xm, Dta = dXmem

b∇bt
a = dτ vt · ∇ta = dτ(

.
ta − vtbtcωbca)

(We have used the usual counterclockwise contour, and our convention ε01 =

1, or εxy = 1 in Euclidean space.) The additional term in χ is the angle

subtended by the boundary with respect to the surface (/2π), as obtained

from the cross product of t and t + Dt. We have written it in a form that

is manifestly invariant under the reparametrization of τ , and the v’s cancel.

(Of course, it is also manifestly coordinate invariant.)

a Prove that it is also scale invariant by showing that the connection part of

the D exactly cancels the contribution of R to the boundaries, leaving

χ =

(∫
d2x

2π
1
2e−1R

)∣∣∣∣
patch boundaries

+

∮
1

2π

εabt
adtb

ηabtatb

where we have turned the R term into a boundary term, and its remaining

contribution is from the fake boundaries at the borders of patches (or sur-

rounding singularities; R = ∂ω because the 2D Lorentz group is Abelian: see

exercise IXA5.3).

b Note that the dt term doesn’t contribute if we choose a gauge where

ta = δa1
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(i.e., tm = e1
m). Demonstrate this by evaluating χ in polar coordinates for a

disk, and in spherical coordinates for the half-sphere. Show the result is half

that for a whole sphere (exercise IXA5.3). Repeat the calculation for the disk

in Cartesian coordinates (so then only the dt term contributes).
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We now consider various gauge choices for coordinate, Lorentz, and scale trans-

formations.

1. Lorenz

We begin with gauges that preserve global Lorentz invariance, which are useful

for perturbation theory. Therefore, we look first at perturbation by finding the kinetic

term, which is sufficient for finding linear gauge conditions. (It can also be derived

from general principles, as will be shown in subsection XIIA5.) We expand the

vierbein about its flat value,

ea
m = δa

m + ha
m

At the linearized level, local Lorentz invariance implies that only the symmetric part

of the field, 1
2h(ab), appears in the curvature and the action; we will denote this by hab

to simplify notation. (In other words, the linearized curvature is invariant under the

linearized local Lorentz transformations, which gauge away the antisymmetric part

of the field. This is equivalent to working directly with the metric.) We then can find

the linearized curvature, e.g., from the results of subsection IXA5 for the variation of

the curvature, by considering variation about flat space: i.e., replacing ζab → hab and

∇a → ∂a. The result is

Rab
cd ≈ ∂[a∂

[chb]
d]

⇒ Rab − 1
2ηabR ≈ hab + ∂a∂bh

c
c − ∂(a∂

chb)c − ηab( hcc − ∂c∂dhcd)

Since this comes from varying the action, the quadratic part of the gauge-invariant

action must be

SG ≈ −
∫

1
4
[hab hab + 2(∂bhab)

2 − haa hbb + 2haa∂
b∂chbc]

This part of the action, and the linearized curvature, are invariant under the linearized

gauge transformations δhab = −∂(aλb).

Exercise IXB1.1

Take the Newtonian (weak-field, nonrelativistic) limit of gravity: (1) Linearize

the action by perturbing about flat space (ea
m = δma +ha

m). Keep just the part

of the pure gravity action quadratic in the perturbation, the part of the matter

coupling linear in it, and the complete flat-space matter action. (2) Assume

small velocities. Now consider the problem of a massive point particle in the
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field of a much more massive point particle (or spherical body); in the above

approximations:

a Show the effect of the gravitational field generated by the heavier particle on

the lighter particle is given by the action for the lighter particle

S = ms ≈
∫
dt (m− 1

2m
.
x2
i +mh00)

b Show this field is given by solving Laplace’s equation

R00 ≈ ∆h00 = T00

c Show that, with our conventions for normalizing functional differentiation, a

point mass M in D=4 generates

T00 = M(2π)2δ3(x) ⇒ h00 = −Mπ

r

using the usual solution to Laplace’s equation for a point source. Combining

these results, we see that the potential energy for the particle is

V = mh00 = −Mmπ

r

which agrees with Newtonian gravity if we identify G = π. (If we restore

units, this becomes G = κ2π.)

The BRST transformations (see subsection VIA4) for gravity again follow from

the gauge transformations:

Qea
m = Cn∂nea

m − ean∂nCm + Ca
beb

m

QCm = Cn∂nC
m, QCab = Cn∂nCab + Ca

cCcb

QC̃m = −iBm, QC̃ab = −iBab

(Other forms follow from different parametrizations of the gauge transformations,

and are equivalent to field redefinitions. For theories without spinors, we can work in

terms of the metric, and avoid Lorentz gauge fixing.)

Lorenz gauges for coordinate invariance are similar to Yang-Mills. For gravity,

the gauge-fixing function is

fa = ∂bhab − 1
2∂ah

b
b

The BRST procedure works similarly to Yang-Mills. Looking at just the graviton

kinetic term, the gauge-fixed quadratic Lagrangian for gravity is then, in the Fermi-

Feynman gauge,

LG → LG,FF = LG + 1
2(∂bhab − 1

2∂ah
b
b)

2 = −1
4
hab hab + 1

8
haa hbb
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plus ghost terms. Note that the trace part of h appears with opposite sign to the

traceless part. This prevents any redefinition which would allow rewriting the La-

grangian in the simple form −1
4
hab hab. However, all derivatives have been absorbed

into ’s, which makes the linearized field equation a simple Klein-Gordon equation.

There are various generalizations of this gauge condition to include nonlinear

terms, such as the “de Donder (harmonic) gauge”, which uses the gauge-fixing func-

tion

fn = 1
2∂m(

√
−ggmn)

For example, this allows the field equation for a scalar to be written with only terms

with both partial derivatives acting on the scalar.

2. Geodesics

Consider the field equations for coupling gravity and electromagnetism to a scalar

particle: From subsection IIIB3, the action for a particle in external fields, rewritten

in Hamiltonian form, is

SH =

∫
dτ{− .

xmem
a(x)[πa − Aa(x)] + vH}, H = 1

2π
2 + φ(x)

where we have pulled the v out of H for convenience, and use the “covariant momen-

tum”

πa = ea
mpm + Aa(x) = ea

m(pm + Am)

in place of pm (the canonical conjugate to xm) for covariance. All the equations of

motion except the Lagrange-multiplier constraint

1
2π

2 + φ = 0

follow from the usual Poisson-bracket relation

v−1
.
O = i[H,O]

which can be evaluated by using the canonical commutation relations (following from

the simpler ones for pm)

i[πa, x
m] = ea

m, i[πa, πb] = cab
cπc + Fab, [x, x] = 0

Thus, πa acts effectively like −iea + Aa, which is the covariant derivative for gravity

and electromagnetism, less the Lorentz term. The
.
x equation is the obvious

vπa =
.
xmem

a
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that follows from varying SH with respect to πa, while the equation of motion for π

is

v−1 .
πa = −cabcπbπc − Fabπb −∇aφ

Using the relation

0 = Tabc = cabc + ω[ab]c ⇒ ca(bc) + ω(bc)a = 0

we find

v−1 .
πa − πbπcωbca + F a

bπ
b +∇aφ = 0

This is the coordinate-covariant form of the Lorentz force law (plus scalar field).

With only the gravitational effects we have the covariantization of the free particle

equation,

Dpa ≡ .
pa − vpbpcωbca = 0

where “D” is understood as a covariantized τ derivative (along a worldline with metric

v).

It’s useful to consider a continuum of particles (“dust”) moving under the influ-

ence of these fields, such that any two infinitesimally close particles have infinitesi-

mally different velocities, and only one particle passes through any particular point

in spacetime (at least within some small region of spacetime). We then can treat πa

(or pm) as a field defined for all x: Choosing a point x also chooses a curve X(τ) for

which x = X(τ) for some τ , so we can write π(x) in place of π(τ). Specifying the

field π also determines this family of curves, since the tangent to any curve is given

by the X equation of motion
.
Xm = vπaea

m

(To determine the τ parametrization, we also specify v, and the hypersurface given by

the collection of points X(0) from each curve.) Then we can express the τ derivative

in terms of x derivatives:
d

dτ
=

.
Xm∂m = vπaea

which gives the manifestly covariant form of the equation of motion

πb∇bπa + Fa
bπb +∇aφ = 0

For vanishing F (and thus A) and constant φ (= 1
2m

2), this equation

pb∇bpa = 0

describes “geodesics”, which are curves of extremal length, since the action is

S = ms, −ds2 = dxmdxngmn
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for massive particles. These are the analogs of straight lines in flat space. (For

positive-definite metric, they are shortest lines. Because of the indefinite signature of

the Minkowski metric, the worldlines of massive particles are actually longest lines,

while massless particles travel along lines with no length.)

Exercise IXB2.1

Uniform circular motion in 2D flat Euclidean space, constant dθ/dt in po-

lar coordinates, is associated with acceleration of constant magnitude. (Or,

without time, we can say that a circle has constant “extrinsic” curvature with

respect to the 2D space.) Show that an analogous situation in 2D Minkowski

space can be obtained by Wick rotation:

a Starting with the metric for 2D flat Euclidean space in polar coordinates,

Wick rotate θ to make it a time coordinate (“Rindler coordinates”). Show

by a transformation to “Cartesian” coordinates that this describes 2D flat

Minkowski space.

b Show that any curve described by constant r describes acceleration of constant

magnitude, by evaluating (d2x(θ)/ds2)2 in “Cartesian” coordinates. Note

that the direction of this 2-vector is fixed to be orthogonal to dx/ds (since

(dx/ds)2 = −1 by definition), so this is just the acceleration as measured in

the rest frame.

c Define the acceleration in arbitrary curved coordinates (in terms of p·∇p) and

evaluate it in Wick-rotated polar coordinates, to obtain the same result as in

Cartesian coordinates. (Use the covariant derivative of exercise IXA7.6a.)

Exercise IXB2.2

Equations of motion for particles can be derived from conservation laws. We

know this already nonrelativistically, for a particle in a potential using energy

conservation. Now consider a dust with Tmn = ρπmπn and current Jm = ρπm.

(Compare subsection IIIB4. We could use those single-particle expressions

here, but using dust instead avoids integration. Note that using π or p allows

us to describe also massless particles. The existence of a conserved current

corresponds to a complex field with a global U(1) symmetry.)

a In the case with no external fields except gravity, show that the geodesic

equation follows from covariant conservation of both of these quantities. (Of

course, in flat space this gives the usual free particle result.)

b Generalize to the case of external fields by adding to Tmn that of the external

fields themselves. When taking the divergence of those terms, use appropriate
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source terms to the field equations in terms of the particle variables ρ and

π. (In the case of a single nonrelativistic particle in a static electric field,

this is the usual derivation of the force on a particle from the electric field’s

pressure.)

For some purposes we need a weaker (but equivalent) form of the geodesic equa-

tion: If for some scalar f and vector na

(n · ∇)na = fna ⇒ pa = una, (p · ∇)pa = 0, f = −(n · ∇)ln u

for some scalar u, which we can determine by integrating f . (Here nm is understood

as an arbitrary tangent vector to the geodesic; thus its direction is specified, but not

its magnitude. In the massive case, we could fix the norm to be a constant; but in the

massless case, for a null geodesic, there isn’t an obvious normalization.) In particular,

we can identify

u = v−1 ⇒ nm =
.
Xm

Thus, the more general geodesic equation allows arbitrary parametrization of the

geodesics, while the stricter version (f = 0) corresponds to affine parametrization

(v = 1) if we still want to identify p with
.
X. (Remember, as with all constrained

systems, the equations of motion p · ∇p = 0 imply (d/dτ)p2 = 0, so any geodesic

satisfying the stricter equation will have some fixed mass along that particular curve.)

Exercise IXB2.3

Show that in D=2 (one space dimension, one time) any lightlike curve is a

geodesic, using the weaker form of the geodesic equation. (Find f .) This is

a consequence of the fact that it is impossible to change direction in D=2

without slowing down.

The particle (geodesic) version of the conservation of momentum in the direction

of a Killing vector is

p · ∇ pa = 0 ⇒ p · ∇ K · p = 0 ⇒ d

dτ
K · p = 0

where covariant conservation p · ∇ has become ordinary conservation d/dτ (no con-

nection term) because K · p is a scalar. (See also exercise IXA2.6.) This is the same

as for the conserved current Ja = KbT
ba (subsection IXA6).
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3. Axial

The definition of axial gauges in terms of the covariant derivative is the same as

for Yang-Mills (n · ∇ = n · ∂). In terms of the explicit gravity fields,

n · ∇ = n · ∂ ⇒ nm ≡ naea
m = naδma , naωa

bc = 0

In the case of gravity, this implies that lines in the na direction are geodesics (see

previous subsection):

∂mn
a = 0 ⇒ (n · ∇)n = (n · ∂)n = 0

To analyze the consequences of axial gauge conditions for the metric, we need a

further identity: For any vector field na, consider the action of n · ∇ on nm = em
ana,

treating it as a scalar; in this calculation we ignore any indirect action of ∇ on curved

indices. Then

(n · ∂)em
ana = (n · ∇)em

ana = em
a(n · ∇)na + na(n · ∇)em

a

The last term simplifies for vanishing torsion, since:

nn∇nem
a = nn∇[nem]

a + nn∇men
a = −nnTnma + nn∇men

a = ∇mn
a − ena∇mn

n

= ∇mn
a − ena∂mnn

We thus have

(n · ∂)em
ana = em

a(n · ∇)na + ∂m(1
2n

2
a)− (en

ana)∂mn
n

For a more covariant way of deriving this result use, for vanishing torsion,

(A · ∇)Ba − (B · ∇)Aa = [A,B]a

⇒ n · ∇(n · V ) = V · (n · ∇)n+ n · (n · ∇)V

= V · (n · ∇)n+ n · (V · ∇)n− n · [V, n]

= V · (n · ∇)n+ (V · ∇)1
2n

2 − n · [V, n]

Pulling off the constant V m gives the previous result.

Applying this identity to the axial gauge condition, we find

n · ∇ = n · ∂, ∂mn
a = 0 ⇒ (n · ∂)em

ana = 0 ⇒ nm ≡ em
ana = δamna
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by choosing the appropriate constants of integration. (This amounts to fixing a

residual gauge invariance.) In fact, we can weaken the assumptions in this derivation:

(n · ∇)n = 0, naea
m = naδma , ∂mn

a = 0 ⇒ (n · ∂)em
ana = 0

We can now determine the form of the gauge condition on the metric:

nm = naδma , nm = δamna ⇒ nm ≡ nngnm = nnηnm

Applying these results to perturbation theory, as

ea
m = δma + ha

bδmb

we then have

naea
m = naδma ⇒ nbh

ba = 0

em
ana = δamna ⇒ ea

mδbmnb = na ⇒ nbh
ab = 0

and thus nbh
(ba) = 0, so we can again work with just the symmetrized h.

The lightcone gauge is again useful for eliminating unphysical degrees of freedom.

The lightcone gauge conditions are

na = δa− ⇒ h+a = ha+ = h(+a) = 0

For the rest of this discussion we work with just the symmetrized h. Separating out

the trace part as hij = hTij + δijh, where hTij is traceless, we find for the linearized

gauge-fixed action

L′G ≈ −1
4
hab hab + 1

8
haa hbb − 1

2f
2

= −1
4
hT ij hT ij − 1

2(h′−i)2 + D−2
2
hh′−−

h′−i ≡ f i = −∂+h−i + ∂jhT ij − D−4
2
∂ih

h′−− ≡ ∂+f− + D−4
4

h = −∂+2h−− + ∂+∂ih−i − D−2
2
∂+∂−h+ D−4

4
h

D−2
2
h = − 1

∂+
f+

where we have simplified some algebra by writing the gauge-invariant action as the

Lorenz gauge one minus its gauge-fixing term 1
2f

2. (There is some ambiguity in that

we can shift h′−i by a ∂ih term, and absorb the generated terms into h′−−.) We see

that all but hTij are auxiliary fields (we redefined h−i and h−− by just shifting and

applying ∂+), and can be eliminated (but watch out if there are matter couplings,

when eliminating them gives Coulomb-like interactions). So the general rules (for
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bosons, with slight modification for fermions) are (1) gauge anything with a (upper)

+ index to 0, and (2) vary anything with a (upper) minus index as an auxiliary field:

This eliminates all longitudinal and trace pieces. (Again, this procedure is much

simpler than quantizing in the de Donder gauge and then applying a further analysis

to extract the physical polarizations, as is always done in other texts when analyzing

radiation in general relativity.)

The temporal gauge (known also as “Gaussian normal coordinates”) is used when

treating time and space separately: In this case we have for the metric

nm = δm0 ⇒ g0m = η0m

An alternate way of defining the temporal gauge is to start with a spatial hypersur-

face, and determine the geodesics normal to this hypersurface (g0i = 0), where the

positions on this hypersurface define xi, constant along the geodesics, and the proper

times along the geodesics define x0 (g00 = −1), with x0 = 0 at the hypersurface. The

fact that these are geodesics guarantees that the hypersurfaces of fixed, but nonvan-

ishing, (proper) time are still orthogonal to the geodesics (g0i stays zero): Consider

some constant V m, representing the separation dxm of 2 “fixed” nearby points in any

hypersurface, (n · V ) = 0. Then the statement n · ∇(n · V ) = 0 that the separation

of those 2 points remains in the hypersurface is just the equation derived above, i.e.,

(n · ∂)em
ana = 0.

More covariantly, we use the equation

n · ∇(n · V ) = V · (n · ∇)n+ (V · ∇)1
2n

2 − n · [V, n]

We can always choose n2 = −1 to kill the second term by scaling n so it satisfies

the weaker geodesic equation (n · ∇)n = fn: Since (n · V ) = 0, the first term will

still vanish. The last term then vanishes because V m∂m are chosen to define partial

derivatives (V m constant) for spatial coordinates independent of the time coordinate

defined by nm∂m (nm = δm0 ).

Equivalently, we can consider a dust of massive particles and choose an initial

hypersurface orthogonal to their (timelike) geodesics to define x0 = s = 0. This

coordinate system is thus the “rest frame” of the dust; all the information about the

geometry of the space is contained in the time dependence of the spatial separation

of the particles (gij). There is still the residual coordinate ambiguity of how to assign

xi on the initial hypersurface.

Gaussian normal coordinates thus can be useful for studying the dynamics of

particles: For example, we can study a gravitational field of distant, unknown (or
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ignored) origin (i.e., the curvature of spacetime) by watching the relative motion of

two nearby particles of such a dust, neglecting the gravitational force/curvature effect

acting between the two particles themselves. If the two particles start out relatively

at rest at some initial time (which is well-defined only if they are close and relatively

slow), then in the temporal gauge the paths of both particles are described by fixed

xi, independent of x0, since their geodesics are simply lines in the time (na = δa0)

direction, and the proper times of both particles are the same as the time x0. Then

the distance between the particles at any given time is given by the magnitude of

dxmem
a, with dx0 = 0 and dxi their infinitesimal separation. Thus, since the xi’s,

and thus dxi, are fixed, we want to study the change in em
a (really just ei

a; e0
a = δa0)

with time. Using our evaluation of (n · ∇)em
a from above, we find

(n · ∇)2em
a = (n · ∇)∇mn

a = [n · ∇,∇m]na = nn[∇n,∇m]na = −nbncRbdc
aem

d

using (n · ∇)na = ∂mn
n = 0. Or in covariant notation

(n · ∇)2V a = (n · ∇)(V · ∇)na = [n · ∇, V · ∇]na = −nbV cRbcd
and

using (n · ∇)n = [V, n] = 0. For the Gaussian case na = δa0 , we then have

..
em

a = −R0b0
aem

b

(Of course, vanishing curvature implies geodesics that start parallel remain that way,

because the space is then flat.) By observing different sets of particles initially at

rest with respect to each other, we can choose different timelike directions n, and

determine all the curvature components from their linear combinations.

Exercise IXB3.1

Let’s examine some 2D examples of axial gauges in spaces with positive-

definite metric:

a Gaussian normal coordinates need not be Cartesian in flat space. Show that

polar coordinates for the plane define an axial gauge. What is the coordinate

in the “na” direction? Give the geodesic interpretation.

b Repeat the above for a curved space — the (2D) sphere in spherical coordi-

nates.

c Apply the above “equation of motion” (
..
e = −Re) to the sphere. (See exercise

IXA5.3.) Show its solution agrees with the obvious.
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4. Radial

Another useful gauge similar to the axial gauge is the radial gauge (“Riemann

normal coordinates”), discussed for Yang-Mills in subsection VIB1. In this case we

have

nm = xm ⇒ (n · ∇)na = xm∂mx
nδan = na

a case of the more general form of the geodesic equation. Applying the same identity

as for the axial, we again have

n ·∇ = n ·∂, ∂mn
a = δam ⇒ (n ·∂)em

ana = (n ·∂)δm
ana ⇒ em

ana = δamna

but now the boundary condition is already implied by the gauge condition near the

origin: For any infinitesimal xm = εm,

εmem
a(0) = εmδam ⇒ em

a(0) = δam

εmωm
ab(0) = 0 ⇒ ωm

ab(0) = 0

Thus, there is no residual gauge invariance, unlike axial gauges (where the coordi-

nates of the initial hypersurface need additional determination). Any reference frame

satisfying these conditions at the origin is called a “local inertial frame”, and is the

most natural for an observer at that point in spacetime. (In flat space, this yields

Cartesian coordinates.)

Exercise IXB4.1

Gaussian and Riemann normal coordinates are similar and generalize:

a Show that for Gaussian normal coordinates defined in terms of geodesics

radiating from a point, the boundary conditions are again implied by the

condition near that point.

b Show that replacing some n with n′a = fna for some function f preserves

the weaker form of the geodesic condition (or relates weaker to stronger), but

gives the same coordinate system.

c Show that for an axial coordinate system (n · ∇ = n · ∂) with non-constant

but still geodesic n (n · ∇n = fn) that

n · ∂[(em
a − δam)na] = (fδnm − ∂mnn)[(en

a − δan)na]

and thus (em
a − δam)na = 0 with appropriate boundary conditions.

Exercise IXB4.2

We can think of Gaussian normal coordinates as defined by a dust of particles
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with affine parametrization v = 1 and unit mass m = 1, with τ = s = x0 and

xi constant for any particle (
.
X = p = n). For Riemann normal coordinates

we can think of particles radiating out from the origin xm = 0 in all possible

directions in space and time, but then some must be antiparticles (traveling

backward in time), some must be massless (for the lightlike geodesics), and

some must be tachyons, with m2 < 0 (for the spacelike geodesics). However,

as for the Gaussian case, we can still identify

nm =
.
Xm

Using the radial gauge condition, show that these can be chosen as geodesics

with

v = eτ , X(τ) = eτX(0), p = X(0)

so all particles start at the origin at τ = −∞, and their position at τ = 0

is determined by their initial (constant) momentum. (Thus particles with

proportional momenta travel the same path, but arrive at different points at

τ = 0; however, in this case τ is neither the time x0 nor the proper time s,

but just an arbitrary parameter.)

As we saw in subsection VIB1, the radial gauge is related to gauge-covariant

translation (in general relativity, “parallel transport”) as, for any tensor ψ,

ψ̃(ỹ) = ex
a(y)Daψ(y) = eΛψ(ỹ), ỹm = ex

a(y)Eam(y)Dmym

where y is the “origin”, Λ = ΛIMI is just a Lorentz transformation, and D is the

covariant derivative acting at y:

Da = Eam(y)Dm +$a
I(y)MI , Dm =

∂

∂ym
; [Da,Db] = TabcDc +Rab

IMI

As in general for coordination transformation parameters λa, xa now transforms under

local Lorentz transformations. (In background field language, this “quantum field”

transforms under the “background” Lorentz transformations.) Thus, xa is now a

function of y; it cannot be made even covariantly constant in general:

Daxb = 0 ⇒ 0 = [Da,Db]xc = −xdRabd
c

(For more practical reasons, if we defined it to be invariant or constant, the manip-

ulations that follow would break down.) At this point we have only made a Lorentz

transformation on ψ, since it and ψ̃ are evaluated at the same point ỹ. However, as

for Yang-Mills in subsection VIB1, for the next step we want to identify xa as the

new coordinate:

ψ′(xa) = ψ̃(ỹm(ym, xa)) = ex
aDaψ(y)
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where ψ′ has implicit dependence on y, since in radial gauges the choice of origin

is gauge parameters that define the gauge. (The coordinates are defined as radial

with respect to the origin y.) Thus, we have made a Lorentz transformation ψ → ψ̃

followed by a coordinate transformation ψ̃ → ψ′.

We also want to define a covariant derivative for x by

∇ψ′ = (Dψ)′ = ex
aDaDaψ(y)

where ∇ (as for Yang-Mills) contains only ∂a = ∂/∂xa and not Dm:

∇a = ea
b(x)∂b + ωa

I(x)MI

At this point we no longer distinguish flat and curved indices, since the Lorenz gauge

has been fixed. We have then transformed

y, ψ,D → x, ψ′,∇

Note that the y-coordinate tensors are the x-coordinate tensors evaluated at the

origin:

ψ′(0) = ψ(y), (∇ψ′)(0) = (Dψ)(y)

We can identify this as the radial gauge when x(y) satisfies the geodesic condition,

since then

(x · D)x = 0 ⇒ x′ ≡ ex·Dx = x

⇒ x · ∇ψ′ = x · (Dψ)′ = (x · Dψ)′ = x · Dψ′ = x · ∂ψ′

making use of ψ′(x) = ex·Dψ(y).

Unfortunately, it is somewhat difficult to continue this construction in terms of

the covariant derivative, but simpler in terms of the “dual” differential forms. We

therefore define the (Lorentz-covariantized) Lie derivative as

Lx·Dψ̂ = x · Dψ̂, Lx·DD̂ = [x · D, D̂]

for any “tensor” (object carrying only flat indices) ψ̂ and any “covariant derivative”

(object with a flat vector index free, but multiplying partial derivatives and Lorentz

generators) D̂. We generalize to evaluate on not only ψ and D, but to apply the

Lie derivative also as part of the transformation exp(Lx·D). For that reason, for the

remainder of this section we will abbreviate Lx·D as just L. We then have

[x · D,Da] = −(Daxb)Db + xb(TbacDc +Rba
IMI)
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Defining Lie derivatives to satisfy the usual Leibniz and distributive rules like any

derivative (since we use them as infinitesimal transformations), we then find

(LEam)Emb = −Daxb + xcTcab, EamL$m
I = xbRba

I

In terms of differential forms, defined as

Ea = dymEma, $I = dym$m
I

D = EaDa = d+$IMI ⇒ Dxa = dxa − xb$b
a

we then have

Lxa = 0, L(T ,R) = x · D(T ,R)

LEa = Dxa − EbxcTcba

L$I = EaxbRba
I ⇒ L(Dxa) = −xbEcxdRdcb

a

which covers all the quantities that appear in evaluating eL on Ea and $I . The

geodesic condition prevents higher derivatives of xa from appearing in the transfor-

mation law, and allows us to freely reorder all the x’s to the left at the end of the

calculation for identifying the coefficients of the Taylor expansion, at which point

we can forget that x depends on y. Thus, these few equations for the action of L
allow any transformed quantity to be evaluated straightforwardly by iteration, Taylor

expanding eL in powers of L.

The important distinction between the transformation laws for Da and Ea is

that for Ea the derivatives of x appear only in the combination dx, which makes

changing coordinates from y (or ỹ) to x easier. Specifically, by iterating the above

Lie derivatives, we find a solution of the form

E ′a = eLEa = EbAba + (Dxb)Bba, $′I = eL$I = EaAaI + (Dxa)BaI

where Aba, Bba, AaI , BaI are functions of x and of tensors evaluated at the “origin”

((D · · ·DT )(y), (D · · ·DR)(y)). For Riemann normal coordinates, we want to fix y

(e.g., y = 0), so we evaluate the above at dy = 0. Furthermore, we can choose the

gauge ω(0) = 0 (at least for vanishing torsion), so also Dx→ dx. Then the solution

is

Ea = dxbBba, ωI = dxaBaI

Thus, Bba and BaI are the inverse vierbein em
a and Lorentz connection ωm

I for the

new coordinate system,

∇a = (B−1)a
b(∂b + BbIMI)
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written explicitly as a Taylor expansion in x by the above method, all of whose

coefficients are tensors (torsions and curvatures and their derivatives) evaluated at

the origin.

However, we can also use these results for first-quantization (where actions are

expressed in terms of, e.g., E ′a/dτ for the particle) in background field gauges, by

choosing y as the background and x as the quantum coordinate (see subsection VIB1);

then we keep both the dy and Dx terms.

Exercise IXB4.3

Find the first few orders of this expansion.

a Using the above method, show that for vanishing torsion

Ea = dxb(δab − 1
6
xcxdRcbd

a + ...), ωI = 1
2dx

a(xbRba
I + ...)

b Check the validity of this result by evaluating [∇,∇] to this order from the

∇ given by this E and ω.

c Use instead the covariant-derivative method of subsection VIB1. In this case,

we find

∇a = ex·D̃D̃ae−x·D̃ + ha
bex·D̃∂be

−x·D̃

where ha
b is chosen to cancel all Dm terms in ∇, and we have defined

D̃a = Eam(y)Dm +$a
I(y)M̃I

where now xa is “constant”, so Dm and M̃ do not act on it. (Otherwise, in

this approach, we would be stuck with tons of D · · ·Dx terms.) In terms of

the previously defined Lorentz generators,

Mab = M̃ab + x[a∂b]

Find h to this order, and use it to obtain

∇a = (δba + 1
6
xcxdRcad

b + ...)∂b + 1
2(1

2x
bRba

cd + ...)Mdc

restoring M̃ to M .
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5. Weyl scale

The gauge-fixed kinetic term can be simplified by including the conformal com-

pensator (see subsection IXA7). The quadratic part of the gauge-invariant Lagrangian

is then (φ = 1 + 1
2χ)

L0 = −1
4
e−1φ(R− 4D−1

D−2
)φ

≈ −1
4
[hab hab+2(∂bhab)

2−haa hbb+2haa∂
b∂chbc]− 1

2χ( haa−∂a∂bhab)+ 1
4
D−1
D−2

χ χ

The nicest (globally Lorentz) covariant gauge comes from choosing the coordinate

and scale gauge-fixing functions

fa = ∂bhab − 1
2∂ah

b
b + 1

2∂aχ, f = χ− haa

We use these to obtain the gauge-fixed Lagrangian (see subsection VIB9)

L = L0 + 1
2(∂bhab − 1

2∂ah
b
b + 1

2∂aχ)2 − 1
8
(χ− haa) (χ− hbb)

= −1
4
hab hab + 1

4
1

D−2
χ χ

plus ghost terms. Now the h kinetic term is simpler. Also, remember that χ de-

couples from conformal matter. These features of gauge fixing make this formalism

closely analogous to the Stückelberg formalism for the massive vector. We can also

define nonlinear versions of these gauge-fixing functions, such as ∂m(φ e−1/2ea
m) or

∂m(φ2
√
−ggmn) for the coordinate gauge, and φ e−1/2 or φ2

√
−g for the scale.

Exercise IXB5.1

Find the ghost terms for linearized gravity in the Fermi-Feynman gauge, and

its simplification with the compensator.

The scale gauge can also be fixed in terms of the vierbein/metric alone: For

example, we can fix the gauge

e = 1

in which case φ acts simply as a renaming of e. A more unusual gauge is

R = 0

This is not a restriction on the geometry, since the physical Ricci scalar is effectively

replaced by its scale transform

R′ = φ−(D+2)/(D−2)(R− 4D−1
D−2

)φ

which is scale invariant. In the gauge φ = 1, R′ = R, but in the gauge R = 0 it is

proportional to φ.
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Exercise IXB5.2

Show that the ghosts for scale transformations propagate in the gauge R = 0:

Find their contribution to the action.

More general gauges are possible when matter fields appear. For example, con-

sider coupling gravity, with compensator, to a physical conformal scalar ψ. With

appropriate normalization of the compensator and physical scalar, the kinetic terms

for the two fields are identical except for sign: There is a manifest O(1,1) symmetry.

We can take advantage of this by using a “lightcone” basis for these fields: Defining

φ± = φ± ψ, the full nonlinear (in gravity) Lagrangian L becomes (S =
∫
dx e−1L)

L = φ+(D−1
D−2

− 1
4
R)φ−

The overall normalization is arbitrary, including sign, since we can rescale either field

by a constant. Many Weyl scale gauges are possible, and somewhat more transparent

than making field redefinitions on the corresponding action without compensator.

Effectively, we can redefine the fields φ± arbitrarily as long as we don’t fix φ+/φ− to

a constant, since that combination is scale invariant. (I.e., φ+/φ− can be redefined,

but not fixed.)

Some of the more interesting choices are:

φ± = 1± ϕ ⇒ L = −1
4
R− ϕ(D−1

D−2
− 1

4
R)ϕ

φ± = e±ϕ ⇒ L = −1
4
R− D−1

D−2
ϕ ϕ

φ± = ϕ1±a ⇒ L = ϕ[(1− a2)D−1
D−2

− 1
4
R]ϕ

φ+ = ϕ, φ− = 1 ⇒ L = −1
4
Rϕ

We can also have any of these gauge-fixed Lagrangians with opposite overall sign,

simply by changing the choice of either φ+ or φ− by a sign. The first two choices

are useful because they put the action in standard form, as the usual gravity action

plus a physical scalar kinetic term. (Thus, coupling a massless scalar to gravity either

conformally or minimally is equivalent, and the two cases are distinguished only by

interactions.) In fact, the first choice, or “temporal gauge” φ+ + φ− = constant, just

returns us to the form without compensator, φ = 1. On the other hand, changing the

sign of φ− yields the “axial gauge” φ+ − φ− = constant, which is fixing the physical

scalar as ψ = 1. The overall sign of the action changes because the physical scalar

is traded for the compensator, or the corresponding part of the metric. This gauge

is closely related to the “string gauge”: In our third choice above the gravity action

is invisible until the surviving scalar has been expanded about its vacuum value.
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The constant a is arbitrary except that it must not vanish (so that φ+/φ− is not a

constant). In particular, this action appears in string theory, with the choice (see

exercise IXA6.1)

a =
1√
D − 1

⇒ L = ϕ( − 1
4
R)ϕ

which eliminates explicit D-dependence. Again the scalar appears with the wrong-

sign kinetic term, but R appears with the right sign (or vice versa), because of more

complicated redefinitions. The sign of the changes back to the usual for |a| > 1.

However, for |a| = 1, it disappears completely. A similar result occurs for the last

choice, or “lightcone gauge” φ− = 1.

Exercise IXB5.3

The property that distinguishes this kinetic term for a scalar coupled to grav-

ity is the O(1,1) symmetry:

a Before fixing the Weyl scale gauge, the continuous SO(1,1) subgroup of this

symmetry is just the scaling φ± → Λ±1φ±. After gauge fixing, this trans-

formation may change the gauge, and thus may need to be combined with

a constant Weyl scale transformation to preserve the gauge. In that case

the vierbein will also transform under the resulting modified SO(1,1) trans-

formation. Find the SO(1,1) transformations for ϕ and ea
m in the above 4

gauges.

b There is also the “parity” transformation of this O(1,1), φ+ ↔ φ−. Find the

modified form of this transformation for ϕ and ea
m.

Exercise IXB5.4

Add to the above action a term proportional to (φ+ − φ−)2φ−
4/(D−2). By

considering various gauges, show this action is equivalent to (1) the action

for gravity plus a scalar conformally coupled to it, with a renormalizable

self-interaction, and (2) an R +R2 action with no scalar.

Although all these choices are equivalent in perturbation theory (though the

physical scalar may require a nonvanishing vacuum value), they aren’t necessarily

so nonperturbatively, depending on the ranges of the various scalars. Unfortunately,

nonperturbative gravity is not understood well enough (even classically) to make such

distinctions, even though they may be important physically. The above considera-

tions generalize straightforwardly to the case with many physical scalars, where we

may consider symmetry groups such as O(n,1). If the physical scalars form a nonlin-

ear σ model, the compensator may join in to make the σ-model groups noncompact:

Examples of this appear in supergravity and strings (see below).
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The appearance of a physical scalar can also affect the way scale gauges are chosen

in conjunction with coordinate gauges. For example, a result similar to the one found

at the beginning of this subsection can be obtained from the (linearized) action with

both compensator and physical scalar ψ (where 〈ψ〉 = 0),

L ≈ L0 − 1
4
ψ ψ

choosing the same χ-dependent coordinate-fixing term (fa)
2, but imposing the scale

gauge

ψ = 1√
2
(χ− haa)

The result is identical to the one given at the beginning of this subsection, except

that now no scale ghosts appear: The scalar that appears as haa is now physical, and

no longer needs a ghost to cancel it. This is the perturbative “string gauge” for scale

invariance, which appears automatically in covariantly gauge-fixed string theory.

Exercise IXB5.5

Let’s investigate such gauge choices further:

a Starting with the Fermi-Feynman-gauge-fixed linearized gravity action of sub-

section IXB1, add the physical-scalar kinetic term −1
4
ψ ψ. Separate the

traceless and trace pieces of hab. Show that the string-gauge action (i.e, the

one given at the beginning of this subsection if we ignore ghosts) follows from

simply switching

ψ ↔ 1√
D
haa

and then identifying the new ψ with
√

2χ/(D − 2).

b The way the physical scalar of string theory appears in the gauge-invariant

and gauge-fixed action is slightly more clever than as described above. (See

subsections XIA5-6 below.) The kinetic term (already in the string gauge for

scale invariance) is

S =

∫
dx Φ( − 1

4
R)Φ

where the missing e has been absorbed into Φ by a field redefinition. (Since

Φ is thus not a scalar, we define Φ by e−1/2 e1/2Φ, since e1/2Φ is a scalar.)

Expanding Φ = 1 + χ, the linearized gauge fixing is now simply

L→ L+ 1
2(∂bhab + ∂aχ)2

(or we can use the nonlinear gauge-fixing function ∂m(Φea
m)). Show the result

is the same as above.
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There are some important solutions of general relativity that have no close analog

in Yang-Mills. Here we consider the ones relevant to the only experimental verifica-

tions of this theory: Solutions outside approximately spherical matter distributions

(like the Sun and Earth), and those describing the Universe itself.

1. Selfduality

Plane wave solutions can be constructed for gravity in the same way as for Yang-

Mills (see subsection IIIC3): A little more work (solving the torsion constraint, or

using the result of the free theory) gives

∇+ = ∂+ − 1
2x

ixjR+i+j(x−)∂− − xiR+i+j(x−)M−j (∇− = ∂−, ∇i = ∂i)

where R+i+j is an arbitrary function of x−, but symmetric in ij, and the empty-space

field equations imply it is also traceless:

R+i+i = 0

If we want to couple Yang-Mills to gravity, then we can still write exact solutions as

long as both waves are parallel; then

R+i+i = 2T++ = 1
g2
tr(F+iF+i)

where here g2 refers to the Yang-Mills coupling. (Similarly, we can add in other fields,

such as massless, neutral scalars or particles.)

Exercise IXC1.1

Check that the gravitational plane wave solution satisfies the field equations

and torsion constraint. Show that we can also find more-special solutions of

this form satisfying

gmn = ηmn + 1
g2
tr(AmAn), Rmnpq = 1

g2
tr(FmnFpq)

This has the interpretation that the “graviton” is the bound-state of two

“gluons”. However, it is only a kinematic effect, since the two gluons happen

to be traveling in the same direction at the same speed. (We saw in subsection

VIIB5 that a similar effect always occurs in D=2, since there only two spatial

directions exist.)



C. CURVED SPACES 765

Selfduality for Yang-Mills was discussed in subsection IIIC4. Similar remarks

apply to gravity: We again impose

[∇a,∇b] = ±1
2εabcd[∇

c,∇d]

Selfduality again implies the field equations, by dualizing the Bianchi identities: For

gravity

R[abc]d = 0 ⇒ 0 = ±1
2ε
abcdRbcde = −Ra

e

While it might appear that the selfduality condition is still second-order because

solving the torsion constraint makes the Lorentz connection the derivative of the

vierbein, the selfduality allows the gauge where the connection is also selfdual, and

this condition effectively becomes a first-order field equation:

Rabcd = Rcdab ⇒ Rabcd = ±1
2εcdefRab

ef ⇒ ωabc = ±1
2εbcdeωa

de

The gauge choice is clear if you look at R with 2 curved indices, where it looks exactly

like the field strength for SU(2)2 Yang-Mills, and you see that the field strength for

one SU(2) vanishes.

Exercise IXC1.2

Apply exercises IIIC3.2 and IIIC4.1 to gravity:

a Rewrite all the above results of this subsection in spinor notation for D=4.

b For arbitrary dimension D, generalize e−
+ to an arbitrary function of x−, xi,

find the covariant derivative and curvature in terms of it, show the source-free

Einstein’s equations imply it satisfies

(∂i)2e−
+ = 0

and in D=4 identify the pieces analytic and anti-analytic in xt with the two

polarizations.

In four dimensions (2 space + 2 time), lightcone methods can again be applied

(see subsection IIIC5): Now

[∇αβ′ ,∇γδ′ ] = Cαγ 1
2R

β′δ′ε′ζ′Mε′ζ′ (ωαβ′
γδ = 0)

The fact that [∇(⊕α′ ,∇	)β′ ] has only an Mα′β′ term poses an additional constraint;

the full solution is then

∇⊕α′ = ∂⊕α
′
, ∇	α′ = ∂	α

′
+ (∂⊕α

′
∂⊕β

′
φ)∂⊕β′ +

1
2(∂⊕α

′
∂⊕β

′
∂⊕γ

′
φ)Mβ′γ′

Rα′β′γ′δ′ = −i∂⊕α′∂⊕β′∂⊕γ′∂⊕δ′φ



766 IX. GENERAL RELATIVITY

(In this case, the existence of covariantly constant spinors is a consequence of selfdu-

ality.) The equation of motion that follows from the final condition is now

φ− i(∂⊕α′∂⊕β′φ)(∂⊕α′∂
⊕
β′φ) = 0

2. De Sitter

The simplest spaces are those where the Ricci scalar is constant, and the other

parts of the curvature vanish:

Rab
cd = kδc[aδ

d
b]

These are special solutions of the field equations without matter, but with a cosmo-

logical term, where there are no physical gravitons (the Weyl tensor vanishes), and

thus represent the vacuum. Since there are no physical degrees of freedom, we can

represent this space by just the conformal compensator: i.e. the vierbein (metric)

is just the flat one up to a local Weyl scale transformation. We thus have (from

subsection IXA7)

Rab
cd → Φδ

[c
[a∂b]∂

d]Φ− δc[aδdb](∂Φ)2 = kδc[aδ
d
b]

where we have written the curvature as a scale transformation of flat space Rab
cd =

0, ∇ = ∂: The space is “conformally flat”. Separating this equation into its ir-

reducible parts with respect to the Lorentz group, the Weyl tensor part vanishes

identically, leaving

2Φ Φ−D(∂Φ)2 = Dk, D∂a∂bΦ = ηab Φ

(The latter equation isn’t implied in D = 2, where the global conformal group is

larger, and more general coordinate choices are possible for this solution. However,

we can still use it consistently.) The latter equation can be solved easily: Looking at

a 6= b, we see that Φ is a sum of functions of one variable. Then looking at a = b tells

us that these functions are quadratic and have the same quadratic coefficient, while

the former equation gives k:

Φ = A+Baxa + C 1
2x

axa, k = 2AC −B2

Note that the definition of k employs a metric in 1 extra space and 1 extra time

dimension (the AC term), while fixing the value of k breaks that SO(D,2) symmetry

to a subgroup: We’ll return to that analysis momentarily.

We can choose any A, Ba, and C that give the desired value of k: Common

coordinate choices are

Φ =

{
1 + 1

4
kx2 (Cartesian) stereographic

B · x “Poincaré” (due to Liouville and Beltrami)
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The former gives the usual flat-space coordinates for k = 0. For the latter we choose

the direction of Ba as appropriate to k = −B2: spacelike, lightlike, or timelike. (We

can even choose it complex if we don’t mind complex “gauges”.) Such coordinates

may not cover the whole space, but are sufficient when spacetime has Euclidean

signature (as for Feynman diagrams).

Exercise IXC2.1

Find ∇ in D dimensions for flat space in terms of r and conformally flat

coordinates xi for the sphere SD−1 by first deriving

◦
∇i = (1 + 1

4
x2)∂i + 1

2x
jMij

for the sphere from flat space in D−1 dimensions by a Weyl scaling, then

applying the result for ∇ in terms of
◦
∇ from exercise IXA7.6a.

Exercise IXC2.2

Show that after a Weyl scale transformation the action for gravity including a

cosmological term is (up to a sign) that of a conformal self-interacting scalar

coupled to gravity. Use this to show that the de Sitter space solution (in the

R=0 gauge) yields an “instanton” for this scalar theory, and compare with the

Yang-Mills instanton of subsection IIIC6. Show that similar solutions exist

for massless scalars in arbitrary dimensions with potentials ∼ φn for arbitrary

n (but then k = 0).

Exercise IXC2.3

Poincaré coordinates are complex for the sphere, since they require B2 = −1.

Show that if we start with stereographic coordinates in 2 dimensions in terms

of the complex coordinates z and z̄, then Poincaré coordinates can be obtained

by a coordinate transformation that violates their complex conjugation prop-

erties:

z → z , z̄ → 1/z̄

(Technically, this is Wick rotation to de Sitter or anti de Sitter space before

the transformation.) Use the metric as ds2.

As an alternative construction of spaces with constant curvature we consider an

algebraic (symmetry) one, as opposed to the previous analytic (differential) one. It’s

a generalization to higher dimensions (and arbitrary signature) of the construction of

conic sections. The geometry of this space can be understood most easily as that of

a D-dimensional hyperboloid embedded in a flat (D+2)-dimensional space, where we
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add one space and one time dimension: Again using the methods of subsections IA6

and IVA2, we now supplement the constraint

y2 = 0 ⇒ yA = ewA, (w+, w−, wa) = (1, 1
2x

axa, x
a)

with the additional constraint

nAyA = 1 ⇒ e =
1

nAwA
=

1

−n− − n+ 1
2x

axa + naxa

where nA is a (D+2)-vector, yielding the intersection of a cone and plane. The

additional constraint replaces (or fixes) the projective invariance, as well as breaking

conformal symmetry to the subgroup that leaves nA invariant. In particular, for

n2 6= 0 we can write the metric on the space whose coordinates are all but n · y:

yA = (|n2|−1/2, zA) ⇒ z2 + n−2 = 0, −ds2 = dz2

which is the definition of a hyperboloid. Comparing the metric, we find the previous

result:

−ds2 = dy2 = e2dxadxa, e = Φ−1 ⇒ k = −n2

Besides the metric, we can also look at invariants for finite differences in position as

(y1 − y2)2 = −2y1 · y2 = e1e2(x1 − x2)2

(This is the chord length in the embedding space, which is a function of, but not the

same as, the arc length through the symmetric space.)

This gives the most general coordinate system for de Sitter space as a local scale

of flat space, since conformal transformations are the most general coordinate trans-

formations that will just replace this scale factor with another, and they just rotate

nA.

Of course, by appropriate choice of the original flat space, we can choose a space

of any signature. In particular, we see that for a unit sphere k is normalized to 1.

Thus, with our conventions we have in that case

unit sphere : Rab
cd = δc[aδ

d
b]

(but the constant value of the Ricci scalar will depend on the dimension).

From this approach we can easily see the cosets in terms of the unbroken symme-

try: Noting that the symmetry group leaves n · y invariant, while the “vacuum” has

symmetry SO(p,q) for general signatures, the coset is

k > 0 : SO(p+1,q)

k = 0 : ISO(p,q)

k < 0 : SO(p,q+1)

 /SO(p,q)
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The SO(p,q) indicates both the number of dimensions of the space described by x and

its signature, while n2 = −k tells us the signature of the coordinate that was removed

from y by the second constraint (before which y had an SO(p+1,q+1) symmetry).

Note the relation to covariant derivatives, where SO(p,q) is identified with the local

Lorentz symmetry on the tangent space, as appears in the covariant derivatives, while

the global symmetry is described by Killing vectors that commute with the covariant

derivatives. Some frequent examples are

k > 0 = 0 < 0

q = 0 sphere Euclidean hyperbolic

1 de Sitter Minkowski anti-de Sitter

(For D = 1 you can easily picture this construction as giving an ellipse, parabola, and

hyperbola, respectively, though you need higher D to get actual geometry.)

Exercise IXC2.4

For which coordinate system, using 1 complex coordinate, can SO(2,1) trans-

formations on 2D hyperbolic space be realized as projective transformations?

Exercise IXC2.5

We can also start instead with a D+1-dimensional space, which is a natural

choice for the symmetry group of de Sitter space: Consider the metric and

constraint

−k ds2 = dz2 = k dzadzbηab + dz2
D+1, 1 = z2 = k zazbηab + z2

D+1

Both equations have the same global symmetry group, determined by the sign

of k; k = 0, flat space, can be considered as a limiting case of the others.

a Solve the constraint y2 = 1→ z(x) as in subsection IVA2 for φ2 = m2 → φ(χ),

and substitute to find the metric in terms of x.

b Find the conformal transformation on xa that relates this coordinate sys-

tem to the more general one above. (Hint: Use z of the D+2-dimensional

construction.)

An interesting application is examining solutions of free(/asymptotic) field equa-

tions for arbitrary fields
◦
φ on an anti-de Sitter background. We can easily deter-

mine just the spectrum by examining the boundary limit. (As we know from quan-

tum mechanics, solving for the spectrum is easier than solving for the wave func-

tions, or at least the expressions are simpler.) This limit corresponds to a contrac-

tion of the gauge group, but not the symmetry group. Thus we contract the coset

SO(D−1,2)/SO(D−1,1) → SO(D−1,2)/ISO(D−2,1). At the boundary a “bulk” co-

ordinate is eliminated: The result is the conformal group in 1 less (spatial) dimension,
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where eliminating that 1 dimension corresponds to further modding out the dilata-

tions. In the Poincaré coordinates (with radius of curvature R)

−ds2 = Φ−2(dx2 + dx2
0), Φ =

x0

R
this is the limit x0 → 0: Noting that the metric in the x0 direction goes like dx2

0/x
2
0,

it’s clear that ln x0 should be interpreted as the usual coordinate. So we’re looking for

the usual exponential fall-off in a spatial coordinate at ∞ (compare, e.g., a massive

flat-space propagator). Here that means x0 = ∞, which is a point in hyperbolic

space (Euclidean, Wick-rotated signature). Another way to think of it is that we are

looking for solutions generated by sources near the boundary, so they should have

exponential decay in ln x0 away from x0 = 0. Thus

lim
x0→0

◦
φ(x, x0) = (x0)D−<φ(x)

(The definition of < is for later convenience when considering the AdS/CFT corre-

spondence in subsection XIA8.)

Since the covariant derivative takes the form in AdSD+1 (see subsection IXA7)

∇A = Φ∂A + (∂BΦ)MAB ⇒ R∇0 = x0∂0 , R∇a = x0∂a +Ma0

the mass defined by the Klein-Gordon equation

⇒ R2m2 = R2 ≡ R2∇A∇A = [(x0∂0)2 −Dx0∂0 + (Ma0)2] + [2x0∂
aMa0] + [x2

0∂
2
a]

(where we have used [Ma0,∇a] = −D∇0 for D values of a), takes the value in the

limit x0 → 0 (when acting on
◦
φ)

R2m2 = <(< −D) +M2
a0

(Note that there is no ordering ambiguity in M2
a0, since for each a we have a square.)

We can also think of M2
a0 as the difference of the 2 quadratic Casimirs of SO(D,1)

and SO(D−1,1),

M2
a0 = 1

2(M2
AB −M2

ab)

i.e., it’s the Casimir of the coset SO(D,1)/SO(D−1,1), dSD.

For example, for scalars Ma0 = 0. From the reality of <, we then have the

Breitenlohner-Freedman bound

R2m2 = <(< −D) = (< − 1
2D)2 − (1

2D)2 ≥ −(1
2D)2

(Naive “tachyons” are not necessarily tachyons in AdS, because of the contribution

of the scalar curvature to what might be considered “mass”.)
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We next evaluate M2
a0 for some of the more interesting cases. After the trivial

case of the scalar comes the Dirac spinor, for which

SAB = −1
4
γ[AγB] , {γA, γB} = −2ηAB ⇒ M2

a0 = −1
4
D

where we have used the fact that x0 is spacelike. (We have also used −MAB = SAB

acting on a field: This is the relation D = H̃ of subsection IC6, except that we defined

M = −D to get the same sign commutation relations as G.) However, the mass m

in the Klein-Gordon equation (which is more useful for supersymmetric comparison

to the scalar), is not the same as the mass parameter M in the Dirac equation; the

only way we know to identify it as mass is by squaring the Dirac equation (even if

only for purposes of normalization). The relation is

0 = (∇/ + iM) (∇/ − iM) = γAγB∇A∇B + M2

= 1
2{γ

A, γB}∇A∇B + 1
2 [γA, γB]∇A∇B + M2 = (− + M2) + 1

2γ
AγBR−2 1

4
γ[AγB]

where we have used the AdS curvature in [∇A,∇B]. We thus find

R2M2 = R2m2 + 1
4
(D2 + D) = <(< −D) + 1

4
D2 = (< − 1

2D)2

⇒ RM = |< − 1
2D|

The next case we consider is p-forms. Looking only at forms for which the “lon-

gitudinal” (0) components vanish towards the boundary (after evaluating the action

of MAB), and noting that MAB acts the same on a vector as on ∇A, we have

M2
a0 = −p

However, again the mass parameter M2 appearing in the field equation that follows

from the action is not the same as the mass in the Klein-Gordon equation derived

from it by gauge fixing (in the Stückelberg formalism when massive) or applying the

divergence of the field equation as a constraint. We can make that comparison in a

way similar to the Dirac spinor, by treating p-forms as Dirac matrices, i.e., writing an

arbitrary spinor⊗ spinor as a sum over antisymmetric products of γ-matrices. The

field equation then looks like the Dirac equation, with the γ in ∇/ multiplying from

one particular side of this field matrix. (Or we can write the usual massive field

equation for p-forms, which instead involves the sum of multiplying on either side of

the field matrix by ∇/ , with the same results: See exercise IIB4.1.) But MAB yields
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a spin operator SAB that’s the sum of terms multiplying from either side. Using the

identity

γAγB1...BpγA = −(−1)p[2p− (D + 1)]γB1...Bp

(e.g., using Bn = n for each B index for the totally antisymmetrized γB1...Bp , and

anticommuting 1 γA toward the other) we find

R2M2 = R2m2 − 1
8
γAγB(γ[AγB] + γ′[Aγ

′
B]) = R2m2 + 1

4
(D2 + D)− 1

8
γAγB(...)γ[BγA]

= <(< −D) + p(D− p)

(The γ′’s are operators acting on the second index; converting to matrix notation

then reverses the order.)

3. Cosmology

As discussed in subsection IVA7, the universe is approximately isotropic (rotation-

ally invariant) and homogeneous (spatially translationally invariant), so the metric

should depend only on time. This means that the 3D subspace at any fixed time

should be 3D spherical, flat, or de Sitter space, up to an overall time-dependent scale

factor:

−ds2 = −dτ 2 + φ2(τ)Υ

where Υ is the de Sitter metric for the 3 other dimensions for k = 1, 0,−1 (given, e.g.,

by the coordinates in the previous subsection.) The symmetry for the 3 cases (in just

the spatial directions) is SO(4), ISO(3), or SO(3,1). Also, fixing the magnitude of k

(by a coordinate scale transformation) is the same as fixing the unit of length. (This

is classical, so there is no Planck length; we pick units with c, G, and k.)

By a simple redefinition of the time coordinate, this can be put in a form which

is conformal to a static space:

ds2 = φ2(t)d̂s2, d̂s2 = −dt2 + Υ

where by “φ(t)” we really mean “φ(τ(t))”, and the two time coordinates are related

by

dτ = dt φ ⇒ t =

∫
dτ

1

φ(τ)
or τ =

∫
dt φ(τ(t))

Using previous results for 3D de Sitter space, we find d̂s2 has curvature

R̂ij
kl = kδk[iδ

l
j], rest = 0



C. CURVED SPACES 773

where k = 1, 0,−1. The case k = 0 (in good agreement with observations, at least

for anything but times shortly after the Big Bang) reduces to the dilaton cosmology

of subsection IVA7; here we will generalize the results given there, with a different

(and sometimes better) derivation, from general relativity.

Again we begin by considering a universe filled with noninteracting dust, its rest

frame defining the preferred time direction, its homogeneity and isotropy the source

of those properties of spacetime. Working directly with the energy-momentum tensor

(rather than deriving it from that of the particle, as in subsection IVA7), we then can

write (compare exercises IIIB4.2 and IXB2.2)

T abM = ρM(t)uaub, ua = δa0

where ρM is just the spatial density of particles in the “rest” frame. One way to

derive the φ dependence of ρM that generalizes straightforwardly to other cases is by

using conservation laws: By considering particles all of the same mass in units m = 1,

or by considering J and T for each individual particle (since in this case we neglect

interactions), we have from current conservation

Ja = ρMu
a ⇒ 0 = ∇aJ

a = e∂me−1Jaea
m = (φ−4)∂0(φ4)(ρMφ

−1)

⇒ ρM = 3aφ−3

for some nonnegative constant 3a, and using (covariant) energy-momentum conser-

vation as a check,

ua∇aub = ∇0ub = φ−1∂0ub = 0 (geodesic) ⇒ ∇aT
ab
M = ub∇aJ

a + Ja∇au
b = 0

where we have used (from the result of subsection IXA7 for scaling covariant deriva-

tives)

∇̂0 = ∂0 ⇒ ∇0 = φ−1∂0

(Note, however, that ∇i has Lorentz pieces, and M0iJi ∼ J0 6= 0 even though Ji = 0.)

Exercise IXC3.1

Find completely explicit expressions for the covariant derivatives in this case

(choosing some coordinates for Υ for k = 0,±1) using just the Weyl transfor-

mation method of subsection IXA7.

For radiation, the momenta of the photons can’t be timelike (they’re lightlike, of

course), but we can still use rotational and translational invariance, together with the

fact that the trace of the energy-momentum tensor vanishes (from scale invariance:

see subsection IXA7). Then

T abR = ρR(t)1
3
(4uaub + ηab)
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There is no conserved current, but energy-momentum conservation alone determines

0 = ∇aT
ab
R = 4

3
ρMu

aub∇a
ρR
ρM

+∇b 1
3
ρR = φ−1δb0(4

3
ρM∂0

ρR
ρM
− 1

3
∂0ρR)

= φ−1δb0ρ
4/3
M ∂0ρ

−4/3
M ρR ⇒ ρR = 3

2
bφ−4

for some nonnegative constant 3
2
b.

Writing the vierbein as a scale-transformation of the constant curvature space

discussed above (de Sitter in spatial directions, flat in other directions), the gravita-

tional field equations with matter and radiation become (using results from subsection

IXA6 or 7):

6[(∇̂aφ)(∇̂bφ)− 1
2ηab(∇̂φ)2] + [(ηab ̂ −∇̂a∇̂b) + (R̂ab− 1

2ηabR̂)]φ2 = 2(TMab + TRab)φ
4

The only independent components of this equation are the 00-component and trace,

which are, after multiplying by an appropriate power of φ:

1
2

.
φ2 + 1

2kφ
2 = aφ+ 1

2b,
..
φ+ kφ = a

For k = 1, these are just energy conservation and the equation of motion for a

harmonic oscillator (centered at φ = a). The 00 equation gave energy conservation

because T00 is the energy density. The trace equation gave the field equation for φ,

which is proportional to the time derivative of the 00 equation, due to the relation

of T aa to δS/δφ given earlier. These equations are easily solved: Imposing the initial

condition φ(0) = 0 (i.e., we set the “Big Bang”, when curvatures and energy density

were infinite, to be t = 0) and
.
φ(0) > 0 (so φ ≥ 0),

k =


1

0

−1

 : φ = a


1− cos t
1
2t

2

cosh t− 1

+
√
b


sin t

t

sinh t


The “physical” time coordinate is then τ =

∫
0
dt φ. In general φ can’t be expressed

directly in terms of τ , so we use the expressions for both in terms of t. For example,

for k = 1 and b = 0 (just matter), we get a cycloid, which has only such a parametric

expression. Explicit expressions can be found for a = 0 (just radiation): φ(τ) is then

a circle, parabola, or hyperbola for k=1, 0, −1. Also, for k = 0 and b = 0, φ ∼ τ 2/3

(vs.
√
τ for a = 0).

Exercise IXC3.2

Include a cosmological term.

a Find the modification to the equations of motion.
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b Find the solution for a = b = 0.

Returning to the case of pure matter (b = 0) as in subsection IVA7, we now find

the energy conservation equation for general k

1
2

(
dφ

dτ

)2

− a

φ
= −k

2

Again comparing to the Newtonian equation for a particle, we see that −1
2k cor-

responds to the total energy, determining whether expansion is eternal or leads to

collapse.

4. Red shift

We now generalize the results of subsection IVA7 on cosmological red shift by

considering Killing vectors. Killing vectors correspond to conserved quantities (see

subsections IXA2 and IXA6) for particles and waves (massive or massless), which sim-

plify solving their equations of motion, as we know from both classical and quantum

mechanics. Since the cosmological solutions are related to static, isotropic, homoge-

neous spaces by a time dependent (but space independent) scale transformation, the

symmetries of this space are just in the spatial directions, and are basically the same

as before the scale transformation. Specifically, the Killing vectors that survive the

scale transformation ∇a = Φ∇̂a + (∇̂bΦ)Mab satisfy (see exercise IXA7.4)

K̂ · ∇̂Φ = 0 ⇒ K = K̂ ⇒ Ka = Φ−1K̂a

We then find for conserved momenta Kapa ∼ Φ−1pa. Since the K’s which survive are

just the spatial ones, we at first find only the spatial components of Φ−1pa conserved,

but the conservation of the time component follows from papa = 0 for photons. Thus,

pa ∼ Φ ∼ φ−1. Since pa is what an observer measures as the components of momentum

(in his “local inertial frame”, a gauge where at his location the metric is flat and

its first derivative vanishes), observers measure the photon’s energy as having time

dependence ∼ φ−1.

Exercise IXC4.1

Using this result for the φ dependence of the momenta of individual particles,

we can now rederive the φ dependence of ρ’s of the previous subsection directly

from the explicit expressions for J and T of the point particle.

a Rederive J and T in curved space as in subsection IIIB4 and show that

Jmδ0
m = ε(p0)e(2π)2δ3(x−X), Tmn = Jmpn = Jnpm
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b From Killing vectors we just saw that

paδ0
a ∼

{
φ0 (m 6= 0)

φ−1 (m = 0)

where the massive particles are at rest (pa = mδa0). Combine these results to

find

Jaδ0
a ∼ φ−3, ρ ∼ T abδ0

aδ
0
b ∼

{
φ−3 (m 6= 0)

φ−4 (m = 0)

c Find the factors multiplying the ρ’s in T ab for the two cases of dust and

radiation from the explicit expression for Tmn. For the massive case (dust)

all particles can be taken at rest, but for the massless case the particles

travel at the speed of light, so average over particles traveling in the three

spatial directions and their opposites. (ρ is a continuous function obtained by

summing the δ functions of all the particles. However, for the above results

it is sufficient to consider each individual particle for the massive case, and 6

particles at the same point going in ± orthogonal directions for the massless

case.)

As discussed in subsection IVA7, astronomers use the parameters H, q, and Ω

to measure general features of cosmology. Here we can generalize the analysis to

k 6= 0, which we have solved above. In the case of pure matter, and with vanishing

cosmological constant, Ω = 2q. Then the “critical” value is q = 1
2 , for which k = 0:

For q > 1
2 , k = 1, while for q < 1

2 , k = −1. In this case we also see that for a given

value of H the critical value of the matter density is ρc = 3
2
H2. If the matter of the

universe has this density, we have k = 0, and spacetime is conformally flat. If it has

greater density, we have k > 1, and space is closed.

Exercise IXC4.2

In terms of just a, b, k, and φ (but no time derivatives),

a Solve for H, q, and Ω. In particular, show

b = 0 ⇒ Ω = 2q = (1− k
2a
φ)−1

a = 0 ⇒ Ω = q = (1− k
b
φ2)−1

b Do the same for a cosmological constant, but a = b = 0.
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5. Schwarzschild

All gravitational experiments outside of cosmology are based on the “Schwarz-

schild solution”, which describes spherical symmetry outside the region with matter.

(There are also experiments based on gravitational waves, with no significant results

yet, which need only linearized gravity, not full general relativity.) Assuming also time

independence, which is a consequence of spherical symmetry (Birkhoff’s theorem), we

look for a metric of the form

−ds2 = −A−2(r)dt2 +B−2(r)dr2 + r2(dθ2 + sin2θ dφ2)

(Other coordinate choices are possible, e.g. −A−2(r)dt2 + B−2(r)[dr2 + r2(dθ2 +

sin2θ dφ2)].) The first step is the choice of a vierbein: The simplest choice following

from this metric is

et = A∂t, er = B∂r, eθ =
1

r
∂θ, eφ =

1

r sin θ
∂φ

(This can also be used as a starting point in place of the metric.) The next step is to

find the commutators of the e’s, which tells us what ω terms the ∇’s must have to

cancel these cab
c’s (vanishing torsion):

[eθ, eφ] = −r−1cot θ eφ

[er, et] = B(ln A)′et

[er, eθ] = −r−1Beθ

[er, eφ] = −r−1Beφ

⇒

∇φ has Mθφ

∇t has Mtr

∇θ has Mrθ

∇φ has Mrφ

⇒

∇r = B∂r

∇t = A∂t + αMtr

∇θ = r−1∂θ + βMrθ

∇φ = (r sin θ)−1∂φ + γMrφ + δMθφ

where α, β, and γ depend only on r, while δ depends also on θ. (Their explicit forms

are already clear at this point, but we’ll collect the results below.)

We can now determine these Lorentz connections and compute the curvatures by

calculating the ∇ commutators. Since we now use explicit functions for the vierbein

and connections, we use the method described in subsection IXA2 for this situation:

Using the identities

[M12, V2] = η22V1, [M12,M23] = η22M13

[∇1,∇2] = [e1 + ω1, e2 + ω2]

= {[e1, e2] + (e1ω2)M2 − (e2ω1)M1}+ {ω1[M1,∇2]− ω2[M2,∇1]− ω1ω2[M1,M2]}
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we then find:

[∇t,∇θ] = −αβMtθ ⇒ Rtθtθ = −αβ

[∇t,∇φ] = −αγMtφ ⇒ Rtφtφ = −αγ

[∇t,∇r] = −B(ln A)′et −Bα′Mtr + α∇t = [α−B(ln A)′]et + (α2 −Bα′)Mtr

⇒ α = B(ln A)′, Rtrtr = α2 −Bα′

[∇r,∇θ] = −B
r
eθ +Bβ′Mrθ + β∇θ = (β − B

r
)eθ + (β2 +Bβ′)Mrθ

⇒ β =
B

r
, Rrθrθ = −(β2 +Bβ′)

[∇r,∇φ] = −B
r
eφ +Bγ′Mrφ +Bδ′Mθφ + γ∇φ

= (γ − B

r
)eφ + (γ2 +Bγ′)Mrφ + (γδ +Bδ′)Mθφ

⇒ γ =
B

r
, Rrφrφ = −(γ2 +Bγ′), Rrφθφ = −(γδ +Bδ′)

[∇θ,∇φ] = −cot θ
r

eφ +
1

r
(∂θδ)Mθφ + δ∇φ + βγMθφ − βδMrφ

= (δ − cot θ

r
)eφ + (γ − β)δMrφ + (δ2 + βγ +

1

r
∂θδ)Mθφ

⇒ δ =
cot θ

r
, Rθφθφ = −(δ2 + βγ +

1

r
∂θδ), Rrφθφ = 0

Collecting the results:

∇t = A∂t +B(ln A)′Mtr

∇r = B∂r

∇θ =
1

r
∂θ +

B

r
Mrθ

∇φ =
1

r sin θ
∂φ +

cot θ

r
Mθφ +

B

r
Mrφ

Rtrtr = BA[B(A−1)′]′

Rtθtθ = Rtφtφ = −B
2

r
(ln A)′

Rrθrθ = Rrφrφ = −BB
′

r

Rθφθφ =
1−B2

r2

Exercise IXC5.1

Find the covariant derivative for the 2-sphere in spherical coordinates

ds2 = dθ2 + sin2θ dφ2

in terms of the single SO(2) generator Mab = εabM by the above methods (and

not that of exercises IXA5.3 nor IXA7.7). Calculate the curvature. Find the

three Killing vectors. (Hint: What is the symmetry of the sphere?)

A simpler method of finding covariant derivatives and curvatures in this case is

the Weyl scale method of subsection IXA7. (We already applied this method to the
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much simpler example of cosmology in subsection IXC3.) We start with the trivial

covariant derivatives for the 2D metric

−ds2 = −dt2 + dr2

which are just partial derivatives (zero curvature). Then we make the coordinate

transformation

dr → A(r)

B(r)
dr

(explicit integration of this expression isn’t needed in either the metric or the covariant

derivatives), which modifies one of the covariant derivatives,

−ds2 → −dt2 +
A2

B2
dr2; ∇r →

B

A
∂r, ∇t → ∂t

while the curvature still vanishes. (We have only chosen non-Cartesian coordinates

for flat space.) Next, we make the scale transformation

Φ = rA

to obtain the metric

−ds2 = −(rA)−2dt2 + (rB)−2dr2

Applying the general formula

ds′2 = Φ−2ds2 ⇒ ∇′a = Φ∇a + (∇bΦ)Mab,

we find

∇r → rB∂r, ∇t → rA∂t +
B

A
(rA)′Mtr

Since the space is only 2D, the general equation

R′ab
cd = Φ2Rab

cd + Φδ
[c
[a∇b]∇d]Φ− δc[aδdb](∇Φ)2

simplifies to

R′ab
cd = 1

2R
′δc[aδ

d
b],

1
2R
′ = Φ2(1

2R + ln Φ)

so at this stage we have

1
2R→ (rA)2B

A

[
B

A
(ln rA)′

]′
Any 2D space can be expressed as a scale transformation of flat space locally, es-

sentially because the curvature has only one component. (Globally this is not true,

since the integral of the curvature, which is scale invariant in D=2, is different for

different topologies. This is related to the fact that for nontrivial topologies more
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than one coordinate patch is needed; the missing part of the integral can be hidden

in the boundaries of the patches: see exercise IXA7.8.)

Now we should repeat this procedure for θ and φ to get the covariant derivatives

for the (2-)sphere, but this has already been done earlier. Besides, we don’t need

those expressions explicitly, since spherical symmetry means they vanish on anything,

and we already know the curvature of a sphere. (So, we can also avoid choosing a

coordinate system for the sphere.) Thus we can immediately take the direct product

of the sphere with the above 2D space, and make the final scale transformation

Φ = 1
r

The result for the final covariant derivatives is

∇r = B∂r, ∇t = A∂t +
B

A
A′Mtr, ∇i = 1

r

◦
∇i − 1

r
BMir

where
◦
∇i are the covariant derivatives for the sphere, in agreement with the previous

method. The curvatures are also easy to find: Besides the ∇rΦ we needed for the

covariant derivatives, the only second-order derivatives we need are ∇2
rΦ and ∇2

tΦ.

(∇tΦ vanishes, but ∇2
tΦ is nonvanishing because of the Mtr connection term in ∇t

converting ∇tΦ into ∇rΦ.) Thus we need to evaluate

R′ij
kl = δk[iδ

l
j][

1
r2
· 1− (∇r

1
r
)2]

R′ii′
jj′ = δji [

1
r
∇i′∇j′ 1

r
− δj

′

i′ (∇r
1
r
)2]

R′i′j′
k′l′ = δk

′

[i′δ
l′

j′]
1
r2

[1
2R + (∇2

r −∇2
t )ln

1
r
]

where i′ = (t, r), and the ∇’s and R on the right refer to the 2D t-r space just before

or after the direct product. The result also reproduces the previous. The final result

for Rtrtr can be obtained even more simply by noting that it agrees with what we

would have obtained by a single scaling for the 2D space −ds2 = −A−2dt2 +B−2dr2,

because of the triviality of the θ and φ derivatives.

Exercise IXC5.2

Consider the metric (a generalization of Schwarzschild)

−ds2 = A2(y)dxidxjηij +B2(y)dyιdyκδικ

where the coordinates have been divided up into arbitrary numbers of x and

y coordinates. Use the Weyl scale method to derive the covariant derivatives,

curvature, and Ricci tensor.
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Having all the curvatures, we can now calculate the Ricci tensor, which appears

in the field equations. The nonvanishing components are:

Rtt = Rtrtr + 2Rtθtθ, Rrr = −Rtrtr + 2Rrθrθ, Rθθ = Rφφ = −Rtθtθ +Rrθrθ +Rθφθφ

Vanishing ofRab−1
2ηabR is equivalent to vanishing ofRab. In terms of these curvatures,

we see it also implies

−Rtrtr = 2Rtθtθ = −2Rrθrθ = Rθφθφ

These are easy to solve: First,

Rtθtθ = −Rrθrθ ⇒ (ln A)′ = −(ln B)′ ⇒ A = B−1

where we have fixed the proportionality constant by requiring A,B → 1 as r → ∞
(redefining t by a constant scale transformation). Also,

−2Rrθrθ = Rθφθφ ⇒ (1−B2)′ = −1

r
(1−B2) ⇒ 1−B2 =

k

r

⇒ B =

√
1− k

r

for some constant k. The last field equation is then redundant. (As usual, the field

equations are related by the Bianchi identity.) The constant k can be related to the

nonrelativistic result by comparing at large distances. (See exercise IXB1.1.) We

then find k = 2GM , so the final result is:

−ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2(dθ2 + sin2θ dφ2)

Exercise IXC5.3

Repeat this Weyl scale derivation of covariant derivatives and curvatures for

the Schwarzschild metric in dimensions D>4. (Hint: Do not use explicit

expressions for the covariant derivatives of the higher-dimensional sphere.)

Solve for A and B.

More generally, if we have some spherically symmetric, static matter distribu-

tion, then the only nonvanishing components of the energy-momentum tensor will be

Ttt, Trr, and Tθθ = Tφφ (representing energy density, radial pressure, and isotropic

pressure), all functions of just r. Repeating the above procedure, we integrate

[r(1−B2)]′ = 2r2Ttt, [ln(AB)]′ = − r

B2
(Ttt + Trr)
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while the remaining equation is redundant.

Exercise IXC5.4

Use the local conservation law for energy-momentum to determine Tθθ in

terms of Ttt and Trr.

For example, for a spherically symmetric, static electromagnetic field the only

nonvanishing components of the field strength are Ftr and Fθφ, corresponding to

electric and magnetic charges, respectively. Then the invariance of T under a duality

transformation (see subsections IIA7, IIIA4) implies

Tθθ = Tφφ ⇒ Ttt = −Trr ⇒ A = B−1

again, since on this Fab duality effectively replaces (θ, φ) ↔ (it, r), with the i from

Wick rotation. Local scale invariance (see subsection IXA7) then tells us

Ta
a = 0 ⇒ Ttt = −Trr = Tθθ = Tφφ

Exercise IXC5.5

Let’s rederive these results by brute force:

a Derive Tab for a general electromagnetic field by varying its action with respect

to ea
m or gmn.

b Find each of T ’s components explicitly in terms of Ftr and Fθφ in the case

where those are the only nonvanishing components, and show they appear

only in the combination F 2
tr + F 2

θφ.

As usual, these field strengths can be found easily from the integral form of

Gauss’s law by integrating over a sphere: For example, for the magnetic field

magnetic charge ∼ 1
2

∫
dxmdxn Fmn = 4πr2Fθφ

for the Fθφ component of Fab (integrating over θ and φ), since the metric (and vierbein)

for θ and φ is the same as for flat space. By duality, the solution for Ftr in terms of

the electric charge is the same. The result is

Ttt =
Q

r4
, Q = π2(e2 + g2)

for electric charge e and magnetic charge g. The 1/r4 dependence also follows from

scale invariance, since the charges are dimensionless (and the matter field equations

decouple from A and B). (Again, since the solution does not extend to r = 0, we
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normalize by comparing Fab or Tab at r = ∞ to the flat-space solution.) The net

effect on the Schwarzschild metric is

1− 2GM

r
→ 1− 2GM

r
+

2Q

r2

Our solution relates to the usual mechanics normalization of the charges (see subsec-

tion VIIA3), restoring G, as

2Q = G2π(e2 + g2) = G(e2
m + g2

m)

Exercise IXC5.6

Let’s also apply brute force to solving Maxwell’s equations∇aF
ab = ∇[aFbc] =

0 (outside the matter).

a As a warm-up, using directly the above covariant derivatives, show that in

flat space

V a = δarVr ⇒ ∇aV
a = r−2∂rr

2Vr

Note that the covariant derivative of a vanishing component doesn’t necessar-

ily vanish (just as the ordinary derivative of a function that vanishes at some

point doesn’t necessarily vanish at that point): Components of ∇ other than

∇r contain Lorentz generators that rotate other components of V to Vr.

b Solve Maxwell’s equations in differential form for Fab in the above case. Use

the empty-space solution to define the normalization at infinity. (Actually,

in this case, the charge is well-defined in terms of the flux of the fields, as

described above, but gives the same result here because the space is asymp-

totically flat.)

Exercise IXC5.7

Spherically symmetric solutions can also be written in Eddington-Finkelstein

coordinates as

−ds2 = −dt2 + dr2 + r2(dθ2 + sin2θ dφ2) +H(r)(dt+ dr)2

where H = 1−B2 = G[2M/r− 2π(e2 + g2)/r2] in terms of the above results,

and is linear in G. (In these coordinates, gravity looks Abelian for this so-

lution.) Note that this form (and its Abelian nature) closely resembles the

general wave solutions of exercise IXC1.2b (but the “Cartesian” coordinate

x1 is now replaced with r).

a Obtain this form from the above forms (where A = B−1) by a coordinate

transformation. (Hint: The angular term didn’t change.)
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b Find ∇ directly from this form of the metric. (Note: It might differ from the

previous by not only coordinate but also local Lorentz transformations.)

Exercise IXC5.8

Consider the plane wave in the coordinates

−ds2 = −2dx+dx− + L2(x−)
(
e2β(x−)dy2 + e−2β(x−)dz2

)
Calculate the covariant derivatives and curvature tensor by the first method of

this subsection (double-counting and subtracting, not the Weyl scale method).

Show that the field equations reduce to

L′′ + (β′2)L = 0

Exercise IXC5.9

Use the first method of this subsection to calculate the covariant derivative

and curvature tensor for the metric

−ds2 = −dt2 + 2exdt dy − 1
2e

2xdy2 + dx2 + dz2

Show that this metric satisfies the field equations with a cosmological term

for a dust at rest with respect to this time coordinate; i.e.

Rmn − 1
2g

mn(R− 4Λ) = ρδm0 δ
n
0

where Λ and ρ are both constants.

Exercise IXC5.10

Use this method to calculate the covariant derivative and curvature tensor for

the cylindrically symmetric metric

−ds2 = −A−2(r)dt2 +B−2(r)dr2 + r2dθ2 + dz2

Assume the matter in this problem is a “perfect fluid”,

T ab = ρuaub + P (ηab + uaub) (u2 = −1)

Solve the equations of motion for the gravitational field to find A and B, as

well as the pressure P and particle density ρ. What is the implied relation

between P and ρ?

Exercise IXC5.11

Use this method to calculate the covariant derivative and curvature tensor for

the following metric, corresponding to that outside a planar mass distribution:

−ds2 = −A−2(z)dt2 +B−2(z)(dx2 + dy2) + dz2

Solve Einstein’s equations in empty space to find A and B (up to some con-

stants of integration).
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6. Experiments

When comparing to the real world, it is useful to know some astrophysical radii:

(1) Earth’s orbit (1 AU): 1.5 ×108 km

(2) Solar radius: 7 ×105 km

(3) Earth radius: 6000 km

(4) Solar gravitational (Schwarzschild) radius (2GM/c2): 3 km

(5) Earth gravitational radius: 0.9 cm (1 shoe size).

To see how these fit in with other physical criteria, consider the following diagram of

mass vs. radius (in natural/Planck units) for various physical objects:

Particles have the Compton radius R = h̄/Mc according to quantum mechanics, black

holes (see subsection IXC7) have the Schwarzschild radius R = 2GM/c2. Condensed

matter (solids and liquids) is basically atoms packed together, and has the same den-

sity regardless of size, up to an order of magnitude or so. The size of an atom is about

the same as the Compton radius of an electron, up to a factor of the fine structure

constant, while stars are more or less condensed matter near their gravitational radii,

up to a few orders of magnitude. So, known objects tend to lie near the lines drawn

above, to within a few orders of magnitude (perhaps related to the fine structure con-

stant α ≈ 1/137 or the proton-electron mass ratio ≈ 1836), which is close compared

to the tens of orders of magnitude that set the scale of the diagram.
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Exercise IXC6.1

Consider the following very crude approximations to various types of stars:

a Assume a star has the density of a neutron, i.e., of a sphere with the mass

M of the neutron and radius equal to the Compton radius h̄/Mc. Assume

also that the radius of this (spherical) star is equal to its gravitational radius.

(This is roughly a “neutron star”.) Find the mass and radius, in terms of

both physical constants and conventional units. Note the appearance of the

large dimensionless number, the ratio of the Planck mass to the neutron mass.

b Assume a star has the density of a “compressed” hydrogen atom, a sphere

with the mass of the hydrogen atom (which we can take as roughly equal to

the neutron mass) and radius equal to the Compton radius of the electron,

h̄/mc for electron mass m. Assume the mass of this star is equal to that of

the neutron star found in the previous example. (This is roughly a “white

dwarf”.) Find the radius, again in terms of both physical constants and

conventional units.

c Assume the same mass again, but now assume the density of an ordinary

hydrogen atom, which has the Bohr radius h̄/mcα. (This is roughly an “or-

dinary” star.) Compare to the mass and radius of the Sun.

All experiments (excluding cosmology and linearized gravitational waves) are

based on the Schwarzschild metric. The first type of experiment involves gravitational

redshift, but unlike the cosmological case, the relevant reference frames of observation

are not local inertial frames but the static reference frame in which the Schwarzschild

metric is defined. (There are also measurements of redshift from airplanes, whose

reference frame is defined with respect to the Schwarzschild one.) In this reference

frame the relevant Killing vector is the one which expresses the fact that the space is

static, Km∂m = ∂/∂t. The momentum which is measured by the observer is pa, not

pm or pm, since the observer still uses a reference frame for which the metric at his

position is flat (but not its first derivative, since he is not in free fall). (In fact, this

is one of the purposes for using a vierbein, as a frame of reference.) The conserved

quantity is then

E = −Kap
a =

√
1− 2GM

r
Ê

where the energy of a particle Ê is the time component of pa as measured in this

frame. Thus, conservation of E for a photon gives the r-dependence of the observed

energy Ê (and thus the frequency, which in turn determines the wavelength, since

p2 = 0).
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To compare with nonrelativistic mechanics, we instead evaluate E for a massive

particle in the Newtonian limit:

E ≈
(

1− GM

r

)
(m+K) ≈ m+K − GMm

r

giving the “conserved energy” E in terms of the “particle energy” Ê (rest mass m +

kinetic K), including the potential energy.

The other type of experiment involves properties of geodesics, so we need to

solve the geodesic equations of motion. Without loss of generality, we can choose the

angular coordinates such that the initial position and direction of the particle is in the

equatorial plane θ = π/2, where it remains because of the symmetry θ ↔ π− θ, as in

the nonrelativistic case. Also as in the nonrelativistic case, we can find constants of

the motion corresponding to the energy E and (z-component of) angular momentum

L by using the Killing vectorsKm∂m = ∂/∂t and ∂/∂φ to find the conserved quantities

Kapa = Kmgmn
.
xn (in the parametrization v = 1):

E ≡ −gtm .
xm =

(
1− 2GM

r

)
.
t, L ≡ gφm

.
xm = r2

.
φ

In the case where the particles come from infinity, these are the initial kinetic energy

and angular momentum. We have chosen an affine parametrization, which requires

−m2 = gmn
.
xm

.
xn = −

(
1− 2GM

r

)
.
t2 +

(
1− 2GM

r

)−1
.
r2 + r2

.
φ2

Solving the previous equations for
.
t and

.
φ, this reduces to the radial equation

0 = −E2 +
.
r2 +

(
1− 2GM

r

)(
L2

r2
+m2

)

⇒ 1
2
.
r2 +

(
−GMm2

r
+
L2

2r2
− GML2

r3

)
= 1

2(E2 −m2)

Exercise IXC6.2

Write the action for a relativistic, spinless particle in the Schwarzschild metric,

in first-order (Hamiltonian) form (see section IIIB). Identify conserved quanti-

ties as momenta whose conjugate coordinates appear only with τ derivatives,

and compare expressions to the above.

This looks like a typical nonrelativistic Hamiltonian for “energy” 1
2(E2 − m2)

with the same terms as in the Newtonian case but with an extra r−3 term. (To

take the nonrelativistic limit for the massive case, first scale the affine parameter

τ → s/m.) Since there are good coordinate systems for a “black hole” using r as a
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coordinate (e.g., see the following subsection: r and r′′ + t′′, as seen from the figure

for Kruskal-Szkeres), this equation can even be used to describe a fall into a black

hole. (For example, for L = 0 we get the same cycloid solution as in cosmology and

in Newtonian gravity, reaching the singularity at r = 0 in finite proper time.)

Exercise IXC6.3

For the massive case, instead of the parametrization v = 1, use v = 1/m.

What is now the relation between τ and s? Describe the analogies of the

above equations with the nonrelativistic case, and take the limit.

Because of the r−3 term in the potential, noncircular orbits are no longer closed.

In particular, let’s consider orbits which are close to circular. Circular orbits are

found by minimizing the potential for the r-equation:

0 =
dV

dr
=
GMm2

r2
− L2

r3
+

3GML2

r4

0 <
d2V

dr2
= −2GMm2

r3
+

3L2

r4
− 12GML2

r5

The near-circular orbits are described by small (harmonic) oscillations about this

minimum, with angular frequency given by

ω2
r =

d2V

dr2
=
GMm2(r − 6GM)

r3(r − 3GM)

from solving for L2 = GMm2r2/(r− 3GM). On the other hand, the frequency of the

circular orbit itself in terms of its angular dependence is just
.
φ = L/r2, giving

ω2
φ =

GMm2

r2(r − 3GM)

This means that the perihelion (closest approach to the Sun) of an orbit, which occurs

every period 2π/ωr of the radial motion, results in the change of angle

2π + δφ =

∫ 2π/ωr

0

dτ
dφ

dτ
=

2π

ωr
ωφ = 2π

(
1− 6

GM

r

)−1/2

⇒ δφ ≈ 6π
GM

r

in the weak-field approximation. This effect contributes to the measurement of the

precession of the perihelion of the (elliptical) orbit of Mercury, but so do the precession

of Earth’s axis, the oblateness of the Sun, and gravitational interaction with other

planets. As a result, this relativistic effect contributes less than 1% to the observed

precession. In particular, the solar oblateness is difficult to measure.
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The effects on geodesics of photons are much easier to measure, since there are

no Newtonian effects. As a result, the weak field approximation is sufficient. We first

consider bending of light by the Sun: A photon comes in from infinity and goes back

out to infinity (actually to the Earth, which we assume is much farther from the Sun

than the photon’s closest approach to it), and we measure what angle its trajectory

was bent by. (For example, we look at the apparent change of position in stars when

the Sun passes in their direction during an eclipse.) Starting with the exact solution

for a photon’s geodesic (case m2 = 0 above), we use the equations for
.
r and

.
φ to find

dr

dφ
=

√
E2

L2
r4 − r2 + 2GMr

Changing variables,

u ≡ b

r
, b ≡ L

E
, a ≡ GM

b
⇒ dφ =

du√
1− u2 + 2au3

The impact parameter b ≡ L/E would be the closest approach to the Sun neglecting

gravitational effects (L = rp = bE). We now make the weak field approximation: For

a small,

dφ ≈ du√
1− u2

(
1− a u3

1− u2

)
= dχ

(
1− asin

3χ

cos2χ

)
(u ≡ sin χ)

= d

[
χ− a

(
cos χ+

1

cos χ

)]
Defining φ = 0 at r =∞, the integral is

φ ≈ χ− a(1− cos χ)2

cos χ

The ends of the path (r =∞) are at exactly

χ = 0, π ⇒ φ = 0, π + 4a

Therefore the deviation of φ from a straight line is 4GME/L. (Mathematical note: All

variable changes were those suggested by the flat space case a = 0: E.g., b/r = sin χ,

where χ is what φ would be in flat space.)

A similar experiment involves measuring the round-trip travel time for radio waves

from Earth to some reflector (on another planet or an artificial solar satellite), with

and without the Sun near the path of the waves. Now, instead of dr/dφ we want, in

units b = 1
dr

dt
=

(
1− 2a

r

)√
1− 1

r2
+

2a

r3
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⇒ dt ≈ rdr√
r2 − 1

+ 2a
dr√
r2 − 1

= d
[√

r2 − 1 + 2a cosh−1r
]

= d
[√

r2 − b2 + 2GM cosh−1 r

b

]
putting the b’s back. The first term (which is actually bigger) is the nongravitational

piece (so we examine only the rest); it is the length of the side of a triangle whose

other side has length b and whose hypotenuse has length r. We have neglected the a

correction inside the square root in the original, exact expression: It can be estimated

by (1) noting the argument of the square root is exactly 0 at rmin, and (2) looking

at d(r
√
...), and noting its deviation from the exact result goes as a/r3 times the

usual, which is less than a/b3, giving a contribution of order 2GMb/rmax, and thus

negligible.

For simplicity we assume both orbits are approximately circular, so rEarth and

rreflector are fixed (at least for the duration of the experiment); the change in b then

comes from those radii differing from each other, so they revolve around the sun at

different rates. We then integrate from r = rmin ≈ b to r = rEarth, add the integral

from r = rmin to r = rreflector, multiply by 2 for the round trip, and throw in a factor

to convert to the proper time s of the observer (which turns out to have a negligible

effect to this order in a). This result is then compared to the same measurement

when both observer and reflector have revolved further about the Sun, so b changes

significantly (but not rEarth nor rreflector). For x � 1, cosh−1x ≈ ln(2x), so for

b� rEarth and rreflector we find

∆s ≈ −8GM∆(ln b)

7. Black holes

For physical massive bodies the Schwarzschild solution applies only outside the

body, where Tab = 0. The form of the solution inside the body depends on the

distribution of matter, which is determined by its dynamics. Generally the surface of

the body is at r � GM , but we can try to find a solution corresponding to a point

mass by extending the coordinates as far as possible, till the curvature components

Rab
cd blow up. The Schwarzschild metric is singular at r = 2GM . In fact, r and

t switch their roles as space and time coordinates there. There is no corresponding

singularity there in the curvatures, which are ∼ r−3. This unphysical singularity can

be eliminated by first making the coordinate transformation, for r > 2GM ,

r′ =

∫
dr

(
1− 2GM

r

)−1

= r + 2GM ln
( r

2GM
− 1
)
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and then making a second coordinate transformation by rescaling the “lightcone”

coordinates as

r′′ ± t′′ = 4GMe(r′±t)/4GM = 4GM

√
r

2GM
− 1 e(r±t)/4GM

The result is the “Kruskal-Szekeres (‘Sack-er-ash’) coordinates”

−ds2 =
2GM

r
e−r/2GM(−dt′′2 + dr′′2) + r2(dθ2 + sin2θ dφ2)

where r(r′′, t′′) is defined by

r′′2 − t′′2 = (4GM)2
( r

2GM
− 1
)
er/2GM

This can now be extended past r = 2GM down to the physical singularity at r = 0.

The complete space now looks like (plotting just r′′ and t′′):

t"

r"

r = 0

r = 0

r =
 2G

M

r = 2GM

In this diagram lines at 45◦ to the axes represent radial lightlike geodesics. Since

nothing travels faster than light, this indicates the allowed paths of physical objects.

Curves of fixed r are hyperbolas: In particular, the physical singularity is the curve

t′′2 − r′′2 = (4GM)2 (r = 0), while t′′2 − r′′2 = 0 (r = 2GM) is the “event hori-

zon” which allows things to go only one way (out from the bottom half or into the

top half), and r = ∞ is both r′′ = ±∞. Nothing can communicate between the 2

“outside worlds” of the left and right 90◦ wedges. In particular, a star which col-

lapses (“gravitational collapse”) inside its “gravitational radius” 2GM is crushed to

a singularity, and the spherically symmetric approximation to this collapse must be

represented by part of the Kruskal-Szekeres solution (outside the star) by Birkhoff’s
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theorem, patched to another solution inside the star representing the contribution

of the matter (energy) there to the field equations. This means using just the top

and right 90◦ wedges, with parts near the left edge of this modified appropriately.

The top wedge is called a “black hole”. (If a situation should exist described by just

the bottom and right wedges, the bottom wedge would be called a “white hole”.)

Similarly, stable stars are described by just the right wedge, patched to some interior

solution. This right wedge represents the original Schwarzschild solution in the region

r > 2GM where its coordinates are nonsingular. In that region lines of constant t

are just “straight” radial lines in the Kruskal-Szekeres coordinate system (r′′ ∼ t′′).

Besides the fact that nothing can get out, another interesting feature of the black

hole is that an outside observer never sees something falling in actually reach the event

horizon: Consider an observer at fixed r > 2GM using Schwarzschild coordinates,

so his proper time s ∼ t. Then light radiating radially from an in-falling object is

received later and later, up till t = ∞, by the observer as the object approaches the

event horizon, although it takes the object a finite amount of proper time to reach

the event horizon and the physical singularity.

Exercise IXC7.1

Apply the methods of subsection IXC3 to the equations of motion in a

Schwarzschild metric of subsection IXC6 for a massive object falling straight

into a black hole (angular momentum L = 0): Solve for r, τ in an appropriate

parametrization to show that it takes a finite proper time to reach the event

horizon from any finite r outside it. (Hint: You can also try using the gauge

v = r instead of 1.)

There are also more complicated black-hole solutions with spin and electric charge.

Another interesting effect of the event horizon is the eventual decay of the black

hole (“Hawking radiation”): Pair creation can result in a similar way to that in

an electrostatic potential of sufficient strength (see exercise IIIB5.1). Particles are

emitted near the event horizon (the edge of the gravitational barrier), carrying energy

off to infinity, while their antiparticles fall into the singularity.

There are two features of the black hole that are less than desirable: the existence

of singularities indicates a breakdown in the field equations, and the existence of event

horizons results in an “information loss”. Both these properties might be avoidable

quantum mechanically: For example, quantum effects can generate curvature-squared

terms in the effective action, which modify the short-distance behavior of the theory.

One might think that such short-distance effects would have an effect only at short

distances away from regions of high curvature such as the singularity, and thus remove
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the singularities but not the event horizons. However, it is possible (and examples of

such solutions have been given) that the prevention of the creation of the singularity

in stellar collapse would eventually result in a reversal of the collapse (“gravitational

bounce”): The would-be black hole solution is patched to a would-have-been white

hole by short-distance modifications, resulting in an exploding star that initially re-

sembled a black hole but has no true event horizon.

Although “compact” bodies have been observed (e.g., at the center of our galaxy)

with masses large enough to be black holes (i.e., too large to be neutron stars), their

sizes have not been determined to be as small as their event horizons, although our

present knowledge of astrophysics does not provide for an alternative explanation.

(A related statement is that none of these alleged black holes have been determined

not to be “naked singularities”: Some solutions of classical general relativity have no

event horizons, but only singularities.)
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X. SUPERGRAVITY
In the previous chapter we studied the symmetry principles behind general rel-

ativity; now we add supersymmetry to the picture. Supergravity is a fundamental

part of many of the applications of supersymmetry.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . A. SUPERSPACE . . . . . . . . . . . . . . . . . . . . . . . . .

We first need to understand the “geometry” associated with local supersymmetry.

1. Covariant derivatives

In subsection IVC3 we discussed superspace covariant derivatives for super Yang-

Mills. Similar methods can be applied to supergravity, the theory of the graviton (spin

2) and gravitino (spin 3/2). In that case we want to gauge the complete (unbroken)

global symmetry of the theory: Besides the obvious Poincaré and supersymmetry,

there is also the axial U(1) (“R”) symmetry that transforms the spin-3/2 field. (The

best we might have expected is superconformal symmetry, which also has conformal

boosts and scale, but which are broken by the vacuum just as in ordinary gravity,

and S-supersymmetry, which is also broken because it’s the square root of conformal

boosts.) It is introduced in the same way as local Lorentz invariance in ordinary

gravity, and acts on flat spinor indices (but cancels on vector indices). We therefore

want to gauge the translations ∂M (which have been generalized naturally to super-

space from ∂m appearing in ordinary gravity to include supersymmetry), the Lorentz

generators Mαβ, M .
α
.
β

of ordinary gravity, and the (second-quantized) hermitian U(1)

generator Y , defined to act on the covariant derivatives as

[Y,∇α] = −1
2∇α, [Y,∇ .

α] = 1
2∇ .

α, [Y,∇a] = 0

We now use the “ ” to refer to hermitian conjugation without reordering, i.e., keep-

ing the partial derivatives and other generators on the right. (As in ordinary gravity,

transformations are not truly unitary, and covariant derivatives truly hermitian, be-

cause of ordering.)

As for gravity (see above), the form of the covariant derivatives relates to cosets.

So for G/H we choose G as Poincaré + supersymmetry + R-symmetry, while H is

Lorentz + R-symmetry to define the superspin and superisospin of the multiplet.

Again, the form of these coset covariant derivatives for flat space generalizes to arbi-

trary spaces.
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Then the gauge parameter, covariant derivative, and field strengths are expanded

over these generators, as in ordinary gravity:

K = KM∂M + 1
2K

αβMβα + 1
2K

.
α
.
βM.

β
.
α

+ iK−1Y

∇A = EA
M∂M + 1

2ΩA
βγMγβ + 1

2ΩA

.
β
.
γM.

γ
.
β

+ iAAY

[∇A,∇B} = TAB
C∇C + 1

2RAB
γδMδγ + 1

2RAB

.
γ
.
δM.

δ
.
γ

+ iFABY

(EA
M is known as the “supervierbein” or “vielbein”.) Alternatively, we can write the

M and Y terms collectively as 1
2K

ABMBA (and similarly for the covariant derivative

and field strengths), where MAB are the generators of OSp(3,1|4), by algebraically

constraining KAB to contain just the appropriate pieces (and relating Kab to Kαβ in

the usual way). Also, the shorthand KIMI now includes Lorentz and U(1) terms.

Exercise XA1.1

Use the definition in the above commutation relations to express the torsion

TAB
C directly in terms of the structure functions CAB

C , Lorentz connection

ΩA
βγ, and U(1) connection AA.

The constraints in supergravity are a combination of the kinds used in ordinary

gravity and super Yang-Mills: those that (1) define the vector derivative in terms of

the spinor ones

−i∇
α
.
β

= {∇α,∇.
β
}

(2) define the spinor (Lorentz and R) connections

Tαβ
γ = T

α,β(
.
β
β
.
γ) = Tαb

b = 0

and (3) allow the existence of chiral (scalar) superfields

∇αΦ̄ = 0 ⇒ {∇α,∇β}Φ̄ = 0 (Y Φ = 0)

(The first two constraints imply the generalization of this chirality condition to Y 6= 0

and chiral superfields with undotted indices, like the Yang-Mills field strength.)

Exercise XA1.2

Rewrite the first and last set of constraints directly in terms of field strengths.

The explicit solution of all these constraints is a bit messy, but we will need

only a certain subset of them to find the prepotentials and supergravity action. The

form of the solution is a generalization of super Yang-Mills in a way similar to how

general relativity generalizes ordinary Yang-Mills. In particular, just as the vierbein

ea = ea
m∂m is a generalization of the Yang-Mills vector Aa to describe gauging of the
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translations, the generalization of the super Yang-Mills prepotential V to supergravity

is H = Hm(−i)∂m, which appears in an exponential eH just as V appears as eV : The

chirality-preserving constraints, expressed explicitly in terms of the vielbein, is

{Eα, Eβ} = Cαβ
γEγ

If the commutator vanished like the Yang-Mills case, Eα would be partial derivatives

on some complex two-dimensional subspace, the usual ∂α up to some complex (su-

per)coordinate transformation, as for dα in flat superspace. However, the fact that

their algebra still closes means they still generate translations within such a subspace,

and are thus linear combinations of such partial derivatives:

Eα = ψNα
µÊµ, Êµ = e−Ω∂µe

Ω, Ω = ΩM(−i)∂M

where we have separated the matrix coefficient into a local complex scale (scale ⊕
U(1)) ψ and a local Lorentz transformation Nα

µ. For most purposes we will find it

convenient to fix all these invariances by choosing the gauge

ψNα
µ = δµα ⇒ Eα = Êα

As for Yang-Mills, solution of the chirality condition introduces a new, chiral

gauge invariance:

eΩ
′
= eiΛ̄eΩe−iK ; Λ = ΛM(−i)∂M , K = KM(−i)∂M

[∂̄.
µ, Λ] ∼ ∂̄.

ν ⇒ ∂̄.
µΛ

m = ∂̄.
µΛ

µ = 0

where Λ
.
µ is not chiral, since it generates terms in the transformation law of E.

µ that

can be canceled by including ∂̄.
µΛ

.
ν terms in the transformation law of ψ̄N̄ .

α

.
µ. This

means we can use Λ
.
µ and Kµ to gauge

Ωµ = Ω
.
µ = 0 ⇒ Ω = Ωm(−i)∂m ⇒ Êµ = ∂µ + Êµ

m∂m

where Êµ
m = −i∂µΩm+... from expanding the exponentials as multiple commutators.

We can again transform to a chiral representation, and work in terms of

eU = eΩeΩ̄, eU
′
= eiΛ̄eUe−iΛ; Ê.

µ = ∂.
µ, Êµ = e−U∂µe

U

where U now generalizes the constant 〈U〉 = θµθ̄
.
µ(−i)∂µ.

µ used in flat superspace. Also

as for Yang-Mills, the usual local component transformations (now for coordinate,

supersymmetry, scale, U(1), and S-supersymmetry) reappear in the chiral parameters

Λm and Λµ.
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For a component analysis, we look at the linearized transformation (see exercise

IVC4.3)

δUm ≈ i(Λ̄− Λ)m − i1
2 [〈U〉, Λ̄+ Λ]m

= i(Λ̄− Λ)m − 1
2θ

ν θ̄
.
ν∂ν .ν(Λ̄+ Λ)m + (θµΛ̄

.
µ − θ̄

.
µΛµ) + i1

2(θ̄2θν∂ν
.
µΛµ − θ2θ̄

.
ν∂µ .

νΛ̄
.
µ)

where for Λ we use as independent just the chiral parameters Λm and Λµ; the nonchiral

Λ
.
µ, having already been used to gauge away Uµ, is now fixed in terms of the others

as

Λ
.
µ = e−U Λ̄

.
µeU

to maintain Uµ = 0. The first term in the transformation tells us that the surviving

component fields are the same as for super Yang-Mills, with “m” as the group index:

Um = ea
m(θθ̄), ψα

m(θ̄2θ), ψ̄ .
α
m(θ2θ̄), Am(θ2θ̄2)

The second term in the transformation law gives δea
m ≈ −∂aλm from Λ̄m| = Λm| =

λm. Then Λµ contains the rest of the gauge parameters:

Λµ = εµ, a+ ib(θ), λν
µ(θ), ζµ(θ2)

= supersymmetry, scale +iU(1), Lorentz, S-supersymmetry

The third term in the transformation law then shows scale and Lorentz gauge away

pieces of the vierbein, as usual, while S-supersymmetry gauges away the trace of ψα
m.

It also forces Λm to include ε̄
.
µ at order θ to maintain the gauge; we then see that

ψα
m is the gauge field for supersymmetry, with contributions from the second and

fourth terms. Finally, the fourth term also shows that Am is the gauge field for U(1).

The resulting component content is that of “conformal supergravity”, which will be

transformed later to ordinary supergravity through a compensator superfield.

For perturbation theory, or comparison with global supersymmetry, we should

expand about “flat” superspace (which is nontrivial because of nonvanishing torsion

T
α
.
β
c in empty superspace). We then modify the chiral representation:

eΩeΩ̄ = eU = e〈U〉/2eHe〈U〉/2 ⇒ Ê.
µ = d.

µ, Êµ = e−Hdµe
H

We now expand all derivatives over the covariant derivatives dM of global supersym-

metry (constructed from 〈U〉 as before)

H = HM(−i)dM , EA = EA
MdM

instead of over partial derivatives ∂M , which is just a change of basis. This also

modifies the description of the Λ gauge parameters:

eH
′
= eiΛ̄eUe−iΛ; Λ = ΛM(−i)dM , K = KM(−i)dM
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[d̄.
µ, Λ] ∼ d̄.

ν ⇒ Λµdµ + Λm∂m = 1
2{d̄

.
ν , [d̄.

ν , L
µdµ]}

⇒ Λµ = d̄2Lµ, Λµ
.
µ = id̄

.
µLµ

in terms of a new parameter Lµ. From this we find the linearized transformation law

δHµ
.
µ ≈ dµL̄

.
µ − d̄

.
µLµ

Exercise XA1.3

Expand this transformation law in components, and compare with the previ-

ous analysis.

Besides chirality, we also need a certain combination of the other constraints:

0 = Tαb
b − T

α
.
β

.
β = (−1)BCαB

B + Cαβ
β − iAα

where the A term comes from the contribution 1
2iAαδ

.
γ.
β

to T
α
.
β

.
γ. (See exercise XA1.1.)

Using the gauge Eα = Êα without loss of generality, we then find (comparing similar

manipulations in subsection IXA2)

−iAα = E∂ME
−1Eα

M = E−1
←
EαE

where the backwards arrow on
←
Eα = Eα

M
←
∂M means all derivatives act on everything

to the left (see subsection IA2), and

E ≡ sdet EA
M

(The superdeterminant was defined in subsection IIC3.)

We now need the general identity, for any function A and first-order differential

operator B,

Ae
←
B = (1 · e

←
B e−

←
B )Ae

←
B = (1 · e

←
B )(e−

←
BAe

←
B ) = (1 · e

←
B )(eBAe−B)

= (1 · e
←
B )(eBA)

⇒ 1 = (1 · e−
←
B )e

←
B = (1 · e

←
B )[eB(1 · e−

←
B )]

The final result in the gauge ψ = 1 (Nα
µ is trivially restored) is then

iAα = EαT, eT = E(1 · e−
←
Ω )

This can be used to solve chirality conditions on matter fields: In this gauge, we

have

Y Φ = yΦ ⇒ 0 = ∇ .
αΦ = (Ē .

α + iyĀ .
α)Φ
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⇒ Φ = eyT̄ eΩ̄φ, ∂̄.
µφ = 0

Again as for Yang-Mills, the chiral-representation field φ transforms under only the

Λ transformations:

φ′ = (1 · ei
←
Λ )yeiΛφ, Λ = −i(Λm∂m + Λµ∂µ)

Thus, scalars in the real representation become densities in the chiral representation

(except for y = 0). In particular, we have for the special case

y = 1 ⇒ φ′ = φei
←
Λ ⇒ δ

∫
dx d2θ φ = 0

which will prove useful later for chiral integration. For now, we note that such a

chiral scalar, with y 6= 0, can be seen to compensate from the ∂µΛ
µ term: This term

allows Um to eat the complex “physical” scalar and spinor, fixing scale, U(1), and

S-supersymmetry, while the complex auxiliary scalar survives, along with coordinate,

Lorentz, and supersymmetry invariance. We also note that for perturbation about

flat superspace we have

i(1 ·
←
Λ) = ∂mΛ

m − dµΛµ = −d̄2dµL
µ

Exercise XA1.4

Show that preservation of the chirality of φ implies the previous chirality con-

ditions on Λ. Thus, as for nonsupersymmetric or nongravitational theories,

the gauge group follows more simply from starting with matter representa-

tions.

We also note that in the gauge ψ = 1, and also Ωµ = Ω
.
µ = 0, the superdetermi-

nant is simply (see subsection IIC3)

E−1 = det(Em
a)

where Em
a is a component of EM

A (not the inverse of Ea
m).

2. Field strengths

These constraints can be completely solved for all the field strengths. Alterna-

tively, we can impose them, together with the Bianchi identities (Jacobi identities

of the covariant derivatives), to find a smaller set of algebraically independent field

strengths, and the differential equations that relate them. The method is analogous
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to the case of super Yang-Mills treated in subsection IVC3. We begin with the con-

straints analogous to the Yang-Mills ones:

{∇α,∇.
β
} = −i∇

α
.
β
, {∇α,∇β} = Rαβ

IMI

(where the latter will simplify from later results). From just the latter, we find

[∇(α, {∇β,∇γ)}] = 0 ⇒ R(αβγ)
δ − i1

2δ(α
δFβγ) = ∇(αRβγ)

I = 0

Using both constraints, we also have

[∇(α, {∇β),∇.
γ}] + [∇.

γ, {∇α,∇β}] = 0

⇒ [∇(α,∇β)
.
γ] = iRαβ

.
γ

.
δ∇.

δ
− 1

2Fαβ∇.
γ − i(∇.

γRαβ
I)MI

⇒ [∇α,∇β
.
γ] = −iCαβW .

γ + 1
2iRαβ

.
γ

.
δ∇.

δ
− 1

4
Fαβ∇.

γ − 1
2i(∇.

γRαβ
I)MI

for some operator W .
γ = W .

γ
A∇A +W .

γ
IMI . So far the exercise has been analogous

to the super Yang-Mills case (where the extra “i” in the definition of W is due to

our use of antihermitian generators, except for Y ). Now we impose the remaining

constraints, which can be combined conveniently as

0 = Tα,β .γ
β
.
δ = −iCαβW .

γ
β
.
δ ⇒ W .

α =W .
α
β∇β +W .

α

.
β∇.

β
+W .

α
IMI

Following again the steps for Yang-Mills, we analyze the next-higher-dimension

Jacobis, beginning with

0 = {∇(α, [∇β),∇γ
.
δ
]}+ [∇

γ
.
δ
, {∇α,∇β}] = iCγ(α{∇β),W .

δ
}+∆

γαβ
.
δ

∆
γαβ

.
δ

=1
2i(∇(αRβ)γ

.
δ

.
ε)∇.

ε − 1
4
(∇(αFβ)γ)∇.

δ
− 1

2i(∇(α∇.
δ
Rβ)γ

I)MI

+ 1
2Rγ(α

.
δ

.
ε∇β)

.
ε + 1

4
iFγ(α∇β)

.
δ
− 1

2i(∇.
δ
Rγ(αβ)

δ)∇δ − 1
4
(∇.

δ
Fγ(α)∇β)

+ (∇
γ
.
δ
Rαβ

I)MI −Rαβγ
δ∇δ

.
γ −Rαβ

.
δ

.
ε∇γ

.
ε

By inspection, or applying the previous Jacobis, we see

∆
(γαβ)

.
δ

= 0 ⇒ ∆
γαβ

.
δ

= Cγ(α∆β)
.
δ
, ∆

α
.
β

= −1
3
∆γ

γα
.
β

automatically, so the only new information comes from the trace of this Jacobi,

{∇α,W .
β
} = i∆

α
.
β

Evaluating {∇,W} in terms of its pieces, we find

Rαβ

.
γ
.
δ = Fαβ = 0, Rαβ

γδ = δγ(αδ
δ
β)B̄, W .

α

.
β = −B̄δ

.
β.
α



802 X. SUPERGRAVITY

W .
α = ∇ .

αB̄ +∇βW .
αβ, W .

α
βγ = −1

2∇
(βW .

α
γ)

∇αW .
β

= ∇αW .
β

.
γ
.
δ = 0, ∇αW .

β
γδ = −δ(γ

α (W .
β
δ) + 1

2i∇
δ) .
β
)B̄

where Wα is the Y part of Wα (= WαiY + ...).

Exercise XA2.1

Show that

{∇α,∇β} = B̄Mαβ, ∇[α∇β∇γ] = 0 ⇒ ∇α(∇2 + B̄) = −1
2B̄∇

βMβα

and thus∇2
+B gives a chiral superfield when acting on any superfield without

dotted indices.

For the other Jacobi of this dimension, we have

0 = [∇α
.
α, {∇β,∇.

γ}] + {∇β, [∇.
γ,∇α

.
α]}+ {∇.

γ, [∇β,∇α
.
α]}

= −i[∇α
.
α,∇β

.
γ]− i{∇β, C.

γ
.
αWα + 1

2(∇αB)M .
γ
.
α} − i{∇.

γ, CβαW .
α + 1

2(∇ .
αB̄)Mβα}

= −iC .
α
.
γ[fαβ − {∇β,Wα}+ 1

2(∇2
B̄)Mαβ]− h.c.

⇒ fαβ = 1
2{∇(α,Wβ)} − 1

2(∇2
B̄)Mαβ, {∇α,Wα}+ {∇

.
α
,W .

α} = 0

(Here “h.c.” means “hermitian conjugate” without the reordering, which would gen-

erate non-operator terms.)

Evaluating {∇,W} in terms of its pieces, and combining with the results of the

previous Jacobi, we obtain the final result:

{∇ .
α,∇.

β
} = BM .

α
.
β
, {∇α,∇.

β
} = −i∇

α
.
β

[∇ .
α,−i∇β

.
β
] = C.

β
.
α
Wβ − 1

2(∇βB)M .
α
.
β
, [−i∇α

.
α,−i∇β

.
β
] = C.

β
.
α
fαβ − h.c.

Wα = −B∇α −Gα

.
β∇.

β
+ 1

2(∇
.
βGα

.
γ)M .

β
.
γ

+ 1
2Wα

βγMγβ + iWαY + i1
6
W βMβα

fαβ = i1
2G(α

.
γ∇β)

.
γ − 1

2(∇(αB + i1
3
W(α)∇β) +Wαβ

γ∇γ − 1
2(∇(αGβ)

.
γ)∇.

γ

− (1
2∇

2B̄ +BB̄ + 1
12
i∇γWγ)Mαβ − i 1

16
[(∇(α

.
δG

γ)
.
δ
)Mβ

γ + α↔ β]

+ 1
2Wαβ

γδMδγ + 1
4
(∇(α∇

.
γGβ)

.
δ)M .

δ
.
γ

+ i1
2(∇(αWβ))Y

Wαβγδ = 1
4!
∇(αWβγδ)

The “reduced tensors” B,Ga,Wα,Wαβγ satisfy the “reduced Bianchi identities”

Ga = Ḡa, ∇ .
αB = ∇ .

αWα = ∇ .
αWαβγ = 0, ∇

.
αGα

.
α = ∇αB − iWα

∇αWαβγ − i1
3
∇(βWγ) = −i1

2∇(β

.
αGγ)

.
α, ∇αWα +∇

.
αW .

α = 0
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Note that B or Wα may vanish in certain gauges, for reasons to be explained in

subsection XA4.

Exercise XA2.2

In IXA4 we saw that integrals of total covariant derivatives vanished in curved

space by virtue of the identity Tab
b = 0. Show that these torsions satisfy the

superspace generalization

(−1)BTAB
B = 0

Exercise XA2.3

Using the expression for εabcd in terms of spinor indices from subsection IIA5,

show

Tbcd = Gaεabcd

Thus Ga is an axial vector.

Exercise XA2.4

By hermitian conjugation, find the commutators not written explicitly above,

and show the result is essentially the same as switching dotted and undotted

indices (and similarly for bars), except that Ga, Y , and Wα (and W
.
α
) get

extra minus signs. This illustrates CP invariance, and the fact that Ga is an

axial vector, while Y is a pseudoscalar (and similarly for Wα).

Exercise XA2.5

Derive the Bianchi identities in the absence of constraints, in terms of the

torsions and curvatures (as follow from the Jacobi identity):

∇[ATBC)
D − T[AB|

ETE|C)
D = R[ABC)

D

∇[ARBC)
I − T[AB|

ERE|C)
I = 0

Exercise XA2.6

Show that in 4-component notation we can write

Tαβ
c = −iγcαβ; Taβ

γ = γaβδG
δγ, Gαβ = −Gβα, ∇βG

βα = Wα

This gives another way to see the result of exercise XA2.2. Show that this

expression for Gαβ = (Ga, B, B̄) gives it an interpretation as an SO(3,3) 6-

vector in SL(4) notation (see subsection IC5).
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3. Compensators

Just as in ordinary gravity (see subsection IXA7), compensators for scale trans-

formations can be introduced, but for supergravity the compensator should be a

supersymmetric multiplet. The simplest choice is the chiral scalar superfield Φ con-

sidered earlier: Its complex “physical” scalar (scalar +i pseudoscalar) compensates

local scale (the real part) and U(1) (the imaginary part), its spinor compensates local

S-supersymmetry, and its auxiliary complex scalar appears as one of the auxiliary

fields of supergravity.

Compensators are much more important in supergravity than in ordinary gravity:

Almost any flat space action can be coupled to gravity by the minimal coupling

prescription — replacing derivatives with covariant ones, and throwing a factor of

e−1 in for the measure. In supergravity this is not the case: As we’ll see in section

XB, we have both integrals over all superspace, which use E−1, but also integrals

over chiral superspace (for integrating chiral superfields), which instead use Φ for the

measure. The minimal coupling procedure is then:

(1) Use Φ (and Φ̄) to make a flat-superspace action superconformally invariant,

(2) replace the flat derivatives dA with the curved ones ∇A, and

(3) throw in the measure factors appropriate for the integrals.

(The last two steps couple conformal supergravity to a globally conformally invariant

theory.)

Another compensator that is commonly used is the “tensor multiplet”. (This

is sometimes confused in the literature with the “(complex) linear multiplet”, an-

other version of the scalar multiplet with no gauge fields whatsoever.) Treated as a

matter multiplet, it has the same physical content as the scalar multiplet, but the

pseudoscalar is replaced with a second-rank antisymmetric tensor gauge field,

δBmn = ∂[mλn]

To make things simpler, let’s look at flat space. We first note that this tensor is

“dual” to a pseudoscalar in the sense of switching field equations and constraints of

the field strength (see exercises IIB2.1 and VIIIA7.2): For the free fields,

Fa = ∂aϕ ⇒ ∂[aFb] = 0, Ga = 1
2εabcd∂

bBcd ⇒ ∂aGa = 0

with the field equations following from “selfduality” under F ↔ G:

Fa = Ga ⇒ ∂aFa = ∂[aGb] = 0
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Since the theory of Bab must be described in terms of Ga alone (because of gauge

invariance), no renormalizable self-interactions are allowed; thus, this field is of little

interest in quantum field theory outside of supergravity. In terms of the scalar, the

fact that only the field strength Fa appears in the field equations means there is the

global symmetry

δϕ = ζ

for constant parameter ζ. This generalizes to the nonabelian symmetries of nonlin-

ear σ models, resulting in derivative interactions (again nonrenormalizable) but no

potentials.

Exercise XA3.1

Consider coupling the tensor field to Yang-Mills: To preserve the tensor’s own

gauge symmetry, this coupling must be nonminimal. To produce such a cou-

pling, we start with the scalar and duality transform. The coupling we choose

is another 4D analog to the 2D model we considered in exercise VIIIA7.2, re-

placing the pseudoscalar and total derivative 1
2ε
abFab with tr(1

8
εabcdFabFcd).

(In general dimensions, the dual to a scalar is a rank-D−2 antisymmetric

tensor.) We start with the Lagrangian

L = −1
4
φ φ+ λφ 1

16
tr(εabcdFabFcd)

for some coupling constant λ. Making use of the Chern-Simons form Babc of

subsection IIIC6 to write φ in this action only as ∂aφ, write a first-order form

of this action and perform a duality transformation to obtain

L′ = 1
24
H̃2, H̃abc = 1

2∂[aBbc] + λBabc

Find the Yang-Mills gauge transformation of Bab. (Hint: H̃ is gauge invari-

ant.)

The tensor multiplet is described by a chiral spinor gauge field

δφα = id̄2dαK (K = K̄)

Duality is then described in terms of the real scalar superfield strength (in the free

case)

F = φ+ φ̄ ⇒ d̄2dαF = 0, G = 1
2(dαφ

α + d̄ .
αφ̄

.
α) ⇒ d̄2G = 0

with the field equation

F = G
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(Fa appears at order θθ̄ in G, and Bab at order θ in φα.) Again the pseudoscalar has

a global symmetry: In terms of the superfield,

δφ = iζ

Now we return to curved space, covariantizing the above with respect to confor-

mal supergravity. We now identify the above global symmetry with the local axial

U(1) (R-)symmetry of supergravity. Thus, the superfield G does not compensate for

this symmetry; it remains as a symmetry in actions that use this compensator. In

particular, there are no
∫
d2θ terms in such theories, except those that are locally

superscale invariant (so the compensator decouples). The matter tensor multiplet

also differs from the scalar multiplet in that it has no auxiliary fields (except for the

auxiliary components of the gauge field).

4. Scale gauges

Since all the covariant derivatives are built up from the spinor part of the vielbein,

we define the local superscale transformations for the covariant derivatives by first

defining

E ′α = LEα

where L is a real, unconstrained superfield. The constraints then imply

∇′α = L∇α + 2(∇βL)Mβα + 6(∇αL)Y, ∇′.α = L∇ .
α + 2(∇

.
β
L)M .

β
.
α
− 6(∇ .

αL)Y

From the anticommutator we find

−i∇′α .
α =L2(−i)∇α

.
α + 4L(∇αL)∇ .

α + 4L(∇ .
αL)∇α

+ 1
2L
−2(∇α∇

.
β
L4)M .

β
.
α

+ 1
2L
−2(∇ .

α∇βL4)Mβα − 3
2
L−2([∇α,∇ .

α]L4)Y

Using the commutation relations, we then can show

B′ = L6(∇2 +B)L−4, W ′
α = L3[Wα − 12i(∇2 +B)∇α ln L]

G′α .
α = (2[∇α,∇ .

α] +Gα
.
α)L2, W ′

αβγ = L3Wαβγ

From the way they appear in the commutators we also have that

Y Ga = 0, Y Wα = 1
2Wα, Y Wαβγ = 1

2Wαβγ, Y B = B

From linearization, we see that B and Wα pick out exactly the two irreducible halves

of the real scalar superfield L: The “vector multiplet” inW ′
α and the “scalar multiplet”
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in B′. (Compare the vector multiplet field strength and chiral scalar gauge fixing for

the prepotential V as described in subsections IVC4 and VIB9.) This means we can

completely fix the superscale gauge by the choice

B = Wα = 0

as the generalization of the scale gauge in ordinary gravity that fixes the Ricci scalar

to vanish.

Exercise XA4.1

Derive the superscale transformations by use of the Bianchi identities:

a Use the commutation relations of the covariant derivatives (and the solution

to the Jacobi identities) to find all the transformations above. Show they

imply E ′ = L4E.

b An easier way is to use the reduced Bianchi identities: Determine the trans-

formations of the reduced field strengths, up to constants, using chirality,

dimensional analysis, etc., and then solve for the constants by plugging into

the reduced identities.

We then define the scale (and U(1)) transformations of the compensators:

Φ′ = L2Φ, Y Φ = 1
3
Φ; ∇ .

αΦ = 0

G′ = L4G, Y G = 0; (∇2 +B)G = 0, G = Ḡ

where the scale weights follow from the U(1) weights (vanishing for G by reality) by

consistency with the constraints they satisfy.

Exercise XA4.2

Show that a superfield can be chiral only if it has no dotted indices. Then

show the relation that any such superfield has between scale and U(1) weights.

All these transformations can be derived either by consistency with the con-

straints, or by using the solution of the constraints: In terms of the unconstrained

superfields that solve the constraints, the superscale transformation is trivial:

ψ′ = Lψ, N ′α
µ = Nα

µ, Ω′ = Ω

The net result, as for super Yang-Mills, is that all the superficial transformations of

the constrained covariant derivatives are completely replaced with the new invariances

that appear upon solving the constraints: K−1 and L eliminate ψ, Kαβ kills Nα
µ, and

KM reduces ΩM to its real part UM , which transforms only under ΛM .
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Exercise XA4.3

Rederive Aα as in subsection XA1, but in a general gauge, to find

iAα = EαT, eT = ψ2E(1 · e−
←
Ω )

Show this result gives a superscale transformation for Aα that agrees with the

result above. Show the explicit solution for Φ in terms of φ and T also gives

it a superscale transformation that agrees with the above.

Exercise XA4.4

Often it is easier to use the solution to the constraints than the Jacobi iden-

tities:

a Solve for FAB in terms of Aα, and use the solution for Aα from subsection

XA1, to derive

Wα = −i(∇2
+B)∇α(T + T̄ )

and use this to rederive the superscale transformation above. (Hint: Define

and use the chiral representation.)

b Find an explicit expression for B, and use it to rederive its superscale trans-

formation. (Hint: You will need to find Ωα
βγ first. Since B is a scalar, you

can choose the Lorenz gauge Nα
µ = δµα.)

In subsection XA1 we found that a convenient way to simultaneously fix Lorentz,

U(1), and scale gauges was to choose Eα = Êα. (However, the corresponding com-

ponent invariances reappeared in the chiral gauge invariances.) Compensators allow

more freedom for gauge fixing: For example, we can fix the gauge B = Wα = 0 as

described above, or we can fix to 1 the compensator or a physical matter multiplet

(string gauge, as for gravity in subsection IXB5): The possibility of gauges such as

Φ = 1 or G = 1 depends on the existence in the action of such fields, and not on the

details of how they appear (as long as the gauge choice is consistent with the allowed

vacuum values). In particular, it does not depend on the signs of their kinetic terms,

which is the only thing that determines what is physical and what is a compensator.

Note that either Φ = 1 or G = 1 completely fixes the superscale gauge, in spite

of the constraints on these superfields. (E.g, Φ = Φ′ = 1 ⇒ L = 1.) This is due to

the appearance of the U(1) connection: For example, before fixing the scale and U(1)

gauges the chirality condition on Φ, rather than constraining Φ, actually determines

the spinor U(1) connection Aα:

∇αΦ̄ = (Eα − i1
3
Aα)Φ̄ = 0 ⇒ Aα = −3iEα ln Φ̄
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(But the chirality of the ratio of two chiral superfields with the same weights really

fixes it to be chiral; in other words, chirality of scalars makes all but one truly

chiral, since the U(1) connection can be determined only once.) As a result, the

scale (ΦΦ̄ = 1) and U(1) (Φ/Φ̄ = 1) gauge choice Φ = 1 determines Wα:

Φ = 1 ⇒ Aα = 0 ⇒ Wα = 0

Similarly,

G = 1 ⇒ 0 = (∇2 +B)G = B

Conversely, we see that whenever one of the two field strengths B and Wα is elim-

inated by a superscale(/U(1)) gauge choice in terms of one of the two compensators

Φ and G, the other field strength can be made superscale invariant: If we introduce

the compensator by a superscale transformation (as for gravity in subsection IXA7),

substituting either

L−4 → Φ̄Φ or G

in the above transformation laws, we find

B̃ = (Φ̄Φ)−3/2(∇2
+B)Φ̄Φ = Φ−1/2Φ̄−3/2(∇2

+B)Φ̄

W̃α = G−3/4[Wα + 3i(∇2
+B)∇αln G]

as locally superscale invariant, where using Φ̄Φ for W̃α or G for B̃ yields zero. We

can therefore interpret gauging away the compensators as gauging them into the field

strengths: We have a choice of either

Φ = 1 ⇒ Wα = 0, B̃ = B

G = 1 ⇒ B = 0, W̃α = Wα

This is analogous to Stückelberg gauges (and their nonlinear generalizations): One of

these two tensors (gauge fields with respect to superscale) “eats” the compensator.

However, it differs from Stückelberg in that a second “gauge field” is completely

gauged away.

In fact, we’ll see in section XB that the pure supergravity actions constructed

using either of these compensators gives the corresponding field strength as its field

equation:
δ

δΦ
⇒ B̃ = 0

δ

δΦα
⇒ W̃α = 0
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Thus, either compensator can be used to eliminate both B and Wα, one as a field

equation and the other as a gauge choice. This result is already clear at this point

from dimensional analysis and chirality; similarly, we must have

δ

δUm
⇒ G̃a = 0

where G̃a is the result of applying a superscale transformation to Ga with whichever

of the two compensators is being used in the action. This leaves Wαβγ as the on-shell

field strength. The analogy to ordinary gravity is

(R,Rab − 1
2ηabR,Wabcd)↔ (B/Wα, Ga,Wαβγ)

Although the Ricci tensor must appear in Ga, superscale invariance allows the

choice of gauges where the θ = 0 component is arbitrary: From the above we find the

linearized transformations

δGα
.
α ≈ 4[∇α,∇ .

α]L, δAα .
α ≈ −6[∇α,∇ .

α]L

(For purposes of evaluating at θ = 0 we can neglect Aα| in δAa.) Thus, this axial vec-

tor component field can be moved around as convenient for component expansions. In

G̃a, they appear only in their invariant combination, Ga+ 2
3
Aa in this approximation.

In nonsupersymmetric gauges , we can even gauge Ga| = 0.

Exercise XA4.5

Use the Bianchi identities instead of explicit superscale to track down the

axial vector:

a Use the relation of Wαβγ (which is scale covariant) to Wα (the field strength

for AA) and Ga to show that it is just this combination Ga+ 2
3
Aa that appears

in Wαβγ (as its curl, for U(1) invariance).

b Show that

G = 1 ⇒ B = 0 ⇒ ∇aGa = 0

Thus, in this gauge the axial vector gauge field Aa has been gauged out of

Ga| (although its field strength may appear at higher order: the gauge G = 1

doesn’t fix U(1)). What replaces it? (Hint: What’s in G?)
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Now that we understand the structure of superfields in curved superspace, we an-

alyze various supergravity theories through their actions. We will use several methods

for finding and evaluating supergravity actions. These actions are significantly more

complicated than those we have encountered previously, and it is difficult to see all

their features simultaneously, so for any particular application we use the method

which best simplifies the property we most need:

(1) Superspace methods are the best for finding general actions and their symmetry

properties, manifesting supersymmetry, using globally supersymmetric gauges,

and performing quantum calculations.

(2) Component methods are useful for comparing actions and other properties to

nonsupersymmetric theories. Such approaches sometimes make some use of su-

perspace, but not superspace integration.

(3) Compensators are useful in conjunction with either of these methods, and can

extract many important features and terms in the action with little more than

the results of global supersymmetry. They reveal useful broken symmetries, and

are the simplest way to analyze the “superhiggs effect” (Higgs for local supersym-

metry).

1. Integration

The action for supergravity follows from dimensional analysis: Since the usual

Einstein-Hilbert Lagrangian has dimension +2, as does
∫
d4θ, the superspace La-

grangian must be dimensionless. The only covariant possibility in terms of the po-

tentials (EA
M and ΩA

I) is thus

SSG = 3

∫
dx d4θ E−1

including a normalization factor that will prove convenient later. Introducing the

compensator and local scale invariance must also make the usual action for super-

gravity look like the kinetic term for the compensator multiplet, i.e.,

SSG,c = 3

∫
dx d4θ E−1Φ̄Φ

(For simplicity we will restrict ourselves for the most part to the simplest compensator,

the chiral scalar.) The previous form then corresponds to the scale gauge Φ̄Φ = 1;

often the scale + U(1) gauge ψ = 1 is more convenient.
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There should also be a supersymmetrization of the cosmological term. This might

seem difficult, requiring explicit prepotentials. However, we know from our study

of de Sitter space that the cosmological term is basically a statement about the

conformal compensator. Therefore, the cosmological term for supergravity, in terms

of the superconformal compensator Φ, should be the supersymmetrization of the

corresponding term in ordinary gravity, a dimensionless self-interaction for a scalar.

The solution of the chirality condition can be written as

Y Φ3 = Φ3 ⇒ Φ3 = φ3e
←
Ω̄E

in the gauge ψ = 1. The result for the cosmological term is then

Sscosmo =

∫
dx d2θ E−1Φ3 + h.c. =

∫
dx d2θ φ3 + h.c.

independent of scale or U(1) gauge: As we saw in subsection XA1, this expression is

invariant under Λ transformations, and the integrand itself is invariant under K and

L transformations.

Exercise XB1.1

Although this final result for the cosmological term in terms of φ is locally

superscale invariant, the derivation started in the gauge ψ = 1. Generalize

the derivation, and the result in terms of Φ, to arbitrary gauges (see exercise

XA4.3).

A chiral expression for SSG can be found by similar methods:

SSG = 3

∫
dx d2θ E−1B = 3

∫
dx d2θ̄ E−1B̄

Thus, as for super Yang-Mills, the action can be expressed as a real, chiral, or an-

tichiral integral. With the compensator,

SSG = 3

∫
dx d2θ E−1Φ(∇2

+B)Φ̄ = 3

∫
dx d2θ̄ E−1Φ̄(∇2 + B̄)Φ

or, more generally,∫
dx d4θ E−1L =

∫
dx d2θ E−1(∇2

+B)L =

∫
dx d2θ̄ E−1(∇2 + B̄)L

which is just the naive covariantization of the flat-space result (at least in the gauge

ψ = 1: see exercise XB1.1). Clearly this method generalizes to coupling to other

multiplets, and allows both
∫
d2θ and

∫
d4θ integrals to be generalized to curved

superspace. In fact, the analysis of the compensator is much simpler than that of the

conformal supergravity that couples to it to produce ordinary supergravity: Just as
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in ordinary gravity, where use of just the compensator allowed us to study certain

interesting solutions in gravity, namely de Sitter space and cosmology, some properties

of supergravity can be analyzed in terms of just the compensator.

A simple expression (as simple as the super Yang-Mills case) can be written for

the supergravity action in terms of unconstrained superfields. We first give a first-

order action, analogous to the one for Yang-Mills (subsection IVC5): In that case the

action was in terms of V and Aa; here it is in terms of Um and Em
a. Using just the

constraints solved in subsection XA1, we write the action as

SSG,1 = 3

∫
dx d4θ E−1Φ̄Φ(1− 1

4
Tα, .α

α
.
α)

in terms of the torsion T
α
.
β
c. (Note the similarity to the Yang-Mills case, replacing the

Chern-Simons form with the same component of the torsion.) We already evaluated

everything except this torsion, which is also easily found in the gauge ψ = 1, Nα
µ = δµα,

Ωµ = Ω
.
µ = 0:

SSG,1 = 3

∫
dx d4θ det(Em

a)Φ̄Φ(1− 1
4
Êa

mEm
a)

Φ = [det(Em
a)]−1/3(1 · e

←
Ω̄ )1/3eΩ̄φ, {Êα, ̂̄E .

α} = −iÊα .
α
m∂m

In the chiral representation this simplifies to

SSG,1 = 3

∫
dx d4θ [det(Em

a)]1/3(1 · e−
←
U )1/3φ(e−U φ̄)(1− 1

4
Em

α
.
αi∂̄ .

αÊα
m)

Exercise XB1.2

Find the algebraic field equation for Em
a. Use this to eliminate it from the

action, yielding expressions for Em
a, E, and the (second-order) action in

terms of Um only.

The expansion of the superspace action in terms of unconstrained superfields is

needed for supergraphs, the most efficient way to do quantum calculations. We will

not consider quantization here; the methods are similar to those described in subsec-

tions VIB5, 9-10, and C5 for super Yang-Mills. In particular, one uses background

field methods: For example, as for super Yang-Mills,

eΩ → eΩBeΩQ ⇒ Êα → e−H ÊαeH , eH = eΩQeΩ̄Q

The end result is that the expansion is about background-covariant derivatives DA,

e.g.,

∇̂α = e−HDαeH , ∇α = e−H(ψDα +Ωα
IMI)e

H
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etc. However, DA satisfy the same constraints as the full covariant derivatives: For

example, they have nonvanishing torsion T
α
.
β
c = −iδγαδ

.
γ.
β
. This differs from the ex-

pansion implied above in Um about partial derivatives, which anticommute without

torsion: For a perturbation expansion useful for quantum calculations, one must ex-

pand in hab about 〈eam〉, rather than in ea
m itself; thus (at least) the vacuum value

〈U〉 must be separated from U .

2. Ectoplasm

Although all supersymmetric theories can be analyzed directly in superspace (in-

cluding classical solutions, effective potentials, Feynman graphs, etc.), for comparison

to nonsupersymmetric theories it is necessary to expand superfields in components.

Since all fundamental theories are described by actions, it is sufficient to give a pre-

scription for evaluating any action in terms of component fields, as in subsection IVC2

for global supersymmetry. In locally supersymmetric theories, the vielbein needs to

be expanded in terms of the prepotentials for supergraphs. We can also find compo-

nent actions by a straightforward Taylor expansion in θ of the prepotentials in the

superspace action. However, for component expansions of classical actions, one can

get by more simply by applying Bianchi identities to the covariant derivatives and

differential forms (antisymmetric tensors). It is unnecessary to know even the explicit

form of the measure in terms of the vielbein or prepotentials.

The fundamental idea is to think of the Lagrangian not as a scalar times a mea-

sure, but more “geometrically” as an antisymmetric tensor. Although this approach

does not work for the usual superspace Lagrangians because of the peculiarities of

fermionic integration, it can be applied to component Lagrangians integrated over

4D spacetime, treated as the bosonic subspace of superspace. We thus write the

component action as

S = 1
4!

∫
dxmdxndxpdxq Lmnpq(x, θ)

where LMNPQ is a graded antisymmetric superfield. Of course, the action should be

independent of θ, even though we have integrated over only x. This is equivalent to

requiring that the integral should be independent of the choice of 4D hypersurface in

superspace. We are familiar with a similar requirement for conserved charges, which

are defined as integrals over 3D hypersurfaces: Treating the conserved current in

terms of the 3-form dual to the vector,

Jmnp =
√
−gεmnpqJq ⇒ Q = 1

3!

∫
dxmdxndxpJmnp
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the dual to the usual conservation law as vanishing (covariant) divergence of the

vector is vanishing curl of the 3-form:

d

dt
Q = 0 ⇒ ∂[mJnpq] = 0

An important point is that neither the definition of the charge nor the conservation

law requires a metric, since integration in general does not. We thus require for our

supersymmetric action

∂

∂θ
S = 0 ⇒ ∂[MLNPQR) = 0, δLMNPQ = 1

3!
∂[MλNPQ)

where the gauge invariance allows us to drop terms in the Lagrangian that are total

derivatives (surface terms). Note that both L and λ are assumed to be local func-

tions of the fields and their (finite-order) derivatives. (As a result, this is not the

usual “cohomology”, where both would be allowed to be arbitrary functions of the

coordinates.)

Converting the curl-free condition to flat indices (see subsection IVC5 for the

Chern-Simons superform),

1
4!
∇[ALBCDE)− 1

2!3!
T[AB|

FLF |CDE) = 0, δLABCD = 1
3!
∇[AλBCD)− 1

(2!)2
T[AB|

EλE|CD)

The plan is then to find LABCD, in terms of which the action can be written as

S =

∫
dx (− 1

4!
)εmnpqEq

DEp
CEn

BEm
ALABCD

where Em
A is exactly the nontrivial part of the inverse vielbein EM

A:

Em
A = (em

a, ψm
α)

namely the inverse vierbein and the gravitino. (If we also write ψm
α = em

aψa
α, we

can collect all em
a factors into a factor of e−1 using the ε tensor.)

The next step is to explicitly solve the curl-free condition on the 4-form in terms

of the usual scalar superspace Lagrangian. (An alternative is to solve the Bianchis for

the field strength of the 3-form gauge field, which is also a 4-form.) The procedure

is the same as that used to solve the Bianchi identities for covariant derivatives (in

subsection XA2): We start with the lowest-dimension equations and work up. The

equations that include the constant (vacuum/flat-space) part of the torsion can be

solved algebraically, the rest give differential constraints. Of course, we will need to

use the results of subsection XA2 for the torsions and their constraints. The result is

Lαβcd = εα
.
α
,β

.
α,cdL̄, Lαbcd = iεα .

α,bcd∇
.
αL̄, Labcd = εabcd[(∇

2
+ 3B)L̄+ h.c.]
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and their complex conjugates, the rest vanishing, where L is the usual chiral super-

space Lagrangian (superpotential):

∇ .
αL = 0

(We use the shorthand notation a = (α
.
α), etc.)

The result is thus the component expansion of the usual curved superspace action

S =

∫
dx d2θ E−1L+ h.c.

Using the Bianchi identities of the covariant derivatives one can also covariantize the

usual solution to the chirality condition:

L = (∇2
+B)L

which allows us to identify the action as

S =

∫
dx d4θ E−1(L + L̄)

so L can be taken real without loss of generality for general d4θ integrals. On the

other hand, for supergravity we can take

LSG = 3, L̄SG = 0 ⇒ LSG = 3B, L̄SG = 0

or vice versa, and the curvature appears in terms of Rαβ
αβ and not R̄ .

α
.
β

.
α
.
β (like the

corresponding fαβ without f̄ .
α
.
β

for Yang-Mills), with half as many terms to collect

(for the same final result). In general, we thus have an expression for S in terms of

Em
A and the components of LABCD, and for the latter in terms of curvatures and

covariant derivatives of L, which can be evaluated by the same methods as in flat

space (except that the commutation relations of the covariant derivatives are more

complicated).

Components of a superfield are again defined by evaluating its covariant deriva-

tives at θ = 0. However, as in the case of global supersymmetry, the value of θ is

arbitrary, since the result for the action is θ independent: We therefore will gener-

ally drop the “ | ” in component expansions of actions; any superfield then implicitly

refers to the corresponding component. This θ independence also means that it is

not necessary to make any gauge choices: These methods automatically express the

action in terms of just the component fields that cannot be completely gauged away.

(For example, Eα
m| never appears.)

Exercise XB2.1

Collect all the above results:
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a Find the complete component expression for the most general chiral (
∫
d2θ)

action in terms of covariant derivatives of the superpotential, and the super-

gravity fields.

b Do the same for a real (
∫
d4θ) action.

Exercise XB2.2

Evaluate the above actions for massive φ3 theory (for a chiral matter field φ)

in terms of the components of φ.

Exercise XB2.3

Do the same for super Yang-Mills:

a Solve the Bianchi identities for super Yang-Mills in curved superspace.

b Use this result to evaluate the component expansion of its action.

3. Component transformations

We saw in the previous subsection that in component expansions the supergravity

gauge fields naturally appear as Em
A, since by definition we restrict to the bosonic

submanifold. Similar remarks apply to the component form of their supercoordinate

transformations (i.e., local supersymmetry), and the related component expansion

of their field strengths: In subsection IXB4, we saw that coordinate transformations

(as applied to solving the radial gauge condition) were simpler for EM
A because the

derivative term on the parameter was just ∂MK
A.

We therefore begin by rewriting the gauge (coordinate) transformations in terms

of Em
A. As for gravity (see subsections IXA2 and IXB4), we can choose to make the

transformation laws more manifestly covariant by writing the generators in terms of

covariant derivatives. Then, as for gravity,

K = KA∇A +KIMI , δ∇A = [K,∇A] ⇒

δEM
A = ∇MK

A−EMBKCTCB
A+KIMIEM

A, δΩM
I = −∇MK

I+EM
BKCRCB

I

δ(TAB
C , RAB

I) = K(TAB
C , RAB

I)

using (δEA
M)EM

B = −EAMδEMB. Here ∇M = EM
A∇A = ∂M + ΩM

IMI , so these

transformations on Em
A and Ωm

A contain only bosonic derivatives ∂m, other than

those implicit in the torsions and curvatures. (Similar remarks apply to only Em
A

and Ωm
I appearing on the right.) Since the component expansion is an expansion in

θ, it is really only supersymmetry Kα = εα which is no longer manifest; specializing
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to that, the transformations on the physical gauge fields become, using the results of

subsection XA2 for the torsions,

δem
α
.
α = −i(εαψ̄m

.
α + ε̄

.
αψm

α), δψm
α = ∇mε

α + iem
β
.
β(εβG

α .
β
− ε̄.

β
δαβB)

We have not yet determined the solution for the Lorentz connection ωm
ab and the

transformation laws for the auxiliary fields. We will also need the relation between

the usual curvature and the components of the superfield strengths. All of these can

be found by use of the identities (see subsection IXA2):

−EnCEmBTBCA = −TmnA = ∂[mEn]
A + E[m

BΩn]B
A

En
DEm

CRCD
ab = Rmn

ab = ∂[mΩn]
ab +Ω[m

acΩn]c
b

The application of these identities is similar to that for expansion of the action in

the previous section: The separation of the factors of Em
A into bosonic and fermionic

parts yields an expansion in powers of the gravitino field. For the torsion case where

the index A = a we solve for ωmab in terms of the torsions (auxiliary fields and

constants) and vielbein; for the torsion case A = α we solve for Tab
γ, used for the

transformation law of the auxiliary fields, and for the curvature case we solve for

Rab
cd, used in the component expansion of the action, in terms of these auxiliaries,

the vielbein, and the just-determined connection. The U(1) connection Am needs no

solution: It is pure (superscale) gauge, and will cancel in actions (after perhaps an

appropriate redefinition of Ga). For these manipulations we use the relations that

TAB
C and RAB

cd have to B, Ga, Wα, Wαβγ, and their derivatives (as expressed by the

solution to the Bianchi identities given in subsection XA2). The solution is

ωmbc = em
a[
◦
ωabc − 1

2(T̂bca − T̂a[bc])], T̂ab
c ≡ ea

meb
nTmn

c = εab
cdGd + iψ[a

γψ̄b]
.
γ

Tab
γ = −eamebn∇[mψn]

γ + i(ψaβG
γ .
β
− ψ̄

a
.
β
δγβB − a↔ b) ≡ Cαβt .α

.
β
γ + C .

α
.
β
tαβ

γ

δB = −2
3
εαtαβ

β, δGα
.
α = −εβ(tβα .

α + 1
3
Cβαt.γ

.
β

.
β) + h.c.

Rab
γδ = ea

meb
nRmn

γδ + B̄ψa
(γψb

δ)

− 2i[ψa
ε(Cβεt

γδ .
β

+ 1
3
δγ(βδ

β
ε)t

.
β
.
ε

.
ε)− ψ̄a

.
β 1

6
t(β

γδ) − a↔ b]

where “
◦

” refers to the usual expression for pure gravity, ψa
β ≡ ea

mψm
β, and we

have chosen the superscale gauge Wα = 0 for simplicity.

Exercise XB3.1

Find the extra terms for Wα 6= 0.
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4. Component approach

We can now take the superspace action of subsection XB1, as expanded in com-

ponents by the ectoplasm method of subsection XB2, and substitute the component

expansions of the field strengths found in subsection XB3, to find the component

action

LSG = LG + Lψ + e−1La

LG = −1
4
e−1R, Lψ = εmnpqψ̄m .

α
1
2{en

α
.
α,∇p}ψqα, La = −3

8
(Ga)

2 + 3B̄B

(Note the signs are again consistent with Ga and B, B̄ forming a 6-vector of SO(3,3),

though not in the same way as in exercise XA2.6.) Here ∇ and LG are the usual

covariant derivative and Einstein-Hilbert action of general relativity in terms of e

and ω, but ω is slightly different from any of the connections used previously (see

exercise XB4.1 below). It also differs from the ω given above in that we have explicitly

extracted the Ga piece (which is the sole source of ω in the ectoplasm approach). An

alternative to ectoplasm to determine ω is to use a first-order formalism: Rather

than imposing the usual torsion constraint, we can leave the Lorentz connection as

an independent field in R and in the ∇ in Lψ. Eliminating the Lorentz connection

by its field equation yields a modified torsion constraint, and produces ψ4 terms in

the action. We have written Lψ in a form manifestly symmetric with respect to

integration by parts. (Alternatively, we can write ψ̄e∇ψ − ψe∇ψ̄.)

As an alternative to deriving the component action from the simpler superspace

expression, we can postulate the component action directly. In the component ap-

proach writing the action in components is more direct than the superspace approach

by definition, but proving supersymmetry invariance is less so. This is not so true

when coupling to matter, where writing component actions can also be as compli-

cated as deriving them from superspace, so here we consider the simplest case, pure

supergravity. We thus begin by postulating LSG = LG+Lψ; the first term is obvious,

while the second follows from minimal coupling for the free gravitino action, which can

be derived easily by many methods (see, e.g., subsection XIIA5 below). We ignore

the auxiliary fields, which are necessary for off-shell closure of the supersymmetry

algebra, but not for supersymmetry invariance of the action.

We write the action for gravity in a form that more resembles the gravitino action

(see exercise IXA5.5):

LG = −1
4
e−1R = 1

16
εmnpqεabcdem

aen
bRpq

cd = 1
8
εmnpqem

aen
bR̃pqab

= i1
8
εmnpqem

α
.
α(R̄np

.
α

.
βe

qα
.
β
−Rnpα

βeqβ .
α)
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where we have switched to spinor notation for the curvature (see subsection IXA1) and

used duality in both vector and spinor notation (see subsection IIA7). (Alternatively,

we can regard this as the definition of the gravity action.) We then have for the

variation of this part of the action (after some integration by parts)

δLG = i1
4
εmnpqem

α
.
α{[R̄np

.
α

.
βδe

qα
.
β
−Rnpα

βδeqβ .
α]− [(δω̄n .

α

.
β)T

pqα
.
β
− (δωnα

β)Tpqβ .
α]}

where we have used (see exercise IIIC1.2)

δRmn
I = ∇[mδωn]

I ,

∫
dx ∇mV

m =

∫
dx ∂mV

m = 0

Next, we pick the obvious transformation law for the gravitino field as the gauge

field of supersymmetry:

δψm
α = ∇mε

α

The transformation laws for e and ω will be derived as a by-product of the invariance

proof, as will the explicit expression for ω in terms of e and ψ. Substituting this

expression for δψ into Lψ,

δLψ = εmnpq[εα∇m
1
2{en

α
.
α,∇p}ψ̄q .α − ε̄ .α∇m

1
2{en

α
.
α,∇p}ψqα

+ 1
2 ψ̄m

.
α(δen

α
.
α)∇pψqα − 1

2ψmα(δen
α
.
α)∇pψ̄q .α

+ 1
2 ψ̄m

.
αen

α
.
α(δωpα

β)ψqβ − 1
2ψmαen

α
.
α(δω̄p .α

.
β)ψ̄

q
.
β
]

where we have integrated by parts to free the supersymmetry parameters of deriva-

tives. We then use the antisymmetrization on all curved indices to collect the resulting

terms into torsion and curvature as

∇{e,∇} = {e,∇∇}+ (∇e)∇ = 1
2{e, R} −

1
2T∇

The curvature terms then cancel those from δLG, if we choose for δe in δLG the

transformation law

δem
α
.
α = −i(εαψ̄m

.
α + ε̄

.
αψm

α)

Then we also substitute this expression for δe in δLψ, and note that half those terms

immediately drop out, since

ψ[m
αψn]α = 0

by antisymmetry. The remaining terms from both LG and Lψ then can be collected

as

δLSG = −1
8
εmnpqT̃mn

α
.
α∆pqα

.
α

T̃mn
α
.
α ≡ Tmn

α
.
α − iψ̄[m

.
αψn]

α
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∆pqα
.
α ≡ i(δω̄[p

.
α

.
β)e

q]α
.
β
− i(δω[pα

β)eq]β .
α + εα∇[pψ̄q] .α − ε̄ .α∇[pψq]α

We now note that the former factor in δLSG vanishes by virtue of the equation of

motion from varying the connection: Rather than vanishing, the torsion now satisfies

second− order : T̃mn
α
.
α = 0

We can regard T̃ as the “supersymmetrized torsion”; this is equivalent on shell to the

result we found in the previous subsection from superspace. We can therefore quit

now, since in a second-order formalism the torsion (and thus the Lorentz connection)

would satisfy this equation even off shell. (This approach, using the second-order

formalism but not bothering to substitute the supersymmetry variation of the con-

nection, is called the “1.5-order formalism”.) On the other hand, we can just as easily

recognize that in the first-order formalism cancellation of δLSG is also guaranteed by

allowing vanishing of the latter factor to define the supersymmetry variation of the

(independent) connection:

first− order : ∆pqα
.
α = 0

Thus, use of the first-order formalism requires no more work than 1.5-order (contrary

to remarks in the literature), which is really the same as second-order, and provides

the bonus of yielding the transformation law for ω. However, it is useful to note that

not all quantities should have their longer forms substituted at the beginning of a

calculation (just as we learned in high-school algebra not to plug in numbers till the

end).

Exercise XB4.1

Let’s complete this calculation to the bitter end, finding all the properties of

the connection:

a Solve the torsion constraint for ω (see subsection IXA3).

b Find the transformation law for ω that follows from cancellation of the above

terms off shell (i.e., without imposing the torsion constraint).

c Show the above two results are consistent (modulo terms with ψ field equa-

tions, which can be canceled by contributions from auxiliary fields) by plug-

ging the expressions for δe and δψ into the variation of the result for part a

and comparing with the result for part b.

d Compare these results with the connection found in the previous subsection.

How does the appearance of Ga affect the transformation law?
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5. Duality

Although antisymmetric tensor gauge fields can be avoided in general, they tend

to turn up in string theory, so we now look at them a little more generally, examining

their actions and how they relate to those for scalars. In particular, we note that

a sensible action for such a tensor alone cannot be constructed that is conformally

invariant: From the same analysis as for electromagnetism or Yang-Mills (subsection

IXA7), we see that (Fa)
2 does not give a scale-invariant action in four dimensions.

Thus, such a field is not suitable as a compensator for pure gravity. However, in

supergravity the tensor multiplet (see subsection XA3) also has an ordinary scalar,

and an appropriate power of it can make the tensor’s action conformal. Therefore,

we now examine general duality transformations for the supersymmetric case, which

is more relevant for understanding its use in gravity. We will consider explicitly a

flat superspace background for simplicity, but generalization to curved superspace

by covariantization is straightforward, replacing flat superspace derivatives with (su-

perconformal) covariant derivatives, introducing supergravity field strengths where

necessary (in this case, just d̄2 → ∇2
+ B for chirality), and using the covariant

integration measures.

Duality transformations can be performed directly in the action by use of first-

order formulations. Starting with the general tensor multiplet action

Stm =

∫
dx d4θ K(G)

where K is some function and G = dαφα + h.c., we write this in first-order form as

S ′tm =

∫
dx d4θ [K̃(V ) + V G]

where V is an unconstrained real superfield and K̃ is the Legendre transform of K:

For this action to reduce to the previous upon applying the algebraic field equation

of V , we must have

[K̃(V ) + V G]| ∂K̃(V )
∂V

=−G
= K(G)

The duality transformation is then performed by varying φα instead of V in S ′G:

Remembering that φα is chiral, so

δ

∫
d4x d4θ V G = 1

2

∫
d4x d2θ (δφα)d̄2dαV + h.c.

we solve the condition on V as

d̄2dαV = 0 ⇒ V = φ+ φ̄
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since thinking of V as the prepotential for a vector multiplet says that it is pure

gauge. The dualized action is then

Sφ =

∫
dx d4θ K̃(φ+ φ̄)

We can also reverse the procedure through another first-order action

S ′φ =

∫
dx d4θ [K(V )− V (φ+ φ̄)]

where in this case varying with respect to φ implies

d̄2V = 0 ⇒ V = G

while varying with respect to V gives the inverse Legendre transform

[K(V )− V (φ+ φ̄)]| ∂K(V )
∂V

=φ+φ̄
= K̃(φ+ φ̄)

The simplest case is the Lagrangian 1
2G

2: We then find

K(V ) = 1
2V

2 ⇔ K̃(V ) = −1
2V

2

so the duality is

Ltm = 1
2G

2 ⇔ Lφ = −1
2(φ+ φ̄)2

In flat space, this gives the usual free result Lφ = −φ̄φ, but in curved space the

−1
2φ

2 +h.c. part does not vanish because E−1 is not chiral. Consequently, this action

is not the conformal one (as we already knew from the component argument above).

However, the conformal one is easy to find by starting with −φ̄φ: Making the field

redefinition φ→ eφ expresses the action in terms of φ+ φ̄. Legendre transforming,

K̃(V ) = −eV ⇔ K(V ) = V (ln V − 1)

so the duality is

Lφ = −eφ+φ̄ ⇔ Ltm = G(ln G− 1)

These two conformal actions for matter, when coupled to conformal supergravity,

become the two “minimal” actions for supergravity, when the overall sign is changed

to make the matter fields into compensators: The version with φ as the compensator

is called “old minimal”, while that with φα is called “new minimal”. They differ only

off-shell, in their choice of auxiliary fields. Note that the field equations for the two

conformal multiplets,

d̄2Φ̄ = 0 (Φ ≡ eφ), d̄2dαln G = 0
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reproduce the compensator part of the supergravity field equations B̃ = 0 and W̃α = 0

described in subsection XA4. Again, the full expressions follow from the usual su-

pergravitational and superscale invariances, which were used to find B̃ and W̃α; the

compensator dependence is enough to identify them as the appropriate covariantiza-

tions.

Exercise XB5.1

We saw in subsection IVC5 for the Chern-Simons form, or XB2 for ectoplasmic

integrals, that differential forms can be defined in superspace. Do the same

for the tensor multiplet:

a By generalizing the bosonic case to superspace with curved indices, and then

“flattening” the indices (as for the Chern-Simons superform), show that the

super 2-form BAB with field strength HABC and gauge parameter λA is de-

scribed by

δBAB = ∇[AλB) − TABCλC , HABC = 1
2∇[ABBC) − 1

2T[AB|
DBD|C)

(Hint: Show that replacing EA → ∇A and CAB
C → TAB

C yields only cancel-

ing connection terms.)

b Show that the torsions given in subsection XA2 satisfy∫
dx d4θ E−1Hα,

.
α,
α
.
α = 0

Note that this also implies the gauge invariance of the Chern-Simons form of

the super Yang-Mills action in curved superspace.

c Show that the constraints

Hαβγ = Hαβ
.
γ = Hαβc = 0, H

α,
.
β,γ

.
γ

= −iCαγC.
β
.
γ
G

(and complex conjugates) can be solved by

Bαβ = B
α
.
β

= 0, B .
α,β

.
β

= −iC .
α
.
β
φβ; ∇ .

αφβ = 0

Bab = C .
α
.
β
bαβ + Cαβ b̄ .α

.
β
, bαβ = 1

2∇(αφβ); G = 1
2(∇αφ

α +∇ .
αφ̄

.
α)

Relate the results for the gauge fields BAB to those for the Yang-Mills field

strengths FAB (subsection IVC3).

d Supersymmetrize the construction of exercise XA3.1: Show one can define a

field strength

H̃ABC = HABC +BABC
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using the Chern-Simons superform BABC .

The supergravity component action with the tensor multiplet compensator differs

from the one of the previous subsection in that B and the longitudinal part of G have

been replaced by the gauge field Bmn:

La → 1
2ε
mnpqGm∂nBpq

which is the only possibility that preserves the gauge invariances of both G and B

while leaving them both auxiliary. (Their field equations are that their field strengths

vanish.)

6. Superhiggs

Supergravity affects spontaneous supersymmetry breaking in a simple way: From

the discussion of the immediately preceding subsections, we know that supergravity

can be described more simply as conformal supergravity coupled to a compensator.

Simple (N=1) conformal supergravity contains no scalars: It consists of only confor-

mal gravity (the traceless part of the metric), the conformal (traceless) part of the

gravitino field, and an auxiliary gauge vector. Since symmetry breaking involves giv-

ing vacuum values to only scalars, we can replace supergravity by just its compensator

for these purposes.

For a general analysis, consider a kinetic term

SK =

∫
dx d4θ 3φ̄φe−K(χi,χ̄i)/3

(The exponential form will prove convenient for later component analysis.) This is

the most general kinetic term with the usual number of spacetime derivatives: Any

term of the form f(φ, φ̄, χi, χ̄i) can be rewritten in this form after appropriate field

redefinitions. In particular, if we start with fields with arbitrary Weyl scale weight,

then this form follows after rescaling fields so only φ carries scale weight, since all

terms in the Lagrangian must have the same scale weight, fixed by (super)conformal

invariance. φ is then the only field to carry U(1) weight, which is proportional to

scale weight by superconformal invariance. Then φ appears only as φ̄φ, while K is an

arbitrary function of χi and χ̄i. The first step in evaluating this action in components

is to simply ignore conformal supergravity altogether, and evaluate this action as is,

in terms of matter and compensator multiplets, by the methods we have considered

previously for evaluating θ integration. The next step is to add back in some parts

of conformal supergravity:
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(1) the conformal graviton, which can be put back in easily and uniquely using coor-

dinate and local scale invariance;

(2) the U(1) axial gauge vector, whose coupling is minimal, and thus follows directly

from U(1) covariantizing the spacetime derivatives; and

(3) the conformal gravitino, whose quartic couplings can be quite complicated, but as

a practical matter we are interested in only the mass term, which is determined

from the mass of the Goldstone fermion it eats, which appears in the compensator

(and the kinetic term, which is the usual one).

Before considering the general case, we look at the pure supergravity case under

this analysis: Looking at just the bosons, we find

SSG,b =

∫
dx e−1 1

2{−3[(∇− i1
3
A)φ̄] · [(∇+ i1

3
A)φ]− 1

2 φ̄φR + 6B̄B}

where ∇ is the usual covariant derivative of general relativity, A is the U(1) gauge

vector, and the relative coefficient of the R term was fixed by local scale invariance

(see subsection IXA7). Note that here B is the usual auxiliary field from φ, and is

not associated with conformal supergravity. Choosing the component U(1) and scale

gauges φ| = 1, this reduces to

SSG,b →
∫
dx e−1(−1

4
R− 1

6
A2 + 3B̄B)

Relating to Ga, we recall that if we had included it from conformal supergravity,

for this compensator G̃a = Ga + 2
3
Aa, so we can identify Aa with 3

2
G̃a. Thus, the

compensator method immediately yields the bosonic action, including auxiliary fields.

Returning to the general case, the part of the action for the “physical” scalars (φ|
and χ|) then starts out as

SK,ps =

∫
dx e−1e−K/3 1

2{−3[(∇− i1
3
A)φ̄] · [(∇+ i1

3
A)φ] + φ̄[(∇+ i1

3
A)φ] · (∂̄iK)∇χ̄i

+φ[(∇− i1
3
A)φ̄] · (∂iK)∇χi + φ̄φ[(∂i∂̄

jK)− 1
3
(∂iK)(∂̄jK)](∇χ̄j) · (∇χi)− 1

2 φ̄φR}

ignoring until the following subsection the auxiliary scalars, which are irrelevant for

the kinetic term. We use the notation ∂i = ∂/∂χi, ∂̄i = ∂/∂χ̄i. We then choose the

U(1) and scale gauges

φ| = eK(χi|,χ̄i|)/6

where we have explicitly written the |’s to emphasize that this is a nonsupersymmetric

gauge choice for the component φ|. Finally, we eliminate A by its algebraic field

equation. We thus obtain

SK,ps →
∫
dx e−1 1

2 [(∂i∂̄
jK)(∇χ̄j) · (∇χi)− 1

2R]
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Except for the R term and covariant derivatives, this is what would follow in flat

superspace from the action −
∫
dx d4θ K. For supersymmetry breaking, we also need

the super cosmological term

Sc =

∫
dx d2θ λφ3 + h.c.

for some constant λ. We could consider more general potentials φ3ef(χi) (again the

power of φ is fixed by scale and U(1)), but then the field redefinition φ → φe−f/3

would remove it while replacing K → K + f + f̄ . (This invariance, and the form of

the “metric” on the space of fields χ and χ̄ appearing in the action, identify K as a

“Kähler potential”.)

The analysis for SK can also be made by performing a duality transformation on

the compensator. Following the same steps as described in the previous subsection for

the case without matter (factoring the overall −3 out of the process for convenience),

we find

SK → −
∫
dx d4θ [3G ln G+GK(χ, χ̄)]

Since in this form A decouples, the result is obvious from the flat-space result.

Exercise XB6.1

Repeat the above analysis using the compensator G: Evaluate explicitly all

the contributions from the bosons in G, couple A, find the R term, show the

result is the same.

Normally any kind of symmetry breaking will generate a cosmological term, since

a scalar getting a vacuum value implies the potential itself getting one, giving a term∫
dx e−1constant. This would require adding a cosmological term to the action by

hand to cancel the generated one, since the constant generated would correspond to

a subatomic length scale, whereas a realistic cosmological constant requires a cosmo-

logical length scale, which means a constant, going as 1/length2, of the order of 10−80

in subatomic units. An exception is when the potential is flat in some direction: In

supersymmetry energy is always positive, and the supersymmetric vacuum has zero

energy, but some potentials allow other, perhaps nonsupersymmetric, vacua that also

have zero energy, and thus generate no cosmological constant. This avoids the ad

hoc procedure of “fine tuning” the cosmological constant of an added term for exact

cancellation (or at least to order 10−80).
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7. No-scale

A useful example of the superhiggs effect with a flat potential is “no-scale super-

gravity”. This theory has an explicit super-cosmological term, but the kinetic term

is such that this term does not generate a component cosmological term, but does

spontaneously break supersymmetry. The simplest example describes supergravity

coupled to a single chiral scalar multiplet. The kinetic term has an SU(1,1) symme-

try, and also appears in N=4 supergravity (see subsection XC6 below). Written in

terms of just the compensator part of supergravity, it is

SK =

∫
dx d4θ 3(φ̄χ+ χ̄φ)

where φ is the compensator and χ is the matter. We have written it in a manifestly

U(1,1) covariant form, where the U(1,1) metric is off-diagonal (
(

0
1

1
0

)
instead of the

usual diagonalized
(

1
0

0
−1

)
). For the above component analysis we redefine

χ→ φχ ⇒ SK →
∫
dx d4θ 3φ̄φ(χ̄+ χ) ⇒ K = −3 ln(χ̄+ χ)

(Many other superfield redefinitions are possible to put this in more conventional

forms, such as (3φ̄φ − χ̄χ), φ̄φ(3 − χ̄χ), etc.) The kinetic term for the physical

scalars follows from the same analysis we applied to the CP(1) model in subsection

IVA2. The only differences here are: (1) the symmetry is U(1,1), not U(2), and (2) the

constraint on the norm of the complex 2-vector follows not from a Lagrange multiplier

(or a low-energy limit), but as a local scale gauge chosen to give the Einstein-Hilbert

curvature term the usual normalization. Alternatively, we can use the analysis given

in the previous subsection for the general case to find

SK,ps →
∫
dx e−1 1

2

[
3
|∇χ|2

(χ̄+ χ)2
− 1

2R

]
However, to study just the supersymmetry breaking, we want to look at the “po-

tential” terms: terms that involve the auxiliary scalars instead of spacetime deriva-

tives. We thus now need to include the super cosmological term, which breaks the

SU(1,1) invariance. Again evaluating at first without conformal supergravity, then

putting some (all but the conformal gravitino) back in, we find the contributions from

SK and Sc

Saux =

∫
dx e−13[B̄B(χ̄+ χ) + (B̄φb+Bφ̄b̄) + λ(Bφ2 + B̄φ̄2)]

where B = d2φ and b = d2χ. We then see that eliminating the auxiliaries gives

nothing, so there is no potential to generate a cosmological term. However, there is

still a mass term for the gravitino: As always, Sc also contains the spinor term

6λ(φζ2 + h.c.)
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where ζα = dαφ is the trace of the gravitino. The gravitino in this model therefore

has a mass proportional to λ〈χ̄+ χ〉−1/2.

Exercise XB7.1

Explicitly evaluate the spinor part of the kinetic term, and thus determine

the exact value of the mass of the spinor, and thus the gravitino.

SU(1,1) invariant kinetic terms also appear in superstring theory, but unlike N=4

and no-scale supergravity, the kinetic term is (φ̄χ + χ̄φ)1/3 instead of just φ̄χ + χ̄φ.

(See subsection XIA6.) When applying no-scale supergravity to nature, more matter

multiplets are added,

S =

∫
dx d4θ 3(φ̄χ+ χ̄φ− χ̄iχi) +

(∫
dx d2θ λφ3ef(χi/φ) + h.c.

)
generalizing SU(1,1) to SU(n,1) in the first term. (N=5 supergravity has such an

SU(5,1) symmetry; see below.) Then χ acts as the “hidden” matter sector that doesn’t

directly couple to the observed matter χi, but serves only to break supersymmetry.
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A convenient method for describing extended supersymmetry in D=4 is to ap-

ply dimensional reduction to supersymmetry in D>4, since (1) spinors are bigger in

D>4, so even simple supersymmetry reduces to extended supersymmetry, and (2) the

Lorentz group is bigger in D>4, so some 4D scalars arise as parts of higher-D vectors,

etc., meaning fewer Lorentz representations in the multiplet in D>4.

1. Dirac spinors

We saw in subsection IC1 that coordinate representations of orthogonal groups

SO(D) could be defined in terms of self-conjugate fermions,

Gab = 1
4
[γa, γb], {γa, γb} = 2δab

We now will construct explicit matrix representations of the Dirac matrices for arbi-

trary D, and examine their properties. This is useful for understanding:

(1) representations of internal symmetries, such as in Grand Unified Theories;

(2) theories in higher dimensions, which give simpler formulations of certain four-

dimensional theories when the extra dimensions are eliminated, and appear in

string theory; and

(3) properties of spinors that are independent of D, or their dependence on D, which

is useful for comparison and for perturbation in quantum field theory.

An explicit solution can be found easily by first looking at even dimensions, and

breaking up the problem intoD/2=n two-dimensional problems. Furthermore, we can

look first at the Euclidean case (SO(D)), and solve for the other cases (SO(D+,D−))

by Wick rotation. The solution for SO(2) is just two of the Pauli σ matrices (with

normalization consistent with the above anticommutation relations). The general

solution then comes from the direct product of the two-dimensional cases, using the

third σ matrix to introduce appropriate “Klein factors” (see exercise IA2.4) to insure

that the γ matrices from one two-dimensional subspace anticommute with those from

another. The resulting γ matrices are then:

(σ3 ⊗ · · · ⊗ σ3 ⊗ σi ⊗ I ⊗ · · · ⊗ I), (σ3 ⊗ · · · ⊗ σ3)

where i = 1, 2, there are a total of n factors, and the number of σ3 and I factors in

the first expression ranges from 0 to n−1. The last matrix can always be included to

extend SO(2n) to SO(2n+1); in fact, up to normalization, it’s simply the product of
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all the other γ’s. (In other words, the product of all the γ matrices is proportional to

the identity.)

Exercise XC1.1

Apply exercise IC1.2 to this construction: Show how this representation re-

lates simply to creation and annihilation operators. Show that these Klein

factors are identical to those of exercise IA2.4.

The next step is to notice that this construction generally gives a reducible rep-

resentation. Reducibility comes from two properties: (1) For SO(2n) we really have

SO(2n+1); and (2) the representation may be real. In fact, most of the interest-

ing cases involve SO(2n) (in particular, SO(3,1) for Lorentz and SO(4,2) for confor-

mal in four dimensions). In that case we can call the first (or any other) γ matrix

(σ1 ⊗ I ⊗ · · · ⊗ I) for SO(2n+1) “γ−1”, and take the rest as those for SO(2n). Then

the projection operators

Π± = 1
2(1± γ−1) ⇒ Π±

2 = Π±, Π+Π− = Π−Π+ = 0, Π+ +Π− = 1

commute with the SO(2n) generators Gab ∼ γγ, so they can be used to project the

representation of the γ’s into two representations of SO(2n). These two halves of

a Dirac spinor are known as “Weyl spinors”. A convenient representation of the γ

matrices for this purpose is the one given in subsection IIA6, with the representation

of the Pauli matrices used in our SU(2)/SL(2,C) discussion of subsections IIA1 and

5 (up to normalization),

σ1 =
(

1
0

0
−1

)
, σ2 =

(
0
1

1
0

)
, σ3 =

(
0
i
−i
0

)
We then can write the spinor, which has 2n components (since it represents the direct

product of n representations of σ matrices, each of which has two components) as

two 2n−1-component spinors projected by

Π± = σ± ⊗ I ⊗ ...⊗ I, σ+ =
(

1
0

0
0

)
, σ− =

(
0
0

0
1

)
The γ matrices then take the block-diagonal form

γ−1 =
(
I
0

0
−I

)
, other γ =

(
0
σ
σ̃
0

)
We will refer to these reduced matrices σ (and σ̃), and the γ matrices themselves for

SO(2n+1), as generalized Pauli (σ) matrices.

The reality properties of the representation depend on the existence of a metric

η .
A
B (or Ω .

A
B for pseudoreality, which doesn’t reduce the representation), as in our

discussion of classical groups of subsection IB5. In fact, all the spinor representations
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of any orthogonal group are also defining representations of another group: For less

than seven dimensions, this leads to the identification of covering groups discussed in

subsection IC5; for more than six dimensions, it only identifies the orthogonal group

as a subgroup of this new group. (An interesting exception is SO(8), where the spinor

representations are also 8-dimensional, and are the two other defining representations

of SO(8).) In matrix notation, we look for a matrix C = η or Ω such that we can

define the operation of charge conjugation as

Ψ → C−1Ψ*, GΨ → C−1(GΨ)* ⇒ G = C−1G*C

If we like, we can also choose

C = C† = C−1

without loss of generality. For a representation to be invariant under charge conju-

gation (i.e., real)

Ψ = C−1Ψ* ⇒ C* = C−1

For our γ matrix representation, the matrix to look at is

C = ...⊗ C2σ3 ⊗ C2 ⊗ C2σ3 ⊗ C2

where

C2 =
(

0
i
−i
0

)
independent of the representation used for the Pauli matrices. (Our representation

is simplest, since then C2σ3 = I, and C = C†. In other representations, C may also

need an n-dependent factor of i if we want C = C†.) Using properties of σ matrices

we found in our discussion of SO(3) in subsection IIA2, such as C2σ*C2 = −σ, we

find

C−1γ*C = (−1)nγ, C* = (−1)n(n+1)/2C−1, CT = (−1)n(n+1)/2C, C† = C−1

This distinguishes 8 cases, where the irreducible spinors are:

SO(8m): Weyl and real
SO(8m+1): real
SO(8m+2): Weyl
SO(8m+3): pseudoreal
SO(8m+4): Weyl and pseudoreal
SO(8m+5): pseudoreal
SO(8m+6): Weyl
SO(8m+7): real
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For SO(4m+2), charge conjugation does not preserve γ−1, and thus Π±. Therefore,

in those cases there is no metric η .
A
B or Ω .

A
B on the irreducible spinor: The Dirac

spinor consists of two irreducible spinors that are complex conjugate representations

of each other. In general, a Dirac spinor has 2n complex components for SO(2n) and

SO(2n+1); the Weyl condition reduces this a factor of two for SO(2n), as does reality

where applicable. (Pseudoreality does nothing.)

It is useful to know the other group metrics, if they exist. For unitarity properties

we look for a metric Υ
.
AB such that

G = −Υ−1G†Υ ⇒ Υ = Υ †

(Thus g = eG satisfies Υg−1 = g†Υ .) We can also choose

Υ = Υ−1

without loss of generality. We therefore look for a metric satisfying

Υ−1γ†Υ = γ

so G ∼ [γ, γ] is antihermitian with respect to Υ . For SO(D), we have simply

Υ = I

since the hermiticity of the σ matrices implies that of the γ matrices. We then can also

define a metric to raise and lower indices in terms of these two metrics, by contracting

the dotted (or undotted) indices: In matrix notation, we then have

(CTΥ )−1γT (CTΥ ) = (−1)nγ ⇒ G = −(CTΥ )−1GT (CTΥ )

For all cases except SO(4m), this also defines the symmetry properties of the gener-

alized σ matrices: They can be defined as CTΥγ for SO(2n+1), and as its diagonal

blocks with respect to Π± for SO(4m+2); but for SO(4m) it’s off-diagonal, so the

generalized σ matrices appearing there carry one each of the two different kinds of

spinor indices, and thus have no symmetry. Then we rewrite the above result as

(CTΥγ)T = (−1)n(n−1)/2(CTΥγ)

2. Wick rotation

The indefinite-metric groups SO(D+,D−) (D+ 6= 0 6= D−) can be treated by

Wick rotation: giving i’s to D− of the γa’s, so the corresponding components of
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ηab get minus signs. Since this affects γT in the same way as γ, the metric CTΥ is

unchanged. In other words,

CTΥ = CT
E (ΥE = I)

in terms of the Euclidean C of the previous subsection. However, γ* and γ† are

affected in the opposite way to γ and γT (−i’s instead of i’s). Υ then becomes (up

to normalization) the product of the timelike γ’s,

Υ ∼
∏
ηaa<0

γa

which also determines the modification of C. In the above equations for γ† and γT ,

we then find a factor of −1 for each rotated dimension, coming from anticommutation

with each timelike γ in Υ , so we redefine all γ’s by an overall factor of iD− to preserve

their pseudohermiticity. This changes the normalization to

Gab = (−1)D− 1
4
[γa, γb], {γa, γb} = (−1)D−2ηab

In odd dimensions the σ matrices are the γ matrices (up to multiplication by one

of the metrics), while in even dimensions the γ matrices consist of two off-diagonal

blocks of the σ matrices. To write actions we also need the “dual” Dirac spinor, in

the sense of a Hilbert-space inner product,

Ψ̄ = Ψ †Υ

with Υ as defined above. In particular, it is just γ0 in D− = 1.

We then find (e.g., using the explicit representation given above) that C has the

same properties with regard to symmetry and γ−1 for SO(D+,D−) as for SO(D+− 1,

D− − 1). Thus, the properties of these metrics on the irreducible (as opposed to

Dirac) spinors follow easily from the Euclidean case by using

CTΥ : SO(D+, D−)← SO(D+ +D−)

C : SO(D+, D−)← SO(D+ −D−)

Then the properties of Υ follow from the above two in the cases where all 3 exist;

the few cases where only Υ exists, which have D even, follow from the next higher D

(increasing D+ by 1).

Exercise XC2.1

Find the explicit γ matrices for D = 2 and 4 from the construction of the
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previous section, and apply this Wick rotation. Compare the results with the

conventions of subsections VIIB5 and IIA6.

We can use these properties to determine that the number of real components D′

of an irreducible spinor is

D′ = 2[D−2+f(D+−D−)]/2,

x mod 8 0 1 2 3 4 5 6 7

f(x) 0 1 2 3 2 3 2 1

The complete results can be summarized by the following table, showing for each

case of SO(D−D−,D−), for D mod 8 and D− mod 4, the types of irreducible spinors

ψ, the types of metrics η (symmetric) and Ω (antisymmetric) for these irreducible

spinors, and the type of generalized σ matrices (and their symmetry, where relevant):

D− 0 1 2 3
D Euclidean Lorentz conformal

ψα ψα′ ψα ψ .
α ψα ψα′ ψα ψ .

α

0 ηαβ η .
α
β η

.
αβ ηαβ ηαβ Ω .

α
β Ω

.
αβ ηαβ

σαβ′ σ
α
.
β

σαβ′ σ
α
.
β

ψα ψα ψα ψα
1 ηαβ η .

α
β η

.
αβ ηαβ η .

α
β η

.
αβ ηαβ Ω .

α
β Ω

.
αβ ηαβ Ω .

α
β Ω

.
αβ

σ(αβ) σ(αβ) σ(αβ) σ(αβ)

ψα ψ
α ψα ψ

α ψα ψ
α ψα ψ

α

2 η
.
αβ η .

α
β Ω

.
αβ Ω .

α
β

σ(αβ) σ
(αβ) σ(αβ) σ

(αβ) σ(αβ) σ
(αβ) σ(αβ) σ

(αβ)

ψα ψα ψα ψα
3 Ωαβ Ω .

α
β η

.
αβ Ωαβ η .

α
β Ω

.
αβ Ωαβ η .

α
β Ω

.
αβ Ωαβ Ω .

α
β η

.
αβ

σ(αβ) σ(αβ) σ(αβ) σ(αβ)

ψα ψα′ ψα ψ .
α ψα ψα′ ψα ψ .

α

4 Ωαβ Ω .
α
β η

.
αβ Ωαβ Ωαβ η .

α
β Ω

.
αβ Ωαβ

σαβ′ σ
α
.
β

σαβ′ σ
α
.
β

ψα ψα ψα ψα
5 Ωαβ Ω .

α
β η

.
αβ Ωαβ Ω .

α
β η

.
αβ Ωαβ η .

α
β Ω

.
αβ Ωαβ η .

α
β Ω

.
αβ

σ[αβ] σ[αβ] σ[αβ] σ[αβ]

ψα ψ
α ψα ψ

α ψα ψ
α ψα ψ

α

6 η
.
αβ Ω .

α
β Ω

.
αβ η .

α
β

σ[αβ] σ
[αβ] σ[αβ] σ

[αβ] σ[αβ] σ
[αβ] σ[αβ] σ

[αβ]

ψα ψα ψα ψα
7 ηαβ η .

α
β η

.
αβ ηαβ Ω .

α
β Ω

.
αβ ηαβ Ω .

α
β Ω

.
αβ ηαβ η .

α
β η

.
αβ

σ[αβ] σ[αβ] σ[αβ] σ[αβ]
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Exercise XC2.2

The vectors of SO(D+,D−) for 3≤ D+ + D− ≤6 were expressed as tensors

with two spinor indices, with the appropriate symmetry and tracelessness

conditions, in subsection IC5.

a Show that the spinor metrics found from the Dirac analysis are sufficient to

identify each of these covering groups.

b Show the equivalence of each orthogonal group to its covering group by show-

ing that (1) the Lie algebras have the same dimension, and (2) the deter-

minant (or its square root) of this tensor gives the appropriate orthogonal

metric. (Hint: Do the cases D+ +D− = 4 and 6 first, and specialize to 3 and

5.)

c Do a similar analysis to show the covering group of SO(6,2) is SO*(8).

Exercise XC2.3

Consider the groups SO(n,n) and SO(n+1,n). Explicitly construct a real

representation of the γ matrices by modifying the method of subsection XC1,

demonstrating that all such spinors are real.

Besides the Dirac spinors and Dirac matrices γ, and the irreducible spinors and

Pauli matrices σ, it is also useful to introduce irreducible real (“Majorana”) spinors

and corresponding matrices Γ . When the irreducible spinors are already real these

are the same, but when the irreducible spinors are complex this real spinor is just the

direct sum of the irreducible spinor and its complex conjugate, a spinor with twice as

many components. In general, these generalized Majorana spinors and matrices have

many properties that are independent of the number of dimensions, but depend on

the number of time dimensions:

D− 0 1 2 3
Euclidean Lorentz conformal

ψα ψα′ ψα ψ
α ψα ψα′ ψα ψ

α

ηαβ Ωαβ

Γαβ′ Γ(αβ) Γ
(αβ) Γαβ′ Γ[αβ] Γ

[αβ]

For D odd, there is only one irreducible spinor, so there is a metric Mαβ or Mαβ′

to relate the two spinors listed. For D − 2D− twice odd (2 mod 4), the original

irreducible spinor was complex, so there is a metric representing a U(1) generator

that rotates the complex spinor and its complex conjugate oppositely. (I.e., it’s the

identity on the complex spinor and minus the identity for the complex conjugate.)

For D − 2D− = 3, 4, 5 mod 8, the original spinor was pseudoreal, and this U(1)
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can be extended to an SU(2): Since the complex spinor and its complex conjugate

transform the same way under the orthogonal group, they can be paired as a doublet

of SU(2). This doubled representation is a real representation of the orthogonal

group ⊗ SU(2), since the direct product of the two antisymmetric charge-conjugation

matrices is symmetric (two −’s under transposition).

3. Other spins

Before considering supersymmetry in higher dimensions, we first study represen-

tations of the Poincaré group there. From the general analysis of section IIB, we

know that general on-shell representations follow from the massless ones, which can

be classified by their representation of the lightcone little group SO(D−2). Specifi-

cally, the bosons can be described as traceless tensors of a certain symmetry (labeled

by a Young tableau), while the fermions can be labeled as the direct product of such

tensors with an irreducible spinor, with a tracelessness condition imposed between

any vector index and the spinor index using a γ or σ matrix. Similar methods can be

used to find the off-shell representations in terms of representations of SO(D−1,1),

but without subtracting traces. (For full details, see chapter XII.) The gauge degrees

of freedom can be subtracted from these Lorentz representations by dropping all lower

vector indices with the value “−”, by the usual lightcone gauge condition; this tells

us the number of total physical + auxiliary degrees of freedom.

In practice, the only interesting massless fields in higher dimensions are:

(1) the metric (graviton),

(2) totally antisymmetric tensors (including scalars and vectors),

(3) spin-3/2 (gravitino), described by vector⊗spinor, and

(4) spinors.

By the methods described above, the counting of physical, auxiliary, and gauge de-

grees of freedom for these fields is (where D′ is the number of components of an

irreducible spinor of SO(D−1,1) — see the previous subsection):

field physical auxiliary gauge

h(ab)
1
2D(D − 3) D D

A[a1...an]

(
D−2
n

) (
D−2
n−1

) (
D−1
n−1

)
ψaα

1
2D
′(D − 3) 1

2D
′(D + 1) D′

χα
1
2D
′ 1

2D
′ 0
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Exercise XC3.1

Derive all the entries in the table. For each type of field, find the minimum

D for which physical degrees exist.

We next consider exactly how many higher dimensions are relevant. From the

previous subsection, we see that an irreducible spinor (which we use for the super-

symmetry generators) has 1 component in D=2, 2 in D=3, 4 in D=4, 8 in D= 5 or

6, 16 in D=7, 8, 9, or 10, 32 in D=11, etc. Since the maximal Lorentz symmetry can

be obtained by looking at the maximum D for which a certain size spinor exists, we

see that the appropriate D for which an irreducible spinor reduces to N irreducible

spinors (for N-extended supersymmetry) in D=4 is

N D
1 4
2 6
4 10
8 11

etc. From the discussion of subsection IIC5, we know that supergravity exists only

for N≤8, and super Yang-Mills only for N≤4. This means that simple supergravity

(i.e., any supergravity) exists only for D≤11, and simple super Yang-Mills for D≤10.

Since theories with massless states of spin>2 are not of physical interest (in fact, no

interacting examples have been constructed), we can restrict ourselves to looking at

just D=4, 6, 10, and 11. In general, an irreducible multiplet in some D can become

reducible in lower D. However, since irreducible multiplets of supersymmetry are con-

structed as the direct product of the smallest representation of supersymmetry with

an arbitrary representation of the Poincaré group, this reducibility corresponds di-

rectly to the reducibility of that Poincaré representation, which occurs simply because

the Lorentz group gets smaller upon reduction. In particular, the smallest represen-

tation of supersymmetry is itself irreducible. For the case of simple supersymmetry,

this is the scalar multiplet (scalars and spinors) in D=6, the vector multiplet (super

Yang-Mills: vectors, spinors, and scalars) in D=10, and supergravity in D=11. The

statement that it is the smallest multiplet in that number of dimensions is directly

related to the fact that it does not exist in higher dimensions.

4. Supersymmetry

We first generalize to arbitrary dimensions some definitions used earlier: To dis-

cuss the properties of supersymmetry that are common to all dimensions (but one
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time), it’s most convenient to use the Majorana form (see subsection IIIB6)

{qα, qβ} = 2Γ a
αβpa

which is consistent with the general symmetry of these matrices. The supersymmetry

generators are then

qα = −i ∂
∂θα

+ Γ a
αβθ

β ∂

∂xa

and εαqα generates the infinitesimal transformations

δθα = εα, δxa = iΓ a
αβε

αθβ

where (qα)† = −qα. The covariant derivatives are

dα =
∂

∂θα
+ Γ a

αβθ
βpa

and they satisfy the same algebra as supersymmetry

{dα, dβ} = 2Γ a
αβpa

but with the opposite hermiticity condition (dα)† = +dα. The invariant infinitesimals

are

dθα, dxa + i(dθα)Γ a
αβθ

β

Superfields can be expanded as either

Φ(x, θ) = φ(x) + θαψα(x) + ...

or

ψα = dαΦ, ...

giving the transformations

δφ = εαψα, δψα = −iεβΓ a
αβ∂aφ+ ..., ...

Representations can be found as for D=4; we don’t have twistors in general, but

we can always use a lightcone frame. We first need to define Γ aαβ, which in general

is independent of Γ a
αβ (only the latter was needed to define supersymmetry above):

The analog of the Dirac anticommutation relations (which can be reconstructed if we

combine the two Γ ’s, as generalized σ’s, to form a generalized γ) is

Γ (a
αγΓ

b)γβ = 2ηabδβα

In the lightcone frame the momentum is just pa = δa+p
+ with p+ = ±1 being the sign

of the (canonical) energy. In this frame we have the constraint Γ−q = 0. This projects
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away half the q’s, since−1
2Γ
±Γ∓ are projection operators: Using the anticommutation

relations of Γ±,

Π± = −1
2Γ
±Γ∓ ⇒ Π±

2 = Π±, Π+Π− = Π−Π+ = 0, Π+ +Π− = 1

The equality of the sizes of the two subspaces follows from parity symmetry, Γ± ↔
Γ∓. We thus need to consider only half of the q’s, namely Γ+q. We therefore switch

to a notation where we consider the truncated spinor qµ with just that half of the

components. This “lightcone spinor” is an irreducible spinor of SO(D−2). In a

Majorana basis it satisfies the same commutation relations as Dirac matrices,

{qµ, qν} = 2δµν

Since qµ has an even number of components (2n, n > 0) in D > 3, the states that

represent this algebra form a Dirac spinor of SO(2n) that is reducible to two Weyl

spinors. (These spinors should not be confused with those of SO(D−2), such as qµ,

which is a vector of this SO(2n).) Since supersymmetry takes each of these “spinors”

into the other, one spinor contains all the bosons, while the other contains all the

fermions. There are an equal number of physical boson and fermion states because

the two Weyl spinors are equal in size. Since SO(D−2)⊂SO(2n), each Weyl spinor

of SO(2n) is reducible with respect to SO(D−2). The only exceptions are (1) D=4,

where SO(D−2)=SO(2n)=SO(2), and there is one bosonic state and one fermionic

one, and (2) D=10, where SO(D−2)=SO(2n)=SO(8).

Exercise XC4.1

Let’s look more closely at these exceptions:

a Show that SO(D−2)=SO(2n) only in D=3,4,6,10.

b Show that in D=6 the bosons form a reducible representation of the little

group SO(D−2). How is this possible, when the group SO(2n) is the same?

c For D=10, what representations of the little group are the bosons and the

fermions? Compare this to the representations of SO(2n) formed by the

bosons, fermions, and q itself, and apply this “symmetry” to the cases D=4,6.

This “Dirac spinor” of SO(2n) is the smallest representation of supersymmetry.

It can also be represented in terms of anticommuting coordinates, by dividing up qµ

into two halves, one of which is complex coordinates, the other half being both the

complex and canonical conjugate (as for the fermionic harmonic oscillators of exercise

IA2.4). The most general representation of supersymmetry is then the direct product

of this one with an arbitrary representation of the Poincaré group.
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All the results of this section can be extended to “extended supersymmetry”,

with supersymmetry generators qiα for an N-valued “internal” index i, as expected

from our discussion of supergroups in subsection IIC4: For example, in D=4 the

supergroup describing extended conformal supersymmetry, SU(2,2|N), includes con-

formal symmetry SU(2,2), internal symmetry U(N), N supersymmetries, and N S-

supersymmetries. In general, the supersymmetries then satisfy the algebra

{qiα, qjβ} = 2δijΓ
a
αβpa

The smallest representation of an extended supersymmetry follows as before, where

now the complete lightcone q acts as Dirac matrices for SO(N2n). Other representa-

tions are again found by direct product, now between this smallest supersymmetry

representation and an arbitrary representation of both Poincaré and the internal sym-

metry. For the more interesting cases, where N itself is a power of 2, the smallest

representation can also be derived by dimensional reduction from higher dimensions

of N=1 (“simple”) supersymmetry, changing the higher-dimensional algebra only by

setting some components of the momentum to vanish, and noting that a spinor of

higher dimensions reduces to many spinors, as clear from our explicit construction

earlier. (Other representations tend to be reducible, since the Poincaré representation

in the direct product is reducible upon dimensional reduction.) Dimensional reduc-

tion can also be defined for an action (for supersymmetric or nonsupersymmetric

theories), by again setting the derivatives with respect to the “extra” coordinates to

vanish, and also restricting the integration to the reduced set of coordinates. An-

other interpretation is that we expand the fields over all momentum modes in the

extra coordinates, and then drop all but the zero (constant) modes.

We also recall from subsection XC2 the index structure of spinors in D=6, 10,

and 11, which we need to write supersymmetry covariant derivatives. We thus have,

for simple supersymmetry,

D = 6 : {diα, djβ} = −2Cjii∂αβ

D = 10 : {dα, dβ} = −2σaαβi∂a

D = 11 : {dα, dβ} = −2σaαβi∂a

where in the case of D=6 we have taken advantage of the fact that SO(5,1)=SU*(4)

to eliminate vector indices, and introduced the SU(2) index i for spinors to make

them Majorana.



844 X. SUPERGRAVITY

5. Theories

We first consider the scalar multiplet in D=6. The constraints and field equations

are given by the statement, in terms of supersymmetry covariant derivatives, that

there are only scalars and spinors on shell, and by supersymmetry their physical

polarizations must be equal in number. Since a spinor has 4 polarizations in D=6,

we must have 4 real scalars, and thus

diαφjk′ = Cjiψk′α

The second SU(2) index k′ is introduced again to make a spinor (this time the field)

Majorana, and performs a similar service for the scalars. This one equation is suf-

ficient to completely describe this multiplet on shell in the free case; interactions

require derivatives, so we won’t consider them here. This multiplet reduces to N=2

in D=4 in a very simple way: The SU(2) index on d labels the 2 supersymmetries,

and the 4-component spinor index reduces in the obvious way to SL(2,C) indices,

α→ (α,
.
α), with appropriate 6D spinor conventions.

Exercise XC5.1

Show the equations given for the 6D scalar multiplet give the complete field

equations for all the components, and that only the scalars and spinors shown

explicitly in that equation survive on shell.

This six-dimensional theory gives a simple example of nontrivial dimensional re-

duction: Assume we have a 5-dimensional theory with a nontrivial U(1) symmetry.

Then we can dimensionally reduce by choosing the fields to depend on the fifth coor-

dinate in such a way that the fifth component of the momentum of each field is equal

to a constant m (with dimensions of mass) times its U(1) charge Q:

p4 = Z = mQ

This is consistent at the interacting level because each term in the action satisfies

conservation of the U(1) charge as well as conservation of momentum. This is equiv-

alent to how we introduced masses by dimensional reduction in subsection IIB4 for

free fields, since any free field can be “complexified”. This has an interesting effect

on the supersymmetry algebra: It introduces a U(1) charge Z (called “central” be-

cause it commutes with the rest of the algebra). For example, if we start with the

6D supersymmetry algebra (like the above algebra for the supersymmetry covariant

derivatives), introduce the central charge in reducing to 5, and then do an ordinary
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reduction to 4 (or vice versa), the supersymmetry algebra becomes (see subsection

IVC7)

{qiα, q̄j.
β
} = δji pα

.
β
, {qiα, qjβ} = CαβCijZ, {q̄i.α, q̄

j.
β
} = C .

α
.
β
CijZ

If the higher-dimensional theory was massless, then p2 + Z2 = 0 for the 4D theory.

More generally, if the higher-dimensional theory already had masses before the central

charge was introduced, then by supersymmetry it satisfied p2 + M2
0 = 0, M2

0 ≥ 0

(since supersymmetry always has positive potentials), while afterwards the 4D theory

satisfies

p2 + Z2 +M2
0 = 0 ⇒ M2 = M2

0 + Z2 ≥ Z2

where M is the 4D mass, in terms of the higher-D mass M0. However, in general, in

the absence of central charges, massive representations of supersymmetry are bigger

than massless ones (because there are twice as many independent supersymmetry

generators on shell, since q is a spinor with 1 helicity for the massless case, but an

SU(2) doublet for the massive). So, M2 = Z2 > 0 has the advantage of allowing

smaller massive representations than when M2 > Z2 = 0 or when M2 > Z2 > 0.

Note that when M2 = Z2, so all masses arise from the central charge, (total) mass is

conserved, just as in nonrelativistic physics, although in the relativistic case the mass

Z can be negative. (Of course, its square is always positive, as is physical energy. The

relation between the relativistic and nonrelativistic cases can be understood through

dimensional reduction: See exercise IA4.6. The mass is also a central charge for the

Galilean group, but there the reduction is for a lightlike dimension.)

In the present case, we can choose our U(1) symmetry to be a subgroup of the

extra SU(2) internal symmetry (k′ index) of the 6D scalar multiplet. Note that the

algebra of the d’s is modified in the same way as that of the q’s.

Super Yang-Mills is a bit more interesting, because interactions are easier to

introduce. From the counting arguments given in subsection XC3, we see that a

supersymmetric theory consisting of 1 vector and 1 spinor can exist in D=3, 4, 6,

or 10. This corresponds directly with our analysis of the largest dimensions for

simple supersymmetries: Dimensional reduction of a vector gives also scalars, so the

condition of no scalars gives maximum dimensions. We now make an analysis similar

to that of the previous subsection: By dimensional analysis for physical fields, and

using single-Majorana-spinor-index notation,

{∇α,∇β} = −Γ a
αβi∇a

[∇α,∇a] = ΓaαβW
β
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[∇a,∇b] = iFab

Applying the Jacobi (Bianchi) identities, we find the Fierz identity

Γa(αβΓ
a
γ)δ = 0

This identity can be satisfied only in D=3, 4, 6, or 10. The Bianchi identities imply

the field equations for D=10.

Exercise XC5.2

Multiply the identity Γa(αβΓ
a
γ)δ = 0 by Γ bαβ, and use the Γ matrix anticom-

mutation relation Γ
(a
αβΓ

b)βγ = ηabδγα to show that D=3, 4, 6, or 10.

Similar methods can be applied to D=11 supergravity. Our component counting

for general dimensions, and our helicity analysis for general extended supersymmet-

ric theories in D=4 (applied to the dimensionally reduced theory), can be satisfied

by adding to the metric (44 physical components) and gravitino (128) a third-rank

antisymmetric tensor gauge field (84) Amnp (with field strength Fmnpq = 1
6
∂[mAnpq]).

The action for the graviton and gravitino are like those in 4D N=1, while A has not

only the obvious quadratic term but also a “Chern-Simons term”:

L = e−1[−1
4
R + ψ̄mγ

mnp∇nψp + 1
96

(Fabcd)
2 + ψ2F + ψ4]

+ 1
4·3!(4!)2

εmnpqrstuvwxAmnpFqrstFuvwx

(There are also more-complicated fermion interaction terms than in 4D N=1.) The

necessity of the last term can be shown by finding the component form of the super-

symmetry transformations, or by finding the field equations implied by the superspace

formulation.

The field content of N=1 and 2 supergravity in D=10 will be derived by stringy

methods in subsection XIA4: It requires only taking direct products of vector multi-

plets.

6. Reduction to D=4

We now look instead at the component formulation of higher-dimensional super

Yang-Mills. This formulation is off shell except for the lack of auxiliary fields. Since

the fields are just a vector and a spinor, the Lagrangian consists of just that of super

Yang-Mills coupled to a spinor in the adjoint representation of the Yang-Mills group.

Upon dimensional reduction, the vector produces some scalars. For example, the

D=10 theory has an SO(9,1) symmetry, which reduces in D=4 to the SO(3,1)⊗SO(6)
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= SL(2,C)⊗SU(4) subgroup. The SO(6) symmetry of the 6 flattened dimensions is

the SU(4) symmetry of the N=4 supersymmetries. Under this reduction, the vector

becomes 10 → (2, 2, 1) ⊕ (1, 1, 6), namely a 4-vector and scalars that form a 6 of

SU(4), while the spinor becomes 16 → (2, 1, 4) ⊕ (1, 2, 4̄), a 4D spinor that is also a

4 of SU(4) (like the supersymmetry generators).

The CP symmetry of 4D N=4 super Yang-Mills also can be derived by dimen-

sional reduction: In D=10, where there’s neither P nor CP, it’s a continuous SO(9,1)

symmetry, changing the sign of 6 spatial directions via rotations through π. On re-

duction, choose 3 to be in SO(6) (C) and 3 in SO(3,1) (P). This is the same way C

arises in the SO(10) GUT on breaking to the Pati-Salam SU(4)SU(2)2 model. (See

subsection IVB4.)

Although γ (or σ, or Γ ) matrices are necessary in D=10, in D=4 we can convert

to spinor notation for both SO(3,1) (=SL(2,C)) and SO(6) (=SU(4)). Thus vectors

and the Minkowski metric reduce as

V a → (V α
.
α, V ij); (V β

.
α)* ≡ V

α
.
β

= V α
.
β, (V ij)* ≡ V ij = 1

2εijklV
kl

ηab → (CαβC .
α
.
β
, εijkl) : V ·W → V α

.
αWα

.
α + 1

2V
ijW ij

while spinors and Pauli matrices reduce as

ψα → 1√
2

(
ψiα

ψ̄i
.
α

)
, σaαβVa →

(
iCβαV ij δjiVα

.
β

δijVβ .
α iC.

β
.
α
V ij

)
ψV/χ→ Vα .

α
1
2(ψiαχ̄i

.
α − χiαψ̄i

.
α) + 1

2i(V ijψ
iαχjα + V ijψ̄i

.
αχ̄j .α)

The two terms in the 10D Lagrangian then reduce as

1
8
F 2 → 1

8
F 2 + 1

8
[∇, φ̄ij] · [∇, φij]− 1

32
[φ̄ij, φ̄kl][φ

ij, φkl]

ψασaαβ[−i∇a, ψ
β] → ψ̄i

.
α[−i∇α

.
α, ψ

iα] + 1
2i(ψ

iα[φ̄ij, ψ
j
α] + ψ̄i

.
α[φij, ψ̄j .α])

Exercise XC6.1

Looking at the SU(3) subgroup of SU(4), decompose the states of N=4 super

Yang-Mills into those of N=3. (Use the analysis of subsection IIC5 to count

states, in SU(N) representations.) Do the same to decompose N=4 into N=2

super Yang-Mills plus scalar multiplet, this time using the SU(2)⊗SU(2) sub-

group for which 4 → (1
2 , 0) ⊕ (0, 1

2) (i.e., i → (i, i′)). This is another way of

understanding where the second SU(2) of the scalar multiplet comes from.

Exercise XC6.2

Derive the commutation relations of the N=4 Yang-Mills covariant derivatives



848 X. SUPERGRAVITY

of subsection IVC7 by dimensional reduction of those for 10D N=1 given in

the previous subsection. (Don’t forget the scalars come from the components

of the vector covariant derivative in the extra dimensions.)

Dimensional reduction of (super)gravity is an example of the comparative sim-

plicity of the vierbein (covariant derivative) formalism vs. the metric or even inverse

vierbein (differential form) formalisms. The reason in this case is that gravity is

treated like Yang-Mills theory, and gauge vectors result from reducing the graviton.

This is seen most easily from comparison of the coordinate transformation laws:

δea
m = λn∂nea

m − ean∂nλm

δem
a = λn∂nem

a + en
a∂mλ

n

δgmn = λp∂pgmn + gp(m∂n)λ
p

Fixing the index m = −1 on λm to get the gauge transformations of an Abelian vector

resulting from reduction from one extra dimension, and setting ∂−1 = 0 when acting

on any field as the definition of reduction, we see the identification (in an appropriate

gauge for the SO(D,1)/SO(D−1,1) generators M−1a)

ea
m →

( m −1

a ea
m Aa

−1 0 ψ

)

where A transforms in the usual way for a gauge vector, and ψ is an additional scalar.

A more transparent way to write this is as

λ ≡ λm∂m, ea ≡ ea
m∂m; δea = [λ, ea]

λ→ λ+ λ−1∂−1, ea → (ea + Aa∂−1, ψ∂−1)

which makes it clear that reduction has simply U(1)-covariantized the gauge param-

eter, transformation, and field, where ∂−1 is the U(1) generator. (Under reduction all

fields are U(1) neutral.) On the other hand, the reduction of em
a, being the inverse

of ea
m, and gmn, being the square of that, yields nonlinear reductions, and the U(1)

covariantization is not manifest. (In particular, in the metric formalism the metric,

and thus the U(1) vector, does not even appear in the covariant derivative, except in

terms with its derivatives.)

Exercise XC6.3

Derive the result of exercise IXC1.1 by dimensional reduction.
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Exercise XC6.4

Let’s work out the details of this simple example, reduction of pure gravity

from one extra dimension:

a Find the reduction of cab
c by examining the commutators of the reduced ea.

(Fab comes out directly.) Using the expression of the Lagrangian in terms of

the c’s from exercise IXA5.2, find the reduced action, including a cosmological

term. (Drop the
∫
dx−1. We can think of this as compactification on a circle,

independence from x−1 yielding a constant factor upon integration, which can

be absorbed.)

b The scalar appears in a funny way, seen previously in subsection IXB5. Rather

than field redefinitions, it is more convenient to reintroduce local scale invari-

ance (after the reduction), as in subsection IXB5, introducing the dilaton φ.

Then make a simple redefinition that replaces ψ and φ with the “canonical”

fields φ±. (The F 2 and cosmological terms then appear with powers of φ±.)

c As an alternative way to deal with the scalar, start from the form of the

gravity action with a Weyl compensator before reduction. Then choose the

scale gauge where the above ψ = 1. (The compensator takes its place.) The

only non-gravitational c (with respect to 1 less dimension) is then the usual F

(for A). A nice way to think of this is as a torsion. Either way, the reduction

is R→ R− 1
4
F 2 (together with the Weyl compensator).

Reduction from one extra dimension can give only a single (Abelian) gauge vector,

but two or more dimensions can yield nonabelian gauge groups as the spacetime

symmetries of the compactified dimensions. For example, compactifying n extra

dimensions into an n-sphere gives SO(n+1). (However, compactifying to a box with

periodic boundary conditions gives an Abelian group again.) The generalization is

then

λ → λ+ λIGI , ea → (ea + Aa
IGI , ψi

IGI)

where the only dependence on the extra dimensions is implicit in the group generators

GI . If we add matter fields (before reduction), then the fields can be constrained to

be independent of the extra dimensions (i.e., singlets of GI) when their indices are

flat.

Another possible modification is to make the action of the generators on matter

fields nontrivial. If we already have an internal symmetry group, with generators ĜI ,

identical to that of the GI , then we can impose on all matter fields φ

GIφ = ĜIφ
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to determine their dependence on the extra coordinates. The fact that the original

higher-dimensional action was invariant under the ĜI guarantees that the resultant

dependence on the extra coordinates will cancel. The simplest example was applied

to supersymmetry in the previous subsection: In the Abelian case we can set

−i∂−1φ = mĜφ

where we are free to scale the Abelian generator by a mass parameter m (unlike the

nonabelian case, where it would change the algebra).

Similar results can be obtained for supergravity, but the results are more com-

plicated, because the scalars (which appear for N>3) appear in nonlinear σ models.

Furthermore, although these models can be constructed by the coset method dis-

cussed in subsection IVA3, the coset space G/H is noncompact, because the group G

is noncompact, although the subgroup H is compact. This is a consequence of the fact

that the “compensating” scalars of the group H=U(N) (or SU(8) for N=8) appear

with the wrong-sign kinetic term (as the dilaton even in ordinary gravity). Thus, con-

formal supergravity is coupled to “matter” with scalars in the adjoint representation

of the noncompact group G, while gauging away the compensating scalars leaves the

physical scalars of the coset space G/H. A simpler analog is N=1 supergravity coupled

to a scalar multiplet (see subsection XB7). This is the same as conformal supergravity

coupled to the matter action φ̄φ− χ̄χ, which has a symmetry G=U(1,1), while N=1

supergravity has a gauge group U(1). Including Weyl scale invariance GL(1), the

physical scalars then inhabit the coset space U(1,1)/U(1)⊗GL(1)=SU(1,1)/GL(1).

Bosons always form representations of G (coset for scalars, singlet for metric), but

fermions represent only H. This is analogous to representations of coordinate/Lorentz

as GL(D)/SO(D−1,1) (but coset for metric, singlet for scalars).

In the case of extended supergravity, the group G can be found by noting that

the physical scalars parametrizing G/H form the representation φijkl (totally anti-

symmetric, and complex conjugate) of the group H. We then look for the group G

whose adjoint representation transforms under the H subgroup as these scalars + ad-

joint of H. We can also determine G by defining group generators for G as Mi
j for H,

and Mijkl (and hermitian conjugate M
ijkl

) for G/H, and write commutation relations

consistent with covariance under H. For N=8 we also have M
ijkl

= 1
4!
εijklmnpqMmnpq

(and the same for the corresponding physical scalars). The result for the coset space

G/H is

N = 4 : SU(4)⊗ SU(1, 1)/U(4) = SU(1, 1)/U(1)

5 : SU(5, 1)/U(5)
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6 : SO*(12)/U(6)

8 : E7(+7)/SU(8)

where E7(+7) is a noncompact form (Wick rotation) of the exceptional group E7.

An additional complication is that the vectors represent the full H symmetry

only on shell. For example, for N=2 we have a single vector, as in electromagnetism.

Maxwell’s equations without sources have a U(1) symmetry, “S-duality”, that trans-

forms fαβ by a phase (and f̄ .
α
.
β

by the opposite), that mixes the field equations with

the Bianchi identities. With sources, it mixes electric and magnetic charge, since it

mixes electric and magnetic fields. So, in general we must introduce both electric

and magnetic potentials for each vector. Furthermore, for N=6 the vectors appear

as both f ijαβ and fijklmnαβ (one extra vector). (For N=8, the two are related by an

ε tensor, just as φ and φ̄.) In this version of extended supergravity, all the vectors

are Abelian. There is also a version where they gauge SO(N), but that theory has a

cosmological constant.

7. 10D IIB on AdS5×S5

10D IIB supergravity is the version of N=2 supergravity whose field content comes

from the direct product of (N=1) super Yang-Mills with itself, with the spinors of

the 2 having the same Lorentz-chirality, as opposed to IIA. (Spinors in D=10 are

chiral: See subsection XC2.) Its field strengths have a simple description on chiral

superspace, where the chiral 16-component θ is the complex combination of the left-

and right-handed θ’s, as θ = θ1 + iθ2. There is a U(1) symmetry that mixes θ1 and

θ2 (as the usual SO(2)), so the complex θ and its complex conjugate θ̄ have opposite

U(1) eigenvalues. (This is a continuous symmetry for supergravity, but broken to a

discrete subgroup by massive string states in the corresponding superstring theory.)

The “on-shell” superfield strength is a scalar: It contains the parts of the com-

ponent field strengths that don’t vanish in the free field equations. Its expansion

is

χ(θ) = φ+ θαλα + 1
2θ

αθβHαβ + 1
6
θαθβθγRαβγ + 1

24
θαθβθγθδRαβγδ + ...

where H is the field strength of the complex 2-form, R is the γ-traceless one of

the complex gravitino, and R is the Weyl tensor + the covariant derivative of the

selfdual field strength (less curl and divergence) of the real 4-form. (Note that the

constant vacuum values of the Ricci tensor and selfdual field strength for AdS5×S5
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don’t contribute to χ.) The counting for spinor notation vs. mixed vector-spinor is

(from the Young tableaux for SL(16) vs. SO(9,1): see subsection IC3)

H : 16 · 15/2 = 120 = 10 · 9 · 8/6 , R : 16 · 15 · 14/6 = 560 = (10 · 9/2− 10) · 16 ,

R (+∇F ) : 16 · 15 · 14 · 13/24 = 1820 = 770 + 1050

= (11 · 10 · 10 · 9/12− 11 · 10/2) + 1
2(11 · 10 · 9 · 8 · 7 · 6/144− 10 · 9 · 8 · 7/24)

Since R and F are real, the U(1) weight of θ implies increasing (or decreasing, de-

pending on convention) U(1) weights for the fields as one moves lower in orders in

θ.

Exercise XC7.1

In arbitrary dimensions D>4, find the number of components of

a the curvature (Riemann) tensor, Weyl tensor, and Ricci tensor;

b the traceless and divergenceless part of the gradient of the field strength of

an (non-selfdual) n-form.

The reality condition on R, and the determination of the unlisted higher-θ com-

ponents in terms of spacetime derivatives of the complex conjugates of the lower ones,

as well as the (free) field equations, are all contained in the condition

d4
αβγδχ = d̄4

αβγδχ̄

where d4 and d̄4 refer to the product of 4 chiral or antichiral covariant spinor deriva-

tives, totally antisymmetric in spinor indices, corresponding to fourth order in the θ

expansion. (As usual, hitting this with more spinor derivatives gives higher compo-

nents on one side and spacetime derivatives of lower components on the other side.)

When comparing to the 4D boundary later, we’ll see this θ includes both 4D super-

symmetry θ’s and 4D S-supersymmetry θ’s (as the full superspace has 32 θ’s, not 16),

so expansion in the 10D θ produces components that can have either higher or lower

4D conformal weight.

Both 10D IIB supergravity on AdS5×S5 and 4D N=4 super Yang-Mills are repre-

sentations of the group PSU(2,2|4). (This is a supersymmetric generalization of the

statement that the group SO(D,2) is the conformal group in D dimensions but also

the AdS group in D+1 dimensions: The space is determined by the isotropy group

of the coset.) But the physical interpretation is different: For example, they satisfy

different field equations, even at the free level. We saw the free field equations for

(the field strengths of) 4D super Yang-Mills in subsection IIC4,

linearized 4D N=4 super Yang-Mills: D(A
(CDB]

D] = 0 mod δ terms
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and applied them in projective superspace. We saw the stronger equations implied

p2 = 0 in D=4 by picking indices giving the highest (engineering) dimension; thus

the rest of the equations followed by conformal supersymmetrization. That was easy,

since all 4 indices were uncontracted in that case.

On the other hand, 10D supergravity satisfies different, weaker equations (since

more dimensions⇒ more solutions), and with different coset gauge constraints. That

will require that some indices are contracted. To find them we first restrict to the

bosonic sector , which is sufficient, as the supersymmetric generalization is unique.

This means we truncate the symmetry group to SU(4)⊗SU(2,2), which is not the

same as considering the N=0 case. In (SU(4) a and SU(2,2) α) spinor notation the

field equations are then of the form

Da
cDc

b = δbaO, Dα
γDγ

β = δ
β
αO

for some operator O. These can be translated into vector notation (simply by keeping

track of group representations) as

D[ABDCD] = D[MNDPQ] = DABDAB −DMNDMN = 0

which generalize to arbitrary AdSm×Sn, where only for this equation A and M are

vector indices for SO(m−1,2) and SO(n+1). If we plug in the usual representations

of these symmetry groups on these spaces (yielding just “spin” and “translation”

operators), then the former 2 equations say that the corresponding spins vanish,

while the last is the massless Klein-Gordon equation in m+n dimensions. In our

supersymmetric case of AdS5×S5, these equations are unmodified on the chiral field

strength, since the ∂/∂θ̄ in the ∂/∂θ ∂/∂θ̄ term vanishes.

The supersymmetrization is then

linearized 10D IIB supergravity on AdS5×S5: DA
CDC

B = 0 mod δ terms

In the boundary limit of the AdS/CFT correspondence, these are not the 4D Yang-

Mills equations, but the equations satisfied by fields coupling to “BPS” (projective

superspace) color-singlet composites of the Yang-Mills superfields.

If we had set O to vanish, decoupling the 2 spaces, we would instead have the

massless m-dimensional Klein-Gordon equation on AdS, while on the sphere we would

leave only a constant solution. In the supersymmetric case, this describes maximally

supersymmetric 5D supergravity on AdS:

linearized 5D maximal supergravity on AdS5: DA
CDC

B = 0 (including δ terms)



854 X. SUPERGRAVITY

This chiral superspace has a nice coset on AdS5×S5: As we saw in subsection

IXC2, AdS5 is the coset SO(4,2)/SO(4,1), while S5 is SO(6)/SO(5). We also saw

in subsections IIC3-4 that supergroups like covering groups (because supersymmetry

uses spinors), which according to subsection IC5 would make these SU(2,2)/USp(2,2)

and SU(4)/USp(4). This leads to the supercoset PSU(2,2|4)/USp(2,2)⊗USp(4) as the

full superspace. Starting with the PSU group element, we just separate the bosonic

and fermionic indices:

(g−1)M
A =

( a α

m y θ

µ θ̄ x

)

Chiral superspace is then obtained from the full superspace by enlarging the isotropy

group to not only gauge away parts of x and y, but also eliminate 1 of the 2 fermionic

blocks of the matrix (θ̄), leaving the other block as the chiral θ. (I.e., as usual chiral

superfields are defined as those that are annihilated by the antichiral half of the

fermionic covariant derivatives.) This makes it more convenient to use rectangles

than the full square, like the 4D projective spaces:

z̃a
MzM

α = 0

z = zM
α = (θm

ν , δνµ)xν
α =

(
θ

I

)
x−1, z̃ = z̃a

M = ya
n(δmn ,−θn

µ) = y−1 ( I −θ )

(This involves a redefinition of θ from the previous.) The covariant derivatives then

take a simple form: In matrix notation,

Dy = ∂yy , Dx = x∂x , Dθ = x∂θy

(The partial derivatives act only on things to the right of these expressions.)

This x and y are the “square roots” of the usual 6D unit-vectors X and Y for

AdS5 and S5: The latter are the gauge-group invariants (using the antisymmetric

USp metrics Ω)

X = −XT = Xµν = xα
µΩαβxβ

ν = xTΩx

and similarly for Y = yΩyT . The norms of X and Y are given by their Pfaffians

(which are quadratic); they are unity only after the P and S conditions have been

imposed, which are

detx = det y = 1
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In a convenient USp gauge, corresponding to Poincaré coordinates, we can choose

xα
µ =

( µ
.
µ

α δµα xα
.
µ

.
α 0 δ

.
µ.
αx0

)
x
−1/2
0

⇒ Xµν =

( ν
.
ν

µ Cµν xµ
.
ν

.
µ −xν

.
µ C

.
µ
.
ν(x2 + x2

0)

)
x−1

0 =

(
CµνX+ Xµ

.
ν

X
.
µν C

.
µ
.
νX−

)
(In stereographic coordinates the square roots would be much messier.)

Note that these θ’s carry 6D “curved” spinor indices and not 5D “flat” spinor

indices. Of course, this does not generalize to arbitrary curved spaces, where spinors

can carry only flat indices. We have converted flat into curved with x and y, the

“square roots” of X and Y . Thus the θ expansion of any superfield will effectively

contain extra factors of square roots of X and Y in the coefficient component fields.

The result is that the chiral scalar superfield strength of 10D IIB supergravity satisfies

a Klein-Gordon equation, at linear order in this field perturbed about the vacuum,

that involves no θ derivatives: This modified definition of the component fields sat-

isfies a Klein-Gordon equation that is independent of spin. (The same would not be

true if we did a “covariant” expansion in θ as defined by the covariant θ derivatives,

since they don’t commute with the covariant x and y derivatives. This corresponds

to a coordinate redefinition to flat θ’s.)

There are other sources of possible spin dependence that can affect the definition

of mass when examining the Klein-Gordon equation on AdS, all because of curvature

contributions: (1) The mass appearing in the Dirac equation is not simply the square

root of that in the KGE, because of curvature contributions to ∇/ 2. (See subsection

IXC2.) (2) The mass appearing in the KGE for the field strength is not the same

as that for the gauge-fixed gauge field. (3) The mass for the gauge field is gauge

dependent. All these differences can appear when examining the quadratic part of

the gauge-fixed action (especially in nonsupersymmetric gauges).

Solving even just free field equations on AdS is more complicated than on flat

Minkowski space. But if we’re only interested in the spectrum (which is independent

of position or coordinate choice), we can simplify matters by considering the boundary

limit, even if we’re not interested in the AdS/CFT correspondence. Since the metric

simplifies there, so also does the lightcone gauge, which we know is the simplest gauge

for analyzing massless spectra.



856 X. SUPERGRAVITY

Here we’ll apply a slightly modified procedure: In lightcone quantization the

wave equation is solved for dependence on a lightlike coordinate. Furthermore, for

applying twistor techniques to Feynman diagrams it’s convenient to Wick rotate this

idea to “spacecone” quantization, using a complex, null, spatial coordinate. (See

subsection VIB6.) We’ll find it convenient to use a similar procedure here, to find the

correspondence between the superspaces of AdS and CFT.

To see why such a treatment naturally arises, we work in Poincaré coordinates for

S5, after an appropriate Wick rotation. (This is suggested by the symmetric treatment

of x and y coordinates for the 4D N=4 super Yang-Mills coset.) Combining the two

spaces (with the signs that follow from the grading), and scaling

x0 → Rx0 , y0 → Ry0

with R the radius of both AdS and S,

ds2 =
dy2 +R2dy2

0

y2
0

− dx2 +R2dx2
0

x2
0

=
dy2

y2
0

− dx2

x2
0

−R2 d ln(x0y0)d ln(x0/y0)

We can then identify x0y0 and x0/y0 (or some functions of just one or just the other)

as two null, spatial coordinates, to be used to define our spacecone quantization.

We then modify the usual boundary limit of AdS to

x+ ≡ x0y0 → 0 , x− ≡ x0/y0 fixed

which includes the effect of

R → 0

in line with interpretation of x0y0 as the spacecone “time”. (Of course, x and y are

also fixed. Vanishing radius R → 0 before the rescaling would have been the limit

of infinite curvature R ∼ R−2 → ∞. This is a limit on the geometry, or global

symmetry, while the limit we applied is one on the coset gauge group.) This leaves us

with 9 bosonic coordinates on the boundary, 8 of which have translation invariance,

and are to be identified with the 4 x’s and 4 y’s of 4D N=4 projective superspace.

(There is a symmetry under translation of the ninth coordinate, but it requires also

scaling of the other 8, as well as the fermions. It is associated with a combination

of a dilatation with an R-symmetry U(1).) Thus the bosonic gauge group SO(4,1)2

(after our Wick rotation) has contracted to ISO(3,1)2. (The associated geometry is

a bit funny: There is something like 8-dimensional branes corresponding to this 9D

boundary. In terms of the string action, which we won’t discuss here, it results from

a kind of T-duality transformation on the 4 y’s and some of the θ’s.)
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In this limit the metric, and thus the Klein-Gordon operator, decomposes into a

term for AdS and a term for the sphere. The mass eigenvalues for AdS were already

treated in subsection IXC2; the sphere gives a similar contribution. Then for scalars

on AdS5×S5 we have

R2m2 = <(< − 4)−<y(<y + 4) = (< +<y)(< −<y − 4)

So for the massless scalars of 10D Type IIB supergravity we have, since < (by bound-

ary conditions) and <y (for unitary representations) are both nonegative,

< = <y + 4

where <y is an integer because it comes from a sphere. The scalars of pure super-

gravity for any number of dimensions and supersymmetries are Goldstone bosons (see

subsections IVA1-3), by virtue of forming a coset space (see subsection XC6). This

precludes curvature terms for the same reason as mass terms.

To generalize this limit to superspace, we require that it preserves the global

symmetry group PSU(4|2,2): The limit changes only our position in the space, not

the space itself. This means that on the group coordinates gA
M (or inverse gM

A) it

should affect only the flat index A, and not the curved index M . Thus, although the

symmetry group is untouched, the gauge group is contracted, just as we saw in the

pure, bosonic AdS case.

We return to the 4D parametrization of a group element of PSU(2,2|4) (see sub-

sections IC6 and IIC4), but keep all elements so as to include those in the AdS

superspace we wish to describe:

gM
A =

(
I w

0 I

)(
u 0

0 ū−1

)(
I 0

−v I

)
∼

( A A′

M uM
A wM

A′

M′ vM′
A ūM′

A′

)

(eliminating some factors on the right, just to indicate index structure), where A =

(α, a) and A′ = (
.
α, a′). In particular, it’s easy to pick out x0 and y0 as the pieces of u

and ū invariant under the manifest SO(3,1) Lorentz and SO(4) internal symmetries,

after killing the “PS” pieces of PSU(4|2,2):

u =

(√
y0 I 0

0
√
x0 I

)
u0, ū =

(√
y0 I 0

0
√
x0 I

)
ū0

sdet u0 = sdet ū0 = det u0 = det ū0 = 1 ⇒ sdet u = sdet ū ≡ 1

x−
=
y0

x0
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Then the limit on just x0 and y0, acting on just the flat indices, must be the R → 0

limit after the rescaling

gM
A →

(√
RgMA,

1√
R
gM
A′
)
, gA

M →
(

1√
R
gA

M ,
√
RgA′M

)
This limit matches up the bosonic coordinates for AdS and CFT (except for x−),

but at this point there is a mismatch between the fermions because: (1) Those for the

IIB supergravity field strength are chiral, whereas the 4D N = 4 Yang-Mills superfield

strength is twisted chiral; and (2) the AdS chiral superspace has 16 fermions, while

the 4D projective one has 8. These problems will be fixed by first introducing a

lightcone (really spacecone) superspace for AdS, and then expressing the field strength

in terms of a real prepotential in a twisted chiral superspace, as suggested by the

reality condition satisfied by the supergravity field strength. (In principle, there

should be a 10D “supertwistor” solution to this problem that eliminates the 8 extra

fermions covariantly.) This gauge is manifestly supersymmetric with respect to these

8 supersymetries.

The covariant x− derivative p+ appears as

Du , Dū = p+I + ...

(for identity matrix “I”), which in turn defines how constraints are solved. For

example, for the fermionic (“κ symmetry”) constraints, in the lightcone formalism we

pick the half of the constraints in which p+ appears and not p−, transverse components

pi appearing in both, and divide by an overall p+ to get an expression for part of a

spinor derivative in terms of pi/p+ on another. For abbreviation we now use “x” for

all bosons and “θ” for all fermions, and “p” and “d” for the corresponding covariant

derivatives, with subscripts indicating from which D’s they come. Then in the κ

constraints p/d we see that dividing by p+ cancels it in terms with du or dū, but leaves

a pi/p+ in terms with dw or dv: Therefore the former d’s are taken as “auxiliary”,

solving for them from these constraints, and we eliminate θu and θū as a gauge choice

for these constraints.

In such a lightcone-like gauge, expansion of the superfield strength in the re-

maining lightcone θ’s yields remaining component field strengths which have a trivial

relation to gauge fields. For example, for p-forms (including nonabelian Yang-Mills)

and gravity we see only (in vector notation)

F+i1...ip = p+Ai1...ip , R+i+j = (p+)2hij
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where i are the transverse indices (excluding ±), as follows from the gauge choice

A+... = h+... = 0. In our case, 10D vector indices reduce to transverse 8D vector

indices that are just the 4+4 of x and y. (Remember from the coset discussion

of subsection IC6 that spin is generally treated by indices from the gauge group,

the bosonic part of which is SO(3,1) on x and SO(4) on y, up to some U(1)’s.)

Furthermore, p+ = ∂/∂(ln x−) is just an integer (at least near the boundary), so we

can essentially identify the field strengths with their gauge fields (at least for counting

purposes).

The lightcone fermionic coordinates are now θa
′α
w , θ̄a

.
α
w , θa

′α
v , θ̄a

.
α
v , and come with

the corresponding d’s, which satisfy

{dv, dw} ∼ {d̄v, d̄w} ∼ p+I, {dv, d̄w} = {d̄v, dw} = 0

{dv, dv} = {dv, d̄v} = {dw, dw} = {dw, d̄w} = 0

By comparing the way the bulk and boundary cosets are defined, we see the chiral θ

of the bulk corresponds to fermions on the boundary as

θα
m ∼

( m m′

α θuα
m θwα

m′

.
α θ̄v .α

m θ̄ū .
α
m′

)
=

(
θu θw

θ̄v θ̄ū

)
and so in the chiral representation the lightcone (no θu and θ̄ū) χ depends on only θw

and θ̄v (8 fermions altogether). Thus the chiral lightcone superfield strength χ, and

its complex conjugate χ̄, satisfy

dvχ = d̄wχ = 0, d̄vχ̄ = dwχ̄ = 0

Explicitly, we have

χ(θw, θ̄v) =φ+ θλ+ 1
2θ

2p+B + 1
6
θ3p+ψ + 1

24
θ4p+2(h+ A)+

+ 1
6
θ5p+2ψ̄ + 1

2θ
6p+3B̄ + θ7p+3λ̄+ θ8p+4φ̄

and the counting for spinor notation vs. mixed vector-spinor is, from 2 different kinds

of Young tableaux for SO(8) (really SO(7,1)) that are related by triality,

φ : 1 , λ : 8 , B : 8 · 7/2 = 28 , ψ : 8 · 7 · 6/6 = 56 = (8− 1) · 8 ,

h+ A : 8 · 7 · 6 · 5/24 = 70 = 35 + 35 = (8 · 9/2− 1) + 1
28 · 7 · 6 · 5/24

and similar for complex conjugate fields. (All but h and A are complex. In terms of

spinor indices, h and A are the selfdual and antiselfdual parts of θ4, using εαβγδ
εζηθ.)
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This should be compared to our previous expansion for the covariant superfield in

terms of field strengths.

If we assign weight +2 to χ with respect to the U(1) (of Type IIB supergravity),

then θw and θ̄v both have weights +1/2. The different SO(4)⊗SO(3,1) components

of these SO(7,1) fields are distinguished by their SO(3,1) and SO(4) spinor indices:

In terms of θa
′α and θ̄a

.
α, θ4 and θ̄4 are SO(4) and SO(3,1) singlets, so we have

also (θ3)a
′α and (θ̄3)a

.
α; the other powers are (θ2)a

′b′ , (θ2)αβ, (θ̄2)ab, and (θ̄2)
.
α
.
β (from

symmetrizing in one type of indices and antisymmetrizing = contracting in the other,

for total antisymmetry; all doubled indices are symmetric).

Labeled by the various 2-valued indices, the components of χ are then

U(1) χ θw, θ̄v

2 φ 1

3/2 λ θa′α, θ̄a .α

1 B θ2
a′b′ , θ̄

2
ab, θ

2
αβ, θ̄

2.
α
.
β
, θa′αθ̄b

.
β

1/2 ψ θ3
a′α, θ̄

3
a
.
α, θ̄

2
abθc′α, θ

2
a′b′ θ̄c .α, θ

2
αβ θ̄a.γ, θ̄

2.
α
.
β
θa′γ

0 h θ4 + θ̄4, θa′αθ̄
3

b
.
β

+ θ3
a′αθ̄b

.
β
, θ2

a′b′ θ̄
2
cd, θ

2
αβ θ̄

2.
γ
.
δ

A θ̄4 − θ4, θa′αθ̄
3

b
.
β
− θ3

a′αθ̄b
.
β
, θ2
αβ θ̄

2
ab, θ

2
a′b′ θ̄

2.
α
.
β

−1/2 ψ̄ θ̄4θa′α, θ
4θ̄a .α, θ̄

2
abθ

3
c′α, θ

2
a′b′ θ̄

3
c
.
α, θ

2
αβ θ̄

3
a
.
γ, θ̄

2.
α
.
β
θ3
a′γ

−1 B̄ θ̄4θ2
a′b′ , θ

4θ̄2
ab, θ̄

4θ2
αβ, θ

4θ̄2.
α
.
β
, θ3

a′αθ̄
3

b
.
β

−3/2 λ̄ θ̄4θ3
a′α, θ

4θ̄3
a
.
α

−2 φ̄ θ4θ̄4

The solution to the reality condition on the chiral field strength χ(θw, θ̄v) is then

given in terms of the real prepotential V (θw, θ̄w), which is essentially the gauge su-

perfield in the lightcone gauge, by

d4
wχ = d̄4

wχ̄ ⇒ χ = d̄4
wV , χ̄ = d4

wV ; V = V

where the d4’s are now scalars from the product of all 4 components of the corre-

sponding d’s. (There are also redundant reality conditions, d̄4
vχ = d4

vχ̄ and others

from switching various numbers of dw with d̄v. Note that these are twisted reality

conditions, as pointed out in subsection IIC4, due to our use of a spacecone formal-

ism.) This is essentially a Fourier transform in the fermions (up to powers of p+), with

the covariant spinor derivatives d̄w ≈ ∂/∂θ̄w + θ̄vp
+ (near the boundary) replacing

θ̄w’s in V with θ̄v’s in χ (see exercise IA2.3), as

(θ̄v)
n ↔ (θ̄w)4−n
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We then have

dvV = d̄vV = 0

so in the projective representation V depends on only the fermions θw and θ̄w of

projective superspace. Thus we need only look at how the covariant spinor derivatives

d̄w rearrange components in going from χ(θw, θ̄v) = d̄4
wV to V (θw, θ̄w) (but only with

respect to θ̄, not θ), or d̄v for V = (p+)−4d̄4
vχ.

This argument is a bit over-simplified: We have ignored “Lorentz”-type terms

in the covariant derivatives d, which generate Du terms from commutators, which

vanish directly on χ or V but generate further terms upon additional commutators.

(Analogously, in evaluating = ∇a∇a on a scalar we can drop the ω term in the

∇ on the right but not the one on the left.) Coefficients are them modified, but the

result is qualitatively the same.

Then, writing the field strengths in terms of the gauge fields as above, we have

(dropping the p+’s)

V = (h+ A) + (θψ̄ + θ̄ψ) + (θ2B̄ + θ̄2B) + θθ̄(h+ A) + (θ3λ̄+ θ̄3λ) + (θ2θ̄ψ̄ + θ̄2θψ)

+ (θ4φ̄+ θ̄4φ) + (θ3θ̄B̄ + θ̄3θB) + θ2θ̄2h+ θ2θ̄2A+ (θ4θ̄λ̄+ θ̄4θλ) + (θ3θ̄2ψ̄ + θ̄3θ2ψ)

+ (θ4θ̄2B̄ + θ̄4θ2B) + θ3θ̄3(h− A) + (θ4θ̄3ψ̄ + θ̄4θ3ψ) + θ4θ̄4(h− A)

where unbarred fields are those that appear at lower orders in χ. All these fields can

easily be matched to those in χ by their index structure and U(1) weights, where V

has weight 0, θw has weight 1/2 and θ̄w weight −1/2. (In fact, the index structure

of the expansion in powers of θ is identical to that for χ above, only the components

have been shuffled because of the replacement of θ̄w for θ̄v.) The only components

that are ambiguous are the “h±A”: The θ2θ̄2 break up nicely into separate h and A

pieces, but the θθ̄ and θ3θ̄3 (ab′α
.
β), and the 1 and θ4θ̄4 (singlets), are different linear

combinations of h and A that are fixed by examining the explicit relation of V to χ.
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XI. STRINGS
There are three areas of application of QCD, as defined by the region of momen-

tum space they address: (1) One is perturbative QCD, which applies to large relative,

“transverse” velocity of (some of) the constituents of the hadrons. In this approach

such an amplitude is divided into a half consisting of high-energy, asymptotically-free

partons, which is calculated perturbatively in the gauge coupling, and a half con-

sisting of low-energy, confined partons, which is nonperturbative, and therefore not

calculated.

(2) Another area deals with the low-energy behavior of QCD — with properties

of the vacuum (e.g., broken chiral symmetry), or the lowest-mass hadrons, scattering

at small relative velocities. This approach is nonperturbative with respect to the

gauge coupling, and instead perturbs in derivatives, as in first-quantized JWKB. The

methods used include instantons, lattice QCD, current algebra, dispersion relations,

nonlinear σ models, and duality. This low-energy behavior really says nothing about

confinement, just as the low-energy states of the hydrogen atom tell us nothing about

ionization.

A closely related problem is that the nonperturbative information about QCD

that comes from (electromagnetic-type) duality considerations, which relates “weak”

coupling to “strong” coupling as g ↔ 1/g, is not really relating quark-gluon physics

to hadronic physics, but is relating quark-gluon physics to monopole physics; i.e., it

relates a description of weakly coupled “electric” color charges to a similar looking

theory of weakly coupled “magnetic” color charges. Thus, the dual theory, being

formally of the same type as the original, except for a relabeling of what is called

“electric” and what is called “magnetic”, does not give anything that looks any more

like hadrons, or make it any easier to calculate.

(3) The one nonperturbative approach that does deal with high (hadron) energies

is string theory: It incorporates hadrons of arbitrarily high mass, and studies their

scattering at high energies. It also shows that stringy (hadron-like) behavior is a

characteristic of QCD coupling g ≈ 1, while g ≈ 0 or ∞ have non-stringy (parton-

like) behavior: String perturbation expands in G = ln g, not g nor 1/g; duality is the

symmetry G↔ −G. Furthermore, this G is the coupling that defines the free string,

i.e., how partons bind to form strings. The coupling that determines how hadrons

couple to each other is 1/Nc, as described topologically in subsection VC9. (However,

the relation of duality to the 1/Nc expansion is unclear, since duality has been studied

so far only in relation to theories where the group is spontaneously broken to U(1),
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so effectively Nc = 1, or with respect to instantons, which are always defined for

SU(2) subgroups, so effectively Nc = 2. Thus, it has not been possible to apply such

duality arguments simultaneously with a 1/Nc analysis. Similarly, since both these

duality approaches deal only with low-energy behavior, they are difficult to relate to

confinement.)

Most of the research effort on string theory has been directed toward models with

“critical dimension” D�4 (10, 11, or 26): To describe physics in the real world of

D=4, it is usually assumed that the extra dimensions choose to “compactify” to sub-

microscopic dimensions, corresponding to length scales well below the range of present

experiments. (The extra dimensions cannot be completely eliminated without losing

renormalizability.) Such a solution to the classical field equations with minimal energy

is chosen as the “vacuum”, about which perturbations are performed, but nothing is

known to preclude contributions to the functional integral from other vacua, whether

4-dimensional, 10-dimensional, or elsewhere. Moreover, although superstrings have

been chosen to describe quantum gravity because of their renormalizability (finite-

ness), this advantage is lost after compactification, since the arbitrariness in choice

of compactification is tantamount to the loss of predictability in nonrenormalizable

theories. Furthermore, D=10 superstring theories are (compactifications of) D=11

membrane theories in disguise, where the eleventh dimension shows up only nonper-

turbatively. Not only is using a formalism where not all of the dimensions are manifest

a technical obstacle, but the quantum mechanics of membranes suffers from several

problems, including nonrenormalizability. This suggests that D=10 superstrings are

nonrenormalizable at the nonperturbative level. On the other hand, renormalizabilty

of theories with a finite number of fields predicts D=4, since theories in higher di-

mensions are all nonrenormalizable (or have unbounded potentials: φ3 theory). Fur-

thermore, both experiments with hadrons and theoretical arguments in QCD suggest

the existence of an inherently 4D string theory. (For example, the existence of a con-

tinuum limit for confining spacetime-lattice theories requires asymptotic freedom.)

However, historically the true usefulness of such string theories has been for the

concepts and features of field theory they have revealed: For example, supersymmetry

(sections IIC and IVC, and chapter X), the Gervais-Neveu gauge (subsection VIB4),

topological (1/N) expansion (subsection VIIC4), first-quantized BRST approach to

gauge theory (chapter XII), and certain simplifications in one-loop amplitudes were

all discovered through studies of 10- and 26-dimensional string theory, even though

they all are now understood more simply through ordinary field theory. This is due

to the fact that string theories are so complex and restrictive that they require the

most powerful techniques available. Clearly such strings are useful toy models for



A. GENERALITIES 865

learning about particle field theories, and about general properties of string theory

that might lead to generalizations to include realistic 4-dimensional string theories.

(In fact, the first paper on string theory was written in 1747 by d’Alembert, and was

the first appearance of the wave equation and the d’Alembertian. Thus, field theory,

quantum mechanics, and special relativity can trace their origins to string theory.)

In subsections IVB1 and VIIC4 we briefly discussed how hadrons are expected to

arise as strings from QCD. In this chapter we analyze the dynamics of this mecha-

nism. We begin by formulating the theory in terms of strings directly. Perturbative

calculations are performed using first-quantized path integrals. (These methods are

based on the corresponding ones for the particle from section IIIB and subsections

VB1 and VIIIC5, and massless 2D field theory in subsection VIIB5.) The only ex-

perimental evidence for strings is as a description of hadrons; to some extent the way

that QCD leads to strings can be understood with similar first-quantized methods,

based on random lattices.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . A. GENERALITIES . . . . . . . . . . . . . . . . . . . . . . .

In this section we examine some of the general properties of string theory, shared

by all known models, but expected to apply also to more realistic strings. These

features can be used for phenomenological applications of string theory, but also may

help point to new generalizations.

String theories are the only known theories that exhibit (S-matrix) duality. Unlike

other S-matrix approaches, they provide an explicit perturbative calculational scheme,

like field theory, and string theory can be formulated as a field theory. Also like field

theory, string theory has consistency conditions at the classical and quantum levels,

related to gauge invariance and renormalizability.

When string theory is used as a unified theory of gravity and other forces, the

most interesting predictions are those for the “low-energy” (with respect to the Planck

mass) part of the theory. Although the possible low-energy limits of known string

theories have not all been explored, the indications are that there are only a few

restrictions beyond the usual field theoretic ones:

(1) In a term in the effective action, the power of the dilaton counts the number of

loops, since the string coupling is the vacuum value of the dilaton.

(2) The spectrum of the closed string is given by the direct product of two open

strings.
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(3) String theory has noncompact symmetries, “S-duality” and “T-duality”, resulting

from the amplitudes also having this direct-product structure.

All these properties survive the low-energy limit. In the supersymmetric case, the

last property follows from the first two. (However, the D=10 superstring is actually

a D=11 supermembrane nonperturbatively. Since the observed features of hadrons,

as well as qualitative arguments from QCD, indicate stringy but not membrane-

like behavior, we will abstract only the perturbative features of higher-dimensional

strings.)

1. Regge theory

In principle there is no difference between a fundamental state and a bound

state: We can always write an action with every state represented by an independent

field. Of course, such an action might not be renormalizable, but that seems more

of a formal distinction. A more physical one is based on the qualitative property

that bound states have radial and other excitations with related properties, while

fundamental states are more unique.

Regge theory is an approach to bound states that treats them as fundamental. A

family of states that are different excitations of the same ground state is treated as a

single entity. Although basically an approach based on fundamental properties of the

S-matrix, when combined with perturbation theory it leads directly to string theory.

A quantitative definition of this concept follows from a generalization of a concept

seen in perturbative field theory. In amplitudes following from Feynman diagrams

the nature of intermediate states can be seen from the momentum-space behavior:

Single-particle states appear as poles (in the sense of complex analysis) in some mo-

mentum invariants, 1/(p2 + m2), where this p is the sum of some of the external

momenta, representing the momentum of the internal state. (Any tree graph is a

simple example.) Two-particle states appear as cuts in these invariants, where the

branch point represents the state where the two particles are at rest with respect to

one another, and the rest of the cut corresponds to arbitrary relative velocities. (For

example, a one-loop propagator correction has a branch point at −p2 = (m1 + m2)2

for intermediate particles of masses m1 and m2.) Similar remarks apply to other

multi-particle states. “Analytic S-matrix theory” was an attempt to formulate par-

ticle physics in terms of the S-matrix by replacing the property of locality of the

action with “maximal” analyticity of the S-matrix in momentum space. (Of course,

unitarity and Poincaré invariance can be described easily in terms of the S-matrix;

even analogs of renormalizability can be formulated in terms of certain properties of
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the high-energy behavior.) Unfortunately, the most general form of such nonanalytic

behavior (poles, cuts, etc.), as discovered from analyzing Feynman diagrams, proved

to be too complicated to provide a practical method for defining a theory.

Since Poincaré invariance means that not only momentum is conserved but also

angular momentum, a natural next step was to consider the analytic behavior in

that variable as well. This behavior is seen already in nonrelativistic theories (see

subsection VIIA6); here we will approach the concept in a language most relevant

to relativistic physics. The simplest example of “Regge behavior” is the 4-point S-

matrix; this is the relativistic analog of a nonrelativistic particle in a potential. (We

can think of an infinitely massive second particle as producing the potential, or sep-

arate center-of-mass and relative coordinates for two finite-mass particles.) Also, the

Feynman diagrams that appear in the nonrelativistic problem are “ladder diagrams”:

The sides of the ladder represent the two scattering particles, while the rungs repre-

sent a perturbation expansion for the potential. It can be shown that such diagrams

give the leading behavior of this amplitude at high energies. Here the appropriate

high energy limit is defined in terms of the Mandelstam variables (see subsection

IA4); by high energy we mean, e.g.,

s→ −∞, t fixed

We should really look at s → +∞ for a physical amplitude, i.e., total center-of-

mass energy → ∞. But then we would run into the poles in that channel, from

“annihilation”, for intermediate states of positive (mass)2, so instead we take s →
−∞, which has a well-defined limit, and later analytically continue Re(s) → +∞.

(An alternative is to replace s with u in the diagram. Then there can be poles in just

t and u, and none in s, so the limit s→ +∞ can be taken safely. In that limit, with

t fixed, u → −∞. Also, if we can take the external lines off shell, then s, t, u are all

negative in Euclidean space, where we usually first evaluate Feynman diagrams.)

Notice that we are discussing high-energy behavior in the s channel corresponding

to bound states in the t channel, so s in the diagram labels the direction of incoming

particles, as usual. But for nonrelativistic potential scattering, where there are no an-

tiparticles and no crossing symmetry, we can consider only the t channel in this figure
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as incoming. In that case, there is no large-s limit (unless one analytically continues

to unphysical s); the calculations there are simple enough to make it unnecessary.

But in the relativistic case, using crossing symmetry, one can switch channels be-

tween s and t, and then it makes sense to take s → ∞, to find the most important

contribution to high energy. In the analysis of subsection VIIA6, we actually looked

at s → 0, t fixed by the labeling of this diagram. Thus the eikonal approximation

is strong coupling e2/s → ∞, while the “Regge limit” is weak coupling e2/s → 0.

Yet both limits are small angle scattering, because the nonrelativistic case looks at

the scattering of 2 charged particles with the multiple exchange of photons, while

the relativistic case looks at the cross channel, with the high-energy limit of the an-

nihilation of a particle-antiparticle pair into multiple particles that produce another

particle-antiparticle pair. (Also note that in the Regge limit s → ∞ we also have

s−m2 → s, so the exchanged particles are always approximated as massless.)

The high-energy behavior of ladder diagrams can be shown to be of the form (in

units of an appropriate mass)

A4(s, t) = kg2Γ [−α(t)](−s)α(t), α(t) = a+ g2b(t)

where a is a constant that describes the behavior of the tree graph, and b(t) is deter-

mined by the one-loop graph, but gives the leading contribution of all the higher-loop

graphs. (Both, and the constant k, are independent of g.) The function α(t) is called

a “Regge trajectory”. In general one can have a sum of such terms, with different

α’s, typically differing (approximately) by integers: Then the most important term

(largest α) is called the “leading” trajectory, and the rest are its “daughters”. In

relativistic Feynman diagram calculations one typically takes the Regge limit to pick

the contribution of the leading trajectory, often from just ladders, since the exact cal-

culation is almost always intractable. (Fortunately, the calculations are much easier

in their nonrelativistic analogs, since there this physical limit doesn’t exist.) Exper-

imentally, only the leading trajectory can be seen from high-energy behavior; also,

the bound states of all but the leading trajectory are difficult to observe, because

they are less stable (except for the states of lowest mass, since they may lack lower

mass particles into which to decay by strong interactions). In relativistic theories,

depending on the theory, not all amplitudes are Regge behaved, and even those that

are may depend on more than just ladder diagrams in the Regge limit. (Also, in

massless theories loops are infrared divergent, so the external lines may need to be

kept off shell, or masses may be required, as by the Higgs effect.)

This amplitude takes a simple form under a modified type of “Sommerfeld-Watson

transform”:
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A4(s, t) =

∮
dJ

2πi
Γ (−J)(−s)JÃ4(J, t) =

∞∑
J=0

1
J !
sJÃ4(J, t)

(This is actually a Mellin transform, as applied for other purposes in subsection

VIIC3.) The contour integral is taken as clockwise about the positive real axis to

obtain the last form, where it picks up the poles of Γ (−J) (see exercise VIIA2.3b),

but can be deformed to surround the singularities of Ã4. In this case, a pole at

J = α(t) in Ã4 will reproduce our original ladder amplitude, while integrating it

around the positive real axis gives a sum over poles in t:

Ã4(J, t) = k
g2

J − α(t)
⇒ A4(s, t) =


kg2Γ [−α(t)](−s)α(t) from J = α(t)

k
∞∑
J=0

1
J !
sJ

g2

J − α(t)
from real axis

which shows that particles of spin J contribute simple poles in t to the amplitude at

α(t) = J when α(t) can be approximated as linear near that value.

The spin of the intermediate particle follows from the sJ factor. This is clear from

examining a 4-point tree graph where the external lines are scalars and the internal

line carries J indices, and must contract the momenta of its two ends. (See exercise

XIA1.1. There are also contributions of lower spins from traces and longitudinal

parts.) Another way is to note that the residues of the poles for spin J in the center-

of-mass frame must depend on the scattering angle in terms of Legendre polynomials

as PJ(cos θ) in terms of the scattering angle θ. (Angular momentum is expressed in

terms of spherical harmonics of the angles, and only θ dependence is seen in scalar

2 → 2 scattering, since it occurs in a plane.) Then if t is the incoming channel

(applying crossing to the center-of-mass definitions in subsection IA4), it’s s that

gives the angle as

s = 1
2(t− 4m2)(cos θ − 1)

So PJ(cos θ), an order-J polynomial in cos θ, is also order J in s.

While the use of (−s)J in the definition of the transform is clear just from kinetic

or algebraic reasons, the Γ (−J) follows from a little knowledge of Feynman diagrams:
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For loops as well as trees, s (and all squares of momenta) will appear in the Schwinger-

parametrized integrals (even after integration over loop momenta) in an exponent (see

subsection VIIA2). Then the inverse transform gives∫ 0

−∞
ds(−s)−J−1esA+tB+m2C = Γ (−J)AJetB+m2C

in terms of some functions A,B,C of the Schwinger parameters τ , and thus the

transform ∮
dJ

2πi
Γ (−J)(−s)JAJ = esA

integrating over the poles as above. A detailed evaluation of the parametric integrals,

and summation over loops, then yields the pole in J from evaluating the amplitude

Ã4(J, t) =
∑
loops

∫
dτD(τ)AJ(τ)etB(τ)+m2C(τ)

Thus the “Regge trajectory” α(t) determines not only the high-energy behavior

of the amplitude (for negative t), but also the spins and masses of the bound states

(for positive t): Looking at the graph for J = α(t), there is a bound state of spin

J and mass
√
t whenever the curve crosses an integer value of J . The contribution

at n loops in perturbation theory to Ã4(J, t) is a multiple pole (J − a)−(n+1), which

contributes to A4(s, t) a term proportional to (−s)a[ln(−s)]n.

Exercise XIA1.1

Calculate the tree scattering amplitude of two spinless particles of equal mass

due to the exchange of a particle of spin J with coupling and propagator as

given at the end of subsection IIIA4 (but without the static approximation).

Show that at the pole in t the leading contribution in s goes as sJ .

Exercise XIA1.2

Consider the amplitude

A4 =

∫ ∞
0

dτ eτs[f(τ)]−α(t)−1, f(0) = 0, f ′(0) 6= 0

where f is Taylor expandable. By expanding f , show that a sum of Regge

amplitudes is obtained, where the “leading trajectory” is α(t), and there are

“daughter trajectories” α(t)− n for positive integer n.

Exercise XIA1.3

Consider the energy spectrum of the hydrogen atom (nonrelativistic, with

spinless constituents). Show that this corresponds to a leading Regge trajec-

tory of the form

α(E) =

√
−E0

E
− 1
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for some constant E0, with daughter trajectories.

Unfortunately, for field theories with a finite number of fundamental particles, the

trajectories are rather boring, containing only a finite number of bound states. In cer-

tain cases a trajectory may include one of the fundamental particles itself (“Reggeiza-

tion”). Because of the usual infrared divergences, such calculations can be applied

directly to S-matrix elements only for fundamental massive particles; for fundamental

massless particles, as in confining theories (like QCD), these results require external

lines to be off-shell, and some knowledge of the parton wave functions is needed.

Regge behavior thus gives a measurable definition of confinement: If the scattering

amplitudes of color-singlet states (or color-singlet channels of off-shell amplitudes of

color-nonsinglet states) have linear trajectories, the constituent color-nonsinglet par-

ticles can be said to be “confined”. On the other hand, if the Regge trajectory rises

only to finite spin and then falls, as with the Higgs effect, then there is only “color

screening”; color-nonsinglet states might not be observable, but we do not see the

infinite number of radial excitations characteristic of confinement. Another possibil-

ity is that arbitrarily high spin is reached at finite energy: This is characteristic of

Coloumb binding, and indicates that a new, “ionized” phase is reached above that

energy.

Experimentally, hadrons are observed to have Regge behavior with respect to

both high-energy behavior and spectrum. However, those Regge trajectories are

approximately linear, thus indicating an (near) infinite number of bound states. The

linearity of the trajectories can be shown to be related to the relative stability of these

unstable particles (as compared to what is found in ladder approximations). This

suggests a formulation of the theory of hadrons where the whole Regge trajectory

is treated as fundamental. It can be shown that in any such “Regge theory” based

on a perturbation expansion where the “tree” graphs have only poles in the angular
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momentum J (whose accuracy is implied by the linearity of the observed trajectories),

that the theory has a further property called Dolen-Horn-Schmid (s-t) “duality”: This

property states that the amplitude can be expressed as a sum of poles in either the s

or t “channel”, rather than as a sum over both:

A4(s, t) =
∑
n

Cn(t)

s− sn
=
∑
n

C̃n(s)

t− tn
Σ Σ=

This holds even when the sets of particles exchanged in the two channels are dif-

ferent, due to quantum numbers of the external states. This relation has also been

experimentally verified (approximately).

Explicit realizations of such “dual models” of the S-matrix in terms of first-

quantized systems are called “string theories”. They explain the linearity of the

Regge trajectories by the harmonic-oscillator structure of the string Hamiltonian,

and the duality of the amplitudes by the conformal invariance (“stretchiness”) of the

string worldsheet.

2. Topology

The defining concept of the string is that it is a two-dimensional object: Just as

the particle is defined as a point object whose trajectory through spacetime is one-

dimensional (a worldline), the string has as its trajectory a two-dimensional surface,

the “worldsheet”. There are two types of free strings: open (two ends) and closed

(no boundary). Their worldsheets are a rectangle and a tube (cylinder).

τ

σ
σ

τ

This leads to a much simpler picture of interactions for strings than for particles.

For particles, one rarely uses first-quantization to describe self-interactions. Generally,

relativistic quantum mechanics is limited to free particles, or particles in a fixed

background. On the other hand, the quantum mechanics of strings is often the best

way to describe quantum strings perturbatively in the string coupling, for two reasons:

(1) For interacting particles, the geometric picture of a worldline becomes a graph,

whose geometry is not differentiable at the interaction points, where the curves split.
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For interacting strings, we have instead a differentiable surface (worldsheet) with non-

trivial topology: sphere, disk, torus (doughnut), etc. The external states are described

by boundaries that become disjoint at time t = ±∞ (not worldsheet parameter τ).

For example, a tree graph now looks more like a real tree, in that the branches now

have thickness, and they join smoothly to the rest of the tree.

(2) The quantum mechanics of strings is invariant under 2D conformal transfor-

mations of the worldsheet. (But the quantum field theory isn’t conformal in space-

time, because there is a discrete mass spectrum.) As a result, the worldsheet can be

“stretched” to the extent that field theory tree diagrams are described by the same

surfaces as propagators.

The fact that the string worldsheet is described by conformal geometry rather

than the usual geometry means that the worldsheet metric is reduced to just a few

parameters (called by mathematicians “moduli”), and topology (which doesn’t even

require a metric). These parameters are similar to those that appear in Feynman

diagrams for particles (so the 2D metric in some sense has been reduced to a 1D

metric), but the topology of surfaces is much different from that of stick graphs.

From this topological point of view, string diagrams are equivalent if they can

be “stretched” into one another. An explicit way to show this is using Dolen-Horn-

Schmid duality. We have mentioned in the special case of the 4-point amplitude that

summing over poles in one channel is equivalent to summing in the other. This result

can be generalized: We can write any string graph as an ordinary Feynman diagram

with just cubic interactions, but with any 4-point tree subgraph satisfying duality.

(This is not string field theory, whose graphs are not separately dual.) So we can

use duality to relate graphs of the same 2D topology, and must not double-count by

summing graphs that are topologically equivalent.

So, plugging the 4-point tree duality into more complicated diagrams (perhaps

multiple times),
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= �

= =

In particular, in any loop graph any loop can be moved anywhere, into a prop-

agator or an external line, or can be pulled out to form a tadpole (string going into

the vacuum). The result is that any graph is equivalent to a tree graph with in-

sertions of some one-loop open- or closed-string tadpoles. However, this does not

mean that any graph constructed with only open-string propagators and interactions

can be expressed as an open-string tree graph with tadpole insertions: The one-loop

open-string graph with two “half-twists” on the open-string propagators in the loop

is equivalent to a tree graph with a closed-string intermediate state, as can be seen

by stretching the surface, or by tracing the routes of the boundaries. (For example,

drawing this graph in a pseudo-planar way, as a flat ring with external states con-

nected to both the inner and outer edges, pulling the inner edge out of the plane

reveals a closed string connecting the two edges.) This phenomenon is similar to 2D

bosonization: A closed string can be represented as the “bound state” of two free

open strings just as a massless scalar in D=2 can be represented as the bound state

of two free massless spinors.

=

There are only 3 types of 1-loop insertions to consider (and for “orientable” strings

only 2):

1) handle (closed-string loop)

2) window (hole; orientable open-string loop)

3) cross-cap (window sewn up in a unorientable way)
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In string theory the coupling is topological, in the sense that the power of the coupling

constant is counted by (minus) the “genus” of the worldsheet, the “Euler number”

χ, given by the integral of the worldsheet curvature (see exercise IXA7.8). However,

in counting string loops, the last two of the 3 listed above count as open-string loops,

while the first counts as a closed-string loop, which is equivalent to 2 open-string

loops. Consequently, the closed-string coupling is the square of the open-string one:

The Euler number is

χ = 2− 2h− w − c

h = w = c = 0 is the sphere. (The torus, h = 1, has no curvature, so χ = 0.)

=

=

The cross-cap is a window with opposite points identified: It thus actually does

not introduce a boundary, but does introduce unorientability. If the number of cross-

caps is more than 2, it can be reduced to 1 or 2 by replacing pairs of cross-caps

with handles. Notable examples of surfaces with cross-caps are the projective plane

(sphere with 1 cross-cap), Klein bottle (sphere with 2 cross-caps), and Möbius strip

(sphere with 1 cross-cap and 1 window).

cross− cap
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Here are all the cases of χ = 2− 2h− w − c ≥ 0 :

h w c χ

sphere 0 0 0 2

disk 0 1 0 1
projective plane 0 0 1 1

torus 1 0 0 0
cylinder 0 2 0 0
Möbius strip 0 1 1 0
Klein bottle 0 0 2 0

The ones with c 6= 0 are a little hard to picture, and especially to understand why

they correspond to insertions of crosscaps, but we can give a simple construction from

the disk: Represent the disk as a square; we then consider identifying opposite sides,

either with or without a (half-)twist (through an angle of π, a reflection).

First, identify just the left and right sides; the result is:

disk→
{

cylinder no twist

Möbius strip twist

For the cylinder, the top edge has its ends identified, and so does the bottom,

giving 2 boundaries; for the Möbius strip, the ends of the top edge have been identified

with those of the bottom, leaving 1 boundary. The cylinder is easy to picture, and

this definition of the Möbius strip is the usual one. The cylinder is also clearly a

sphere with 2 windows. To study the crosscaps, we now look at the figures more

carefully, with the directions of arrows on parallel identified edges indicating the

relative orientation.

w

w

c w = c = 1

The Möbius strip has 1 boundary that can be identified with a window, but the

crosscap is more subtle: Consider horizontal lines in the disk; because of the twisted

identification, they are closed, with half in the top half of the disk, connected to the
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other half in the bottom half of the disk. Now move continuously from line to line,

from the boundary (top and bottom edges) to the middle. Upon reaching the middle,

the top and bottom halves of the line are identified: This is exactly a crosscap. So

we started from a boundary and moved continuously away from it, as one might on a

cylinder, but at the other end found a crosscap (instead of another boundary). This

demonstrates the entry for the Möbius strip in the above table.

Then identify both left with right, and top with bottom, with any combination

of twists; the result is a space with no boundary:

disk→


torus no twist

Klein bottle 1 twist

projective plane 2 twists

c = 1h = 1

The torus is easy to picture as a sphere with a handle. The 2-twist case is the

same as identifying opposite points on the whole boundary of the disk (easier to

picture if we take the disk as round): This is clearly the same as inserting a crosscap

into a sphere, just as the original disk was the same as inserting a window into a

sphere, which justifies both entries in the table above for χ = 1. The name “(real)

projective plane”, or “RP(2)”, refers to the fact that we can also define this space as

ordinary 3D space with all points on a ray (straight line through the origin) identified:

The identification means we can first choose all points at radius 1 (the sphere), then

identify opposite points; this is the same as taking half the sphere, then identifying

opposite points on the boundary – a sphere with a crosscap.

c c = 2

For the Klein bottle, start with a Möbius strip, from twisted identification of the

left and right sides of the disk: Think of the Möbius strip as a cylinder with 1
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boundary replaced with a crosscap, as described above. Then perform the untwisted

identification of the top and bottom sides of the disk (as was done in the middle):

This is just another crosscap at the other end of the cylinder. The usual picture

of the Klein bottle, as a cylinder with one end turned inside-out before connecting

to the other end, comes from performing the identifications in the opposite order,

first getting a cylinder from the untwisted identification, then performing a twisted

identification of its 2 boundaries.

We can also derive Euler’s theorem by such constructions: χ is defined (up to

some normalization) by integrating the curvature, and adding a contribution from

the curvature of the boundary with respect to the surface. We can avoid considering

the latter contribution by stretching the surface (which doesn’t change the topology)

in such a way that the boundary is always straight with the respect to the surface,

never turning at some angle. For example, a disk clearly has a curved boundary,

since the surface is flat, so all curvature resides in the boundary. But stretch it into

a half-sphere, and the opposite is true. Thus, defining χ = 2 for the sphere, χ = 1

for the disk, so a window contributes −1. Alternatively, we could consider a cylinder,

which has no curvature in either its surface (since the surface is made by connecting

ends of a flat disk) or boundaries, and arrive at the same conclusion. The torus comes

from eliminating the ends of the cylinder, so it also has χ = 0, and thus a handle

contributes −2. Finally, a Möbius strip comes from identifying 2 sides of a flat disk, so

no curvature from the surface, while the remaining boundary is everywhere straight;

thus a crosscap also contributes −1. A similar result comes from the Klein bottle,

making it from a cylinder as for the torus, but with a twist.

Analyzing the 1-loop insertions as tadpoles also makes it easy to interpret di-

vergences and how to renormalize them: Tadpoles contribute to vacuum values of

scalars. In string theory, coupling constants are also vacuum values of scalars (the
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string coupling g from the vacuum value of the dilaton, the slope α′ of the string

Regge trajectory from the vacuum value of the determinant of the metric tensor).

Thus, string divergences correspond to renormalization of couplings. However, we

know that divergences in quantum gravity can lead to difficulties, so it may be useful

to try and cancel them. The handle is a closed-string tadpole with a closed-string loop

(torus) at the end. Since the propagator connecting a tadpole to the rest of the graph

is at zero momentum (by momentum conservation), the divergence of this graph re-

duces to essentially a counting of states in the loop. In the superstring, the bosonic

and fermionic contributions running around this loop cancel. On the other hand,

the 2 remaining types of tadpoles turn out not to be finite by themselves. However,

their divergences can cancel each other for the superstring (or leading divergences for

the bosonic string), if the gauge group of the open string is SO(2D/2). For one such

insertion into the sphere, this is cancellation between the disk and projective plane.

For 2 such insertions, it is between the annulus (cylinder), Klein bottle, and Möbius

strip.

=

Loops in open-string graphs can have half-twists in them. Such graphs are ori-

entable if the number of half-twists in a loop is even. At 1 loop, such twisting is the

same as putting some external lines on the inner boundary of a planar loop and some

on the outside. On a loop with no strings attached to one boundary, that boundary

is just a hole, a closed string extending into the vacuum. (An annulus is topologically

the same as a cylinder.) But a loop with open strings attached to both boundaries

is the same as a tree graph with a closed string attaching the two sets of states. If

one calculates such a graph in open-string theory, no divergences are found, except

for the poles of these closed-string states.

Exercise XIA2.1

An exercise in pictures for a subsection on pictures: Draw a 2-loop open

string diagram that looks planar when 2 external open-string states are drawn

coming from each of the 3 boundaries, when the external states are drawn

inward for inner boundaries and outward for outer (as for the 1-loop diagram
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above). Show this is equivalent to a tree graph with a 3-closed-string vertex.

Generalize to an arbitrary number of loops.

3. Classical mechanics

We now consider string theory as derived by first quantization. As for particles,

the first step is to study the classical mechanics, which determines the appropriate

set of variables, the kinetic term of the field theoretic action, some properties of

the interactions, and some techniques useful for perturbation. Just as the simplest

such action for the particle produces only the relatively uninteresting case of the

scalar, the most obvious action for the string yields a model that is not only too

simple, but quantum mechanically consistent only in 26 dimensions. However, this

toy model exhibits many relevant qualitative features, such as Regge behavior and

duality. Later we’ll consider the source of its problems by relating to four-dimensional

particle theories.

The simplest classical mechanics action for the string is a direct generalization of

that for the massless scalar particle: For the Lagrangian form of this action we write

SL =
1

α′

∫
d2σ

2π

√
−ggmn 1

2(∂mX
a)(∂nX

b)ηab

where Xa(σm) is the position in spacetime of a point at worldsheet coordinates σm =

(σ0, σ1) = (τ, σ), gmn(σm) is the (inverse) worldsheet metric, and α′ is a normalization

constant related to the string tension. It can also be associated with the flat-space

spacetime metric ηab; if we couple a spacetime metric, then its vacuum value can

be taken as ηab/α
′, where α′ is the gravitational coupling, as discussed in subsection

IXA5. If we vary this action with respect to X, we get its 2D wave equation, covariant

with respect to the curved worldsheet:

Xa ≡ 1√
−g

∂m
√
−ggmn∂nXa = 0

A new feature of this action (compared to the particle’s) is that it is (2D) Weyl

scale invariant (see subsection IXA7). This gauge invariance can be used to gauge

away one component of the metric, in addition to the two that can be gauged away

using 2D general coordinate invariance. The net result is that the worldsheet metric

can be completely gauged away (except for some bits at boundaries), just as for

the particle. However, this same invariance prevents the addition of a worldsheet

cosmological term: In the particle case, such a term was needed to introduce mass.

Here, mass is introduced through the coefficient 1/α′ of the (∂X)2 term: The same
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scale invariance that prevents use of a cosmological term also prevents this coefficient

from being absorbed into the definition of the worldsheet metric.

Just as for the particle, the metric can be eliminated by its equation of motion,

resulting in a more geometrical, but less useful, form of the action: In this case the

equation of motion (“Virasoro constraints”)

(∂mX) · (∂nX) = 1
2gmng

pq(∂pX) · (∂qX)

after taking the determinant of both sides, gives

S =
1

α′

∫
d2σ

2π

√
−g̃, g̃mn = (∂mX) · (∂nX)

This is the area of the string in terms of the “induced” (intrinsic) metric g̃mn, analo-

gously to the particle case. The induced metric measures length as usually measured

in spacetime:

dσmdσng̃mn = (dσm∂mX) · (dσn∂nX) = (dX)2

Equivalently, this action can be written in terms of the area element dXa ∧ dXb:

S =
1

2πα′

∫ √
−1

2(dXa ∧ dXb)2, dXa ∧ dXb = (dσ0∂0X
[a)(dσ1∂1X

b])

For purposes of quantization, it’s also useful to have the Hamiltonian form of

the action. This also allows us to see how the Virasoro constraints generalize the

Klein-Gordon equation, and then find the BRST operator. By the usual methods of

converting from Lagrangian to Hamiltonian, we find

SH =

∫
d2σ

2π
(−

.
X · P +H), H =

√
−g
g11

1
2(α′P 2 + α′−1X ′2) +

g01

g11

X ′ · P

where
.

= ∂0 and ′ = ∂1. Various combinations of components of the worldsheet

metric now appear explicitly as Lagrange multipliers. If we define

P̂(±) = 1√
2
(α′1/2P ± α′−1/2X ′) ⇒ [P̂(+), P̂(−)] = 0

the constraints can be written as two independent sets P̂ 2
(±).

Exercise XIA3.1

Show that if we call g∓ the Lagrange multipliers for P̂ 2
(±), then in convenient

local Lorentz and Weyl scale (but not coordinate) gauges we can write in a

lightcone basis

e± = e±
m∂m = 1√

2
(∂0 ± g±∂1)
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while in another scale gauge we can write

dσmem
± = 1√

2
(dσ0g∓ ± dσ1)

Exercise XIA3.2

Find the (equal-τ) commutation relations [P̂(±), P̂(±)]. Show that the (semi-

classical) commutation relations of the constraints P̂ 2
(±) close. (Hint: Use the

identity

f(a)δ′(a− b) = f(b)δ′(a− b)− f ′(b)δ(a− b) . )

Since 2D general coordinate (and even just Lorentz) invariance is no longer man-

ifest in the Hamiltonian formalism, for some purposes we need to generalize this to a

form that is first-order with respect to both τ and σ derivatives:

S1 = − 1

α′

∫
d2σ

2π
[(∂mX) · Pm + (−g)−1/2gmn

1
2P

m · P n]

obviously reproduces SL after eliminating Pm by its equation of motion

Pm = −
√
−ggmn∂nX

Eliminating just P 1 gives a simpler way of deriving SH (with P 0 = α′P ).

Since open strings have boundaries, the action implies boundary conditions, orig-

inating from integration by parts when deriving the field equations. In the last form

of the action variation of the first term gives, in addition to the
∫
d2σ terms (δP ) ·∂X

and −(δX) · ∂P for the field equations, a boundary term
∮
dσmεmn(δX) · P n, where

dσm is a line integral along the boundary, and the εmn picks the component of Pm

normal to the boundary. We thus have

nmP
m = 0 at boundaries

where nm is a vector normal to the boundary. This condition on the derivative of

X (“Neumann” boundary condition) causes waves propagating in the string to be

reflected at the boundaries.

A simple interpretation of this boundary condition is to consider an open string as

a closed string “folded over” on itself: At any fixed τ , following X(σ) for increasing

σ takes one along the usual open string, but then doubles back at a boundary to

backtrack along the same path, and the same at the opposite boundary, becoming

periodic as for the closed string. This periodicity is convenient for σ-Fourier expanding

in exponentials, rather than sines and cosines. Continuity in X upon reversal at the
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boundaries implies the Neumann boundary condition, but implemented in the usual

way for 2D problems, by the method of images, due to this doubling.

From the constraint imposed by varying gmn, it then follows that

(tmP
m)2 = 0 at boundaries

where tm is a vector tangent to the boundary (or any vector, for that matter). Since

by the field equations Pm ∼ gmn∂nX, this means that the boundary is lightlike in

spacetime: The ends of the string travel at the speed of light.

The net result of solving the equations of motion is that X satisfies a 2D massless

(because of Weyl invariance) wave equation, and so has worldsheet-lightlike solutions

propagating to the “left” or “right” around a closed string, or left switching with

right (identified) upon reflection at an open-string boundary. (Similar remarks apply

to other 2D fields, which may have only left or only right if satisfying a first-order

equation of motion, like worldsheet fermions: see subsection VIIB5.) Because of the

finite “length” of the string in σ, the 2D fields can be expanded in Fourier sums.

The “spinning string” is defined by combining the concepts of the bosonic string

(especially exercise XIA3.2) and the spinning (spin 1
2) particle (exercise IIIB1.3): (1)

Extend the worldsheet “fields” to include a spacetime-vector fermion Ψa, and (2)

extend the constraints to include a generalized “Dirac equation” G (“superVirasoro”,

“superconformal generators”, or “supercurrent”). As for the bosonic case, we can

have left and right algebras (using ±∂/∂σ), but now also left and right Ψ ’s.

[P̂ a(σ1), P̂ b(σ2)] = 2πiδ′(σ12)ηab, {Ψa(σ1), Ψ b(σ2)} = 2πδ(σ12)ηab

G = Ψ · P̂ , T = 1
2(P̂ 2 − iΨ ′ · Ψ)

{G(1), G(2)} = 4πδ(1− 2)T

[T (1), G(2)] = 2πiδ′(1− 2)[G(1) + 1
2G(2)]

[T (1), T (2)] = 2πiδ′(1− 2)[T (1) + T (2)]

For convenience we switch to dimensionless variables,

X =

√
α′

2
φ, P̂ =

1√
2

(√
α′P +

1√
α′
X ′
)

As part of this generalization, G generates local worldsheet supersymmetry:

[G(1), φ(2)] = −i2πδ(1− 2)Ψ

{G(1), Ψ(2)} = 2πδ(1− 2)P̂
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[G(1), P̂ (2)] = i2πδ′(1− 2)Ψ(1)

The action is then (summing over ±)

S =

∫
d2σ

2π
(−

.
X · P + i1

2

.
Ψ± · Ψ± + g∓T± + χ∓G±)

in terms of the worldsheet metric g and “gravitino” χ (supergravity). (Notational

comment: One may want to insert some i’s here and in what follows for hermitic-

ity, as redefinitions, since our index sums include terms with fermion times fermion.

Technically this is not required, since “covariant” and “contravariant” fermions have

opposite hermiticity properties.) The gauge transformations on the dynamic fields

follow from the above commutators, as do those of the gauge fields: From subsection

IIIA5,

δ(q, p) = iζ i[Gi, (q, p)}, δλi =
.
ζ i + ζkλjfjk

i ( [Gi, Gj} = −ifijkGk )

where the sums are now over T and G as well as
∫
dσ/2π. Rather than extract the

structure constants f , we can just multiply the explicit commutation relations of the

generators by ζ and λ and integrate, pulling off the coefficients of T and G: For the

left transformations (all except φ are left variables),

δφ = ζP̂ + εΨ, δΨ = (ζΨ ′ + 1
2ζ
′Ψ) + iεP̂ , δP̂ = (ζP̂ + εΨ)′

δg =
.
ζ + (ζg′ − ζ ′g) + 2iεχ, δχ =

.
ε+ (ζχ′ − 1

2ζ
′χ) + (1

2εg
′ − ε′g)

To find the Lagrangian, we integrate P out, and make the substitutions as before

for the metric and zweibein (see exercise XIA3.1):

∇± =
1√
2

(∇0 ±∇1) =
1√
2

(∂τ ± g±∂σ),
√
−g =

2

g+ + g−

(The Lorentz connection doesn’t contribute on scalar X, and on spinor Ψ it multiplies

Ψ 2
± = 0.) Then

S =

∫
d2σ

2π

√
−g
[

1

2α′
(∇X)2 − i 1√

2
Ψ± · ∇∓Ψ± + χ∓Ψ± · ∇±X − 1

2χ+χ−Ψ+ · Ψ−
]

The Hamiltonian form was manifestly Weyl scale invariant: While the scalar X was

already scale invariant, Ψ was a scale invariant density. Thus in converting to the

Lagrangian an appropriate factor was scaled out to make it a scalar, and something

similar for χ:

Ψ → (−g)1/4Ψ, χ→ (−g)−1/4χ

It’s now easy to read off both the Lorentz and Weyl weights of Ψ± (±1
2 ,

1
2) and χ±

(±3/2,1
2). We can also see separation of left-handed modes into Ψ+ and right-handed

into Ψ−.
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4. Types

There are various types of known string theories: Some are supersymmetric and

some are not. (The supersymmetric ones appear to be equivalent to each other

nonperturbatively, and equivalent to supermembranes, but here we restrict ourselves

to perturbation theory.)

Besides supersymmetry, there are topological distinctions. One of these is be-

tween open and closed strings: Closed strings have modes that are either left- or

right-handed, i.e., propagating in either σ-direction. For open strings these modes

are identified, since left-handed modes become right-handed upon reflection at the

boundary (and vice versa). For closed strings they are independent, and may have

different supersymmetry properties.

Since the open strings have ends, we can associate internal symmetry indices

(“Chan-Paton factors”) with them, as found in subsection VIIC4 (for strings from

QCD), following from the same in subsection VC9 for ordinary particle field theory.

(Essentially, we consider a quark and antiquark at the ends of the string, in the

defining representation of a classical group.) These indices can also be associated

with worldsheet variables that live only on string boundaries. As in the field theory

case, these indices are associated with orientation of the boundaries (arrows) only for

U groups (where quark and antiquark are in complex conjugate representations), not

for SO or USp (where the defining representation is real or pseudoreal).

As we’ll see in section XIB, quantization of known open strings always produces

Yang-Mills at the massless level (super Yang-Mills for open superstrings). Since closed

strings have effectively two sets (left and right) of open string modes, the closed-string

Hilbert space is effectively the direct product of two open-string Hilbert spaces (with

an added restriction implied by σ-translation invariance, to be discussed later). In

this product we ignore Chan-Paton factors: Only the direct product of 2 open-string

Hilbert spaces defined by the left and right modes of the closed string are considered,

independently of whether there exist open strings defined by identifying left and right

modes and attaching Chan-Paton factors. If these 2 Hilbert spaces are the same, then

open stings can also exist in the theory, as the 2 sets of modes are identified for open

strings by reflection at the boundaries. But the 2 spaces can be different, allowing

more general closed strings. In particular, at the massless level this direct product of

two vectors can give a graviton (symmetric, traceless tensor), scalar (trace), and axion

(antisymmetric). In the case that the two open strings are the same, it is possible

to restrict this direct product of open strings to its symmetric part. In the massless
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sector, this eliminates the axion, but not the scalar. Thus, a massless scalar appears

even in the simplest case.

Another topological property we discussed was orientability of the worldsheet. To

understand orientability, we examine the discrete symmetries of the worldsheet. Wave

functions or fields describing the string can be expressed as functionals of X at fixed τ

(just as for particles). We also choose σ to run from 0 to π for the open string, and from

0 to 2π (periodic) for the closed. (This choice as a gauge condition will be discussed

in more detail in subsection XIB1.) As in D=4, local, unitary, Poincaré invariant 2D

field theories are always CPT invariant. In particular, CPT doesn’t switch left- and

right-handed modes (the “velocity” dσ/dτ is invariant), which differ in some string

theories. Thus, we can always impose invariance of the wave function/field under the

worldsheet CPT transformation: As for the particle, worldvolume CPT is identified

with spacetime C (see subsection IA5). So the generalization of the particle reality

condition φ(x) = φ†(x) to the string is

worldsheet CPT : Φ[X(σ)] = Φ†[X(π − σ)]

where parity transforms σ → π − σ to preserve σ ∈ [0, π] for the open string; for

the closed string the π is irrelevant because of periodicity and invariance under σ

translation. (We have written only the X coordinate explicitly for simplicity; similar

remarks apply to other coordinates, such as ghosts, with possible extra signs due

to 2D Lorentz indices.) Hermitian conjugation for the open string (for the closed

string the field is not a matrix), instead of just complex conjugation (for C), simply

switches the internal symmetry factors associated with the left and right ends of the

open string (matrix transposition), as also required by parity. In particular, this

implies that the matrices associated with the Yang-Mills fields are hermitian, so the

Yang-Mills group is unitary.

In addition to this reality condition, if the 2D theory is also invariant under

P and thus CT (i.e., the left-handed and right-handed modes are the same), it is

also possible, though not necessarily required, to impose such a quantum mechanical

invariance of the states under P, and thus CT. (P is also needed to define open strings,

since left and right modes are identified at boundaries.) So P changes σ and not τ ,

and doesn’t involve complex conjugation, while as for the particle (see subsection

IA5), there is no worldsheet C (since X and other worldvolume fields are generally

real):

worldsheet P : Φ[X(σ)] = MΦT [X(π − σ)]M−1 ⇔

worldsheet CT : Φ[X(σ)] = MΦ*[X(σ)]M−1
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As for Yang-Mills in the particle case, for the open string the matrix “M ” is the

group metric (we drop the M and the T for the closed string, which is not a matrix),

either symmetric or antisymmetric depending on whether the group is orthogonal or

symplectic; without imposing CT and P the group is just unitary. The result is that

the massless vector in the open string is always in the adjoint representation: with

respect to its internal symmetry indices coming from Chan-Paton factors, it’s hermi-

tian for U(N), real and antisymmetric for SO(N), real and symmetric for USp(2N).

Thus, all the classical groups are allowed (at least in the classical field theory; and

exceptional groups cannot be described by associating indices with the ends).

In the expansion of X in Φ[X] over Fourier modes of σ, there can be an extra sign

for the open string, depending on whether the component field multiplies modes even

or odd under σ → π− σ (from cos(nσ)). For the open (super)string, the sign is such

to guarantee the symmetry or antisymmetry of the massless vector for USp or SO

groups. Then the symmetry is the same for all levels with even (mass)2, and opposite

for odd. For closed strings P simply switches left and right modes (from e±inσ) at all

mass levels, enforcing symmetry under interchange of left and right Lorentz indices

coming from oscillators.

Since imposing invariance of the states (not just the action) under P and CT

makes it impossible to observe the left/right handedness of the worldsheet, such

strings are “unoriented”, as opposed to the “oriented” strings that satisfy just the

CPT condition. Thus, orientability of the surface is directly related to orientability

of its boundaries (oriented for U, unoriented for SO or USp).

Also, as in the particle field theory, unorientability allows “twisted” worldsheets

that are prohibited in the oriented case (because we can distinguish the “front” of the

worldsheet from the “back”): This allows such exotic geometries as Möbius strips and

Klein bottles. Open strings produce closed ones as bound states (open and closed

strings are parts of the same worldsheet with different boundaries); in theories of

open and closed strings, they must be both oriented or both unoriented.

Exercise XIA4.1

Consider a bosonic theory of open and closed strings, where the Yang-Mills

gauge group is SO(1), as defined by 1 “flavor” of quark at each end, satisfying

the P constraint.

a What is the massless sector of the closed string?

b What is the massless sector of the open string?
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Exercise XIA4.2

What is the difference between an unoriented closed string (satisfying this

worldsheet P condition) and the interpretation of subsection XIA3 of the

open string as a closed string folded over on itself?

Supersymmetry leads to some improvements in string theory. But the spinning

string as described isn’t clearly supersymmetric. However, there is a truncation of

its spectrum that is, and is preserved by its interactions, due to an obvious discrete

symmetry of the action that was originally called “G-parity”: Ψ → −Ψ . This can

be interpreted, at least for the Euclidean worksheet, as a 2π rotation, which changes

the sign of (worldsheet) spinors. Restricting to the even G-parity sector is called

“Gliozzi-Scherk-Olive projection”:

GSO : Φ[Ψ ] = Φ[−Ψ ]

The known string models all have massless particles. A string model with massless

particles can be applied to hadrons only if masses are given to all these states through

the Higgs mechanism or some other change in the vacuum. An alternative is to use

such a model to describe fundamental massless particles (graviton, photon, gluons,

neutrinos), although this would also require the usual Higgs of the Standard Model

for generating masses for some particles (W, Z, quarks, charged leptons, Higgs). In

particular, all known string models have a graviton, and there is no known method

whereby this graviton would gain mass, so these models seem suited only for unified

theories of gravity plus matter. For this purpose, the massive fields have little phe-

nomenological interest. They might improve high-energy behavior, but only near the

Planck scale, which is effectively unobservable. Therefore, it is necessary to analyze

the massless subsector of such string theories to find signs of fundamental strings in

nature.

The massless sector of the open string includes spin 1 and no higher. This is

true for the known string models, and also is expected to be a general result, since

otherwise the closed string (= open ⊗ open) would include massless states with spin

higher than 2, for which no consistent interacting theory is known. Spin 1/2 leads to

supersymmetry, as described below; we first consider bosonic strings. (For reference

and ultimate utility we also consider 4D states; in presently known strings these are

the massless states in perturbation about the geometrically compactified vacuum.)

This analysis can be performed covariantly, but it is simpler to use a lightcone

analysis (or helicity for D=4). For the bosonic string, taking vector ⊗ vector gives

a symmetric, traceless tensor (graviton), the corresponding trace (a scalar, usually
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going by the misnomer of “dilaton”), and an antisymmetric tensor (“notoph”, or

pseudoscalar “axion” in D=4). Additional scalars for one open string set of states

give additional (Yang-Mills) vectors for the closed from scalars ⊗ vector: Then the

scalars must be in the adjoint representation of some group, perhaps non-simple,

unrelated to Chan-Paton factors, which don’t appear due to the absence of open

strings. Additional scalars for both open strings give also additional scalars. If the 2

open strings in the product are identical, we can impose P symmetry: In particular,

this restricts vector ⊗ vector to just its symmetric part, which kills the antisymmetric

tensor. In D=4 the helicities of the closed-string states are just the sums of those of

the open strings: For the product of two vectors,

(+1⊕−1)⊗ (+1⊕−1) = +2⊕ 0⊕ 0⊕−2

giving the graviton, scalar, and axion.

Exercise XIA4.3

Make the same analysis in terms of covariant fields, both for the fields them-

selves and their gauge transformations. Note that the trace of the gravita-

tional field hab (determinant of the metric gmn) is missing. (It’s unphysical,

and can be found from the ghost sector, as explained in chapter XII.)

Considering the massless spectrum of superstrings, we now look at the restrictions

imposed by supersymmetry whenever fermions are included. The open string can also

contain massless spin 1/2, but only if it is related by supersymmetry to its massless

spin 1, since it leads to spin 3/2 in the closed string, and massless spin 3/2 is known

to be inconsistent in an interacting theory unless related by supersymmetry to the

graviton. (Spin 3/2 gauges supersymmetry. But spin 1 can’t couple minimally to spin

3/2: see exercise XIIB7.2b below. So, spin 3/2 needs spin 2 as its supersymmetric

partner.) Thus there are two possibilities for the massless sector of each open string:

(1) a vector and (perhaps) scalars for an open bosonic string, or (2) a vector multiplet

(a vector, spinors, and scalars, all related by some number of supersymmetries) for

an open superstring. In D=10, there’s only an N=1 supersymmetric vector multiplet,

containing a vector and a spinor. (If we look at compactification to D=4, depending

upon how much supersymmetry is broken, there are 3 types of vector multiplets,

corresponding to N=1,2, or 4 supersymmetries: see subsection IIC5.)

This leads to various types of closed strings (and their massless sectors):

Bosonic:

(1) Oriented: The bosonic closed string comes from bosonic ⊗ bosonic (discussed

above). If the open string spaces used in the product are different, then the
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closed strings are oriented, and there are no open strings. If they are the same,

there can also be open strings; but if we don’t apply the P constraint, they are

still oriented, and the open string group is U.

(2) Unoriented: Again if those 2 open spaces are the same, we can impose invariance

of states under the P symmetry. The closed and open strings are then unoriented,

and the gauge groups for the open strings are SO or USp.

Supersymmetric:

(1) Heterotic: The “heterotic” string comes from bosonic ⊗ super. It thus has N=1

supersymmetry in D=10 (but can have N=1,2, or 4 supersymmetries in D=4).

Because the 2 open spaces are different, the closed strings are oriented, and there

are no open strings. But the massless sector can (and must for D=10, for quantum

reasons we won’t get into) include super Yang-Mills along with the supergravity,

from scalars ⊗ super Yang-Mills.

(2) Type IIA: The “Type II superstring” comes from super ⊗ super. Therefore it has

N=2 supersymmetry in D=10. (In D=4, the total number of its supersymmetries

is the sum of those from the open strings: Depending on the type of supersym-

metric open strings used, the superstring can have N=2,3,4,5,6, or 8; in other

words, anything greater than 1, since N=7 supersymmetry is equivalent to N=8,

and 8 is the maximum for supergravity.) If the 2 supersymmetries are opposite

chirality (possible in D=10), it’s “Type IIA”. Then there is no (worldsheet) P

symmetry, so closed strings are oriented, and no open strings. (This is already

prohibited by N=2 supersymmetry, since Yang-Mills can have only N=1 super-

symmetry. Ironically, opposite spacetime chirality spinors means this is the case

with spacetime P symmetry, which switches the 2 chiralities.)

(3) Type IIB: But if the 2 supersymmetries are the same, we have “Type IIB”, if we

don’t apply invariance of states under the P symmetry.

(4) Type I: However, if we impose P invariance of states, this gives “Type I”. Then

we may also include the open strings in the spectrum (and they are required at

the quantum level with gauge group SO(32) for cancelation of divergences, as

mentioned in subsection XIA2 and described in detail in subsection XIC4 and 6).

This symmetrization also identifies the left and right supersymmetries, which in

D=10 means N=1 supersymmetry, like the heterotic string. (In D=4, N=1,2, or

4, the same for open and closed states, so they can be consistently coupled.) But

this is the only supersymmetric string that has open strings, and also the only

one that is unoriented.
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The spectrum again can be analyzed by helicity (again for D=4): For example,

for the N=1 heterotic string, we have

(1⊕ 1
2 ⊕−

1
2 ⊕−1)⊗ (1⊕−1) = (2⊕ 3

2
⊕−3

2
⊕−2)⊕ (1

2 ⊕ 0⊕ 0⊕−1
2)

which is supergravity plus a scalar multiplet. As for the bosonic string, all super-

symmetric closed strings include at least one scalar, again coming from vector ⊗
vector.

Exercise XIA4.4

Make the same analysis for some other supersymmetric cases:

a N=2 and 4 heterotic. Also make a simpler analysis using “superhelicity”,

writing any supermultiplet as the lowest-helicity one ⊗ some helicity.

b N=2 Type II.

c N=1 Type I.

The analysis in this subsection of closed = open ⊗ open is based on a flat space

analysis. There can be modifications from compactification on nontrivial backgrounds

when considering lower dimensions, especially since for Type II superstring theories

the open string states exist only formally, and can’t be coupled to nontrivial closed

string backgrounds.

For these and other reasons, it’s useful to consider the above analysis for strings

with supersymmetry in D=10 in more detail. We again use a lightcone analysis

(i.e., look at physical states), which now means looking at SO(8) representations.

(Alternatively, we could make a covariant analysis in terms of field strengths. A

covariant analysis in terms of gauge fields would require looking also at ghosts: see

subsection XIIB8.) Bosons⊗ bosons has been described above. Bosons⊗ fermions is

also simple: For vector⊗ spinor we only need to separate out the γ-trace (contracting

1 pair of vector indices as well as 1 pair of spinor) to see that 1⊗1
2=3

2
⊕ 1

2 . But

for 1
2 ⊗

1
2 we need to look a bit at γ-matrices. From the analysis of subsection XC2

we see that irreducible 8-component spinors for SO(8) come in 2 chiralities, are real,

and can have their indices raised and lowered by symmetric metrics (which can be

taken as the identity); γ-matrices (really “σ”-matrices) have 1 index of each chirality

(as well as an 8-vector index). Then it’s easy to see what we get from strings of γ-

matrices multiplied together and antisymmetrized in vector indices (symmetrization

gives anticommutators), to find the decomposition of 1
2⊗

1
2 for various chiralities. The

results are:
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Tαβ′ = 1⊕ 3

T(αβ) = 0⊕ 4SD

T(α′β′) = 0⊕ 4SD

T[αβ] = 2

T[α′β′] = 2

where the labels on the right refer to the number of antisymmetrized vector indices,

and “SD” and “SD” refer to selfdual and anti-selfdual parts (using the ε tensor),

since the antisymmetrized product of n chiral γ-matrices is (Hodge-)dual to that of

D − n (with SD vs. SD coming from the chiral projectors Π± in terms of Dirac

spinors).

Exercise XIA4.5

Check the above results in 2 ways:

a Add the dimensions of the representations (see subsection IC3).

b Use “triality” (see subsection XIB5). Permute the 3 8’s (the 2 different spinor

representations and the vector). Identify what representations are related by

triality to all the above.

If we include the dilaton and 2-form (where applicable) from vector⊗ vector, this

gives for the bosonic sectors of closed superstrings the graviton and

Type IIA: 0⊕ 1⊕ 2⊕ 3

Type IIB: 0⊕ 0⊕ 2⊕ 2⊕ 4SD

Type I: 0⊕ 2

where in taking the direct product of 2 10D N=1 vector multiplets (each with a vector

and a spinor: see subsection XC5), for IIA we took opposite chirality spinors, for IIB

the same, and for I we graded symmetrized (symmetrized as before for boson⊗ boson,

so no 2-form there, and antisymmetrized for fermion⊗ fermion). Together with the

spins 3
2
⊕ 1

2 (doubled for Type II) from 1 ⊗ 1
2 for the fermionic sector, this gives the

field content for the 3 types of 10D supergravity corresponding to these 3 types of

strings. Note that Type I has the same bosonic sector as the non-symmetrized bosonic

string; as a result, the heterotic string has the same N=1 supergravity as Type I, plus

some vector multiplets. Also, the field content of IIA follows directly by dimensional

reduction from that of 11D N=1 supergravity (see subsection XC5): graviton, 3-form,
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and spin 3
2
. (This can be considered a derivation of the 11D spectrum by “dimensional

oxidation”.)

5. T-duality

Another symmetry of all known string models is “T-duality”. It is closely re-

lated to the open ⊗ open structure of closed string states, and thus expected to be

a general property of string theory. We consider the simple bosonic model as an

example. Including constant background fields, working with flat worldsheet metric

(the “conformal gauge”: see subsection XIB1) for convenience, the Lagrangian is

L = −(∂+X
m)(∂−X

n)Mmn, Mmn = Gmn +Bmn

where +,− are lightcone worldsheet indices, the curved indices m,n now refer to

spacetime, Gmn is the spacetime metric, and Bmn is an antisymmetric tensor gauge

field (“axion”). Writing the action in first-order form

L′ = −P+m∂−X
m − P−m∂+X

m + P+mP−nM
mn

where Mmn is the inverse of Mmn, we vary X instead of P to solve the field equation

∂+P−m + ∂−P+m = 0 ⇒ P+m = ∂+X̃m, P−m = −∂−X̃m

and substitute to find the “dual” Lagrangian

L′′ = −(∂+X̃m)(∂−X̃n)Mmn

Thus the “duality transformation” from X to X̃ is an invariance of the theory,

as long as we also transform the background:

Xm → X̃m, Mmn →Mmn

Note that in flat space (Mmn = ηmn), using the P equation of motion in L′, we have

P+m = ηmn∂+X
n, P−m = ηmn∂−X

n

so duality just changes the sign of the right-handed modes (∂−X = −∂−X̃) while

leaving invariant the left-handed ones (∂+X = ∂+X̃), i.e., τ ↔ σ. (The treatment of

the “zero-modes”, those killed by the derivatives acting on X or X̃, is more tricky:

We have ignored them by taking the background constant.) We can see this to lowest

order in the background, since M → M−1, to lowest order in perturbation about

〈M〉 = η, changes the sign of the field, corresponding to the fact that their “vertex
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operators” (coefficients of linearized background fields) are linear in both left- and

right-handed modes ((∂+X)(∂−X)). However, in full nonlinearity, duality mixes the

spacetime metric Gmn(X) and axion Bmn(X).

By associating 1/α′ with Mmn (as a factor in its vacuum value: see subsections

IVA7 or IXA5 for gravity), we see that T-duality also implies the transformation

α′ → 1/α′

For comparison, if we perform “S-duality” in a similar way for electromagnetism in

D=4 (again for an antisymmetric field strength with D/2 indices), not only do we

find the transformation from electric 4-vector potential to its dual magnetic potential

but, also there writing the coupling in front of the Lagrangian as (1/e2)F 2,

e2 → 1/e2

Thus both T-duality and S-duality are strong-weak coupling dualities, but for the

worldsheet and spacetime (first-quantization and second-quantization), respectively.

In string theory both can be performed.

This invariance can be generalized to a continuous O(D,D) symmetry by com-

bining it with (global) Lorentz transformations. The above discrete symmetry is a

kind of “parity” for this larger group: There are also “reflections” from performing

the duality on just one component of Xm. The easiest way to see the full symmetry

is in the Hamiltonian formalism, where it can be made manifest: We first combine

X ′m and the canonical momentum Pm into an O(D,D) vector:

ZM = (Pm, X
′m)

⇒ [ZM(1), ZN(2)] = −2πiδ′(2− 1)ηMN , ηMN =

(
0 δnm
δmn 0

)
where the O(D,D) metric ηMN is constant even in curved space. (We have abbreviated

“1” for “σ1”, etc. We can also choose as a basis the currents P̂(±) of subsection XIA3,

which diagonalizes the metric ηMN .) The Virasoro constraints are then

1
2η

MNZMZN = 1
2M

MNZMZN = 0

where M is not only symmetric but also an element of the O(D,D) group:

MMN =

(
Gmn GmpBpn

−BmpG
pn Gmn −BmpG

pqBqn

)
=MNM = ηMP (M−1)PQη

QN

If the fields are constant in only d of the D dimensions, then the symmetry is re-

duced to O(d,d); thus O(d,d) is a symmetry of the dimensionally reduced theory

with arbitrary fields.
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Exercise XIA5.1

Show that the conditions onM can be solved in a manifestly O(D,D) covari-

ant way by use of a “vielbein” EA
M :

M =MT , MηM = η (η = ηT = η−1)

⇒ M = ET η̃E, EηET = η, η̃ =

(
ηab 0

0 ηa
′b′

)
Show thatM is invariant under a local O(D−1,1)⊗O(D−1,1) transformation

on E, so E is an element of the coset space O(D,D)/O(D−1,1)⊗O(D−1,1)

(see subsection IVA3). Since the original T-duality preserved the vacuum

(no background), and changed only one handedness, it’s clearly a CPT trans-

formation for 1 of the 2 O(D−1,1)’s, which can be identified as left and

right-handed.

These fields are massless. If massive fields are included, we need to take into ac-

count “compactification” rather than just “dimensional reduction”: Instead of taking

the fields as constant in some of the dimensions, those dimensions are taken as circles,

each with their own radius R. (Really they are just tori with lengths 2πR, not circles

in any space.) The corresponding components p of momenta are then quantized. But

closed strings can then “wind” around those circles. These winding modes w are then

T-dual to the momenta: They contribute to the zero-modes as

τ ↔ σ ⇒ X = α′pτ + wσ + ...↔ X̃ = wτ + α′pσ + ...

for each of these dimensions. As a result, the O(d,d) symmetry is reduced to a discrete

O(d,d,Z) symmetry. These zero-modes are quantized as

p =
m

R
, w = nR

for integers m,n (X is defined mod 2πR, and σ is defined mod 2π), so

τ ↔ σ ⇒ m↔ n, R↔ α′

R

Thus X̃ describes a circle of radius α′/R. Their contribution to the “energy levels” is

α′p2 + α′−1w2 = m2 α
′

R2
+ n2R

2

α′

from the zero-mode part of one term in the Hamiltonian (see subsection XIA3). They

contributemn to the other term. (Similarly, string excitations discretize S-symmetry.)
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6. Dilaton

We can extend the spectrum analysis of subsection XIA4 off shell: The procedure

(to be justified in chapter XII) includes the ghost and antighost (multiplets) for the

vector (multiplet) as a doublet of the ghostly Sp(2) symmetry. The direct product

of vector ⊗ vector now clearly gives a traceless symmetric tensor (graviton), the

corresponding trace (physical scalar), and an antisymmetric tensor (axion). In the

direct product of the ghosts, the Sp(2) singlet gives the trace part of the metric tensor,

which is the true dilaton. This dilaton (the determinant of the metric tensor in the

nonlinear case) is required in gravity for constructing local actions (see subsection

IXA7), but does not contain a physical degree of freedom. The physical polarizations

of the graviton are contained in the traceless (actually det = −1) part of the metric,

which describes the conformal part of gravity. The direct products involving ghosts

also give Sp(2) nonsinglets, which are the ghosts of the massless sector of the closed

string. BRST transformations (and thus gauge transformations) can also be obtained

by this direct-product procedure.

The natural coupling of background fields in the classical mechanics of the string

reflects this direct-product structure, as seen in subsection XIA5. This means that

the background metric as we have defined it has as its determinant not the usual

one, but that times a power of the physical scalar: It is a physical degree of freedom.

T-duality mixes physical degrees of freedom with each other.

If we try to construct a low-energy action for the massless fields of the bosonic

string, it is not too difficult to find a scalar invariant under T-duality to act as the

Lagrangian. However, it is impossible to use the usual measure
∫
dx
√
−G (where

G is the determinant of the spacetime metric) because G is not invariant under T-

duality. This problem is solved by including the spacetime dilaton field Φ(X): It

couples to the string as

Sdil = −
∫
d2σ

2π

√
−g 1

2r ln Φ(X)

where we denote the worldsheet curvature by r(σ) (only in this subsection) to distin-

guish it from the spacetime curvature R(x). (There are also boundary contributions:

see exercise IXA7.8.) This term can also be expressed as a coupling to the world-

sheet ghosts (according to the above arguments), allowing the worldsheet metric to

be completely fixed by gauge transformations, as usual.

The dilaton coupling as defined here (i.e., with this dependence on G) depends

on the measure for the worldsheet path integral, and the regularization of worldsheet

loops. This ambiguity can be avoided by defining the coupling directly to the ghosts
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as mentioned previously; integrating out the ghosts at 1 (α′) loop gives the ambiguous

curvature coupling. The loop is defined here to preserve T-duality, and is the defini-

tion consistent with the lightcone gauge (where this dilaton doesn’t appear; neither

do the ghosts).

Since there is no X dependence of Sdil for constant dilaton field (no ∂X factors,

unlike G and B), the constant dilaton is invariant under T-duality. Furthermore, since

it couples to the worldsheet curvature, which counts the number of loops, the dilaton

must appear homogeneously in the classical action. The dilaton that appears as above

in the string action transforms as a density under general coordinate transformations,

allowing the construction of actions invariant under both T-duality and coordinate

transformations. The resulting spacetime action for the massless fields of the oriented,

closed bosonic sting is

Smassless =

∫
dx Φ( − 1

4
R + 1

24
HabcHabc + Λ)Φ

where Habc = 1
2∇[aBbc] is the field strength for the axion. T-duality determines the

only arbitrary coefficient, the relative weight of the and R terms. Note the absence

of the factor e−1, which has been absorbed into the definition of Φ: The covariant

derivative acting on Φ, since it is a density that transforms as e−1/2, acts as

∇aΦ = e−1/2eae
1/2Φ

(We have included a cosmological term, allowed by T-duality, but not appearing at

tree level.)

Exercise XIA6.1

Find the field equations following from this action. Then make the field

redefinition Φ = e−1/2eφ, to find the result:

δ

δΦ
⇒ (∇φ)2 + φ− 1

4
R + 1

24
H2 + Λ = 0

δ

δBab

⇒ ∇aHabc + 2Habc∇aφ = 0

δ

δeam
⇒ Rab = 2∇a∇bφ+ 1

2Ha
cdHbcd

Both coupling constants in string theory can be associated with vacuum values:

(1) The string coupling appears as the vacuum value of the dilaton, since it counts

loops. (2) α′ comes from the vacuum value of the (spacetime) metric, as can be seen

from the worldsheet action. This is the string-gauge equivalent of the fact that the

gravitational constant naturally arises as the vacuum (or asymptotic) value of the
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metric in ordinary gravity (see subsection IXA5). In string theory, the fact that the

gravitational constant is a combination of α′ and the string coupling is equivalent to

the field redefinition from the string gauge to the particular Weyl gauge where the

Einstein term in the action appears in the usual way.

Thus S-duality is related to a symmetry where the dilaton goes to its inverse,

whereas T-duality is related to a symmetry where the metric goes to its inverse.

(In compactification, that component of the metric takes its vacuum value in the

combination R2/α′.) Although these are quite different in string mechanics, where

T-duality is seen perturbatively but S-duality is nonperturbative, in field theory they

are quite similar: In particular, Type IIA supergravity can be derived by dimensional

reduction from 11D supergravity (see subsection XC5), with the dilaton arising from

a component of the metric.

Exercise XIA6.2

This action is in the string gauge (see subsection IXB5).

a Make the physical scalar explicit in the action by the field redefinition (Weyl

scaling: see subsection IXA7)

ea
m → χea

m

leaving Φ and Bmn unchanged.

b The resulting scalar action can be (off-)diagonalized by further redefinitions:

Noting that the known string theories are defined for
√
D − 1 an (odd) integer

(5 or 3), write the dimension in general as (for any D > 1, n not necessarily

integer)

D = n2 + 1

Restoring the e−1 to the action, redefine

Φ = e−1/2φ
(n−1)/2(n+1)
+ φ

(n+1)/2(n−1)
− , χ = φ

1/(n+1)
+ φ

−1/(n−1)
−

which also gives the scalars φ± the canonical Weyl scale weights, to obtain

the final result for the Lagrangian L (where S =
∫
dx e−1L)

L = φ+( n2

n2−1
− 1

4
R)φ− + 1

24
φ

(n+5)/(n+1)
+ φ

(n−5)/(n−1)
− H2

+Λφ
(n−1)/(n+1)
+ φ

(n+1)/(n−1)
−

c This redefinition is singular for D = 2 (n = 1). Fix this by making the

additional redefinition

φ± → φ
(n±1)/2
±
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and then taking the limit n→ 1. (We can also use redefinitions equivalent in

the limit, such as φ− → φ
(D−2)/4
− .) Show the result is then

L→ 1
4
φ+( ln φ− −R) + 1

24
φ3

+φ
−2
− H

2 + Λφ−

We can no longer choose the gauge φ+ = 1, since it is now scale invariant,

but we can still choose φ− = 1.

When applied to the supersymmetric cases (superstring or heterotic string), the

inclusion of ghosts in the direct-product procedure also gives the auxiliary fields.

(The dilaton itself is an auxiliary field.) For example, in the N=1 heterotic case, the

direct product of the physical parts of the vector and vector multiplet give conformal

supergravity (the supersymmetrization of the traceless part of the metric) and a

physical tensor multiplet (the supersymmetrization of the axion and scalar). On the

other hand, the ghosts of the vector multiplet form a chiral scalar superfield; its

procuct with the scalar ghost of the vector gives another chiral scalar superfield, the

compensator, containing the dilaton. (See subsection XA3.)

The two conditions of supersymmetry and that the dilaton must appear homoge-

neously (quadratically after an appropriate field redefinition) are now enough to fix

the form of the action (except for the nonminimal heterotic cases, where the open

string’s scalars introduce extra vector multiplets). For convenience we redefine the

chiral scalar compensator as φ → φ2/3 so that it appears quadratically in the cos-

mological term
∫
d4x d2θ φ2. Thus, by dimensional analysis φ now has scale weight

3
2
. The axial-vector field strength of the axion appears as [∇α,∇ .

α]G, so G has scale

weight 2. (Gauge fields are Weyl scale invariant with curved indices for consistency

with gauge transformations; thus Hmnp has weight 0 while Habc has weight 3.) Of

course, these weights also follow from local superscale transformations, the global part

of which transforms fields as L2w (see subsection XA4). The only action quadratic

in the dilaton consistent with global scale and U(1) (R) invariance is then (with

implicit covariantization with respect to conformal supergravity, which makes these

invariances local)

S =

∫
dx d4θ φ̄φG−1/2 +

(
Λ

∫
dx d2θ φ2 + h.c.

)
Exercise XIA6.3

Use the methods of subsection XB6 to find all of the terms in this action

involving only bosonic fields. Compare to the bosonic string action considered

above.
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Besides T-duality, string theories also have “S-duality” symmetries that are re-

alized only on the field equations, or after performing electromagnetic-type duality

transformations on the fields: If we convert G into a second, physical chiral multiplet

χ by such a duality as described in subsection XB5, the above action is converted to

S =

∫
dx d4θ (φ̄φ)2/3(χ+ χ̄)1/3 +

(
Λ

∫
dx d2θ φ2 + h.c.

)
After the redefinitions

φ2 → φ, φ2χ→ χ

the first term becomes manifestly SU(1,1) invariant (see subsection XB7):

S =

∫
dx d4θ (φ̄χ+ χ̄φ)1/3 +

(
Λ

∫
dx d2θ φ+ h.c.

)
It is now the original T-duality that can be realized only on shell. Also, in this form

the condition that the dilaton should appear homogeneously is obscured. (Such S-

dualities were first seen in extended supergravity theories, especially when obtained by

reduction from higher dimensions, where antisymmetric tensors are often required.)

Exercise XIA6.4

Apply the results of exercise XB5.1 to include vector multiplets in the above

actions by replacing G→ G̃ in the first action and performing duality trans-

formations. (The super Yang-Mills appears in the spectrum from the product

(vector ⊕ scalars) ⊗ vector multiplet in the heterotic string.) This substi-

tution is dictated by homogeneity in the dilaton, which prevents the usual

conformal
∫
d2θ W 2 term. Such terms occur naturally in higher-dimensional

couplings of supergravity to super Yang-Mills.

Classical and quantum symmetries of mechanics formulations of particle and

string theories in background fields are often used to derive equations for those back-

grounds. These features are not peculiar to these theories or their formulations: They

are a general feature of describing a particle/field of some (super)spin in a gauge back-

ground. These equations fall into two distinct types: (1) A supersymmetric system

in a gauge background of higher superspin generates constraints on the background,

necessary for consistently defining the coupling (see subsections IVC3 and XA1).

(2) Any gauge system in a background of the same gauge field generates field equa-

tions for the background (see exercise VIB8.2).

For example, the classical symmetries of the superparticle always generate con-

straints on its background, but give field equations for it only if the number of super-

symmetries is enough to insure its superspin is as high as that of its background (e.g.,
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10D N=1 in background super Yang-Mills or 11D N=1 in background supergravity).

Similarly, the bosonic string generates field equations for background gravity at the

quantum mechanical level because quantization is required to reveal the massless

graviton excited state contained in the string itself. On the other hand, the 10D

superstring already generates field equations for background supergravity classically,

since the ground state of the superstring (closed if boundary conditions are ignored),

the only part that is evident (semi)classically, already contains supergravity.

7. Lattices

In string theory there are two spaces, the two-dimensional space of the worldsheet,

and physical spacetime. In subsection VIIIB7 we considered approximating spacetime

by a lattice; in this subsection we instead approximate the worldsheet by lattices. For

the spacetime of QCD we used a regular lattice, representing the fixed geometry of

flat spacetime. In string theory we considered worldsheets of arbitrary geometry,

described by a worldsheet metric, so our lattices should be more arbitrary; in fact,

functional integration over the worldsheet metric must be replaced by summation over

different lattices. We saw that the topological expansion of QCD in 1/N generated

polyhedra analogous to the worldsheet (see subsection VIIC4), with 1/N acting as

the string coupling. We therefore identify the Feynman diagrams themselves, with

faces chosen by the 1/N expansion, as these lattices, to give a more precise correlation

between the second-quantized path integral of QCD (and other field theories) and the

first-quantized path integral of string theory.

Presently the relation between such field theories and string theory is not well

understood, and has been described only for the bosonic string. Since the bosonic

string has only the worldsheet metric and spacetime coordinates as degrees of free-

dom, it corresponds to a (N×N-matrix) scalar field theory. Since a lattice requires a

scale, while conformal invariance includes scale invariance, we must break the confor-

mal invariance of the worldsheet. The simplest coordinate-invariant yet scale-variant

property of a space is its volume, so we add a volume (area) term to the string action.

Furthermore, to describe interactions we need to include a term containing the string

coupling constant; in string theory the power of the coupling constant is counted by

the integral of the worldsheet curvature. Our worldsheet action thus consists of the

three terms

S =

∫
d2σ

2π

√
−g
[

1

α′
gmn 1

2(∂mX) · (∂nX) + µ+ (ln κ)1
2R

]
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A lattice version of this action is (with χ given in subsection VIIC4)

S1 =
1

α′

∑
〈jk〉

1
2(Xj −Xk)

2 + µ
∑
j

1 + (ln κ)

∑
j

1−
∑
〈jk〉

1 +
∑
J

1


where j are vertices of the lattice, 〈jk〉 are the links, and J are the “plaquets” (faces,

loops).

Exercise XIA7.1

Put the particle on a random lattice “Minkowski” worldline. (See exercise

VB1.2.) Show the propagator for a massless particle, written in momentum

space, before taking the limit lattice spacing ε→ 0, is

∆ =
2ε

1− e−iεp2

Show this has unphysical poles at p2 = 2πn/ε for arbitrary integer n. How

do these results differ if the propagator is defined for Wick-rotated τ?

T-duality on this discretized string action (subsection XIA5) directly corresponds

to Fourier transformation of the corresponding field theory Feynman diagrams (sub-

section VC8) but, unlike the normal field theory considered previously, here there

are no Schwinger parameters. We then see that the T-duality transformation of the

contravariant Xm (actually its differences) to its dual covariant X̃m is due to the fact

that X̃m represents the loop momentum.

The corresponding field theory is easily found, according to our earlier discussions,

by (1) identifying the worldsheet lattice with a position-space Feynman diagram (the

vertices of the lattice being those of the diagram, the links of the lattice being the

Feynman propagators; see subsection VC8), and (2) using the 1/N expansion to

associate the faces of the worldsheet polyhedra with the U(N) indices of the scalar

field (see subsection VIIC4).

We then can immediately identify the three terms in the string action with their

counterparts in the scalar field theory:

(1) The X term gives the propagators,

(2) the area term (which counts the vertices) gives the vertex factor (coupling con-

stant), and

(3) the curvature term (which classifies the topology) gives the 1/N factors of the

topological expansion.

Thus, the three constants in the string action can be identified with the mass, cou-

pling, and number of colors of the scalar field theory. Explicitly, the field theory
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action is

S2 = N tr

∫
dDx

(2πα′)D/2
(1

2φe
−α′ /2φ−G 1

n
φn)

where we have identified

G = e−µ, 1
N

= κ, m2 = 2
α′

and we have put an overall factor of N (associated with 1/h̄) so that G (and m2) is

fixed (rather than G times some power of N) when the 1/N expansion is performed.

(The reverse can be made true by rescaling φ. Similarly, a φ rescaling that makes

the G dependence an overall factor in the action makes µ in the lattice action count

faces instead of vertices.) The unusual kinetic operator

e−α
′ /2 = 1

m2 (m2 − + ...)

comes from identifying the second-quantized particle propagator as it appears in the

first-quantized path integral for the string:

A =

∫ ∏
j

dDXj

(2πα′)D/2
e−S1 ⇒ ∆(x, y) = e−(x−y)2/2α′

Unlike the spacetime lattice, the worldsheet lattice preserves spacetime Poincaré

symmetry, so it’s unnecessary to take any limits to define a physical theory (or at least

taking limits won’t improve the physical relevance of this model). This model thus

describes a stiff or lumpy string. The usual continuum-worldsheet string then can

be identified with a particular limit of this more general string. Explicit calculations

have demonstrated that this lattice regularization of the worldsheet reproduces the

results of the continuum approach. These results have been limited to spacetime

dimension ≤ 1 because of the inconsistencies introduced by the tachyon, which is

the ground state in higher dimensions. Unfortunately, this prevents study of the

more interesting properties, such as scattering amplitudes and the precise form of

the potential (we have left n arbitrary in S2), since it’s superrenormalizable in D≤2

regardless of its form. However, these limitations probably would not appear in a

corresponding formulation of the superstring, which has no tachyons.

An interesting feature of this model is the use of Gaussian propagators to get

rid of the usual perturbative divergences of momentum integration. Naively, one

might suspect that such field theories were completely finite. However, we know in

this case that the bosonic string does have divergences perturbatively in the string

coupling, and that there are further problems unless D=26. This demonstrates that
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modifying a theory to fix problems seen in perturbation theory does not preclude the

reappearance of such difficulties nonperturbatively.

These Gaussian propagators lead to Gaussian behavior of fixed-angle scattering

(as we will see in subsection XIB6), in conflict with hadronic physics, where power-law

behavior is observed for partons with large transverse momenta, and is a theoretical

consequence of asymptotic freedom with the usual propagators. (In fact, it is the

main empirical verification of QCD.)

Since nonrelativistic first-quantization gives Gaussian propagators e−x
2/t, it is not

surprising that the simplest strings should result in partons with Gaussian propaga-

tors e−x
2
. However, the fact that first-quantization for particles leads instead to,

e.g., 1/x2 propagators for massless particles in 4D position space suggests that an

analogous treatment for strings should be possible. We thus attempt to follow the

derivation above from parton to string, but starting with realistic parton propaga-

tors. The first step is to exponentiate the propagator so that the exponent can be

identified with a first-quantized action. The easiest way, and that most analogous to

the nonrelativistic case, is to use the Schwinger parametrization of the propagator,

which follows from the appearance of the worldline metric in the action:

1
1
2p

2
=

∫ ∞
0

dτ e−τp
2/2

As we saw in subsection VC8, a Feynman diagram in a scalar field theory with

nonderivative self-interactions is then written as∫
dx′idpijdτij e

−
∑
〈ij〉

[τijp
2
ij
/2−i(xi−xj)·pij ]

In the (worldsheet) continuum limit of this expression, p becomes a worldsheet vector,

so τ must become a symmetric worldsheet tensor. Since on a regular square lattice

(“flat” worldsheet) there are two propagators per vertex (for the two independent

directions), τ must be a traceless tensor. (This also explains why τ can’t be just a

scalar.) Imposing this tracelessness through a Lagrange multiplier λ, we can write

the (Wick rotated) continuum action as

S =

∫
d2σ

2π
{−iPm · ∂mX + 1

2τmn(Pm · P n + λggmn) +
√
−g[µ+ (ln κ)1

2R]}

Thus τ acts as a kind of second worldsheet metric. However, since Schwinger param-

eters are positive, τmn must be positive definite, and thus a Euclidean metric. This

also implies that gmn must be Minkowskian, to be consistent with the tracelessness

condition. Note that if we set λ equal to a constant, and ignore the positivity condi-

tion on τ , then eliminating τ by the equation of motion from varying gmn reproduces
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the usual string action, where we can identify α′ = µ/〈λ〉. This indicates a possible

approximation scheme.

The two components of τ that survive this tracelessness condition correspond to

the two lightlike directions defined by gmn: If we use a “zweibein”, defined as usual by

gmn = −e(m
+en)

−, to flatten the indices on τ , then the Lagrange multiplier constraint

can be solved by simply setting τ+− = 0. The action is then

S =

∫
d2σ

2π

√
−g[iP± · e∓m∂mX + 1

2τ±±P∓ · P∓ + µ+ (ln κ)1
2R]

Back on the lattice, this implies that the directions chosen by the propagators (links)

on which P is defined are lightlike. Thus, the matrix model defined by this theory

should have only 4-point vertices, with the four propagators coming from any vertex

forming the worldsheet lightcone at that point on the worldsheet. The field theory

action is thus

S2 = N tr

∫
dDx

(2π)D/2
(−1

4
φ φ−G1

4
φ4)

For D = 4, this action describes an asymptotically free theory, “wrong-sign” φ4

theory.

Unlike conventional strings, this “QCD string” has critical dimension D=4 for

renormalizability. (In conventional strings all momentum integrals are Gaussian and

thus converge.) Another reason for D=4 is T-duality: T-duality interchanges the

positions of the vertices with the momenta of the loops. This is clear from our

discussion of the classical mechanics of Feynman diagrams in subsection VC8, if we

note that the procedure we used there to translate from coordinates to loop momenta

is exactly the random lattice version of the T-duality transformation performed in

subsection XIA5 (with X̃ as the loop momenta). Thus, invariance of a string theory

under T-duality must include invariance of the propagators of the underlying field

theory under Fourier transformation. This is trivial for conventional strings, since

the Fourier transform of a Gaussian is a Gaussian. However, by dimensional analysis

(or explicit evaluation: see exercise VIIB4.2), we see that the Fourier transform of 1/p2

is 1/x2 only in D=4: T-duality implies both D=4 and masslessness. Furthermore,

we can look at interactions by considering the simplest case: The flat worldsheet is

represented by a regular, flat lattice. For φ4 theory we have the usual square lattice,

which is selfdual under switching vertices with loops (T-duality). On the other hand,

triangular and hexagonal lattices, corresponding to φ6 and φ3 theory, are dual to each

other (i.e., φn is dual to φ2n/(n−2), as follows from geometry). Thus T-duality also

implies the φ4 interaction.
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Exercise XIA7.2

Let’s examine T-duality for the random lattice more carefully:

a Repeat the T-duality transformation of subsection XIA5, but for the QCD

string (see subsection VC8), without a background (Mmn = ηmn). Show that

invariance under Xm → X̃m requires that the matrix τ also be replaced by

its inverse, with some factors of the 2D ε tensor. (λ also transforms; you can

avoid this complication by using the zweibein form of the action.)

b Write the massless scalar propagator in momentum space of arbitrary dimen-

sion D as an exponential using a Schwinger parameter τ . Show that after

T-duality — Fourier transformation combined with τ → 1/τ (which leaves

the exponent invariant) — a τ -dependent “measure” factor is introduced,

except for D=4.

8. AdS/CFT

Most research on string theory today is on the Anti-de Sitter/Conformal Field

Theory correspondence. Even though this subtopic of string theory has been around

since 1997, it’s still very much research level: Little progress has been made, but in

many areas. It uses much of what has been covered earlier in this book: On the

AdS side it uses mostly supergravity (but in D=10) perturbed about anti-de Sitter

space (but occasionally the full string theory); on the CFT side it sometimes uses

perturbation theory in 4D N=4 super Yang-Mills, but usually uses general properties

of the superconformal group. So here we give a brief introduction to a subject that

deserves a book of its own.

The AdS/CFT conjecture is that (10D) superstring theory is equivalent to 4D

N = 4 super Yang-Mills. (In string theory, the identification of physical dimensions

can be ambiguous because of compactification/bosonization, branes, etc.) This equiv-

alence is nonperturbative, as is the conjectured equivalence between all superstring

theories (I, IIA, IIB, and both heterotic) and the suspected “M-theory” (related to

D=11 supergravity). In particular, this equivalence is seen perturbatively about the

vacuum of 5D anti-de Sitter space × the 5-sphere, where these 2 spaces have the same

radius of curvature R (so the 10D curvature scalar cancels).

The basic idea is that we live on the boundary of AdS5, so we don’t see the fifth

dimension “x0” directly as a dimension, in the same way that we don’t see the other 5

dimensions of S5. In terms of the boundary being “D(irichlet) p-branes” (D 3-branes

in the case of AdS5), the fields with which we are most familiar are located there. (A
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“D p-brane” is a fixed (p+1)-dimensional subspace on which open strings can end. In

those dimensions the ends are free to move as usual, but in the remaining dimensions

they are fixed, so those components satisfy the Dirichlet boundary conditions X

= constant instead of the usual Neumann X ′ = 0. In this case the usual open

strings don’t exist, because of the absence of 9-branes.) The idea that the boundary

conditions determine all fields in the “bulk” is called “holography”. Specifically, the

relation is between arbitrary fundamental fields of 10D IIB superstring theory and

color-singlet composite operators on the boundary, which act as sources for the string

fields (or vice versa).

The corresponding vacuum on the YM side is the usual YM vacuum. Remember

that a vacuum does not define a theory, but is only a particular state in a theory,

usually for purposes of perturbation. For example, giving some YM scalars vacuum

values corresponds to moving some D-branes away from the boundary. These and

other modifications to the vacuum, such as modifying the S5, can be useful for more

general correspondences, like “AdS/QCD”. In practice, such modifications make the

theory more realistic, but more difficult to calculate.

The AdS/CFT relation is summarized by the equation

Zstring[φ(x)] =
〈
e
∫
dxφO

〉
CFT

On the lefthand side Z is the usual S-matrix generating functional as calculated in

ordinary field theory. In principle this is Z for the full string theory, as calculated

by string theory methods; but for most of what has been done, these string fields

have been taken to be those of 10D IIB supergravity, neglecting the “stringy” con-

tributions from the massive fields. (The most recent calculations have also neglected

supersymmetry, and even gravity, and sometimes have worked in lower dimensions.

Most of this is not applied to particle physics, but to nuclear or condensed matter

physics.) However, the spacelike coordinate x0 replaces the time coordinate, with

the AdS boundary replacing t = ±∞, and the background string field φ satisfies the

“free” AdS field equation. Furthermore, unlike ordinary field theory, we keep bound-

ary terms in Zstring, so there are quadratic terms, which give 2-point correlators. (For

example,
∫

(∂φ)2 is nonzero on shell, because of boundary terms surviving integration

by parts. In usual field theory there is no analogous “2-point S-matrix”.) Since there

really isn’t any sensible “momentum space” for AdS (not all translations commute),

this is generally done in position space, at least for the extra dimension x0 of the

bulk.

On the righthand side the calculation is performed in a corresponding conformal

field theory on the boundary. It’s conformal because the conformal group SO(D,2)
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in D dimensions is the same as the AdS symmetry group in D+1 dimensions. (In

particular that means the scale weights of φ and O must add up to D.) The x integral

is of course performed on the boundary, where the CFT lives. (There will also be

powers of x0 that cancel.) In that calculation O is some color-singlet composite of

the fundamental fields of the CFT, while φ appears only as a source. Of course, one

must determine which fundamental field φ of the string theory corresponds to which

composite of the CFT (including normalization): This is usually done by comparing

φφ propagators on the string side with 2-operator correlators 〈OO〉 on the CFT side.

Just being able to find a match is some confirmation of the AdS/CFT correspondence:

It involves only free strings on the string side, but (generally) interacting fields on

the CFT side. (However, this matching may be a consequence of the superconformal

symmetry.)

The most calculable case is the AdS5×S5 solution to the supergravity sector of the

Type IIB superstring. The solution comes from constant Riemann curvature tensor

and constant selfdual 5-form field strength for the 4-form gauge field (both with

flat indices, for coordinate independence); the other fields vanish (or the dilaton is

constant, depending on how you define it). Like the metric, the 5-form has a “direct

sum” form, being proportional to the 5D Levi-Civita tensor in each sector. As a

result, it is effectively a pseudoscalar in each 5D space, and hence also covariantly

constant, so its curl and divergence vanish, which are its field equations.

The 2 (dimensionless) couplings gYM and N of (super) Yang-Mills are related to

the 2 (dimensionless) couplings gs and R2/α′ of string theory on AdS by (up to some

normalization conventions)

gs = g2
YM ,

(
R2

α′

)2

= 4πNg2
YM

Thus perturbation in α′ on the string side relates directly to that in the ’t Hooft

coupling Ng2
YM on the YM side, but weak coupling in one is strong in the other. The

former equation is based on identifying the CFT fields with (some of the) open string

states whose ends are attached to the boundary. (The fields are said to “Reggeize”:

Quantum corrections are expected to show that the massless fields lie on Regge tra-

jectories, giving the other states of the open string.) The motivation is to consider

the boundary as N 3-branes.

The latter equation comes from solving the equations of motion of 10D IIB super-

gravity for an AdS5×S5 solution using just the metric and 4-form. Since the 4-form is

the only source of energy-momentum, its charge is related to the radius of curvature:

As it appears in the field equations (1/κ2)R ∼ FF ,
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1

g2
sα
′4

1

R2
=

(
4πN

R5

)2

⇒ N =
1

4πgs

(
R2

α′

)2

Everything comes from the way gs appears in the action (with α′ to make it dimen-

sionless), dimensional analysis, and the definition of charge (flux on S5), except the

4π: Because of selfduality the charge N is both electric and magnetic, and therefore

(Dirac) quantized to be integer. (Consider separate sets of branes with charges e1

and e2: Then e1e2 always integer implies the same for e1 and e2 separately.) Actually

N can have a sign (branes vs. “anti-branes”), and this corresponds to the fact that

open string ends can be associated with the N or N representation of U(N).

One type of calculation in this formalism is to relate tree graphs in AdS5×S5

10D supergravity with correlators of 4D N=4 super Yang-Mills color singlets that

are “BPS” (see below). On the AdS side neglecting massive stringy states means

α′ → 0, while on the CFT side lowest order in perturbation means Ng2
YM small. So

we have only weak coupling on either side matching with strong coupling on the other

side: These are interesting results, but can’t be checked because we can’t interpolate

between weak and strong coupling on either side.

Perhaps the most interesting result from AdS/CFT is the calculation of the all-

loop 4-point amplitude in 4D N=4 Yang-Mills to leading order in 1/N , using a JWKB

approximation to a string on AdS attached to D-branes, to allow external fundamental

fields instead of color singlets. (The actual calculation gives the ratio of the all-

loop amplitude to the tree amplitude, which has the same dependence on external

polarizations.) This calculation also allows some interpolation between weak and

strong coupling. However, this amplitude has a simpler explanation in terms of

the T-duality of the string on AdS5×S5, which relates to a “dual superconformal

invariance/Yangian symmetry” on the CFT side, a symmetry strong enough to fix

the form of this particular amplitude. Unfortunately, this is not the case for higher-

point amplitudes, or higher orders in 1/N , which are too complicated to evaluate by

these methods.

Other types of calculations generally take advantage of the superconformal sym-

metry on both sides of the calculation. On the CFT side, this means working with

operators that are gauge invariant, and therefore color singlets. This is because finite-

time/off-shell quantities, which are gauge dependent, are also not manifestly confor-

mal, since gauge fixing breaks conformal invariance. Such quantities are more difficult

to calculate than S-matrices, since the ends of the external lines are bunched together

at the same points: This produces effective loops, even for free graphs (vanishing

coupling), and thus artificial UV divergences (because products of fields are poorly
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defined when multiplied at the same point). In principle, one should work with more

physical quantities, such as the exponentiated path integrals of gauge fields implicitly

used in lattice gauge theory (see subsection VIIIB7); but these are too difficult to

calculate with in practice. Again superconformal and dual superconformal/Yangian

symmetries place strong constraints on such quantities, but not enough to fix them.

However, matching the spectrum on both sides is a simpler problem. For example,

the 10D Type IIB supergravity states on the AdS side match up with constrained

states on the CFT side: In 4D N=4 real projective superspace, they can be expressed

as the Yang-Mills group-theory trace (for color singlets) of powers of the Yang-Mills

field strength Φ(w), described in subsection IIC4.

(For obscure historical reasons, such operators are called “Bogomol’nyi-Prasad-

Sommerfield”: BPS found a monopole solution in non-supersymmetric Yang-Mills

(see subsection IIIC8), that in super Yang-Mills has supersymmetry with a central

charge (see subsection IVC7). This monopole is almost always incorrectly claimed to

have only half the supersymmetries, since truncation to half eliminates the central

charge. In the present context, note that it is half the covariant derivatives, not half

the supersymmetry generators, that annihilate such twisted-chiral operators.)

Although they are now interacting, they satisfy the simple conditions (“semishort-

ening”, vs. the “shortening” coset constraints)

D(A1

(B1 ...DAn+1]
Bn+1] tr(Φn) = 0 mod δ terms

since at least one of the Φ’s will have (at least) 2 D’s hitting it in the same way

as the Φ field equations. (Actually, the Φ field equations generally involve gauge-

covariant derivatives and terms nonlinear in field strengths. But the lowest-dimension,

y-derivative ones don’t, and the rest then follow from repeated application of the coset

constraints.) Since any function of fields on a projective superspace still lives in that

space, this simplifies to

∂(A′
1

(B1 ...∂A′
n+1

]
Bn+1] tr(Φn) = 0

In the analogous case of SU(2), where we mod out by the Cartan generator G0

and the lowering operator G−, the analogous condition is (D+)2j+1 = 0 which, along

with D0 = −j, defines the “spin”-j representation. A particular composite “field” of

spin j can then be obtained by taking a spin-1
2 field to the 2j power.

Thus, for n = 1 we get the free field equations satisfied by an abelian (due to

the trace) Yang-Mills multiplet. Another interesting case is n = 2 (corresponding
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to 5D maximal supergravity on AdS), which is the multiplet including the energy-

momentum tensor; the cubic constraint then includes the conservation laws for this

tensor and other conserved currents. A less exciting case is n = 3, where the quartic

constraint (as for lower n) restricts how far in the θ expansion independent operators

appear. (The θ4θ̄4 term is independent only for n ≥ 4.) For all n, the lowest di-

mension, y-derivative equations (together with the U(1) weight) determine the SU(4)

representation of the scalar composite at θ = 0: It’s a rank-n totally symmetric,

traceless SO(6) tensor.

Exercise XIA8.1

Let’s examine n = 2 in more detail.

a Which component contains the 4D energy-momentum tensor? (Hint: Use

dimensional analysis.) Evaluate it in terms of super Yang-Mills fields by

expanding Φ2.

b Which ∂3 equation gives its conservation law?

c Do the same for the supersymmetry current (which would couple to a 4D

N=4 gravitino).

d Also the R-symmetry currents (for the full SU(4)).

The conformal (scale) weights of these operators are fixed to be their naive engi-

neering dimension, even at the quantum level, by virtue of their living in projective

superspace, since ∆−R is constrained to vanish, and R is always (half-)integer: Be-

fore the P and S conditions on the symmetry group, there were 4 Abelian generators

that could appear in the coset gauge group. After applying P and S, the 2 remaining

are

1
2Gα

α = −1
2G

.
α

.
α = ∆, 1

2Ga
a = −1

2Ga′
a′ = R

But the part of the gauge group G0 can contain only SU(1,1|2) groups, not PS, since

P was already gauge. The S of the gauge group kills ∆−R in G0, leaving ∆+R (the

P part) there. Thus the scale weight (covariant derivative associated with dilatation

∆) of tr(Φn) is simply n (the U(1) weight, covariant derivative corresponding to U(1)

generator R), without any “anomalous” (quantum) contributions. (We also see that

Φ was required to be a Lorentz scalar, from the spin operators that are the covariant

derivatives from the Lorentz generators Jν
µ and J̄.

ν

.
µ, and a scalar of the 2 SU(2)’s,

from the covariant derivatives for Rn
m and Rn′

m′ .)

Exercise XIA8.2

Derive these commutation relations by starting with the results of exercise
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IIC4.1 and decomposing SU(4) → SU(2)×SU(2)×U(1). (Remember double-

tracelessness for PSU(2,2|4).)

We have already found the projective superspace that best describes 4D N=4 su-

per Yang-Mills on the CFT side of the correspondence: It has 8 bosonic coordinates

and 8 fermionic, and the field strength lives in this superspace, at least on shell. (To

be more precise, Yang-Mills traces of functions of it live there when the interacting

field equations are satisfied. This is sufficient to describe BPS states.) On the AdS

side, IIB supergravity (which also describes BPS states) has a field strength that lives

in 10 bosonic dimensions and 16 fermionic (chiral superspace; see subsection XC7).

This mismatch is fixed by the fact that we’re actually interested only in asymptotic

supergravity states. As in flat space, these are best represented (for massless fields)

by lightcone superspace, which has only 9 bosonic dimensions (after solving for depen-

dence on “time” x0) and 8 fermionic (the usual reduction of spinors on the lightcone).

As in the flat lightcone, the ninth bosonic coordinate has a distinctive role: Here its

Taylor expansion gives the different 4D BPS multiplets.

In general in the AdS/CFT correspondence, it’s the AdS gauge field that couples

to the CFT composite-field “source” at the boundary. So now we have a spacecone

gauge prepotential V coupling to a 4D N = 4 Yang-Mills source, both of which live

in 4D N = 4 projective superspace (which is integrated over in the source term), plus

the extra coordinate x− (the x+ in V being eliminated at the boundary). Unlike the

case of bosonic AdS, the measure
∫
d4x d4y d4θ d4θ̄, the 10D supergravity prepotential

V , and the 4D N = 4 YM BPS operators (before extracting x− dependence) are all

dimensionless, so no powers of x+ need be canceled.

We now investigate the significance of this ninth coordinate x0/y0 to the CFT.

Consider expansion of the 10D theory over S5 in terms of spherical harmonics. These

can all be expressed in terms of those for the vector harmonic, which are given by a

unit 6-vector; in the coordinates we’ve been using, these are (after scaling in an R to

make the limit obvious)

Y A = (Y +, Y a, Y −) =
(1, ya, 1

2(y2 +R2y2
0))

y0

, Y 2 = −R2

(Y is thus a position vector in the embedding space of the Wick rotated sphere of

radiusR. Spinors can also be described by the method given above for the superspace

of IIB supergravity on the AdS5×S5 background, using the matrix square root y of

Y as the spinor spherical harmonic.) In the boundary limit, this becomes a null

6-vector,

Y A →
(1, ya, 1

2y
2)

y0

, Y 2 → 0
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homogeneous in y0. (Similarly, the spinor spherical harmonic becomes a projection

operator in this limit.) This y dependence can clearly be associated with that of

the scalars of 4D N = 4 Yang-Mills, i.e., the field strength Φ at θ = 0. A similar

analysis can be made for the x0 dependence of the scalars, as discussed above. (In

general, interactions modify this result; but for the fundamental fields of 4D N = 4

Yang-Mills, and the BPS composite operators considered here, ultraviolet finiteness

preserves conformal weights.) Since this limit contracts only the isotropy group and

not the symmetry group SO(6), the transformation of the scalars is unchanged. But

the form of the transformation on the coordinates is the simpler, fractional linear

transformation, with the overall factor of 1/y0 contributing only to fix the “scale”

weight.

Starting with the scalars at θ = 0, which appear as Y and have conformal weight

1, and supersymmetrizing, we have

Φ(w, x0, y0) = x−Φ(w)

since x− = x0/y0, and supersymmetry transformations don’t modify dependence on

x0 and y0: x0 dependence is determined by the superscale weight of the multiplet, and

y0 by the super-U(1) weight. These are the eigenvalues of the covariant derivatives

x0∂/∂x0 and y0∂/∂y0, which commute with the symmetry generators. (This x− can

thus be identified with that introduced for this field strength in subsection IIC4.) The

corresponding symmetry generators also have θ∂θ terms, giving different component

scale and U(1) weights to the higher spins. Thus, if we want powers of x0 and y0

associated with the usual component weights, we should redefine θ → √x0y0θ in

the θ expansion of Φ. This is automatic if we define the component expansion in

a coordinate independent way by use of covariant derivatives: In these coordinates,

dw = ū∂wu ∼
√
x+. (Remember our redefinition of θ for IIB supergravity.)

It then follows that the supergravity superfield source on the boundary must take

the form

O(w, x−) = tr{f [Φ(w, x−)]}

for some (Taylor expandable) function f , and thus contains terms of the form

tr{[x−Φ(w)]n}

Thus, the ninth bosonic coordinate on the boundary just counts the number of su-

pergluons. Note that, unlike the usual x0 → 0 limit, in this limit the supergravity

fields are nonvanishing, having no dependence on x0y0 (but string excitations will

have positive powers of x0y0, corresponding to anomalous dimensions in the 4D field
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theory). Also for these supergravity fields on the boundary, the “momentum” p+

conjugate to the coordinate ln(x−) is quantized.

Note that, e.g., the SU(4) representations coming from tr(Φn) at θ = 0 will always

be traceless, symmetric tensors of SO(6). This comes from the fact that the 6 scalars

are contracted with the null-vector Y A. So for example,

(Y AφA)2 = Y AY BφAφB

will contain only the symmetric (obviously), traceless part of φ⊗ φ because

Y AY BηAB = 0

(This would not be the case without the y0 → 0 limit. Thus an expansion over null

vectors in R-space is more convenient than one over unit vectors.)

The 10D supergravity superfield is real. So the source superfield is also real. Thus

Φ is forced to satisfy its (interacting) field equations.

Explictly, we can now match the component fields of the prepotential V of 10D

IIB supergravity to those of the BPS CFT operators O (i.e., tr(Φn)) directly (at least

as V approaches the boundary), since they have the same θ coordinates, and we have

identified the 10D IIB supergravity fields in V with the usual components in the chiral

field strength χ. We can also associate the masses of the 10D supergravity states with

the different conformal weights of the YM composites because of their x0 dependence.

But the x0 dependence of the superfields is tied to the y0 dependence (the masses

come from Kaluza-Klein reduction over S5), which defines the SU(4) representation.

Furthermore, p+ = ∂/∂(ln x−) is just an integer, counting the power of Φ on the CFT

side.

For the AdS/CFT correspondence, we’ll have a source term
∫
dx

◦
φ
◦
O: If the CFT

operator O has some scale weight <, then the AdS field φ must have weight D−< for

scale invariance. (< will always be nonnegative, and 0 only for the identity operator.)

Similarly
◦
O = (x0)<O

The conformally invariant boundary integration measure is actually

dx ≡ dDx/(x0)D

so x0’s cancel, a manifestation of scale invariance.
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For example, consider the 10D scalars, which satisfy the 10D massless Klein-

Gordon equation, in the boundary limit (by a similar analysis to our previous for just

AdS): As we saw in subsection XC7,

<(< − 4)−<y(<y + 4) = 0 ⇒ < = <y + 4

where the former term comes from the x part of the d’Alembertian, and the latter

from the y. (The other solution, < = −<y, can describe only the unit CFT operator,

< = <y = 0. Note that <y(<y +D) is the quadratic Casimir for traceless, symmetric

tensors of SO(D+2).) We have used the previous definition of <, but introduced the

definition of <y, which is always nonnegative: Acting on the CFT operator,

CFT component: < ≡ x0∂x0 , <y ≡ −y0∂y0

This is the component defined by covariant expansion of the BPS operators tr[(x−Φ)n]:

Since these scalars appear at order θ4, which gets an extra (x0y0)2, we find:

< = n+ 2 , <y = n− 2 ; n ≥ 2

which agrees with the above result on the AdS side, where the condition n ≥ 2 follows

from the component expansion of Φ (or the field equations).

9. Superstring

In some sense the description of the superstring should be a combination of that

for the superparticle (subsection IIIB6) and the bosonic string. The main complica-

tion is that we want to maintain separation into left and right-handed modes (with

respect to worldsheet propagation) in a way that’s clear even in a nonlinear action.

Such a problem generally arises when defining 2D theories on group spaces. (Here the

group is supersymmetry.) The solution is to include a 2-form (“Wess-Zumino”) term

in the action. (It’s basically the analog of a 4-form term in D=4, for scalars instead

of vectors, since handedness in D=2 is selfduality: Compare subsections IIIC4-8 to

subsection XIA6.) This has a natural group-theoretic interpretation if we choose a

2-form whose 3-form field strength (which automatically appears upon varying that

term in the action) is identified with the structure constants of the group (which

appear upon reordering terms from varying the metric term in the action). We first

analyze the case of simple groups at the classical level. The superstring has some ad-

ditional complications, so we’ll use the simple group case just as a motivation. (There

are also interesting quantum effects, but they aren’t relevant to the non-semisimple,

supersymmetry case.)
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So our 2D fields g are elements of some group. For purposes of considering those

coset spaces (subsection IC6) relevant for supersymmetry, we consider global (on the

worldsheet) symmetry transformations corresponding to left multiplication of this

field by a constant group element g0,

g′ = g0g

(The actions we’ll consider later for superstrings will break symmetry corresponding

to right multiplication to a subgroup.) Then the symmetry invariant current (“field

strength” for the scalars g: see subsection IVA3), which is an element of the Lie

algebra and a worldsheet vector, takes the form of a Yang-Mills gauge field that is

pure gauge:

iJ = g−1dg

The metric term in the action comes from squaring this, and taking the group-theory

trace. (For cosets we take only some of these currents, whose square is invariant under

a subgroup under right multiplication, as we already did for the superparticle.) We

can also simplify this (for the full group) as (since ∂(gg−1) = 0)

(g−1∂g)(g−1∂g) = −(∂g−1)(∂g)

We similarly note the “Bianchi identities” for the field strength (“Maurer-Cartan

equations”)

dJ + iJ ∧ J = 0

While J is the field strength for global symmetries from left multiplication, it’s simul-

taneously a pure-gauge “gauge field” for local symmetries from right multiplication

(see subsection IVA3): This equation then states the vanishing of the corresponding

“field strength” for J . In our case, such “gauge transformations” are not actually

symmetries of the theory (at least not for the full group, which would make the the-

ory trivial), but are simply a covariant way of defining arbitrary variations of the

scalar fields: Defining a covariant variation (also in the Lie algebra, but a worldsheet

scalar)

δg = ig∆ ⇒ i∆ ≡ g−1δg

we then find that (since δ commutes with d)

δJ = d∆+ i[J,∆]

which is the corresponding nonabelian “gauge transformation” with “gauge param-

eter” ∆. Pulling out a factor of ∆ (after integration by parts) from the trace and

integral, the field equation from the metric term is then proportional to

−∂ · J



A. GENERALITIES 917

In (2D) lightcone notation, if we normalize for two 1-forms (vectors) V and W

V ·W = −V+W− − V−W+ , V ∧W = d2σ (−V+W− + V−W+)

then we would find (using the field equations ± MC equations)

−2∂±J∓ ∓ i[J+, J−] = 0

not summed over ± (but independent of the normalizations), spoiling the equations

∂±J∓ = 0 that would indicate decomposition into left and right-handed currents.

On the other hand, we can consider a worldsheet 2-form B in a general theory (not

necessarily related to groups), contributing to the action as
∫
B, as a generalization

of electromagnetism coupled to a particle with a 1-form term
∫
A (see subsection

IIIB3). The usual 2-form gauge transformation δB = dλ vanishes after dropping

total derivatives (or using them to cancel gauge transformations of initial and final

wave functions, as for the particle analog). This tells us its contribution to the field

equations must depend on only the field strength: Making only indices for the “2D

fields” αm (X and Θ in the string case) explicit:

δB = δ(1
2dα

m ∧ dαnBmn) ≈ 1
2dα

m ∧ dαnδαpHmnp

after manipulations similar to those used to derive δJ , but “≈” means up to a total

derivative that we drop in the action so that we can apply integration by parts to the

dδα term. Here we normalize as usual

Hmnp = 1
2∂[mBnp] = ∂mBnp + ∂nBpm + ∂pBmn

To compare the contribution of such a term to the equations of motion to the

previous, we need to convert “curved” (coordinate-basis) indices to “flat” (group-

invariant) indices by use of the current itself: Making the matrix representation of

the Lie algebra generators Ga explicit,

J = JaGa , Ja = dαmem
a

where the “vielbein” em
a is a function of what are now the group coordinates αm.

(We could do similar for currents invariant under right group multiplication, but we’ll

avoid that here for simplicity.) In the Abelian case, J would just be (dα)G, and e

would be a Kronecker δ. With an identical evaluation (δ is like d in a third dimension),

we also have

∆ = ∆aGa , ∆a = δαmem
a
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Using this vielbein to convert the indices on H, the field equations (± MC) now

become

(−2∂±J
b
∓ ∓ J c+Jd−fcdb)ηba − J c+Jd−Hcda = 0

where the η is the Cartan metric coming from the trace (which we can assume to be

for the adjoint representation). Thus

Habc = ±fabdηdc ⇒ ∂∓J± = 0

allowing us a left-handed current J+ or right-handed J− (both invariant under left

group multiplication), but not both, unless vanishing of structure constants (as for

Abelian or non-semisimple groups) allows the corresponding components of H to

vanish.

The same result follows from imposing T-duality invariance (electric-magnetic

self-duality in the 2D theory; see subsection XIA5): Start with the Bianchi identities

for J (MC equations), replace J with its Hodge dual (J± → ±J±, or the opposite

sign), and require that those are the field equations. Besides changing some signs,

that switches the f and H terms. That determines the action as above and, again

taking the sum or difference of the 2 equations, fixes the handedness of 1 component.

It is this T-duality analysis that generalizes to the superstring, so we will use it below.

(The field equation analysis is more complicated, since as we saw for the superparticle,

there is no J2
θ term.)

In a Hamiltonian analysis, we could instead analyze the current algebra: We

assume the existence of a left-handed algebra

[Ja(1), Jb(2)] = −iδfabcJc − iδ′(2− 1)ηab

in some convenient normalization, where the “1” and “2” refer to σ1 and σ2, and

the δ functions include 2π’s corresponding to the measure
∫
dσ/2π. This “affine Lie

algebra” generalizes the usual particle Lie algebra with the metric term. It’s the

nonabelian generalization of (one handedness of) the Abelian algebra of subsection

XIA5. The Jacobi identities are then the usual ff identity of a Lie algebra, and an

identity that imposes the total antisymmetry of f after lowering the last index with

η:

f[ab
dfc]d

e = 0 = fa(b
dηc)d

Finding a group-coordinate representation then leads to the previous results.

We now consider the action for Type II strings, with group coordinates X,ΘL, ΘR;

i.e., the coordinates of N=2 superspace. (Type I follows from boundary conditions,
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heterotic from truncation.) Since the only nonvanishing structure constants come

from {d, d} ∼ p, we would only have a problem with left and right-handed Θ’s. But

we saw that (at least in the lightcone gauge for the superparticle) Θ satisfies a first-

order differential equation, so it’ll be enough to get each Θ to have a current of 1

handedness. Then the only nonvanishing H will be

Hαβc = ±2iΓ d
αβηdc

where the η comes from the worldsheet metric term having only the square of the p

current, and the ± is for L and R Θ. This H is identified with the field strength of the

B superfield for background supergravity in superspace in the string frame, which is

nonvanishing even in flat space because the scalar field strength gets a vacuum value.

(This is related to the fact that the “structure constants” for a spacetime symmetry

group are the torsion, which is also nonvanishing in flat superspace.)

We first introduce the notation

χL,R ≡ i(dΘL,R)ΓΘL,R , F ≡ dX + χL + χR

(where F and χ are vectors in both the worldsheet and spacetime): F is the same

invariant current we used for the superparticle. (The other currents are again dΘL,R.)

Then the action is

S =

∫
d2σ

2π
[1
2F

2 − dX ∧ (χL − χR) + χL ∧ χR]

where the worldsheet metric is implicit for the first term. (Actually the d2σ is already

included in the other 2 terms.) The worldsheet chirality of the Θ’s is associated with

the fact that the metric term, which is even in σ derivatives, is LR symmetric in Θ’s,

while the 2-form terms, odd in ∂/∂σ, are antisymmetric.

Again, the 2-form term is required by T-duality invariance. In terms of the action,

one introduces a first-order formalism for the metric term with auxiliary field P :

1
2F

2 → F · P − 1
2P

2 : δ/δP ⇒ P = F , δ/δX ⇒ P = ε(∂X̃ + χL − χR)

where the latter is the solution to the X field equation ∂ · [P − ε(χL − χR)] = 0.

The T-duality is performed with respect to X only (F is its supersymmetry invariant

current), but invariance requires also ΘL → ΘL, ΘR → iΘR (i.e., X̃ → X, χL → χL,

χR → −χR), because the transformation switches the Θ contributions to metric and

2-form terms. (This transformation is similar to CPT on real spinors.) Note that X

is a contravariant vector in spacetime, while X̃ is a covariant one.
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Another method is to use κ symmetry (see subsection IIIB6): It now comes in

left and right versions for left and right-handed Θ’s, respectively, which “square” to

left and right Virasoro generators. This effectively imposes that the current algebra

comes in left and right versions. Then (here ± are worldsheet indices)

δΘL = F/+κL , δΘR = F/−κR , δX = −i(δΘL)ΓΘL − i(δΘR)ΓΘR

For the lightcone gauge, we can use the usual Hamiltonian procedure for gauge

fixing the bosons (subsection XIB1), and the same κ gauge for the fermions used for

the superparticle. The result is (with p+ again an independent variable)

S =

∫
d2σ

2π
[
.
x−p+ + 1

2(−
.
X i2 +X ′i2) + i(

.
ΘL −Θ′L)Γ−ΘLp

+ + i(
.
ΘR +Θ′R)Γ−ΘRp

+]

(Here “
.

” is again the τ derivative, while “ ′ ” is the σ derivative.)

Classical consistency of the action (κ symmetry or existence of a B that gives H:

see exercise XIA9.1) requires the Fierz identity (subsection XC5)

Γa(αβΓ
a
γ)δ = 0

required for super Yang-Mills without scalars, satisfied in D=3,4,6,10. This is related

to the fact that the action includes spacetime vector (X) and spinor (Θ) variables

only, and of course that super Yang-Mills (vector + spinor only) is the massless sector

of the open superstring. (Actually, closure of the current algebra D,P that generalizes

the particle covariant derivatives dα + iAα, pa + iAa requires a third current Ωα that

generalizes the particle superfield strength Wα: This Fierz identity then appears as

part of a Jacobi identity of the current algebra.) Quantum consistency allows only

D=10, as we’ll see from the RNS approach (subsection XIB4).

Exercise XIA9.1

Show that variation of these particular WZ terms gives

δB ≈ −1
2J

A ∧ JB∆CHCBA

with the above Hαβc. (Hint: You’ll need to use the above Fierz identity.)
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We saw in subsections VIIB5 and VIIIA7 some unusual features of massless the-

ories in D=2. Since the mechanics of the string is mathematically equivalent to 2D

field theory (as the mechanics of the particle is to 1D field theory), we now examine

such field theories in a little more detail. In particular, since the string we studied in

section XIA possessed local Weyl scale invariance on the worldsheet, we are directed

to 2D conformal field theories coupled to 2D gravity.

One confusion for beginners in string theory that unfortunately is supported by

some of the terminology is the distinction between first- and second-quantization: The

first quantization of the string is often described as “2D (conformal) field theory”,

with the justification that they are allegedly the same mathematically. In the same

spirit, one might also say that addition and multiplication are mathematically the

same, but no mathematician would ever say that when applied to, e.g., the real

numbers, even though they share some properties. For the same reasons, we must

distinguish between first- and second-quantization of string theory.

As we saw in subsection IIIA3, they use different perturbation expansions, corre-

sponding to whether the h̄ is put in front of the mechanics action of subsection XIA3

or a corresponding “string field theory” action: (1) For the string, the expansion

about classical mechanics is an expansion in α′. This is again a JWKB expansion,

an expansion in powers of momenta, since α′ has dimensions of (mass)−2. (2) The

expansion about classical field theory is as usual an expansion in the (string) coupling

constant g.

1st-q: α′ → h̄α′

2nd-q: g2 → h̄g2

In what follows we will often use the terminology “conformal field theory” to

describe this situation, keeping in mind that as far as application to string theory is

concerned a more appropriate term would be “conformal mechanics”. (True conformal

field theory does appear in string theory when applied to the Anti-de Sitter/Conformal

Field Theory correspondence, where the relevant 4D conformal field theory is maxi-

mally supersymmetric Yang-Mills.) The mathematical methods of conformal string

mechanics are also applied as true 2D conformal field theory in statistical mechanics,

for the purpose of studying 2D systems, or as a toy model for better understanding

4D conformal field theory.
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1. Gauges

We begin by considering gauge choices for the various forms of the bosonic string

action presented in subsection XIA3. In direct analogy to the particle (subsection

IIIB2), the two most useful gauges are the “conformal gauge”, defined by completely

fixing the worldsheet metric, and the lightcone gauge, which is not manifestly globally

covariant but is a complete fixing of the residual gauge invariance of the conformal

gauge. In the conformal gauge we set

gmn = ηmn

by using the 2 coordinate invariances and the 1 scale invariance to fix the 3 compo-

nents of the symmetric tensor gmn. The coordinate part of this gauge is essentially

the temporal gauge g0m = η0m, just as for the particle (−g00 = v2 = 1). Also as

for the particle, this gauge can’t be fixed everywhere (see also subsections IIIA5 and

IIIC2), but the equation of motion from the metric is implied everywhere by imposing

it at just the boundaries in τ . In this gauge the equations of motion for X are just

the 2D Klein-Gordon equation, which is easy to solve in 2D lightcone coordinates:

∂+∂−X = 0 ⇒ X = X(+)(τ + σ) +X(−)(τ − σ)

(We have used τ ± σ in place of σ± for later convenience.) The constraints are then

P̂ 2
(±) ∼ (X ′(±))

2 = 0. This directly relates to the form of 2D conformal transformations,

which are infinite-dimensional in D=2:

ds2 = 2dσ+dσ− ⇒ σ′+ = f(+)(σ
+), σ′− = f(−)(σ

−)

The constraints are the generators of these conformal transformations. (As described

in subsection IIIA5, the constraints generate the gauge transformations; the global

transformations are those that preserve the temporal gauge.)

For the lightcone gauge, we again fix the (spacetime) +-components of the vari-

ables, and solve the +-components of the equations of motion (found by varying the

−-components). Looking at the equations of motion first, using the first-order form

of the action,

0 =
δS

δP−m
∼ ∂mX

+ + (−g)−1/2gmnP
+n

⇒ (−g)−1/2gmn = (A ·B)−1(εmpA
pεnqA

q −BmBn); Am = P+m, Bm = ∂mX
+

(as seen, e.g., by using εmnA
n, Bm as a basis), and

0 =
δS

δX−
∼ ∂mP

+m ⇒ d

dτ

∫
dσ P+0 = 0
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which identifies
∫
dσ P+0 as the conserved momentum p+, up to a factor of 2πα′ (since

p is really the coefficient of
.
x in the action, where X(σ) = x+ ...). Similarly, δS/δgmn

determines P−m, and thus X−. (The covariant form of the integral is
∫
dσmεmnP

+n,

since P is a density.)

We then choose as our main set of gauge conditions

X+ = kτ, P+0 = k

for some constant k, which explicitly determines τ , and determines σ up to a function

of τ : An equivalent way to define the lightcone σ in terms of an arbitrary spacelike

coordinate σ′ is

σ = k−1

∫ σ

0

dσ′ P+0(σ′)

which identifies σ as the amount of momentum p+ between that value of σ and σ = 0

(at fixed τ). We thus have that the length of the string (the range of σ, not the

physical length) is

l = k−1

∫
dσ P+0 = 2πα′p+k−1

We then need to fix the location of σ = 0 as some function σ′(τ): Since in this gauge

∂1P
+1 = 0

so P+1 is also a function of just τ , we further fix the gauge for σ by choosing

P+1 = 0 ⇒ (−g)−1/2gmn = ηmn

Thus the lightcone gauge is a special case of the conformal gauge, after also fixing

scale gauge g = −1. For the open string, this almost fixes σ′(τ) at σ = 0, which we

can take as one boundary: The boundary condition for X+ is now

0 = n · ∂X+ ∼ n0

since in this (and any conformal) gauge ∂mX ∼ ηmnP
n. Thus the normal to the

boundary must be in the σ direction, so the boundary is at constant σ. This means

we have one constant left to fix:

σ = 0 at one boundary (open string)

This invariance was left because all our previous gauge conditions preserved global σ

translation. Unfortunately, there is no corresponding convenient gauge choice for the

closed string, so there we leave just this one invariance.
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There is a more geometrical way to think about this σ gauge fixing. (The τ fixing

is pretty obvious.) Say you have a differential (1-)form J defined on the worldsheet.

Then you might want to define σ, up to a constant, by dσ = J . This requires dJ = 0.

If we write J in terms of its (Hodge) dual as J = Jmεmndσ
n, then dJ = 0 is the

conservation equation ∂mJ
m = 0, and dσ = J is Jm = δm0 . In our case, this has the

interesting interpretation that while τ is identified with X+, σ is identified with the

T-dual of X−, i.e., the + component of the T-dual of X.

In summary, our complete set of lightcone gauge conditions is now:

gauge : X+ = kτ, P+m = kδm0 , σ = 0 at one boundary (open string)

The lightcone action is now, in Hamiltonian form,

Slc =

∫
dτ

{
.
x−p+ +

∫
dσ

2π

[
−

.
X iPi + 1

2(α′P 2
i + α′−1X ′2i )

]}
Exercise XIB1.1

Analyze the classical mechanics of the string by approximating σ by a set of

discrete points, so X ′(σ) → Xn+1 −Xn, etc. Show that the string then acts

as a bunch of particles connected by springs, and find all the usual spring

properties: tension, speed of wave propagation, etc. (Note: You may need

some lightcone modifications of nonrelativistic variables.)

The only distinction between open and closed strings is the boundary condition

(since closed strings by definition have no boundary). For closed strings we have only

periodicity in σ (by definition of “closed”), while for open strings we have

X ′(τ, 0) = X ′(τ, l) = 0

One consequence, as we just saw, is that closed strings have one residual gauge invari-

ance in the lightcone gauge. As described in subsection XIA3, these two strings can

be made to resemble each other more closely by extending the open string to twice

its length, defining X for negative σ by

X(τ,−σ) = X(τ, σ)

This is the known as the “method of images”: X(τ,−σ) is identified with its mirror

image in the τ axis, X(τ,−σ). Then the two strings both satisfy periodic boundary

conditions, while the open string has this one additional condition. We also choose

k = 2κα′p+, κ =

{
1 (open)
1
2 (closed)

⇒ l =
π

κ
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so the length of the closed string is 2π, while the open string has original length π that

has now been doubled to match the closed string. Our choice of “phase” in relating X

for positive and negative σ for the open string automatically enforces the boundary

condition X ′(τ, 0) = 0 at one end of the string, while the condition X ′(τ, π) = 0 at

the other end is implied in the same way by the closed string “boundary condition”

of periodicity, which can be written as X(τ, π) = X(τ,−π). The picture is then that

the open string is a closed string that has collapsed on itself, so that for half of the

range of σ X doubles back over the path it covered for the other half.

Because σ has a finite range, X can always be expanded in Fourier modes in that

variable; the boundary conditions slightly restrict the form of this expansion. We saw

that the equations of motion, being second-order in τ -derivatives, gave two modes

for each initial state: a left-handed one and a right-handed one. We need to be a

bit more precise about the “zero-modes” (modes independent of σ): We can separate

them out as

X(τ, σ) = x+
2πα′

l
pτ +

√
α′

2
[Y(+)(τ + σ) + Y(−)(τ − σ)],

∫
dσ Y(±) = 0

where Y contains only nonzero-modes. (The normalization of p, conjugate to x, comes

from the − .
x·p term in the Lagrangian.) Then x represents the “center of mass” of the

string, and p its total momentum. Note that this implies X(±) aren’t quite periodic:

X(±)(σ + 2π) = X(±)(σ) + 2πκα′p

Now the periodicity boundary conditions shared by open and closed strings imply

Y(±)(σ + 2π) = Y(±)(σ)

while the extra boundary condition for the open string implies

Y(+)(σ) = Y(−)(σ) = Y (σ)

allowing us to drop the subscript in that case. Thus, the closed string has twice as

many modes as the open, except for the nonperiodic part, corresponding to the total

momentum and average position. This is related to the interpretation that the open

string is a closed string with its two halves occupying the same path. This doubling

also shows up in the constraints: For the closed string we have P̂ 2
(±), while for the

open string we can consider just P̂ 2
(+), since P̂ 2

(−)(σ) = P̂ 2
(+)(−σ). In the lightcone

gauge we solve these constraints for X−, by integrating

0 = P̂ 2
(±) ∼

.
X2

(±) =
( .
X i

(±)

)2 − k
.
X−(±) ∼ (

.
Y (±) + κ

√
2α′p)2
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Exercise XIB1.2

Rederive the solution to the boundary conditions for the open string without

using X(τ,−σ) = X(τ, σ) (and periodicity): The string, as originally, extends

between boundaries at 0 and π.

This separation of zero-modes from nonzero-modes also allows us to find the spin

and mass of the string: In any conformal gauge,

0 = p2 +M2 =
1

κα′2

∫ π/κ

0

dσ

2π
1
2(

.
X2 +X ′2) ⇒ M2 =

1

2κα′

∑
±

∫
dσ

2π

.
Y 2

(±)

Jab = x[apb] + Sab =
1

α′

∫ π/κ

0

dσ

2π
X [a

.
Xb] ⇒ Sab =

∑
±

∫
dσ

2π
Y a

(±)

.
Y b

(±)

(using the Hermitian form of the Lorentz generators, for classical purposes), where

for the open string we can replace∑
±

∫ π

0

dσ

2π
→
∫ 2π

0

dσ

2π
, Y(±) → Y

For the lightcone gauge we then have the gauge condition to determine X+ and

Virasoro constraints to determine X−:

Y +
(±) = 0, κα′p− +

√
1
2α
′

.
Y −(±) =

1

2κα′p+

(
κα′pi +

√
1
2α
′

.
Y i

(±)

)2

Exercise XIB1.3

Consider gauge fixing in the temporal gauge, replacing X+ with X0. The

classical interpretation is now simpler, since τ and X0 can now be identified

with the usual time. Everything is similar except that the Virasoro constraints

can’t be solved (e.g., for X1) in general without square roots.

a Show that some 3D solutions (2 space, 1 time) for the open string are given

by, for p1 = p2 = 0,

1√
2
(

.
Y 1 − i

.
Y 2)(τ) = ce−inτ ,

for nonzero integer n. (Without loss of generality, we can choose c real and

positive.) Find the mass (energy) and spin as

M =
c√
α′
, S12 =

c2

n
=
α′

n
M2

Find X explicitly, and show it describes an “n-fold spinning rod”.

b Show that the above solution can be generalized to closed strings by using

two such Y ’s, and fixing the relative magnitude of the two c’s. Consider the



B. QUANTIZATION 931

special cases where n− = ±n+. Find the explicit masses, spins, and X’s, and

show that one describes another n-fold spinning rod, while the other is an

“n-fold oscillating ring”.

For the spinning string, as in the bosonic case, we have the usual “temporal”

gauge where (the τ components of) the gauge fields for the constraints are fixed, now

the “superconformal gauge”

χ± = 0, g± = 1 ⇒ gmn = ηmn, ∂∓ζ± = ∂∓ε± = 0

S =

∫
d2σ

2π

[
1

2α′
(∂X)2 − i 1√

2
Ψ±∂∓Ψ±

]
G± =

1√
α′
Ψ± · ∂±X, T± =

1

2α′
(∂±X)2 +

1√
2
iΨ± · ∂±Ψ±

(In this gauge, P =
.
X/α′.) Besides the usual boundary term from varying X, we

also have

±Ψ± · δΨ± = 0 ⇒ Ψ+ = Ψ− or Ψ+ = −Ψ−

By field redefinition, we can always set Ψ+ = Ψ− at 1 end of an open string. Then

the 2 choices appear only at the other end.

A more convenient treatment, as a generalization of the open bosonic string, is

to combine left and right variables, just as for X, but now

Ψ(σ) =

{
Ψ+(σ) for σ > 0

Ψ−(−σ) for σ < 0

Thus the 2 choices of boundary conditions appear as (anti)periodicity at

Ψ(−π) =

{
Ψ(π) “Ramond”

−Ψ(π) “Neveu-Schwarz”

For the closed string, (anti)periodicity can be applied independently for Ψ+ and for

Ψ−. (If we don’t care about Lorentz invariance, it can also be applied independently

for each Lorentz component of Ψ for open and closed.) Thus there are R and NS

open strings, but closed strings can be R-R, R-NS, NS-R, and NS-NS.

In the lightcone gauge, besides fixing X+ and P+, we also fix

Ψ+ = 0

χ and Ψ− then fix each other as auxiliary fields. The X part of the action is then as

in the bosonic case, while the Ψ part just truncates its superconformal action to the

transverse components.
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The fermionic contribution to spin is the obvious generalization of the particle

(as was the bosonic):

∆Sab =

∫
dσ

2π
1
2Ψ

[aΨ b]

The fermionic contribution to the mass2 can be read from the integral of T . (Note

that Ramond fermions have a zero-mode that doesn’t contribute.)

2. Quantum mechanics

The more interesting features of the string don’t appear until quantization. In

particular, we can already see at the free level the discrete mass spectrum character-

istic of Regge theory, or of bound states in general.

Canonical quantization is simplest in the lightcone gauge. As for particles, canon-

ical quantization is convenient only in mechanics (first quantization), not field theory

(second quantization). As can be seen from the lightcone action, the Hamiltonian

is part of the constraints: For the spinless particle, we had only the constraint

p2 + m2 = 0, which became E = H in the lightcone gauge X+ = p+τ after iden-

tifying the lightcone “energy” E = p+p− and its Hamiltonian H = 1
2(p2

i + m2). (See

subsection IIIB2.) The string Hamiltonian can be rewritten conveniently in terms of

P̂ . Since the closed string is effectively just a doubling of the open string, we treat

the open string first. The Hamiltonian is simply

H =

∫ π

−π

dσ

2π
1
2 P̂

2
i

where P̂ = P̂(+). Since we have chosen X+ = 2α′p+τ , we have E = 2α′p+p−.

To identify the individual particle states, we Fourier expand the worldsheet vari-

ables in σ. As for the particle, we can work at τ = 0, since all the dynamics is

contained in the constraints. Equivalently, from the nonrelativistic view of the light-

cone formalism, we can work in the Schrödinger picture where the τ dependence is in

the wave function instead of the operators. We expand as

P̂ (σ) =
∞∑

n=−∞

ãne
−inσ, ã0 =

√
2α′p, ã−n = ãn

†

The canonical commutation relations for P and X are

[Pi(σ1), Xj(σ2)] = −2πiδ(σ2 − σ1)δij

as the direct generalization of the usual [p, q] = −i. (The 2π is from our normalization

dσ/2π.) From the definition of P̂ , we then have

[P̂i(σ1), P̂j(σ2)] = −2πiδ′(σ2 − σ1)δij



B. QUANTIZATION 933

We can then decompose this into modes by multiplying by ei(mσ1+nσ2) and inte-

grating, where ∫
dσ

2π
einσ = δn0

We then find

[ãim, ãjn] = mδm+n,0δij

as well as the usual [pi, xj] = −iδij, and thus can relate the modes to the usual

harmonic oscillator creation and annihilation operators:

ãn =
√
nan, ã−n =

√
nan

† ⇒ [am, an
†] = δmn

for positive n. After normal ordering, we find for the Hamiltonian

H = α′p2
i +N − α0, N =

∞∑
n=1

nain
†ain

⇒ H − E = α′(p2
a +M2), M2 = α′−1(N − α0)

for some constant α0, which we introduce as a “renormalization constant” for remov-

ing an infinity in normal ordering.

From the expression for the mass in terms of the number operator N , we see

that the nth oscillator ain
† raises the mass-squared of the ground state |0〉 by n

(and similarly for multiple applications of these oscillators). For any given mass, the

highest-spin state is the symmetric, traceless tensor part of multiple ai1
†’s acting on

|0〉: This describes the leading Regge trajectory, with “spins”

J = α′M2 + α0

(In D=4 we can identify this with the usual spin for massive particles, but for higher

dimensions, more than 1 quantum number is needed to unambiguously identify a

representation of the little group.) Let’s look first at the first excited level, obtained

by acting on the scalar ground state |0〉 with the lowest-mass oscillators ai1
†. Clearly

this describes a (lightcone) transverse vector, with no Stückelberg scalar for describing

a massive vector. (I.e., it has only D−2 components, not the D−1 necessary for a

massive vector.) Thus this state describes a massless vector, so

α0 = 1

The ground state is then a scalar tachyon with M2 = −α′−1. For any given level

past the first excited level, one can check explicitly that the states coming from the

various oscillators include the necessary Stückelberg fields. For example, at the second
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excited level, ai1
†aj1

† contains a traceless, symmetric tensor and a scalar (coming from

the trace), while ai2
† is a vector; they combine to describe a massive tensor. The

proof that this works to all mass levels is closure of the Poincaré algebra quantum

mechanically: The only nontrivial commutator is [J−i, J−j] = 0, since only J−i is

higher than quadratic (cubic) in oscillators (from the form of X− and P− after solving

constraints), so normal-ordering ambiguities lead to more than just constant terms.

For reasons to be explained in chapter XII, the algebra(ic computations) in calculating

this commutator in any first-quantized theory for the lightcone gauge is the same

as the first-quantized BRST algebra for general gauges. Of course, the proof of

closure is already the same in principle because both algebras are a consequence of

the constraints, the conformal algebra. Thus, any anomaly must show up in the

conformal algebra itself, which will be considered in subsection XIB4.

Exercise XIB2.1

Check the third excited level massive representations.

Exercise XIB2.2

Show all of the first daughter trajectory disappears.

a We saw above which oscillators contribute to the leading trajectory, if we

treat the states as massless SO(D−2) representations. Which additional os-

cillators contribute, in what number, to the first daughter, if we also treat it

as massless?

b What’s needed from this naive first daughter to turn the massless states of

the leading trajectory into massive SO(D−1) representations? (This is a

Stückelberg or Higgs mechanism.)

The closed string works similarly to the open, but with two sets of harmonic

oscillators, and with

p(+) = p(−) = 1
2p

In that case we find

M2 = 2α′−1(N(+) +N(−) − 2)

where N(+) and N(−) are the number operators for the two independent sets of os-

cillators. In the lightcone gauge the closed string has the residual gauge invariance

generated by
∫
dσ X ′ · δ/δX; this gives the residual constraint

N(+) = N(−)

The closed-string states are thus the direct product of two open-string states of the

same mass: For example, the ground state is a scalar tachyon with M2 = −4α′−1,
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while the first excited states are massless ones from the product of two vectors — a

scalar, an antisymmetric tensor, and a symmetric, traceless tensor. The leading Regge

trajectory consists of states created with equal numbers of ai1(+)
†’s and ai1(−)

†’s, with

J = 1
2α
′M2 + 2

In summary, the leading trajectory for open or closed string is given by

J = κα′M2 +
1

κ
, κ =

{
1 (open)
1
2 (closed)

For the spinning string, the fermion self-anticommutation relations involve no

derivatives, so their modes are just ordinary fermionic oscillators, without the hidden

factors of
√
n that appear for the bosons. But the mass operator has the same

factor of n, since
∫
T generates a worldsheet derivative. (Consider −i∂/∂σ on einσ.)

Ramond fermions are periodic, like the bosons, and so have a zero-mode, the usual

Dirac γ-matrices:

Ψ(σ) =
∑
n∈Z

dne
inσ, d0 =

1√
2
iγ, {dm, dn} = δm+n,0

Thus R open strings, and R-NS and NS-R closed strings, carry a spacetime-spinor

index, and describe fermionic states. Neveu-Schwarz fermions are antiperiodic, and

have half-(odd-)integer mode numbers, so they increase the mass2 by half-integers.

Ψ(σ) =
∑

n∈Z+1/2

bne
inσ, {bm, bn} = δm+n,0

We saw the open bosonic string has a “leading trajectory” with a linear relation

between spin and mass2, and all other states appearing integer distances below it.

This trajectory was generated by powers of just the first bosonic oscillator, n =

1. Ramond strings are similar. But the ground state is a spinor, not a scalar.

(Also, spinors can’t be tachyons.) On the other hand, Neveu-Schwarz strings have

an oscillator with n = 1
2 , which increases the mass more slowly than n = 1 would.

However, since it’s a fermion, powers can give only antisymmetric tensors, all of

which are considered spin 1 or less, and thus can’t generate a rising trajectory by

themselves. This means that the leading trajectory for NS strings is generated by

1 n = 1
2 fermionic oscillator (from Ψ) and an arbitrary number of n = 1 bosonic

oscillators (from X). By the same argument as for the bosonic string, the vector

state must be massless. But this vector is the first state on its trajectory (slope α′):

The tachyonic ground state lies on the first daughter trajectory, with intercept 1
2

lower.
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2

1

0
–1/2 0 1/2 0

αʹM

J

2

b1/2†

a1†

|0⟩

Exercise XIB2.3

Exercise: Find all states at m2 = 3/2. Combine transverse states into massive

ones.

Supersymmetry doesn’t allow tachyons. In the spinning string, this is achieved

by GSO projection, Ψ → −Ψ (see subsection XIA4). This gives the transformation

on the oscillators, but for the transformation on states, we also need to know the

transformation of the ground state. On the Ψ zero-modes of the R string (Dirac

matrices), this symmetry is the usual chiral symmetry generated by γ−1. There is

then the sign ambiguity of which Weyl spinor is chosen “positive” chirality. This

ambiguity for GSO projection in the left and right sectors distinguishes Type IIA

and IIB superstrings. For reasons to be explained further later (related to ghosts),

the NS tachyonic ground state is taken to be odd under the transformation, so the

massless vector is even. For the R string this kills half the chiralities, which half

depending on how many Ψ oscillators are used. For the NS string, it simply kills

all the “odd” trajectories, those whose intercept is a half-integer below the leading,

because only an odd number of NS oscillators is allowed to hit the tachyonic vacuum.

Covariant quantization of the string can be performed in several ways: One is to

use the OSp methods of chapter XII, as applied to the Lorentz generators derived



B. QUANTIZATION 937

from the lightcone analysis (see subsection XIIB8). Another is to use the usual BRST

of subsection VIA2, as applied to gravity in subsection IXB1, treating the mechanics

of the string as a 2D field theory. For the case of the conformal gauge, introducing

ghosts Cm corresponding to the gauge parameters, and antighosts Bmn paired with

the Lagrange multipliers of the gauge conditions (Nakanishi-Lautrup fields), we find

the ghost action

√
−ggmn = ηmn, δ

√
−ggmn = ∇(mλn) − gmngpq∇pλq

⇒ Lg = B++∇−C− +B−−∇+C+

where in the last step we have introduced a background “zweibein” for applications

such as the background field gauge, or geometries that do not admit the conformal

gauge globally, and flattened the indices on the ghosts so the tracelessness of B

(which follows from that of δ
√
−ggmn) can be solved explicitly. (The Weyl scale

transformation of the gauge-fixing condition for the conformal gauge does not involve

derivatives, so the Weyl scale ghosts are just algebraic.)

Alternatively, we can apply the Hamiltonian BRST method of subsection VIA1,

which yields results of almost identical form for 2D massless theories. The result

is rather simple for the bosonic string, so we jump directly to the spinning string.

Looking at just the left-handed algebra (see subsection XIA3) for the closed string

(or full algebra for the open), with Q = Q(+) + Q(−), we can immediately write the

1st term ciGi in Q by multiplying the constraints by ghosts and summing (including∫
dσ/2π), and the 2nd term cicjfji

kbk (as we did for gauge-field transformation laws)

by multiplying 2 ghosts (times (−1)j) times the right-hand side of the commutators

(with 2 integrals), replacing the constraint by its antighost, and using the 2πδ to

eliminate 1 integral. Then

Q =

∫
CT + γG− γ2B − iC(C ′B + 3

2
γ′β + 1

2β
′γ)

Necessarily, C and B satisfy the same boundary conditions as T , and γ and β the

same as G. (The same goes for gauge fields and parameters.)

In covariant gauges, for purposes of calculating more complicated quantities than

the spectrum, it will prove useful to work directly in terms of 2D (conformal) field

theory in the position space of the worldsheet, rather than Fourier transforming to a

mode expansion. As usual, we Wick rotate to Euclidean space, after which we work

in terms of complex coordinates

ρ = τ + iσ
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Then the usual spin 1
2 fields on shell are directly functions of just ρ or ρ̄, while the

usual scalars break up into a sum of both (see subsection VIIB5). In particular, for

X we can write

X =
√

α′

2
[X̂L(ρ) + X̂R(ρ̄)]

where we have introduced normalization consistent with earlier parts of the book,

since the action we used in for a scalar φ is α′/2 times what we used for X in

subsection XIA3.

As described above, for the open string we always combine the two chiralities, such

as ΨL(ρ) and ΨR(ρ̄), on the interval σ ∈ [0, π], into a single chirality on σ ∈ [−π, π] as

Ψ̂(σ) = θ(σ)ΨL(σ) + θ(−σ)ΨR(−σ)

so the open string then looks like a closed string with one handedness. We can then

use the same function Ψ̂(ρ), evaluated in different halves of the complex plane, to

give ΨL and ΨR, which are both defined in only one half:

ΨL(ρ) = Ψ̂(ρ), ΨR(ρ̄) = Ψ̂(ρ̄)

In particular, the previous separation of X into its chiral halves becomes

X =
√

α′

2
[X̂(ρ) + X̂(ρ̄)]

for the open string, while X̂L and X̂R remain independent for the closed string. On the

boundary of the open string, where we place vertex operators for external open-string

states, we have simply X =
√

2α′X̂.

As in 2D electrostatic problems, it’s often convenient to use conformal invariance

to transform various surfaces with various topologies and boundary conditions to

ones with boundaries whose shapes are simple enough (e.g., straight lines) to use

techniques like the method of images to solve for propagators. (Otherwise, we are

restricted to looking at just short-distance behavior, which is independent of the

boundaries.) For now we consider just the simplest examples, the strip (open string)

and cylinder (closed string). In general (e.g., interactions in the lightcone gauge) we

would need to consider strings of various lengths; for now we simplify matters by

assuming the length of the string has been scaled to π for the open string and 2π for

the closed, for reasons explained previously. (For lightcone treatment of interacting

strings, the string length is proportional to p+, so length is “conserved” when they

split or join at the ends.)
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We then map the open string to the upper-half plane, or the closed string to the

whole plane, via

z = eρ

Since ρ = τ + iσ, any closed string at fixed τ is mapped to a circle, while any open

string is mapped to the upper half of a circle. The two boundaries of the open string

at σ = 0 and π are then mapped to the positive and negative real axis, while the ends

of either string at τ = −∞ and +∞ are mapped to the points z = 0 and ∞. The

fields will be singular at z = 0 and∞, so they should really be thought of as singular

limits of circles. (z =∞ isn’t really much of a point anyway.)

For example, for the spinning string we now have

S =

∫
d2σ

2π
[(∂φ)(∂̄φ) + Ψ+∂̄Ψ+ + Ψ−∂Ψ− + 2(C+∂̄B+ + C−∂B− + γ+∂̄β+ + γ−∂β−)]

where X =
√
α′/2φ and

∫
d2σ is over the real and imaginary parts of z, and for 1

handedness,

Q =

∫
CT + γG+ C(∂C)B − γ2B + c(3

2
β∂γ + 1

2γ∂β)

T = −1
2(∂φ)2 − 1

2Ψ∂Ψ, G = Ψ∂φ

If we use “Osterwalder-Schrader reality”, determining reality in Euclidean space

also by Wick rotation from Minkowski, then ρ is pure imaginary (σ is real, τ is

now imaginary), so under Wick rotation of Minkowski complex conjugation, we find

z → 1/z. As usual, this switches τ = ±∞ as z = 0↔ z =∞. The reality condition

on real 2D fields is therefore

χ*(z) = χ(1
z
)

(for conformal weight 0; there is an obvious extra power of z otherwise).



940 XI. STRINGS

For the closed string the scalar propagator is then as we found in subsection

VIIB5, while for the open string we use an image in the lower-half plane to give the

appropriate Neumann boundary conditions (vanishing of normal derivative) on the

real axis:

Gclosed(z, z
′) = −ln(|z − z′|2)

Gopen(z, z′) = Gclosed(z, z
′) +Gclosed(z, z̄

′) = −ln(|z − z′|2)− ln(|z − z̄′|2)

where the normalization is

〈φ φ〉 = G or 〈X X〉 = 1
2α
′G

for the conformal scalar of subsection VIIB5 and the X of the string. On the other

hand, ghosts and physical fermions have kinetic terms linear in derivatives, and thus

the propagators

〈Ψ+ Ψ+〉 = 〈B+ C+〉 = 〈β+ γ+〉 =
1

z − z′

and similar for the “−” fields with z → z̄.

Note that propagators do not transform simply under conformal transformations,

because of conformal-weight factors (see subsection XIB4). However, the vacuum

itself is not invariant under conformal transformations. The vacuum |0〉 we use is the

one natural for identifying the string with the entire complex plane (and the one that

comes from the path integral in these coordinates, using “1” for the vacuum wave

functional). It is with respect to that vacuum that the propagators take the simple

form we have used above.

3. Commutators

Since for the most part we will be interested in free fields, quantization will be

described most easily by the path-integral method. Although 2D field theory already

looks quite different from the 1D field theory of particle mechanics, free 2D massless

fields depend on only one of the two lightcone coordinates σ± (or are the sum of

two such terms), and hence 2D conformal field theory is similar to 1D massive field

theory. Consequently some of the features of particle mechanics or nonrelativistic

field theory, such as the commutator, can still be useful and 2D Lorentz covariant.

In particle mechanics, the (equal-time) commutator is evaluated by path-integral

methods as

〈[A,B](t)〉 ≡ lim
ε→0
〈A(t+ ε)B(t)− B(t+ ε)A(t)〉
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(and similarly for the anticommutator), since A and B are treated as classical func-

tions when evaluating the path integral

〈f〉 ≡
∫
Dφ fe−iS

where now “〈 〉” refers not to just the vacuum expectation value, but incorporates

arbitrary initial and final states through the boundary conditions, or explicit wave

functions in the path integral (see subsection VA1, and XIB6 below). In general, this

definition of 〈 〉 actually gives the time-ordered expectation value, as follows from

the derivation of subsection VA1: The ε’s were introduced to enforce the appropriate

ordering. For the rest of this subsection time ordering will be implicit in expectation

values.

In the Hamiltonian formalism for ordinary quantum mechanics, we have the term

−
∫
dt

.
qp in S, which defines q and p as canonically conjugate, and gives the propa-

gator

−i∂t 1
2iε(t− t

′) = δ(t− t′)

As a result,

lim
ε→0

[q(t+ ε)p(t)− p(t+ ε)q(t)] = 1
2iε(ε)−

1
2iε(−ε) = i

Similar results can be obtained in Lagrangian approaches, where for fields satisfying

second-order differential equations we use the propagator (see subsection VIIIC5)

∂2
t

1
2 |t− t

′| = δ(t− t′)

Exercise XIB3.1

Find the equal-time commutator of a massive scalar field with its time deriva-

tive, in arbitrary dimensions, from the propagator. (Hint: Start with the form

expressed in terms of time and spatial momentum, and Fourier transform.)

For the analogous result in (Wick-rotated, z = τ + iσ) D=2 we consider again the

fermionic L = Ψ̄ ∂̄Ψ . The ε regulator used in subsection VIIB5 is not needed; now the

ε we use for time ordering plays that role. Using the fermionic propagator 1/(z − z′)
(from subsection VIIB5), and the identity (see exercise VA3.1)

1

u− iε
− 1

u+ iε
= 2πiδ(u)

we find

lim
ε→0

[Ψ̄(τ + ε, σ)Ψ(τ, σ′)− Ψ̄(τ, σ)Ψ(τ + ε, σ′)] =
1

ε+ i(σ − σ′)
− 1

−ε+ i(σ − σ′)
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= 2πδ(σ − σ′)

Although we have taken the commutator at equal τ , in 2D conformal field theory

the fields’ time-dependence is given by their depending on just z or just z̄, and since

even interacting string calculations in terms of these “free” (with respect to first-

quantization) 2D fields factorizes into two separate calculations for the left-handed

fields and for the right-handed fields, we generally treat just z or just z̄ as the only

argument.

In arbitrary dimensions, we can similarly evaluate commutators of conserved

“charges” with local operators as (under suitable boundary conditions)

Q =

∫
dD−1x J0 =

∫
dD−1Σm Jm

⇒ [Q,A(x)} =

∮
dΣ ′m Jm(x′)A(x)

where the last integral is over a boundary enclosing x. (Conservation implies the

result is independent of the boundary. In the 1D case such a boundary consists

of just 2 points.) The graded commutator [ } (commutator or anticommutator, as

appropriate) is automatic in the path integral because of the classical grading of the

variables.

Since such “surface” integrals in D=2 are basically contour integrals (see exercise

IIA1.2c), working with functions of just z and not z̄, this becomes

Q =

∮
dz

2πi
J ⇒ [Q,A(z)} =

∮
z

dz′

2πi
J(z′)A(z)

where the contour that gives the commutator encircles the z where A is evaluated.

Then we can avoid taking a limit, since the contour just picks up the simple pole at

z′ = z. (For the cases of interest, the current has both divergence and curl vanishing,

so the time component of the current is the sum of chiral and antichiral parts.)

In fact, this is the only contour that is relevant: We need not define the contour

for Q as an abstract charge, only a contour for how it acts on an operator. States

themselves are defined by operators: For example, we can pick an arbitrary point in

the complex plane as t = −∞ (because of conformal invariance); z = 0 is conventional.
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A state, defined as an operator acting on the vacuum, is then represented as that

operator at z = 0. (This is true also in path-integral language, where the operator

is included in the path integral as the wave function of that state.) Later times are

circles about this origin, so Q is integrated about such a circle, representing its action

on that state. But we see that this is the same as evaluating the commutator of Q

with its corresponding operator, which is consistent if Q vanishes on the vacuum.

This picture is natural in Euclidean space, where there is no time in the usual sense,

and will prove particularly useful later for string theory, where the worldsheet time

is unrelated to physical time.

The contour integral definition of commutators is also convenient to avoid wor-

rying about time ordering and limiting procedures. For example,[∮
dz′

2πi
ζ(z′)Ψ(z′), Ψ̄(z)

}
=

∮
z

dz′

2πi
ζ(z′)

1

z′ − z
= ζ(z)

⇒ {Ψ(z′), Ψ̄(z)} = 2πiδ(z′ − z)

directly picking up the contribution from the pole in z′ − z (see exercise VA3.1b),

where ζ is an arbitrary (classical) function, and the δ function in z is understood at

equal times as 2πiδ(z′ − z)→ 2πδ(σ′ − σ). More generally, derivatives of δ functions

follow from more singular terms:∮
z

dz′

2πi
ζ(z′)

1

(z′ − z)n+1
=

1

n!

(
∂

∂z

)n
ζ(z)

4. Conformal transformations

Conformal invariance in D=2 is infinite dimensional, and looks like two copies of

general coordinate invariance in D=1:

dz′dz̄′ = h(z, z̄)dz dz̄ ⇒ z′ = f(z), h(z, z̄) = (∂f)(∂̄f̄)

Effectively, we can treat dz and dz̄ as independent (except for complex conjugation)

1D line elements. From the above examples of the scalar and spinor (and we know

is also true for the reparametrization ghosts) we see that fields generally depend (on

shell) on just z or just z̄ (“chiral” and “antichiral”, or “holomorphic” and “antiholo-

morphic”, or “left-handed” and “right-handed”), except for the scalar, which can be

written as a sum of two such terms. (There is some ambiguity on what to do with

the zero-modes, which we’ll have to deal with separately. But ∂φ and ∂̄φ don’t suffer

from this problem.)
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As usual the conformal transformation of a field depends on its scale weight w

(which is the same as the 2D engineering dimension): If we think of a field χ as a 1D

tensor, we can write

(dz′)wχ′(w)(z
′) = (dz)wχ(w)(z)

for a field with w covariant 1D indices, but since the 1D index takes 1 value, we can

trivially generalize to w that is negative and non-integer. We can also write this as

χ′(w)(z
′) =

(
∂z′

∂z

)−w
χ(w)(z)

For example, for the scalar and spinor we have

w(∂φ) = 1, w(Ψ) = 1
2

Of course, as in general relativity, not everything is a tensor: For a scalar φ, φ and

∂φ are, but ∂∂φ isn’t. Unfortunately, after eliminating the 2D metric, we have no

1D metric left to define 1D “covariant derivatives”, so we’ll have to live with such

noncovariant objects.

Now that we know how conformal transformations act on fields and how to eval-

uate commutators easily, we can write expressions for conformal generators, i.e., the

energy-momentum tensor T . For the infinitesimal form z′ = z − λ(z) of the above

conformal transformations, working with just one chirality for convenience, we need[∮
dz′

2πi
λ(z′)T (z′), χ(w)(z)

]
= λ(z)(∂χ(w))(z) + w(∂λ)(z)χ(w)(z)

We first consider the case where χ has an action linear in derivatives:

L = χ̄(1−w)∂̄χ(w)

for either fermionic or bosonic χ. (In the fermionic case and with w = 1
2 we can

identify χ with χ̄ and include an extra normalization factor of 1
2 .) By conformal

invariance, the canonical conjugate χ̄ of χ has weight 1− w, so both the left-handed

(z) weights (from χ and χ̄) and right-handed (z̄) ones (from ∂̄) sum to 1 (for invariance

under dz dz̄ integration). Using the propagator

χ(z)χ̄(z′) ≈ 1

z − z′

it’s easy to see that to give the above transformation law T must consist of terms

with one derivative,

T = −χ̄1
2

↔
∂χ+ (w − 1

2)∂(χ̄χ)
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where the coefficient of the second term is obvious from the special cases w = 0, 1
2 , 1.

Originally this Lagrangian came from a 2D coordinate invariant one with a 2D

metric (zweibein), and the conformal weight w came from the Lorentz weight (“spin”,

but in D=2 the Lorentz group is Abelian: SO(1,1)=GL(1)), the number of “+” minus

“−” indices, as used in the 2D spinor notation of subsections VIIB5 and VIIIA7. The

Lorentz connection was the derivative of the metric, giving the total derivative term

in T , which was the variation of the action with respect to the metric. (In Minkowski

space this chiral part of T is T++; the tracelessness condition T+− = 0 follows from

conformal invariance.)

This includes the classical string action

P+ · P− + P+ · ∇−X + P− · ∇+X

as well as the conformal-gauge ghost action

B++∇−C− +B−−∇+C+

(The factor of e−1 can be absorbed into the fields by a local scale transformation; it’s

irrelevant for defining T±±.)

Exercise XIB4.1

In general, the commutators we write for conformal transformations come

from the singular (pole) parts of products of unintegrated quantities.

a Show that in the special case of an operator with weight w = 1, we can write

T (z)χ(1)(z
′) ≈ 1

(z − z′)2
χ(1)(z)

This is the case where
∮
χ is conformally invariant.

b Another interesting case is w = 2: Show

T (z)χ(2)(z
′) ≈ 1

(z − z′)2
[χ(1)(z) + χ(1)(z

′)]

c Show that T itself has weight 2, using the Jacobi identity.

d Show directly that T has weight 2 by evaluating TT using the explicit expres-

sion in terms of χ’s. Consider only the semiclassical (1-propagator) terms.

(2-propagator terms will be considered below.)

Closure of the BRST algebra, or lightcone Poincaré algebra, is nontrivial because

of the infinite summations over oscillators, or equivalently because of integration over

the two-dimensional “momentum” (which is quantized as mode number in the σ di-

rection because of the finite extent of σ). As usual, BRST invariance is equivalent to
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gauge invariance, and we can check for anomalies in the usual way, now applied to the

2D “field theory” corresponding to the mechanics of the string. The anomaly calcu-

lations are similar to those applied to the Schwinger model in subsection VIIIA7. (In

particular, see exercise VIIIA7.1.) The gauge invariances in question are coordinate

invariance and local scale invariance, whose preservation is the vanishing of the diver-

gence and trace of the energy-momentum tensor. As seen from our analysis for the

Schwinger model, this implies that the quantum corrections to the energy-momentum

tensor must themselves vanish when the external fields are restricted to gravity only.

The calculation again involves one-loop propagator corrections; performed in posi-

tion space, we get the product of two propagators between the same two points, with

various numbers of derivatives acting on either end of either propagator.

We start with the case of fields with first-order field equations, whose T we rewrite

as

T = (w − 1)χ̄∂χ+ w(∂χ̄)χ

The 2-propagator terms correspond to 1-loop propagator corrections for the 2D gravi-

ton, which couples to T . These should vanish for the 2D metric to consistently remain

gauged away, or in other words, for conformal invariance to be preserved at the 1-loop

level. (There are no higher loops for this calculation because the theory is free.)

We get 2 kinds of terms, depending on whether both derivatives from the 2

T ’s hit the same propagator, or one hits each. In the former case one gets a term

proportional to z−1∂∂z−1 = 2z−4, in the latter (∂z−1)2 = z−4. (The z−4 means that

the contribution to the commutator is proportional to ∂3δ(z − z′).) The anomaly is

thus proportional to

2[2w(w − 1)] + [w2 + (w − 1)2] = 6(w − 1
2)2 − 1

2

with an extra minus sign if the fields were fermionic (from the usual reordering). For

example, a complex fermion with w = 1
2 gives a contribution +1

2 , while a pair of real

chiral bosons with weights w = 0, 1 give a contribution of 1. Thus, as we saw from

bosonization, a complex fermion with w = 1
2 gives the same contribution as a single

real chiral boson with weight w = 0.

In fact, we can use the above expression directly to obtain T for the second-order

action for a single real chiral boson: For the complex case, take either of

w = 0 ⇒ T = −χ̄∂χ; χ = φ, χ̄ = ∂φ̄

w = 1 ⇒ T = (∂χ̄)χ; χ = −∂φ, χ̄ = φ̄

}
⇒ T = −(∂φ̄)(∂φ)
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where the substitution is justified by the relation between the φ and χ propagators.

The anomaly for the complex case is then just twice that for the real one.

For the bosonic string, we have D real scalars, and fermionic ghosts with w =

−1, 2. The anomaly is then

bosonic : 1
2D − 13 = 0 ⇒ D = 26

The superstring can be treated with variables that are the worldsheet supersym-

metrization of those of the bosonic string (“Ramond-Neveu-Schwarz formalism”).

Thus, there are D real fermions (w = 1
2) as supersymmetry partners of the D X’s

(w = 0), as well as bosonic ghosts (w = −1
2 ,

3
2
) as partners of the fermionic ones

(w = −1, 2). (The weights −1 and −1
2 correspond to those of the gauge parame-

ters of coordinate and supersymmetry transformations, while the weights 2 and 3
2

correspond to those of the worldsheet metric and gravitino.) Thus

RNS : 1
2D + 1

4
D − 13 + 11

2
= 0 ⇒ D = 10

Consequently, we have two conditions on known strings that make them unsuit-

able for describing mesons: unphysical intercept α0 for the leading Regge trajectory

(massless particles) and unphysical spacetime dimension D.

The 〈TT 〉 calculation is easy to generalize to Q2 = 0 by inspection. For the

bosonic string, we can look at Q = C(TX + 1
2TCB). The 1-propagator terms give the

classical calculation, which satisfies Q2 = 0 by construction, while the 2-propagator

terms give 〈TT 〉 for the total T = TX + TCB, with the 1
2 ’s performing the same

function of canceling the 2’s from contracting either of the 2 C’s with a B. For the

general case, with Q given as in subsection VIA1, we see Q2 = 0 reduces to 〈ĜĜ〉.

5. Triality

For the case of a Lagrangian quadratic in derivatives only bosons φ are interesting.

Then we can consider adding a term to the Lagrangian proportional to Rφ, where R

is the (2D) curvature, proportional to the second derivative of the metric. We then

find

T = −1
2(∂φ)2 + µ∂∂φ

where µ is the coefficient of the curvature term. Since the µRφ term vanishes in flat

(2D) space, its only affect is an “improvement term” in the energy-momentum tensor,
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one that is separately conserved. The above transformation law is then modified

except for µ = 0 (where w = 0) to[∮
dz′

2πi
λ(z′)T (z′), φ(z)

]
= λ(z)(∂φ)(z) + µ(∂λ)(z)

This inhomogeneity (and familiarity with bosonization: see subsection VIIB5)

leads us to consider the fields

χ = eiaφ, χ̄ = e−iaφ

for some constant a. So we have

χ(z)χ̄(z′) ≈ (z − z′)−a2

and we still need a = 1 to get canonically conjugate fermions (with the usual anti-

commutation relations). If we now evaluate the conformal transformation of χ using

the T of φ, we find, using

(∂φ)(z′)eiaφ(z) = :

[
(∂φ)(z′) +

ia

z − z′

]
eiaφ(z) : ≈ ia

z − z′
eiaφ(z)

that it transforms covariantly, with

w(χ) = 1
2a

2 + iµa, w(χ̄) = 1
2a

2 − iµa

where the a2 term comes from a 2-propagator term, and is thus a (“anomalous”)

quantum correction that would not be seen from a Poisson bracket. In particular

a = 1 ⇒ w(χ) = 1
2 + iµ, w(χ̄) = 1

2 − iµ

The last result should have been expected from the expression of T for χ, since the

w − 1
2 term multiplies ∂(χ̄χ) = −i∂∂φ from our earlier study of bosonization (where

we already found the w = 1
2 term).

Exercise XIB5.1

The iµa term in w is classical, since it comes from a single propagator:

a Derive the Lagrangian for a scalar with R term by starting with the nonlocal

term R(1/ )R and applying a local Weyl scale transformation, introducing

the scalar as the compensator.

b Find the classical scale weight of eiaφ from its local scale transformation.

(Hint: In deriving the local scale transformation in part a, an exponential

will be needed, so that eφ transforms homogeneously.)
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These results generalize easily to general linear exponentials for multiple scalars

eiaiφ
i

Including an indefinite metric ηij,

T = −1
2ηij(∂φ

i)(∂φj) + µi∂∂φ
i

will modify all the above expressions in an obvious way, including the metric (or its

inverse) where needed to contract indices of the same kind (both up or both down).

For example, a2 → a · a and µa→ µ · a in the expression for w, and

eia·φ(z)eiã·φ(z′) = (z − z′)a·ã : ei[a·φ(z)+ã·φ(z′)] :

The most important use of such exponentials, outside of bosonization, is for ex-

ternal fields (or “vertex operators”): The conformal generators (energy-momentum

tensor) have conformal weight 2; requiring that background fields preserve conformal

invariance implies that such vertex operators must have conformal weight 1 and be

local on the worldsheet (see exercise XIB4.1):

T̂ (z)T̂ (z′) ≈ 1

(z − z′)2
[T̂ (z) + T̂ (z′)]

T̂ (z) = T (z) + Ṽ (z) ⇒ Ṽ has w = 1, Ṽ (z)Ṽ (z′) ≈ 0

⇒ Ṽ (z) = 2πiδ(z − z0)V (z0)

where we have assumed the conformal anomaly cancels (or ignored its contribution),

and solved for closure of the algebra perturbatively in the background. (The calcula-

tion can be simplified a bit by examining [
∮
λ1T̂ ,

∮
λ2T̂ ] to eliminate δ’s.) Note that,

since we are really looking at just equal-time commutation relations, any correspond-

ing interaction terms added to the action are irrelevant for evaluating propagators.

If we write a background spacetime field Φ(X̂(z)) as a Fourier transform, then we

see that its conformal weight is proportional to k2, the square of the external momen-

tum. Hence a vertex operator consisting of just a scalar field produces the tachyonic

ground state (w = 1
2k

2 = 1). Excited states are created by products of derivatives

of X times fields (with spacetime Lorentz indices contracted); the derivatives add to

the conformal weight, forcing k2 to decrease in compensation, resulting in massless

and massive (m2 > 0) states. For example, ∂X already has w = 1, so the vector

multiplying it must have k2 = 0. (For the vector vertex there is also a “cross term”

where 1 propagator from T contracts with A(X) and 1 with ∂X, giving a ∂ ·A term.

This implies the gauge condition ∂ · A = 0. However, this condition can be relaxed,
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and the A = 0 equation made gauge invariant, when ghosts are taken into account:

The Nakanishi-Lautrup field responsible for closing the BRST algebra of the gauge

field resides in the ghost sector. See subsection XIB9.)

Exercise XIB5.2

Show this without Fourier transformation: Evaluate the conformal transfor-

mation of an arbitrary function (not functional; this is a particle field, not

a string field) Φ(X̂(z)), using T = −1
2(∂X̂)2. Show that Φ transforms co-

variantly, with the number w replaced by − (with respect to X̂) acting on

Φ.

Bosonization can also be applied to representations of groups (Lorentz or inter-

nal). In particular, to obtain the correct anticommutation relations for a fermion eia·φ

and its conjugate e−ia·φ we require a2 = 1; to get the usual conformal weights, we

require µ · a = 0.

The Ramond-Neveu-Schwarz formulation of superstring theory uses fermions that

are a representation of SO(D) (especially D=10) by simply carrying a D-valued (vec-

tor) index. The simplest way to obtain these fermions from bosonization for even

D is to define a (D/2)-vector φi with ηij = δij. Then we find for our SO(D)-vector

fermion

vector : ai = (±1, 0, 0, ..., 0), (0,±1, 0, ..., 0), ...

in a (complex) null basis. This construction follows that for the Dirac matrices in

subsection XC1: Each scalar corresponds to a two-dimensional subspace of SO(D),

and each component of a (D/2)-vector ai is the corresponding eigenvalue of the two-

dimensional spin. Klein factors should be included to make fermions using different

scalars anticommute (see subsection IA2).

From the above we can also find the generators of SO(D): The raising and lowering

operators come as for γ-matrices from multiplying fermions from different pairs, then

integrating. This gives expressions like the above, but with different a’s (sums of

2 different a’s of the vector). For the Cartan subalgebra, taking products from the

same pairs and subtracting the divergent constant gives ∂φi. But then from the

product relation for ∂φ times eiφ we see that ai are the weights of the representation

(eigenvalues of the Cartan subalgebra).

Then we can try to make SO(D) spinors the same way: We try the weights (also

obvious from two-dimensional spinors as the square root of two-dimensional vectors,

and how spinors come from direct products of two-dimensional spinors)

spinors : ai = (±1
2 ,±

1
2 , ...,±

1
2)



B. QUANTIZATION 951

where all the ±’s are independent, except that their product is +1 for one Weyl spinor

and −1 for the other. (The conventions are slightly different from subsection XC1:

Now we use a representation where σ3 is diagonal, and γ−1 is chosen as the last γ.)

However, these spinors can have the usual commutation relations and conformal

weights only for D=8 (and only if we restrict ourselves to just 1 Weyl spinor; the

product of the 2 different spinors gives z−1/2 singularities). This is significant for

two reasons: (1) D=8 is the number of physical (i.e., transverse) fermions for the

RNS superstring, and (2) SO(8) is the only simple Lie group with the property of

“triality”, a symmetry between the vector and two spinor representations. In fact,

if we start out by defining the basis for one of the spinors with the same a we used

above to define the vector, and rewrite the above a’s for the vector and other spinor

in terms of that new basis, we see that we have just permuted the 3 a’s.

This relation between (fermionic) vectors and spinors is important for superstrings

because it relates in several ways to supersymmetry. For example, we know that

supersymmetry representations must have equal numbers of (physical) bosons and

fermions; in D=10, the vector and (Weyl) spinor both have 8. Since bosonization

allows bosons to be defined from fermions and vice versa, triality allows the SO(8)

vector fermion to be defined from either SO(8) spinor fermion, and vice versa. So,

at least in the lightcone gauge, we can translate anything in the RNS formalism to

the “Green-Schwarz” formalism, which uses a spinor fermion (see subsection XIA9).

This allows supersymmetry (or at least the lightcone version) to be manifest, since

superspace is defined by adding a spinor fermion to the usual spacetime coordinates.

For RNS there is also “Gliozzi-Scherk-Olive projection” to get a supersymmetric

spectrum: Keeping only integer, not 1
2 -integer (mass)2 for the bosons of the NS string

(see exercise XIC1.1), and using a chiral ground state for the fermions of the R string.

GSO is identification of states under vector → − vector. This means φi → φi + π.

This takes one Weyl spinor into itself, the other into minus itself. For GS, this means

using states created just by one Weyl spinor field and not the other.

As a simple application of triality, consider the massless sector of the open su-

perstring, described by the superparticle of subsection IIB6. For the case of D=10

N=1 supersymmetry, we can easily find the spectrum using triality: x is described

the same as for a scalar particle. So all spin comes from θ. But (after scaling out the

p+), it has the same action as for a spinning (Dirac) particle (in lightcone gauge), ex-

cept that the SO(8) vector fermion has been replaced with an SO(8) Weyl-Majorana

spinor fermion. It still has anticommutation relations of a Dirac/Clifford algebra. In

the Dirac case, a vector operator led to states that were a Weyl spinor ⊕ the other
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chirality Weyl spinor. By triality, which simply permutes the 3 8-representations, a

Weyl spinor operator must lead to states that are a vector ⊕ the other-chirality Weyl

spinor. This is exactly the spectrum of 10D N=1 super Yang-Mills.

Similar triality constructions apply to lower dimensions by taking into account

supersymmetry, which also relates a vector to a spinor. In D=6, simple supersym-

metry has an internal SU(2) (R) symmetry: Thus, there is a triality relating this

SU(2) to the two SU(2)’s of the lightcone’s SO(4). In terms of these, the vector is

the (1
2 ,

1
2 , 0) representation, while the spinors are (1

2 , 0,
1
2) and (0, 1

2 ,
1
2). The resulting

operators are given by

aV = (± 1√
2
,± 1√

2
, 0), aS = (± 1√

2
, 0,± 1√

2
), aS′ = (0,± 1√

2
,± 1√

2
)

To relate to the SO(8) results we use the vector to define the basis, yielding

aV = (±1, 0, 0), (0,±1, 0)

⇒ aS = (1
2 ,

1
2 ,±

1√
2
), (−1

2 ,−
1
2 ,±

1√
2
); aS′ = (1

2 ,−
1
2 ,±

1√
2
), (−1

2 ,
1
2 ,±

1√
2
)

This also follows directly from the SO(8) result by dropping the third and fourth

scalars for the vector, and using only (1/
√

2×) their sum for the spinors. (I.e., it

represents only internal symmetry.) For D=4 the construction is even simpler: Besides

the SO(2)=U(1) of the lightcone, there is a second U(1) for R symmetry. In terms of

the complex plane defined by these two quantum numbers, there is an obvious triality

for the three cube roots of 1; thus

aV = ±(1, 0), aS = ±(−1
2 ,
√

3
2

), aS′ = ±(−1
2 ,−

√
3

2
)

which again also follows from SO(8), now combining its last 3 scalars.

Exercise XIB5.3

We now extend the analogy to the construction of subsection XC1:

a Show for general SO(2n), in analogy to the Dirac γ’s, that the (integral of)

products of two vector fermions, antisymmetrized in the vector indices, act in

the same way as the group generators, by examining their commutators with

each other and with the vector and spinor operators.

b Show for the triality cases that the (anti)commutator of two representations

yields the third (supersymmetry).

These constructions can be generalized from the lightcone to manifest Lorentz

covariance by adding equal numbers of scalars of positive and negative metric (at

least one of each): Their contributions to the spinors’ operator product (power of
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z) then cancel, preserving the anticommutation relations. One of the extra scalars

of positive metric yields the two “longitudinal” spacetime directions to complete the

SO(D−2) vector and spinor representations to SO(D−1,1). The rest of the scalars

come from “ghosts”. Note that the spacetime metric is unrelated to the metric for the

scalars: The Minkowski spacetime metric comes from Wick rotation of the scalars, as

applied in subsection XC2 to the construction of subsection XC1 for Dirac spinors.

For either Euclidean or Minkowski spacetime the basis is null; the only difference is

in reality.

6. Open trees

In this subsection we consider tree graphs in string theory: For simplicity, we focus

on the bosonic string with external tachyons. As for particles, Feynman diagrams for

strings can be treated by first-quantized methods for arbitrary loops. The basic idea is

that interacting strings are just strings with nontrivial geometries: For example, while

an open-string propagator can be described by a rectangle, an open-string tree graph

can be described by a rectangle that has parallel slits cut from two opposite ends of

the rectangle part-way into the interior; this describes initial strings that join and

split at their ends (interactions). This is the lightcone picture of interactions, where

conservation of total p+ means conservation of the sum of the lengths of the strings.

This corresponds to the choice k = 1 in the language of subsection XIB1, since the

worldsheet coordinates must be chosen consistently over the whole worldsheet:

X+ = τ ⇒ l = 2πα′p+

More general conformal gauges are defined by conformal transformations of this con-

figuration: For example, the boundary of this slit rectangle can be transformed to a

single straight line by the usual methods of complex analysis, so the worldsheet be-

comes simply a half-plane. (For the infinite rectangle, relevant for asymptotic states,

the transformation is ρ =
∑
p+
r ln(z − Zr).) Then even the geometry is irrelevant;

all that matters is the topology, which tells how many loops the diagram has (see

subsection XIA2).
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First-quantized path integrals are then the easiest way to calculate arbitrary

S-matrix elements in string theory. However, the calculations still can be quite com-

plicated (as expected from a theory with an infinite number of one-particle states),

so we first consider just the tree-level scattering of ground states, which is sufficient

to illustrate the qualitative features. We can start from a gauge where the string is

an infinite strip (a rectangle of infinite length but finite width), with all but two of

the external states associated with points on one side of the strip, the remaining two

states being at the ends at infinity. This is equivalent to a picture of a propagator in

an external field, with all but two of the external states associated with the external

field. Similar calculations are possible for particles, but give only a single graph; for

strings this gives the only graph, since different cyclic orderings are related by con-

formal transformations. (We are restricted to cyclic orderings by group theory, as for

the 1/N expansion for particles.) This method can be used in either the lightcone

gauge or Lorentz covariant conformal gauge.

We begin by adapting the results of subsection VIIIC5 for the particle to the open

string. (We’ll come to closed strings later.) We expand the propagator 1/(H0 − V ),

restricting all external states to tachyons, where now (with mass2 operator M2)

H0 = 1
2(p2 +M2), Vi = geiki·X(0)

for vertices at one end of the string σ = 0 for convenience. (All other choices are

equivalent by duality. When acting on the tachyon ground state we’ll see this gives

the same result as using the usual string zero-mode x after an appropriate limiting

procedure.) The amplitude is again (with tachyon mass m)

AN = (−1)Ng−2 lim
τ̃1→−∞
τ̃N−1=0

τ̃N→+∞

e(τ̃1−τ̃N )m2/2

∫
dN−3τ̃ 〈0|VN(τ̃N)VN−1(τ̃N−1)...V2(τ̃2)V1(τ̃1)|0〉

We can again evaluate this operator by a path integral. This time normal ordering

removes infinite terms coming from connecting a vertex to itself with a Green func-

tion, and we again keep only terms with Green functions connecting different points.

(Normal ordering can also be treated in a more careful way by taking the vertices

to correspond to finite-width strings, as they would in the lightcone approach, and

taking the limit where their widths vanish.)

Now we normalize the Green function as

〈X X〉 = 1
2α
′G

where we have inserted the α′ because of the difference in normalization of the ac-

tion. We have also used a τ for the string normalized to α′ = 1
2 , since the “time”-

development for the string (in normalization where σ goes from 0 to (2)π) is really
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given by α′(p2 + M2) = (2α′)1
2(p2 + M2). Thus there is an extra factor of 2α′ for

each propagator to restore the original generic 1/1
2(p2 +M2). Then the amplitude is

simply

AN = (−g)N−2(2α′)N−3 lim
τ̃1→−∞
τ̃N−1=0

τ̃N→+∞

e(τ̃1−τ̃N )(2α′)m2/2

∫
τ̃i≤τ̃i+1

dN−3τ̃ exp

[
−1

2α
′
∑
i<j

ki · kjG(τ̃i, τ̃j)

]

We next make the conformal transformation

z = eτ̃

used earlier. Vertex operators in general have conformal weight 1 so they can be

integrated: dz V (z) = dz′V ′(z′). This is true for the tachyon vertex eik·X on shell

because the tachyon has m2 = −2 in units α′ = 1
2 , so the weight 1

2k
2 = 1. Under this

transformation we find V (τ̃) → zV (z) for the 3 unintegrated vertices V1, VN−1, and

VN . The amplitude is then

AN = (−g)N−2(2α′)N−3 lim
z1→0

zN−1=1
zN→∞

z2
N

∫
zi≤zi+1

dN−3z exp

[
−1

2α
′
∑
i<j

ki · kjG(zi, zj)

]

Inserting the propagator

Gopen(z, z′) = −ln(|z − z′|2)− ln(|z − z̄′|2)

where all z’s are real, we find (again dropping the divergent terms from propagators

connecting a vertex to itself)

AN = (−g)N−2(2α′)N−3 lim
z1→0

zN−1=1
zN→∞

z2
N

∫
zi≤zi+1

dN−3z
∏
i<j

(zj − zi)2α′ki·kj

We can now simply evaluate at z1 = 0 (and zN−1 = 1), and use momentum conser-

vation (and again the ground-state mass-shell condition k2 = 1/α′ for the final state)

to cancel the dependence on zN :

AN = (−g)N−2(2α′)N−3

∫
zi≤zi+1

dN−3z
∏

1≤i<j≤N−1

(zj − zi)2α′ki·kj

The simplest case is the “Veneziano amplitude”, the four-point function for open-

string tachyons. (It was how string theory began, though originally α(s) was consid-

ered to be general, and definitely not for tachyons.)

A4 = g2(2α′)

∫ 1

0

dz z−α(s)−1(1− z)−α(t)−1
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in terms of the Mandelstam variables

s = −(k1 + k2)2, t = −(k1 + k4)2

where the tachyon lies on the Regge trajectory

α(s) = α′s+ α0, α0 = 1

which we recognize as the Beta function (see subsection VIIA2)

1

2α′g2
A4 = B[−α(s),−α(t)] =

Γ [−α(s)]Γ [−α(t)]

Γ [−α(s)− α(t)]

We now consider various properties of these amplitudes. For the 4-tachyon am-

plitude, if we expand the integrand of the Beta function in powers of z, we find (see

exercise XIB6.1 below)

1

2α′g2
A4 =

∞∑
J=0

[α(t) + J ][α(t) + J − 1]...[α(t) + 1]

J !

1

J − α(s)

which shows Regge behavior: The leading trajectory comes from the tJ term, while

“daughter” trajectories come from tJ−n/(J − α) = tJ
′
/[J ′ − (α − n)]. Since the

amplitude is symmetric in s and t, we can also write this as a sum over t-channel

poles: This is duality. Note that any 4-point amplitude takes place in a plane, and this

amplitude is also for (external) spinless particles: Thus it is insufficient to determine

the complete Poincaré representations of the intermediate states, but only their “spin”

J , in more than 4 dimensions. Furthermore, since the poles are at J = α(s), J is

actually the excitation number N ; but this is also the “spin” of the leading trajectory

(see subsection XIB2).

Exercise XIB6.1

Derive the pole structure of the 4-point string amplitude by Taylor expanding

the integrand of the Beta function in z.

An interesting feature of this amplitude is that all “odd” daughter trajectories

(odd J lower than the leading) drop out, provided α0 = 1. We see this by looking at

the residues of the poles, at the poles. Specifically, we look for even and odd powers

of t− u, where (in the center of mass frame; see subsection IA4)

t− u = −(t+ u)cos θ = (s− 4m2)cos θ

Expressing in terms of just t and J (as used in the pole expansion) we have

s+ t+ u = 4m2 , α(m2) = 0 , α(s) = J ⇒ 1
2α
′(t− u) = α(t) +

J + α0

2
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For α0 = 1, we then combine the residue factors as

[α(t) + J − n][α(t) + 1 + n] =

[
α(t) +

J + 1

2

]2

−
(
J − 1

2
− n

)2

For even J they all combine this way, while for odd J a factor of α(t) + J+1
2

remains.

Thus, as indicated by the powers of cos θ (PJ(cos θ) has only even powers for even

J , odd for odd J), even M2 has only even spins, while odd M2 has only odd spins:

Only even daughters appear.

If we go back to the Schwinger parameter via z = e−τ and expand 1 − e−τ in τ ,

we find the Regge limit (see exercise XIB6.2 below)

1

2α′g2
lim
s→−∞
t fixed

A4 = Γ [−α(t)][−α(s)]α(t)

where higher orders in the τ expansion give contributions from daughter trajectories.

The same result can be obtained by using the Stirling approximation for the Γ ’s, or

by applying the Sommerfeld-Watson transform on the pole expansion above.

Exercise XIB6.2

Use the Stirling approximation (see exercise VIIC2.2) to derive the Regge limit

of the 4-point string amplitude. Show that the same result can be obtained

directly from the integral (Beta function) representation of the amplitude,

where the main contribution comes from z near 1. (Hint: see exercise XIA1.2.)

Exercise XIB6.3

Show the Regge limit can be obtained from the Sommerfeld-Watson transform

of subsection XIA1. (Hint: The Beta function is a sum of Regge trajectories.)

Another high-energy expansion is at fixed angle (t/s), as used in perturbative

QCD (large “transverse” energies). Again using the Stirling approximation,

lim
s→−∞
θ fixed

A4 ∼ e−f(cos θ)α(s)

cos θ ≈ 1 + 2
t

s
, f ≈ t

−s
ln

(
−s
t

)
+

u

−s
ln

(
−s
u

)
This Gaussian behavior in momenta is not the power behavior expected (at lowest

order) from asymptotic freedom. The interpretation is that the “partons” that make

up these strings have Gaussian propagators instead of the usual 1/(p2 + m2) (see

subsection XIA7). Similar effects show up if we heat up strings past the “Hagedorn

temperature” (see subsection XIC2), where they break up into a parton plasma: A

QCD string would then show quarks and gluons, whereas known strings show almost

no degrees of freedom, since Gaussian propagators have no poles.
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This fixed-angle behavior isn’t generally true in Regge theory: The expressions

found for α(t) from nonrelativistic potential scattering (e.g., Coulomb, as described

in subsection VIIA6 and exercise XIA1.3) or summing Feynman diagrams typically

go to a negative constant as t→ −∞, unlike the string result:

lim
t→−∞

A4 → kg2Γ [−α(−∞)](−s)α(−∞)

For ladder diagrams this is the tree graph, α(t) = a+g2b(t)→ a = −1. In relativistic

theories where more general graphs contribute to the Regge amplitude (e.g., Higgsed

vectors) this can be a tree in the t-channel, a = 0. If such trajectories are substituted

into the Beta function, then the limit t → −∞ is effectively the same as t fixed

(because α(t) is fixed), so the result is power-law behavior, not Gaussian. Thus, if

still α(s) ∼ s as s→ +∞ in the Veneziano amplitude, while α(t) goes to a constant

as t→ −∞ (t/s fixed), then the fixed-angle limit is a negative power of s, as desired

for physical hadrons.

= =

The amplitude we gave for the open string had poles in s and t, but not in u, as

expected from “stretching” the string diagram in different directions. Thus, while in

particle theory there are 3 different 4-point trees with poles, 1 each for s, t, and u

poles, in string theory there are also 3, but for s and t, s and u, and t and u. However,

the group theory is the same in the string and the corresponding particle theory, as

seen from the double-line notation for particle group theory (see subsection VC9):

For given external states, there are 6 possible group-theory diagrams for U groups, 3

for SO and USp (because of unorientability). But in string theory, for any particular

group theory diagram there is a single graph, while in particle theory there are 2. Of

course, for specific choices of external group theory factors (choices of “quarks”), not

all diagrams will contribute. (The closed string has simply a single amplitude with

poles in all channels.)
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Similar analyses can be made for the higher-point functions: For example, we

can show the poles are in the same places not only from the derivation (splitting

up the path integral) but looking for momentum-space singularities directly in the

amplitudes. Consider some number n+ 1 of consecutive (because of ordering) vertex

insertion points approaching each other: The worldsheet picture is that these external

lines are much closer to each other than the rest of the diagram, so relatively they

have been stretched away, emphasizing a propagator connecting that bunch to the

rest, carrying the sum of their momenta. The z integration diverges in that region as

A ∼
∫ ε

0

dz zn−1+
∑

ki·kj

where we have “scaled” all n of the converging zj − zi’s by the same variable z to

treat that region with a single integral, and the sum is over i < j for those n+ 1 k’s.

Then using the on-shell condition for the tachyons (in units 2α′ = 1)

−sm,m+n ≡

(
m+n∑
i=m

ki

)2

= 2
∑

m≤i<j≤m+n

ki · kj + 2(n+ 1)

we have

A ∼
∫ ε

0

dz z−sm,m+n/2−2 ∼ 1

sm,m+n + 2

giving the tachyon pole. Corrections to this result come from multiplying the inte-

grand by a polynomial in z, yielding higher-mass poles.

There are several ambiguities that might have arisen in calculating the normal-

ization of these amplitudes, but they all would have only 2 effects: (1) There could

have been an extra factor of (constant)N . This could come from normalization of

the vertex operator, due to normal-ordering prescription (from dropping an infinite

constant) or coupling-constant normalization. It could also come from choosing the

2D-dimensionful constant µ in the propagator ln(µ|z|). (In the above amplitudes,

momentum conservation translates such ki · kj terms into k2
i terms.) (2) There could

also have been an overall N -independent constant. This ambiguity could arise from
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normalization of any of the integration measures. Another source is possible ambi-

guity in definition of the 3 vertices without z integration as compared to those with.

These 2 effects are identical to those in ordinary field theory: Consider a Lagrangian

(with normalization appropriate to matrix fields)

L = −Z2 1
4
φ( −m2)φ+ Z3g 1

3
φ3

Then the “wave-function” normalization Z combined with the definition of the cou-

pling g are equivalent to the ambiguities we have described. The normalization of

g is arbitrary, since it must eventually be fixed only by experiment. The value of

Z is also a convention, but must be consistent with our convention for calculating

probabilities. This is not manifest in general conformal field theory methods, since

only the amplitudes are defined. One way to fix it is to use a pole expansion and

compare the contribution of that particular particle to the corresponding result of

particle field theory. For example, we can look at the 3-tachyon amplitude A3, which

is just a coupling constant:

A3 = −g

and at the contribution to the 4-tachyon amplitudeA4 from a tachyon in the t channel,

A4 ≈
2α′g2

−α(t)
=

g2

1
2 [(k1 + k4)2 +m2]

Both of these agree with the results obtained from the field theory Lagrangian above

by the usual Feynman diagrams, with the same g and with Z = 1, as a result of our

derivation of the string result from assembling vertices and propagators.

There are also generalizations to strings with worldsheet fermions; the main dif-

ferences are supersymmetry and D=10 (instead of 26).

7. Closed trees

Similar methods can be used for calculating closed string diagrams: The main

modification is that we have a constraint to impose, namely ∆N ≡ T0− T̄0 = 0. The

easiest way to impose this is by including a projection operator in the propagator,

Π ≡
∫ π

−π

dσ

2π
e−iσ∆N = δ∆N ,0

If we combine this with the Schwinger parametrization of the propagator, we have

1

H0

Π =

∫ ∞
0

dτ

∫ π

−π

dσ

2π
e−(τH0+iσ∆N )
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We then rewrite the exponent as

τH0 + iσ∆N = τ(T0 + T̄0) + iσ(T0 − T̄0) = ρT0 + ρ̄T̄0

Here T0 is the same as for the open string, but with the replacement p→ 1
2p:

T0 = α′(1
2p)

2 +N − 1

(where this N is just for left-handed modes). The net effect is thus to double modes,

with real ρi becoming complex:

dτ̃ V (τ̃)→ d2ρ

2π
V (ρ, ρ̄) , V (ρ, ρ̄) = VL(ρ)VR(ρ̄)

So the vertices are now anywhere on the strip instead of just the boundary, and thus

not ordered. Since the closed-string Hilbert space is the direct product of two open-

string Hilbert spaces (except for momentum), for left- and right-handed modes, the

closed-string vertices are the product of 2 such open-string vertex operators. Thus

the z-z̄ integrands are products of two open-string integrands (one for z and one for

z̄), but with p→ 1
2p.

For example, for the closed-string 4-point tachyon amplitude,

A4,closed ∼
∫
d2z

2π
(|z|2)−

1
2α(s)−1(|1− z|2)−

1
2α(t)−1

but now

α(s) = 1
2α
′s+ 2

in terms of the same α′ used for the open string. The integral is evaluated in the same

way as Feynman diagrams (not surprisingly, since those are full of Beta functions,

too): Consider a 2D, massless, 1-loop propagator correction, where each of the internal

propagators itself has quantum corrections, and so is some power of p2. This has the

same form as above if we interpret z and 1−z as the momenta of these 2 propagators.

We therefore use the usual Schwinger parametrizations

f−h =
1

Γ (h)

∫
dτ τh−1e−τf

for f = |z|2 or |1 − z|2, introduce a scaling parameter λ = τ1 + τ2, τi = λαi to get

Feynman parameters αi, etc. We eventually find

A4,closed ∼ 1
2

Γ [−1
2α(s)]Γ [−1

2α(t)]Γ [−1
2α(u)]

Γ [−1
2α(s)− 1

2α(t)]Γ [−1
2α(s)− 1

2α(u)]Γ [−1
2α(t)− 1

2α(u)]

which is symmetric between all 3 channels, where we have introduced u via the identity

α(m2) = 0 ⇒ s+ t+ u = 4m2 = −16

α′
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to manifest this symmetry. Thus the integral yields an stu-symmetric result only for

α0 = 2.

Now duality is expressed by the fact that poles in any channel follow from sums

of poles in the other 2: Divide the integral expression into one for |z| ≤ 1 and one for

|z| ≥ 1; for the latter, redefine z → 1/z to make the 2 similar except for s↔ u. Then,

writing |1 − z|2 = (1 − z)(1 − z̄), Taylor expand in both z and z̄. Finally, perform

the integral in polar coordinates (essentially the coordinates of the cylinder): The θ

integral will just set the powers of z and z̄ equal (NL = NR on the cylinder), while

the r integral will yield a sum over poles in s for one half and in u for the other half

(cf. the open string case):

A4,closed ∼
∞∑

J=0,even

{
[α(t) + J ][α(t) + J − 2]...[α(t) + 2]

(1
2J)!2J/2

}2 [
1

J − α(s)
+

1

J − α(u)

]
where the sum is over J even because J = NL +NR = 2NL. J is also the spin for the

leading trajectory, where it comes entirely from an equal number of L and R a1
†’s.

So duality for the 2 types of strings is expressed in terms of sums over poles in the

different channels as

open :
∑
s

=
∑
t

closed :
∑
s

+
∑
t

=
∑
s

+
∑
u

=
∑
t

+
∑
u

As for the open string, odd daughters do not appear: The argument is the same, only

now α0 = 2 is required, since the numerator factors average to α(t) + J+2
2

.

There is a simpler way to evaluate closed-string amplitudes, at least at the tree

level, again using the factorization of the closed-string spectrum into the product of

those of 2 open strings, associated with left or right-handed modes. The basic idea

is to perform the z and z̄ integrals independently. This is difficult on the Euclidean

worldsheet, where such 1D integrals are usually interpreted as contour integrals. How-

ever, since the worldsheet was originally Minkowskian (before Wick rotation), we can

return to our starting point, in terms of lightcone coordinates σ±. Then independent

integration over σ+ and σ− is natural, if we take care of the usual iε prescription.

Exercise XIB7.1

Using the methods of sections VB and VIIA-B, derive the massless scalar

propagator in arbitrary dimensional Minkowski space, paying careful atten-

tion to the iε prescription. Using dimensional regularization, take the limit

D → 2 and show the propagator there is

∆ = +i ln(1
2x

2 + iε)
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(The 1
2 is now arbitrary.)

But the usual coordinate transformation z = eρ does not preserve reality of σ±; then

the simplest thing is to Wick rotate back to Minkowski space after this transformation.

Choosing σ2 = zz̄ → −σ+σ− (the sign is also arbitrary), this instead gives the

propagator

∆ = −ln(zz̄)→ −ln(σ+σ− − iε)

We then have in general the exponents

1
2α
′ki · kj ln(σ+

ijσ
−
ij − iε)

with closed-string normalization. Choosing the cut for ln along the negative real axis,

the prescription says to integrate below the cut, so the exponentials become[
|σ+
ijσ
−
ij |e
−iπθ(−σ+

ij
σ−
ij

)
]

(α′/2)ki·kj

We can now perform the σ− integrals before the σ+ integrals (or vice versa).

Returning to the example of the 4-point tachyon amplitude,

A4,closed ∼
∫
d2σ

2π
|σ+σ−|−

1
2α(s)−1|(1− σ+)(1− σ−)|−

1
2α(t)−1eiπA

A = [1
2α(s) + 1]θ(−σ+σ−) + [1

2α(t) + 1]θ[−(1− σ+)(1− σ−)]

However, the integrals simplify if we examine them in the complex plane: The prop-

agators indicate the existence of branch points at

branch points : σ−ij = iεε(σ+
ij)

In the case of the 4-point function, there are then 2 branch points for σ− integration

whose positions depend on the value of σ+,
σ+ < 0 : −iε, 1− iε
0 < σ+ < 1 : iε, 1− iε
1 < σ+ : iε, 1 + iε

In the first case, the contour can be closed in the upper-half complex plane with no

contribution, in the last case, in the lower. This leaves the middle case, which we can

close around the right cut. The above integral then simplifies to

A4,closed ∼
1

2π
2i sin{π[1

2α(t) + 1]}A+A−

A+ =

∫ 1

0

dσ+ (σ+)−
1
2α(s)−1(1− σ+)−

1
2α(t)−1
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A− =

∫ ∞
1

dσ− (σ−)−
1
2α(s)−1(σ− − 1)−

1
2α(t)−1

We now recognize A+ as the usual (4-tachyon) open-string amplitude with s and

t-channel poles, while A− is that with u and t-channel poles. (This is clear from

conformal invariance, as explained in more detail in the following subsection. For

now, it’s sufficient to examine the change of variables σ− → 1/σ− and remembering

here α(s) + α(t) + α(u) = −2.) The final result can then be written

A4,closed ∼ sin{π[1
2α(t) + 1]}A4,open(s, t)A4,open(u, t)

with the understanding that in A4,open we have replaced α′ → α′/4.

Exercise XIB7.2

Using the identity

Γ (z)Γ (1− z) = π csc(πz)

derived in exercise VIIA2.2, show that this result gives the previously found

4-tachyon closed-string amplitude.

Exercise XIB7.3

Use this factorized form of the amplitude to find the high-energy behavior

for fixed t from that for the open string, remembering s+ t+ u is also fixed.

What is the structure of singularities in t? Compare to Coulomb scattering

(subsection VIIA6).

This method generalizes to higher-point amplitudes, but involves a sum of terms.

8. Ghosts

We did not really prove conformal invariance for the above calculations of scat-

tering amplitudes, because 3 of the vertices were not integrated over. In particular, if

we would have picked different z’s for those 3 vertices, the result would have differed

(though only by a constant in momenta, a function of those z’s). This is the problem

of determining the right integration measure for the z’s. There are several solutions,

but the easiest is to use the ghosts. For this discussion we’ll restrict ourselves to the

open bosonic string.

Since the mode expansion was used to define the vacuum, isolate zero-modes, etc.,

we need to look at how this is affected by the conformal transformation that took us

from the strip to the complex plane:

χ(w)(ρ) =
∑
n

χne
−nρ ⇒ χ′(w)(z) =

∑
n

χnz
−n−w
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This implies a certain definition of the vacuum: τ = −∞ is now z = 0, so states are

created by operators that are nonsingular as z → 0. We therefore have

χn−w|0〉 = 0 for n > 0

which differs from the naive χn|0〉 = 0 when w 6= 0. For example, for the open,

bosonic string we apply it to ∂X, C, and B, to find

(ãn, p, cn+1, bn−2)|0〉 = 0

In relation to the tachyonic vacuum |t〉, describing an off-shell, zero-momentum

tachyon, satisfying

(ãn, p, cn, bn, b0)|t〉 = 0

we thus have

|0〉 = b−1|t〉, |t〉 = c1|0〉

This state describes an on-shell, zero-momentum (i.e., constant in spacetime) Yang-

Mills ghost (see subsection XIIB8). One way to see this is that it describes a field

C(x) at the same mass level as Yang-Mills, with ghost number +1, since it multiplies

a basis state b−1|t〉 with ghost number −1. But a better way is to look at BRST

transformations: Looking at a state

|Φ〉 = (Aa(x)ã−1,a + C(x)b−1 + ...)|t〉, δΦ = εQΦ

we find the usual δAa ∼ ∂aC, δC = 0. The special significance of this vacuum |0〉 is

that BRST relates ghosts to gauge parameters, and constant C corresponds to the

residual global Yang-Mills symmetry that survives gauge fixing.

Exercise XIB8.1

What state is c−1|t〉? Check the mass level and ghost number, and that it

couples to the right state in the (gauge-fixed) kinetic operator c0H0.

One result of this change in vacuum is that the number operator N−1 is replaced

with N in H because the 1 is canceled by the new normal ordering. (Now b−1 is

treated as an annihilation operator, c1 as creation.) This is clear from the fact that

|0〉 corresponds to a massless state, so the p2 term (as well as the normal-ordered

oscillators) in N vanishes on it.

We know how to get physical fields from the tachyonic vacuum |t〉, by hitting it

with physical oscillators. But the tachyon itself is created from the vacuum |0〉 by

hitting it with c1. In conformal field theory langauge, since C has conformal weight

w = −1,

C(z) =
∑

cnz
−n+1 = ...+ c0z + c1 + c2z

−1 + ...
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⇒ |t〉 = lim
z→0

C(z)|0〉

This state is off shell, and so is not in the BRST cohomology. An on-shell tachyon is

described by

|t, k〉 = lim
z→0

C(z)eik·X̂(z)|0〉, k2 = 2

As we saw earlier, choosing this value of momentum gives the exponential w = 1. We

can thus write an arbitrary tachyon state in terms of the tachyon field φ as

lim
z→0

C(z)φ(X̂(z))|0〉, ( + 2)φ(x) = 0

(Here φ is a function of X̂(z), not a functional of X̂.)

More generally, any operator C(z)V (z), which has weight 0 if V has weight 1,

will create a physical state from the vacuum if
∮
V creates a physical state from

the tachyonic vacuum. (Taking z → 0 is a conformal transformation, since CV has

w = 0, and corresponds to choosing a gauge.) Any operator V (z) with w = 1 has

conformal transformation[∮
dz′

2πi
λ(z′)T (z′), V (z)

]
= (∂λV )(z)

so its integral is conformally invariant. If it is ghost free, it is therefore also BRST

invariant,

[Q,
∮
V } = 0

(Gauge-invariant operators without ghosts are BRST invariant.) Then CV is also

BRST invariant: Using {Q,C} = C∂C (see subsection IXB1),

{Q,CV (z)} = {Q,C}V − C[Q, V ] = C(∂C)V − C∂(CV )

= C(∂C)V − C(∂C)V − CC(∂V ) = 0

Since both
∮
V and CV are BRST invariant, and the vacuum is, they can be used

to construct a BRST invariant amplitude. (This is a classical argument: Quantum

corrections will be considered in the following subsection.)

The fact that CV ’s are needed at all (and not just
∮
V ’s) is related to the fact

that the choice of vacuum does not completely fix conformal invariance:

T1|0〉 = T0|0〉 = T−1|0〉 = 0

since T has w = 2. (The third is satisfied because c0b−1|0〉 = 0.) These 3 operators

generate Sp(2). (This unbroken invariance is related to the gauge invariance of the

massless vector.) Fixing this invariance in the path integral requires an extra ghost-

dependent factor.
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One way to determine this extra dependence is to note that for the scalar particle

there is also a ghost, the analog of c0 for the string. The integration measure is then

simply
∫
dc0, so we have

particle :

∫
dc0 c0 = 1 ⇒ 〈c0〉C = 1

where 〈 〉C means we neglect X. The analog of the scalar for the string is the tachyon,

so

1 = 〈t|c0|t〉C = 〈0|c−1c0c1|0〉C

which are the ghosts of Sp(2). We then find

C(z) = ...+ c−1z
2 + c0z + c1 + ...

⇒ 〈C(z1)C(z2)C(z3)〉C = −(z1 − z2)(z2 − z3)(z3 − z1)

We can now solve the problem of conformal invariance using BRST:
∮
V and CV are

both BRST invariant, so for general (tree) amplitudes we use 3 CV ’s and the rest∮
V ’s. This eliminates 3 integrals and introduces 3 C’s, which produce the above

factor. Later, when we consider string field theory, we’ll see that the reason for this

counting is that an n-point graph has n− 3 propagators, each of which has a factor

of
∮
B, so all but 3 of the true vertex operators CV are converted into V ’s.

The 〈CCC〉 factor replaces the factor z2
N in the open-string tachyon amplitude we

produced previously by other arguments, and agrees with it for the previous choices

z1 = 0, zN−1 = 1, zN → ∞. We therefore replace the previous result with (up to

powers of −g and 2α′)

AN = −(zN − zN−1)(zN−1 − z1)(z1 − zN)

∫
dN−3z

∏
i<j

(zj − zi)ki·kj

To show this result agrees with the previous, we use the Sp(2) invariance of the vacuum

(and conformal invariance of everything else). The (“zeroth-quantized”) transforma-

tion on z from the above 3 Virasoro operators are found by noting that on expressions

φ with conformal weight 0 (no “spin” piece to the transformation),

Tn =

∮
dz

2πi
zn+1T ⇒ [Tn, φ] = zn+1∂φ

The finite transformations generated from the infinitesimal ones (n = 0,±1) are

z → az + b

cz + d
, ad− bc = 1

e.g., by examining the infinitesimal case and checking the group property. (The

condition that ad− bc = 1 can be weakened to the condition that it’s positive, since
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rescaling a, b, c, d by the same real number changes ad− bc by a positive factor while

leaving z′ unchanged; the constraint thus eliminates redundancies. However, ad−bc =

−1, e.g., includes a reflection of the real axis, and can’t be obtained continuously from

the identity; it would switch the upper and lower halves of the complex plane, and

reverse the cyclic ordering of the vertices. Thus, the Sp(2) transformations can change

any 3 z’s to fixed ones in the same cyclic order.)

Then we use the fact that such a transformation can be used to transform any 3

points to fixed values. In particular,

z → z − z1

z − zN
zN−1 − zN
zN−1 − z1

transforms z1 → 0, zN−1 → 1, zN →∞.

If you know some group theory (or read subsection IC6), you might recognize this

representation of Sp(2) as the coset space Sp(2)/GL(1), i.e., 2-component vectors with

an antisymmetric metric, with scale transformations as a gauge invariance:

ζ =

(
ζ1

ζ2

)
, ζ · ζ ′ = ζ1ζ

′
2 − ζ2ζ

′
1, δζ = λζ

(This is related by Wick rotation to CP(1)=SU(2)/U(1), described in subsections

IVA2-3.) After gauging ζ2 = 1 (for all ζ’s), we then have simply

ζ =

(
z

1

)
⇒ ζ · ζ ′ = z − z′

But now an Sp(2) (=SL(2)) transformation will change the gauge, so we need to

supplement it with a compensating scale transformation:(
z

1

)
→
(
a b

c d

)(
z

1

)
=

(
az + b

cz + d

)

→ 1

cz + d

(
az + b

cz + d

)
=

(
(az + b)/(cz + d)

1

)
as above. (See exercises 1A6.6 and IC6.1.) From this the result on z−z′ is clear: It is

invariant under the original Sp(2), so its transformation comes from just the scalings,

z − z′ → z − z′

(cz + d)(cz′ + d)

as is easily confirmed by performing the compensated Sp(2) transformation. For the

same reason, dz also has a simple transformation law, so Sp(2) invariance of the

amplitude is easy to check explicitly, using momentum conservation and the mass-

shell condition k2
i = 2.
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As an alternative to gauge fixing, we can work with the gauge invariant z ≡ ζ1/ζ2.

The analog in general relativity is to work with the metric instead of the vierbein, as

an alternative to choosing a Lorentz gauge for the vierbein. (See subsection IXA3.)

Alternatively, we can work with Sp(2) invariants. For example, dz is replaced with

ζ · dζ. The general relativity analog is to work with objects with flat (local Lorentz)

indices. In this case, Sp(2) is replaced with an Abelian gauge group, for which it’s

easier to find invariants. In the case of the 4-point calculation, the integrand’s single

integration variable arises without Sp(2) or gauge fixing as the Sp(2) and gauge

invariant

z ≡ (ζ1 · ζ2)(ζ3 · ζ4)

(ζ1 · ζ3)(ζ2 · ζ4)

Sp(2) invariance follows from working with ζi · ζj, GL(1) invariance from separately

canceling 1’s, 2’s, etc., between numerate and denominator.

The ghost factors can also be treated by “0th-quantized” BRST for Sp(2)

Q = (c1 + c0z + c−1z
2)
∂

∂z
+ pure-ghost terms

by applying the usual insertions (e.g., from integrating out antighosts and Nakanishi-

Lautrup fields)

δ(f)δ([Q, f})

for gauge-fixing functions

f = z1 −
◦
z1, zN−1 −

◦
zN−1, zN −

◦
zN

where all N vertices are integrated, and these 3 z’s are the 3 integration variables,

while the 3
◦
z’s are the values to which they’re fixed. Gauge fixing then gives

δ(z1 −
◦
z1)δ(zN−1 −

◦
zN−1)δ(zN −

◦
zN)c1c0c−1(

◦
z1 −

◦
zN−1)(

◦
zN−1 −

◦
zN)(

◦
zN −

◦
z1)

reproducing the previous result after integrating over the 3 0th-quantized ghosts and

the 3 extra z’s.

Exercise XIB8.2

Instead of mapping the open-string worldsheet to the upper-half plane, we

could use instead the disk with unit radius. Show that the form of SL(2) that

maps the unit circle to itself is SU(1,1) with diagonal group metric.

Exercise XIB8.3

Generalizing SL(2) to SL(2,C) gives interesting transformations in the com-

plex plane, with a simple interpretation when SL(2) is manifest.
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a Show that general circles and lines in the complex plane are described by

ζ†V ζ = 0 ; V = V † , det V < 0

Note that ζ⊗ζ† describes a lightlike 4-vector in (projective) Minkowski space,

while V describes a spacelike one, and their inner product vanishes. This

shows that an SL(2,C) transformation on ζ has the same effect as one on V ,

mapping one circle/line to another.

b The subgroup of SL(2,C) = SO(3,1) that leaves a specific V invariant is

SO(2,1). Find the specific V ’s for which this 2×2 matrix is in the defin-

ing representation for Sp(2,R), and that for SU(1,1). (Of course, these are

equivalent by an SL(2,C) transformation, but not identical.) Exactly which

circles/lines do they define?

9. Vertex operators

It’s natural to consider the BRST operator when defining physical states, since

it defines them in a way that is independent of gauge. Although this method can be

applied to first-quantized particles, it’s particularly useful for strings. When ghosts

are included, vertex operators can be generalized to arbitrary gauges for the external

gauge fields. The main point is the existence of integrated and unintegrated vertex

operators, whose definition we’ll generalize from the previous subsection. Integrated

ones are natural from adding backgrounds to the gauge-invariant action; unintegrated

ones from adding backgrounds to the BRST operator. We’ll relate the two by going in

both directions. We’ll begin the discussion with general quantum mechanics (except

in the relativistic case we use τ in place of t), then specialize to open strings.

The action can be written as

S ∼
∫
dτ HI

plus the usual terms for converting Hamiltonian to (first-order) Lagrangian, where

the interacting Hamiltonian consists of the free part plus linearized vertex

HI ≈ H0 + V

where “≈” means “at the linearized level”. BRST invariance with respect to the free

BRST operator Q then implies (since [Q,H0] = 0)

[Q,S] ≈ 0

⇒ [Q,
∫
dτ V ] ≈ 0

⇒ [Q, V ] ≈ ∂τW

⇒ {Q,W} ≈ 0
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for some W . The BRST invariants
∫
V and W are thus our integrated and uninte-

grated vertex operators, respectively.

Going in the other direction, we start with interacting BRST

QI = Q+W

where fully interacting BRST invariance implies at the linearized level

Q2
I = 0 ⇒ {Q,W} ≈ 0

The full gauge-fixed action is then defined (in relativistic quantum mechanics, or

otherwise in the ZJBV formalism: see subsection XIIC2) by

HI = {QI , b} ≈ H0 + V

It then follows that

0 = [QI , HI ] ≈ [Q,H0] + ([Q, V ] + [W,H0])

which agrees with the above, since H0 gives the (free) time development:

[H0,W ] = ∂τW

The only modifications for the open string are eliminating σ dependence:

0−modes : Q =

∫
dσ

2π
J, H0 =

∫
dσ

2π
T, b =

∫
dσ

2π
B

boundaries : V → V |σ=0, W → W |σ=0

(The choice of “b” corresponds to conformal gauge.) After combining the left and

right-handed modes into functions of just z over the whole plane, as usual, we can

then replace σ and τ with z in our definitions in an appropriate way: The
∫
dσ/2π in

the 0-modes becomes
∮
dz/2πi (with an extra factor of z for H0 and b because they’re

weight 2), the |σ=0 in the boundaries says to ignore z̄, and the ∂τ ’s encountered become

∂(= ∂z)’s. Since [Q, V ] = ∂W , moving W to a different value of z is a BRST variation,

and can be ignored. But W (z) has explicit z dependence, while Q in QI = Q+W (z)

doesn’t (it’s been integrated
∮
dz). The usual spacetime gauge transformation can

be generated by (see subsection XIIB3)

δW = [Q,Λ]

for Λ such that the states Λ|0〉 are the ghosts for that gauge transformation (while

W |0〉 are the states for the gauge field).
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For the case of strings, we can also write more-local relations: Since {Q,B} = T

and W has conformal weight 0,

[Q,B(1)W (2)] = T (1)W (2) ≈ 1

z12

∂W (2) =
1

z12

[Q, V (2)]

(Now “≈” means also the most divergent part.) It then follows that

B(1)W (2) ≈ 1

z12

V (2) + {Q,O}

for some O, or

B(1)[Q+W (2)] ≈ T (1) +
1

z12

V (2)

up to BRST trivial terms. (It also implies the previous integrated relations, such

as {b0,W} = V and b0Wb0 = V b0.) The BRST trivial terms themselves can be

interpreted as possible interacting contributions to B.

Before applying these results, we collect some conformal field theory equations in

a useful form, for both open and closed strings. For the closed string we have left- and

right-handed modes X̂L and X̂R, while for the open string X̂L = X̂R (see subsection

XIB2):

X(z, z̄) =


√

α′

2
[X̂L(z) + X̂R(z̄)] for closed√

α′

2
[X̂(z) + X̂(z̄)] for open

All these X̂’s have conveniently normalized propagators

〈X̂(z) X̂(z′)〉 = 〈X̂L(z) X̂L(z′)〉 = 〈X̂R(z) X̂R(z′)〉 = −ln(z − z′)

from which follows directly those for X itself:

2

α′
〈X(z, z̄) X(z′, z̄′)〉 =

{
−ln(|z − z′|2) for closed

−ln(|z − z′|2)− ln(|z − z̄′|2) for open

where the open string has extra contributions from crossterms, now involving the

same X̂.

For open-string amplitudes involving only open-string external states, all the ver-

tex operators will be on the boundary,

z = z̄ ⇒ X(z, z̄) =
√

2α′X̂(z)

Therefore, when Fourier transforming wave functions we use the exponentials

eik·X(z,z̄) =

{
eik̂·X̂(z) for open

eik̂·X̂L(z)eik̂·X̂R(z̄) for closed
⇒ k̂ = k ×

{√
2α′ for open√
α′

2
for closed
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Closed-string vertex operators are the product of left- and right-handed ones, which

are functions of z and z̄, respectively, and thus take the form of the product of 2

independent open-string vertex operators.

Working directly in terms of X̂, we then have the “operator products”

(i∂X̂)(z′) eik̂·X̂(z) ≈ k̂
1

z′ − z
eik̂·X̂(z)

or (∂X̂)(z′) f(X(z, z̄)) ≈ − 1

z′ − z
(∂f)(X(z, z̄))×

{√
2α′ for open√
α′

2
for closed

(i∂X̂)(z′) (i∂X̂)(z) ≈ 1

(z′ − z)2

(Note the context: ∂X̂ is a z derivative, ∂f is an x derivative. The “i” associated

with ∂X̂ is from Wick rotation.)

For example, we can use these results to determine the proper normalization of

massless vertex operators, by comparison with that of tachyons: For the tachyon,

using (see subsection XIB5)

eik̂1·X̂(z′)eik̂2·X̂(z) ≈ (z′ − z)k̂1·k̂2ei[k̂1·X̂(z′)+k̂2·X̂(z)]

we have

Vk̂(z) = eik̂·X̂(z), k̂2 = 2 ⇒ Vk̂(z
′) V−k̂(z) ≈ 1

(z′ − z)2
eik̂·[X̂(z′)−X̂(z)]

(For the closed string, we have the product of left and right versions of the above.

Note this correctly gives k2 = 1/α′ for the open string tachyon and 4/α′ for the

closed, where α′ is the slope of the open-string Regge trajectory, and the parameter

that appears in the action that describes both open- and closed-string states.) The z

factors are canceled in string field theory by considering the gauge-fixed kinetic term

〈0|W (c0 )W |0〉, where W = CV .

This is the vertex operator that gives the correctly normalized tachyon state

|t〉 = W |0〉. For the same normalization the vector state there would therefore be an

extra factor of i∂X̂, since in that case k2 = 0. (There is also an extra term for gauge

invariance: see below.) However, the natural vertex has ∂X/2α′ instead of ∂X̂ (see

subsection IIIB3), with the 1/2α′ coming from a similar factor in front of the free

string action (with 1
2 from changing σ, τ → z, z̄). The distinction is because all string

vertex operators come with the string coupling gs, while the Yang-Mills field couples

with gYM . So if we use the normalized coupling gs∂X̂ ·A for the string, the coupling
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gYM must come out after evaluation: We thus have the relation (since X =
√

2α′X̂

on the boundary)

gYM =
√

2α′gs

This is easily checked to agree with dimensional analysis by comparison with the

tachyon interaction gsφ
3. The coupling normalization can also be explained by noting

the Yang-Mills vertex really wants to be A · P .

The simplest nontrivial example for deriving W from V is the massless vector.

The choice for integrated vertex was obvious from the gauge transformation of the

external field:

V =
.
X · A(X), δA(x) = −∂λ(x)

⇒
∫
dτ V =

∫
dX · A(X), δ

∫
dτ V = −

∫
dλ(X) = 0

As usual, the τ integral gets converted into a z integral over the boundary (real axis).

Besides this “background” gauge invariance, we also need the “quantum” BRST

invariance (see subsection VIB8). The unintegrated vertex W and the BRST invari-

ance of
∫
V then follow from the same calculation:

[Q, V ] = ∂W ⇒ Q

∫
V = QW = 0

We use the BRST operator

Q =

∫
dz

2πi
J, J = CT + C(∂C)B, T = 1

2(i∂X̂)2,

[Q, V (z)] =

∮
z

dz′

2πi
J(z′) V (z)

(For the open string, this is all of Q; the closed string has Q = QL + QR, with QL

and QR given by the above, with “L” or “R” subscripts on everything. For now, we

stick to the open string.)

For T (z′)V (z), we get “single-contraction” (tree/classical) terms from the singular

part of either ∂X̂ with V (one propagator), and nonsingular (ordinary) product of

the other ∂X̂ (no propagator). So we evaluate

(∂X̂a)(z′) [(∂X̂) ·A(X)](z) ≈ − 1

(z′ − z)2
Aa(X(z))−

√
2α′

1

z′ − z
[(∂X̂)b∂aAb(X)](z)

We also get “double-contraction” (1-loop) terms from the singular part of the product

of the second ∂X̂ with the above:

(∂X̂)(z′) · (right-hand side of above) ≈
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2
√

2α′
1

(z′ − z)3
∂ · A(X(z)) + 2α′

1

(z′ − z)2
(∂X̂ · A)(z)

We then need to integrate, using∮
z

dz′

2πi

1

(z′ − z)n+1
f(z′) =

1

n!
∂nf(z)

Putting it all together,

V = (i∂X) · A ⇒ [Q, V ] = ∂W − α′(i∂C)(∂Xa)∂bFba

W = C(i∂X) · A− α′(i∂C)∂ · A

(We have repeatedly used the identity ∂zf(X) = (∂X) · ∂f =
√

2α′(∂X̂) · ∂f .)

Thus BRST invariance of
∫
V and W requires the background satisfy only the

(free) gauge-covariant field equations ∂bFba = 0. This was to be expected, since

quantum BRST invariance of Yang-Mills in a Yang-Mills background requires the

same in field theory (see exercise VIB8.2 and subsection XIIB7). We also find an

order α′ correction to the vertex operator W : This can be explained by noting that,

while C∂X creates a Yang-Mills state from the vacuum, ∂C creates its Nakanishi-

Lautrup field plus ∂ · A, in a combination that vanishes by that field’s equation of

motion.

In subsection VIB8 we saw 3 independent gauge invariances in quantum field

theory, for S (classical action), Γ (effective action), and Z (S-matrix generating func-

tional). Since in string theory first-quantized methods give directly the S-matrix and

not 1PI graphs, we can see only the first and last of these. As there, the first is fixed

by BRST, while the last is linearized and accompanied by the free, gauge-invariant

field equations. However, unlike field theory, in string theory the S-matrix rules can

be formulated so that the gauge-unfixed form of the S-matrix comes out directly.

As in the previous subsection, we can relate BRST invariant states to oscillator

expansions by the limit z → 0. Usually we simplify by restricting to the Landau

gauge: (in units 2α′ = 1)

|κ, k〉 = lim
z→0

C(z)κ · (∂X)(z)eik·X̂(z)|0〉, k2 = k · κ = 0

Near z = 0 only the first creation operator in ∂X will contribute when acting on the

vacuum:

(∂X)(z) =
∑
n

αnz
−n−1 ⇒ lim

z→0
(∂X)(z)|0〉 = α−1|0〉

Thus an arbitrary Landau-gauge vector state is

lim
z→0

C(z)A(X̂(z)) · (∂X)(z)|0〉, Aa(x) = ∂ · A = 0
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Exercise XIB9.1

Let’s look at some states involving only C(z) acting on the vacuum |0〉.

a What is the local (in z) operator that, when acting on |0〉, produces the state

of exercise XIB8.1 in the limit z → 0?

b Find 3 nontrivial, local operators the vacuum expectation value 〈0|...|0〉C of

whose product gives 1, independent of their positions z1, z2, z3.

Massless vertices for the closed string are similarly the product of left and right

open-string vertices (as are arbitrary vertex operators):

V = κmn(∂Xm)(∂̄Xn)eik·X

(The ghost structure is a little more complicated because of the zero-mode for T0−T̄0.)

10. Lightcone algebra

The Lorentz algebra in the lightcone formalism is the analog of the BRST algebra

in the covariant formalism. The calculations are very similar, as having 2 “anticom-

muting directions” (for vector indices; subsection XIIB8) to give X → C,B and

Ψ → γ, β. In particular, 2D “field theory” and current algebra methods are again

the most convenient. However, the lightcone gauge fixes conformal invariance: As a

result, transforming from the cylinder to the plane introduces explicit z dependence.

For convenience, we work with the closed string; the open string is obtained by the

usual identification between left and right. The only quantum (nonclassical) lightcone

Lorentz algebra comes from that of 2 currents cubic in oscillators, J i−. We begin with

the bosonic string. Before Wick rotation and transformation to the complex plane,

these generators are (see subsection XIB1; for the hermitian form):

J i− =
1

α′

∮
dσ

2π
X [i

.
X−]

Separating into left and right modes, and using the corresponding linear equations of

motion,

X = x+ α′pτ +

√
α′

2
(Y(+) + Y(−)) ⇒ J i− = x[ip−] + Si−

Si− = 1
2

∮
(Y(+) + Y(−))

[i(Y(+) − Y(−))
′−]

Integrating by parts to keep ∂ on Y −,

Si− = 1
2

∮
(Y(+) + Y(−))

i(Y(+) − Y(−))
′− + (Y(+) − Y(−))

i(Y(+) + Y(−))
′−
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=

∮
±Y i

(±)Y
′−
(±) =

∮
Y i

(±)

.
Y −(±)

(summed over ±). Only the oscillators Y contribute to the “loop” correction. We

could have done the same for the zero-modes, except that X(±) are not periodic:

X = X(+) +X(−), X(±) = 1
2x+

α′

2
p(τ ± σ) +

√
α′

2
Y(±)

Then

J i− = −x−pi +

∮ (
2

α′
X i

(±) ∓ piσ
)

.
X−(±)

where the x− term is required because X− appears only with a derivative. In the

analogous BRST case, there is no σ term in C(±) to cancel.

In the Wick-rotated 2D Euclidean complex plane z = eτ+iσ, the action, propa-

gators (subsection VIIB5) and energy-momentum tensor (subsection XIB4) for real

fields are:

S =

∫
d2σ

2π
[(∂φ)(∂̄φ) + Ψ+∂̄Ψ+ + Ψ−∂Ψ−]

T+ = −(∂φ)2 − Ψ+∂Ψ+, T− = −(∂̄φ)2 − Ψ−∂̄Ψ−

〈φ φ〉 = −ln|z|2, 〈Ψ+ Ψ+〉 =
1

z
, 〈Ψ− Ψ−〉 =

1

z̄

where X =
√
α′/2φ. The zero-mode terms in X are

X = x− iα
′

2
p ln|z|2 + ... ⇒ p =

2

α′

∮
dz

2πi
i∂X

(As usual, we extend the open string into the lower-half complex plane to work with

only ∂ and not ∂̄. The i∂ is from Wick rotation τ → −iτ . We’ll set α′ = 2 for the

rest of this subsection, to normalize X like a standard boson.)

We then plug in the gauge condition and solution to the Virasoro constraints,

i∂X− =
(i∂X i)2

2i∂X+
, i∂X+ =

p+

z

(and similar for ∂̄) to get the final expression for the Lorentz generators

J i− = xi
1

2p+

a

α′
− x−pi +

1

2p+

∮
(X i

(±) + ipiln z)z(i∂Xj
(±))

2

(z̄ and ∂̄ for X(−) are understood.) We added a normal-ordering constant as (pi)2 →
(pi)2 + a/α′; it was prohibited in the conformal gauge by conformal invariance, and

since the conformal vacuum is necessarily massless. It’s a quantum correction whose

trees contribute at 1 loop. For all of the loop calculation we can deal separately with

left and right-handed modes. (We then drop the (±).)
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Looking at just “loop” terms, we get 3 types, from double contractions between

X(∂X)2 terms of

〈(∂X)2 (∂X)2〉 〈(∂X)2 X∂X〉 〈X∂X X∂X〉

Ultimately the result for [J i−, J j−] must come out antisymmetric in [ij], but it saves

steps to antisymmetrize by hand: In particular, we can ignore direct contraction of

〈X i Xj〉 in the last term:

〈X i Xj〉 = −δijln(z − z′)

(for X(+), with z̄ for (−)). The 3 terms then give operator products of the 2 currents

proportional to 1/(z − z′) to powers 4,3,2 respectively. Integration then gives terms

−1/4(p+)2 times ∮
(zX i)∂3(zXj) and

∮
X i∂Xj

(the latter of which will be canceled by a trees) after using the rule

A(z)B(z′) ≈ a(z)b(z′)
1

(z − z′)n+1
⇒

[∮
A,

∮
B

}
≈ (−1)n

n!

∮
ab(n)

Carefully keeping track of all signs, the 1/n!’s, and the various permutations (2,8,4,

respectively), the result for the ∂3 terms comes out proportional to, adding the 3

types of contractions,
D − 2

3
− 4− 4 =

D − 26

3

(The D − 2 comes from summing δijδij over transverse modes.) The generated term

is not part of the algebra, so it must die. This implies D = 26. The result for the ∂

terms is

0− 4− 4− 2a

where the a contribution comes from the ordinary commutator [xi, pj] between the

ax term and the p in ∂X. Thus

a = −4

Exercise XIB10.1

Consider replacing X with just its oscillator part Y , with propagators sans

zero-modes

〈Y Y 〉 = −ln(z − z′) + ln z + ln z′

Show by explicit calculation that the extra terms don’t contribute to these

loops.
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We now add in fermions for the superstring, in either the Ramond-Neveu-Schwarz

or Green-Schwarz formalism.

The bosonic particle describes a scalar, so its Lorentz generators have only orbital

pieces. In the lightcone gauge we can set x+ = 0 (at τ = 0), and solve the Klein-

Gordon equation for p−. For a relativistic quantum mechanical system with spin,

there is also a spin piece,

Jab = x[apb] + Sab

But relativistic wave functions/fields satisfy more than just the KG equation: It can

be summarized (for field strengths) as (for the massless case)

Sabpb = 0

(There’s also a “normal-ordering term” ∼ pa, which we’ll neglect, and can be trans-

formed away in the lightcone formalism. See subsections IIB1-4.) This constraint has

the lightcone gauge and solution

Si+ = S+− = 0, Si− =
1

p+
Sijpj

Alternatively, we can find Si− from the simple generators by closure of the algebra:

i[J i+, J j−] = J ij − δijJ+−

Exercise XIB10.2

Show the above choices for longitudinal components of spin satisfy this com-

mutation relation.

Both spinning and super strings are generalizations of this to the worldsheet:

Their contributions to the spin take the generic form

∆Sab =

∮
Ŝab, Ŝab = 1

2F
T sabF

i[sab, s
cd] = δ

[c
[bsa]

d]

for some real, self-conjugate fermionic worldsheet field F , where sab is its matrix

representation of the Lorentz group. Specifically, for these strings we have

isab =

{
|[a〉〈b]| (RNS)

−1
4
γ[aγb] (GS)

The analog of the Sp constraint then comes from

Ψa[Ψ · (∂X)] or Θγa[γ · PD] ∼ Ŝabi∂Xb
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(after subtracting a singular ∂Xa term). Using gauge symmetry generated by the

super-Virasoro or κ-symmetry constraint, respectively, we then find

∆Si− =
1

p+

∮
zŜiji∂Xj, ∆Si+ = ∆S+− = 0

with Ŝij as above, but for the reduced fermions F of the lightcone. This includes

the term ∆Sijpj/p
+. The other modification to J i− is in ∂X−, the transverse part of

Virasoro:

(∂Xj)2 → (∂Xj)2 + F T∂F

The final Lorentz generators are then

J i− = xi
1

2p+

a

α′
−x−pi+ 1

2p+

∑
±

∮
z{−(X i+ipiln z)[(∂Xj)2 +F T∂F ]+F T sijFi∂Xj}

Exercise XIB10.3

Verify the part of the Lorentz algebra in exercise XIB10.2 for these generators.

The contribution of XX〈F∂F F∂F 〉 to the closure of the algebra is simple. (Com-

pare to the first of the 3 contraction terms of the bosonic case).

Exercise XIB10.4

Show that the result of the crossterm XX〈F∂F FsF 〉 vanishes. (Hint: What

happens to the matrix indices on s?)

But for the (∂X)(∂X)〈FsF FsF 〉 contribution, we’ll need to evaluate a double

contraction for 2 Ŝij’s. The result is easily found to be

〈Ŝij Ŝkl〉 = 1
2

1

z2
tr(sijskl)

The Dynkin index c of the SO(D − 2) representation is (see subsection VIIIA3):

−tr(sijskl) = cδj[kδl]i, c =

{
2 (vector)

D′/4 (spinor)

where the vector representation is for the RNS spinning string, and the spinor (di-

mension D′) is for the GS superstring. For the superstring, defined classically for D

= 3,4,6,10, we have D′ = D − 2. The modification to the coefficient in the bosonic

string for the ∂3 term is then

D − 2

3
− 4− 4 +

D − 2

6
+ 2c =

{
D−10

2
(RNS)

D − 10 (GS)

So in either formalism we find D = 10. The modification for the ∂ term is

0− 4− 4 + 0 + 2c− 2a =

{−4− 2a (RNS)

−4− 2a+ D−10
2

(GNS)
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so a = −2, half the result for the bosonic string.

Finally, besides the XX terms also found in the bosonic string, we get FF terms

from 1 contraction of X’s and 1 of F ’s. Specifically, we get a term of the form

−1/4(p+)2 times

−i
∮

(zF )sij∂2(zF )

This is required by worldsheet/spacetime supersymmetry to accompany the similar

XX term; it’s like spin but with an extra (z∂)2. Between the XF∂F and FsF∂X

terms, we get 1 contribution from the latter with itself, and 1 from the crossterms.

The coefficients are

(D − 4)− 6

again requiring D = 10. (The former comes from tracing δ’s from [s, s].) We also get

a spin term −i1
2FsF to go with the X∂X term, with coefficient

0− 4− 2a
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Note that in the following, although we sometimes use operator or path-integral

notation, we never actually calculate by performing explicit oscillator evaluations

(using, e.g., coherent states) or the infinite-dimensional integrals of the path integral:

As we did previously for tree amplitudes, we just use general properties of quantum

theory. Specifically, we use spacetime or worldsheet Feynman diagrams, which are

just perturbation theory, but can be derived from oscillators, path integrals, or other

methods.

We first examine the planar loop, with external tachyons. There are 3 parts to

the calculation:

1) 2D Green function

2) volume element (or “integration measure”)

3) partition function

The first two we encountered for tree graphs; the last (really a part of the volume

element, but a new one) comes from summing over the infinite number of states of

the string that circle around the loop.

1. Partition function

As for trees, we generalize the results of subsection VIIIC5 for particles to strings.

That method allows the volume element to be determined unambiguously. Often

symmetry arguments are used to determine the volume element, but that has 4 major

drawbacks:

1) Sometimes symmetry is not enough even to determine functional dependence.

2) Symmetry will never determine overall constants, since constants are invariant.

3) In particular, BRST symmetry only guarantees gauge independence of the result.

If BRST is used, a separate evaluation in a unitary gauge is needed.

4) Anomalies can violate symmetries, so a symmetry-independent evaluation is need-

ed to check for anomalies. (I have even seen symmetry arguments use to conclude

certain asymmetric contributions must have vanishing coefficient, when in fact

nonvanishing anomalous contributions were found from direct evauation.)

In string theory, because of duality, 1-loop graphs can always be represented

without external trees. Thus, unlike the particle case, we will automatically find the

S-matrix, and not the effective action, just as for trees the single graph we considered
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automatically gave the complete S-matrix element for strings only. We now find the

amplitude

A(1)
N =

∫
−∞≤−T≤τ̃i≤τ̃i+1≤0

dT dN−1τ̃ V(T )exp

[
−1

2α
′
∑
i<j

ki · kjG(τ̃i, τ̃j)

]

(There is also an overall normalization of (−2α′g)N , in analogy to subsection XIB6,

which we’ll ignore from now on, and we choose units α′ = 1
2 . The trace is normalized

to agree with that for a single particle, together with a sum over particles, as explained

below. This “T ” should not be confused with the 2D energy-momentum tensor.)

The volume element for the string can be factorized into a sum over states (now

called “partition function”) and an integral over the momentum of each state as for

the particle:

V(T ) = tr(e−TH0) = T−D/2
∑
states

e−TM
2/2

To evaluate the sum we use α′M2 = N − 1 and evaluate the sum as the product of

independent summations over the oscillators of each of the D − 2 = 24 transverse

directions: Again making the conformal transformation

z = eτ̃ , w = e−T

and using units 2α′ = 1, we have

∑
states

e−TM
2/2 = w−1

(∑
D=1

wN
′

)D−2

where N ′ =
∑

n nan
†an is the contribution to the number operator of any one di-

mension. This sum is itself the product of contributions of any one oscillator to N ′:
For each oscillator we get a sum of terms, one each from each excitation level of that

oscillator. For the nth oscillator,∑
excitations

wnan
†an =

∞∑
j=0

wnj =
1

1− wn

The final result for the volume element is then,

V = (−ln w)−D/2w−1[f(w)]2−D, f(w) =
∞∏
n=1

(1− wn)

Putting the pieces together, we have (with w ≤ zi ≤ zi+1 ≤ 1)

A(1)
N =

∫ 1

0

dw

w2
[f(w)]2−D(−ln w)−D/2

∫ 1

w

(
dz

z

)N−1

exp

[
−1

4

∑
i<j

ki · kjG(zj/zi, w)

]
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Let’s summarize the important qualitative features of this result:

1) The Green function for string loops is much more complicated than that for

string trees, or for particle loops. We’ll analyze its properties in great detail in

the following subsections.

2) The factor w−1[f(w)]2−D is another characteristic of string loops, and describes

the counting of states. Its properties are closely related to those of the Green

function, and will also be discussed in following subsections.

3) The factor (−ln w)−D/2 is a factor in common with particle loops: It identifies

the expression as that of a loop, and results in the appearance of cuts, rather

than just poles, in dependence on momentum invariants.

We have summed over just the transverse oscillators, representing the physical

states. This can be justified by quantizing the string in a lightcone gauge, where only

the transverse oscillators (but all components of momenta) appear. For lower-point

functions, this result can be obtained (assuming Lorentz invariance is preserved) by

working in a reference frame where all the k+ = 0, so none of the x−’s, which are

quadratic in the transverse oscillators, appear. (By Wick rotation, we can always

assume p+ is a complex combination of any 2 spatial components of momentum, a

“spacecone gauge”, so no restriction is imposed on p0 on shell.) A more general way is

to use a Lorenz gauge (like the conformal gauge). Then the contributions of the ghost

oscillators will cancel 2 dimensions of the bosonic ones: For any fermionic oscillator

dn, remembering that a fermionic state gets a minus sign in a loop (so the trace is

really a “supertrace”), ∑′

excitations

wndn
†dn = 1− wn

where we have summed over the 2 excitations, and
∑′ means the fermionic term

gets a minus sign in the sum. (In functional integral language, fermionic integrals of

Gaussians give determinants while bosonic ones give inverse determinants.) f(w) is

thus a partition function for 1 fermion. We have dealt with the ghost zero-modes by

using the b0 = 0 gauge. (Similar arguments can be given at 1 loop using just conformal

field theory, thus showing as for trees how the ghost contribution preserves conformal

invariance, but they become more obscure at higher loops. A better understanding

of this gauge comes from string field theory.)

Note that the contribution from the oscillators of 1 boson is the inverse of that

from the oscillators of 1 fermion, as expected from statistics. However, the contribu-

tion from 1 boson compactified on a circle, including 0-modes, is the same (not the
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inverse) as that from 2 fermions (including 0-modes in some way), as expected from

bosonization, as discussed in the following subsection.

Exercise XIC1.1

All the 2D fields we have explicitly considered effectively have periodic bound-

ary conditions: They are expanded over einσ for integer n. Consider instead

a single fermionic field with “antiperiodic” boundary conditions (as in, e.g.,

the NS, or bosonic, sector of the RNS string, which we haven’t studied in de-

tail), expanded in ei(n+1/2)σ. The masses2 for the oscillators now go as n + 1
2

instead of n, with the ground state mass chosen so that the first excited state

is massless.

a Find the contribution to the partition function for this field.

b For GSO projection (for supersymmetry), one looks at only masses2 that are

integer (dropping, e.g., the tachyonic ground state). Find the contribution to

the partition function for this reduced set of states.

2. Jacobi Theta functions

It will prove useful to consider a more general type of partition function, one for

energy and ghost number, for the ghosts in their fermionic and bosonized versions.

(For you statistical mechanics, V(T ) was the “canonical partition function”, with 1/T

the “temperature”, while Z(T, ρ) below is the “grand canonical partition function”,

with ρ/T the “chemical potential”.) We use the variables

z = eρ, w = e−T

(We began with T positive, so 0 ≤ w < 1, but for the following manipulations

Re T > 0, so |w| < 1, is OK, and later we analytically continue.) We define the

partition function

Z(w, z) = str(e−TH+ρJ) = tr[wH(e−iπz)J ]

where for “energy” H and ghost number J we use the equivalent bosonic/fermionic

expressions

H = 1
2p

2 +
∞∑
n=1

na†nan =
∞∑
n=1

n(c†nbn + b†ncn) + 1
8

J = p = 1
2 [c0, b0] +

∞∑
n=1

(c†nbn − b†ncn)
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(Bosonization was discussed in subsection VIIB5. It works the same way for ghosts

as for physical fermions, but with i’s missing, since c and b are each real, instead of

complex conjugates. The 1
8

is because the momentum p of the boson is an integer

plus 1
2 , since total ghost number is, and thus H as defined above for the boson

has minimum value 1
8
.) We have defined the “supertrace” by including a factor of

e−iπJ into the trace: It gives the usual −1 for fermion states as defined for fermion

oscillators, which we carry over to the bosonic formulation.

Exercise XIC2.1

Look at the first excited level (corresponding to massless ghost states of the

string):

a Express all the states of this level in terms of fermionic oscillators acting on

the vacuum. Translate this into bosonized oscillators. Evaluate H and J for

these states.

b Sum their contribution to Z(w, z).

In terms of the variables

ν =
ρ

2πi
, τ = − T

2πi
(z = e2πiν , w = e2πiτ )

if we express the result in terms of the Jacobi θ function, and the partition function

of subsection XIC1,

Z(w, z) ≡ θ1(ν|τ)

f(w)
, f(w) =

∞∏
n=1

(1− wn)

we find the two equivalent forms for the result

θ1(ν|τ) = i
∞∑

n=−∞

(−1)nzn−1/2w(n−1/2)2/2

= −iw1/8(z1/2 − z−1/2)
∞∏
n=1

(1− wn)(1− zwn)(1− z−1wn)

from the bosonic and fermionic versions, respectively. (For the bosons, the sum is

over eigenvalues of p. The factor of f in the definition of θ cancels the oscillator

contribution in the bosonic case, and is included as a product in the fermion case.)

From either of the above forms we can easily see the Jacobi θ function satisfies

the “quasiperiodicity” conditions

θ1(ν + 1|τ) = −θ1(ν|τ), θ1(ν + τ |τ) = −e−iπ(2ν+τ)θ1(ν|τ)
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As a function of ν, it vanishes only at ν = 0, up to these periods. It is also odd:

θ1(−ν|τ) = −θ1(ν|τ)

From the second (product) form we also have

θ′1(0|τ) = 2πw1/8[f(w)]3

where the prime means derivative with respect to the first argument.

We will need transformations of these functions under the subgroup of conformal

transformations SL(2,Z)=Sp(2,Z), namely

τ → aτ + b

cτ + d
, ν → ν

cτ + d

(or similarly for T and ρ) in terms of the SL(2,Z) group element(
a b

c d

)
whose elements are integers and determinant ad−bc is constrained to 1. The simplest

is a = b = d = 1, c = 0: From the product form of θ1,

θ1(ν|τ + 1) = eiπ/4θ1(ν|τ)

The next simplest one is b = −c = 1, a = d = 0: This can be derived by

considering
∞∑

n=−∞

∫ ∞
−∞

du e2π[−Au2/2+i(B+n)u]

This can be evaluated by doing either the sum or the integral first. To evaluate the

sum first, we use the identity

∞∑
n=−∞

e2πinu =
∞∑

n=−∞

δ(u− n)

(This can be checked by multiplying on either side with a function and integrating,

noting that only the periodic part of the function, with period 1, is picked out, so that

function can be written as a Fourier sum, and the integral evaluated over [−1
2 ,

1
2 ].)

Thus we relate the 2 forms∑
e2π(−An2/2+iBn) = A−1/2

∑
e2π(−A−1n2/2−A−1Bn−A−1B2/2)

In this “Poisson (re)summation formula” we make the replacements

A = −iτ, B = ν − 1
2τ + 1

2
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(so the integral is well defined again for Re T ≥ 0). After straightforward algebra

(replacing also n→ n− 1 on the right-hand side), we find

θ1

(
−ν
τ

∣∣∣∣− 1

τ

)
= eiπ(ν2/τ+1/4)τ 1/2θ1(ν|τ)

From applying this to θ′1 we find, for w = exp(2πiτ) and w′ = exp[2πi(−1/τ)], the

Hardy-Ramanujan formula

w1/24f(w) =

√
−ln w′

2π
w′1/24f(w′), w′ = e(2π)2/lnw

The general case can then be found by combining arbitrary multiples of these 2,

yielding

θ1

(
ν

cτ + d

∣∣∣∣aτ + b

cτ + d

)
= ζ(cτ + d)1/2eiπcν

2/(cτ+d)θ1(ν|τ)

where ζ is an eighth root of unity. (We won’t need it, since we’ll use only |θ1|2 below.)

Hagedorn noticed that the multiplicity of observed hadron states as mass in-

creased (and other features) was characteristic of a thermodynamic system with max-

imum temperature around the pion mass. In QCD language this is the temperature

of the deconfining phase transition, above which hadronic matter is replaced with a

quark-gluon plasma. Later this behavior was found to follow from strings. However,

in the string case the number of states above this temperature is found to be less than

that of an ordinary particle theory. This can be attributed to the fact that a ran-

dom lattice worldsheet approach to quantization of known string theories describes a

theory whose partons have Gaussian propagators, without poles.

To derive this temperature from the bosonic string, we begin with the Hardy-

Ramanujan formula above: The counting of states at high “temperature” (mass) is

then given by looking at w = 1− ε, ε→ 0, which is w′ → 0:

lim
ε→0

f(w) ≈
√

2π

ε
e−π

2/6ε

up to terms which are smaller by powers of ε (or worse yet, powers of the above

exponential factor). The number of states at the nth excited level is then given by

N(n) =

∮
dw

2πi

[f(w)]2−D

wn+1

with the contour a small circle near the origin. We can evaluate this integral by the

saddle point approximation for the “action”

S = (D − 2)ln f + (n+ 1)ln w ≈ −(D − 2)

[
π2

6ε
+ 1

2 ln ε

]
− (n+ 1)ε
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⇒ ε ≈ π

√
D − 2

6n

⇒ N(n) ∼ 1√
S ′′
e−S ∼ n−(D+1)/4e2π

√
n(D−2)/6

To pick up this contribution we have widened the circular contour to run through the

saddle point: Since this point is real (and at |w| < 1 so f is still well defined), the

contour runs in the imaginary direction for the infinitesimal region near the saddle

point where it contributes, so this point is a minimum. Using n ≈ α′m2, dn N(n) =

dm ρ(m), we have

ρ(m) ∼ m−(D−1)/2em/m0 , m0 =
1

2π

√
6

(D − 2)α′

The pion mass is about 2π smaller than 1/
√
α′ (in terms of the hadronic string

tension α′), so this is in the right ballpark. (The relation to temperature shows up

if you multiply by e−βm, and integrate over m to define the partition function for

temperature 1/β, which diverges for temperature above m0.)

3. Green function

We begin our determination of the Green function by analogy with the particle in

subsection VIIIC5. Again we have only a constant zero-mode, since a constant is the

only periodic function (since we will need to consider only tori) that is a homogeneous

solution to the wave equation (as seen by Fourier expansion):

h = − 1

area

in terms of the area of the worldsheet.

Unlike the tree case, σ = 0 and σ = π correspond to the 2 different boundaries

of the orientable loop. If all the vertices are on 1 boundary (say, σ = 0), we have a

planar loop, otherwise nonplanar. To include both boundaries, we need the complex

variable

ρ = τ̃ + iσ

in terms of which the torus coming from doubling the open-string surface is a periodic

rectangle, with corners at ±iπ, T ± iπ. (For the closed string, this will be distorted

to a parallelogram, to take arbitrary twists in σ into account.) Again as for trees, the

open-string Green function follows from that of the closed string using image charges

for reflection about the boundary:

Gopen(ρ, ρ′) = Gclosed(ρ, ρ
′) +Gclosed(ρ, ρ̄

′)
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Unfortunately, the Green function for the closed string does not quite separate into

holomorphic and antiholomorphic parts, but this is not a complication for low-

excitation vertices. (For the twisted case ρ̃′, the reflection about the boundary, is

not just the complex conjugate; but for open string calculations with external open-

string states, it will still be the same point on the boundary as ρ′.)

The closed-string Green function can be found in various ways: For example,

using the method of images, an infinite sum is obtained, which can be recognized as an

expression of a Jacobi θ function. Alternatively, a Jacobi θ function can be recognized

as the solution to the wave equation with the correct periodicity conditions. To see

that θ1 is useful for the Green function, we first note that it is analytic, and for small

ρ, θ1 ∼ ρ, so a −ln|θ1|2 term gives the −ln|ρ|2 term of the complex plane, yielding the

correct δ function term in its wave equation from its nonanalytic behavior at ρ = 0.

Then we see that it has periodicity under ρ→ ρ+ 2πi and almost under ρ→ ρ+ T ;

the latter is fixed by an extra term, similar to that for the particle, (Re ρ)2/(Re T )

(generalizing to complex T for later application to unoriented strings or twisting

of closed strings), which contributes to the wave equation the extra term inversely

proportional to the area of the torus 2πRe T : With our previous normalization,

∂∂̄G = −π
[
δ2(σ)− 1

2πRe T

]
The result for the closed Green function is then

G(ρ, T ) = −ln
∣∣∣∣θ1

(
ρ

2πi

∣∣∣∣−T2πi

)∣∣∣∣2 +
(Re ρ)2

Re T
+H(T )

which appears in the amplitude as G(ρi − ρj, T ), where we have added a function

H(T ) that is constant with respect to z, but depends on the geometry (T ).

In principle constants should not contribute, because of conservation of momen-

tum. But we sum only over i 6= j, dropping i = j terms by normal ordering.

Normal ordering is not conformally invariant, so we add back the constant so the

short-distance behavior, and thus normal-ordering, is the same. In the tree case

the geometry was trivial, so the true constant was fixed as a wave-function/coupling

normalization. But now the function is nontrivial, and our normalization must also

be consistent with the tree case. This “boundary condition” (actually, there are no

boundaries for the closed string) can be imposed by requiring that “constant” be

fixed in the short-distance limit. In principle, the Green function should always look

the same at short distances, and not be affected by boundaries or topology. For 2

vertices on the same boundary,

lim
ρ→0

G(ρ, T ) = −ln(|ρ|2) +O(ρ)
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where the term constant in ρ must be canceled by H, or

lim
ρ→0

e−G(ρ,T )/2 = |ρ|+O(ρ2)

where the coefficient of |ρ| must be canceled. Then we find

H(T ) = ln

∣∣∣∣∂ρθ1

(
ρ

2πi

∣∣∣∣−T2πi

)∣∣∣∣2
ρ=0

= ln

∣∣∣∣ 1

2π
θ′1

(
0

∣∣∣∣−T2πi

)∣∣∣∣2
The final result for the closed Green function is thus

G(ρ, T ) = −ln

∣∣∣∣∣2πθ1( ρ
2πi
|−T

2πi
)

θ′1(0|−T
2πi

)

∣∣∣∣∣
2

+
(Re ρ)2

Re T

This result can also be obtained from the tree result (Green function for the cylinder),

which is already periodic in ρ→ ρ+2πi, by using an infinite sum to make it so under

ρ→ ρ+ T : This results in the infinite product form of θ1 above.

Exercise XIC3.1

Do this sum:

a First find the Green function for the cylinder from that for the plane by

z = eρ. Then add a homogeneous zero-mode solution to get an expression in

terms of just ρ − ρ′. (The zero-mode contribution needs separate evaluation

for the reasons given above.)

b Now make it periodic by summing over ρ→ ρ + nT for n = −∞, ...,∞. For

each n 6= 0 you need to fix the short-distance behavior as above. Finally, add

(Re ρ)2/(Re T ) to fix the zero-mode as above.

Using an identity for Jacobi θ functions from subsection XIC2 we find, writing

G(ρ, T ) ≡ G(ν|τ) in terms of the arguments of θ1,

G

(
ν

cτ + d

∣∣∣∣aτ + b

cτ + d

)
= G(ν|τ) + ln|cτ + d|2

which states that e−G/2 transforms with weight 1 under SL(2,Z) transformations of τ .

In proving this identity one needs to cancel the phase factor from the θ1 transformation

with the contribution from the non-θ part of G; the following identities are then useful:

First, from the result for SL(2,C),

az1 + b

cz1 + d
− az2 + b

cz2 + d
=

z1 − z2

(cz1 + d)(cz2 + d)
⇒ Im

aτ + b

cτ + d
=

Im τ

|cτ + d|2
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Then, from the imaginary part of the vector identity

0 = iV̄[iVjVk] = 2 Im(ViV̄j)Vk + cyc.

choosing

V1 =
1

cτ + d
, V2 = ν̄, V3 =

ν

cτ + d

multiplying by |cτ + d|2/Im τ , and using the previous result, we find

(Im ν
cτ+d

)2

Im aτ+b
cτ+d

=
(Im ν)2

Im τ
− c Im ν2

cτ + d

When performing this transformation we will also need for the volume element,

using the same identity, in terms of w(τ) and w′(τ ′), τ = (aτ ′ + b)/(cτ ′ + d),

w[f(w)]24 = (cτ ′ + d)12w′[f(w′)]24

(The relation for f itself, without the 24th power, has a 24th root of unity, which is

conveniently eliminated in this form that appears in the volume element.)

To analyze singularities in the open string, we’ll need to transform variables in

the expression given in subsection XIC1 for the amplitude:

A(1)
N =

∫ 1

0

dw

w2
[f(w)]2−D(−ln w)−D/2

∫ 1

w

(
dz

z

)N−1

exp

[
−1

4

∑
i<j

ki · kjGO(zj/zi, w)

]

where effectively the open-string Green functionGO = 2G in terms of the closed-string

one G. We start with the change of variables

ν(ν ′, τ ′) =
ν ′

cτ ′ + d
, τ(ν ′, τ ′) =

aτ ′ + b

cτ ′ + d

In the general case, the Green function we start with will not necessarily be G(ν|τ),

so the SL(2) transformation of G given above will not always be the same as the

one just given to change variables. But we’ll find some redefinitions of the variables

ν ′, τ ′ → ν̃, τ̃ that again allows simplification via SL(2):

G

(
ν̃

c̃τ̃ + d̃

∣∣∣∣ ãτ̃ + b̃

c̃τ̃ + d̃

)
= G(ν̃|τ̃) + ln|c̃τ̃ + d̃|2

The second argument of G will also be that of f (as w = e2πiτ ), so this same transfor-

mation will be used on f (really wf 24). Performing these procedures on the amplitude,

using the above identities for G and f , and also the transformations for the measures

dw

w
=
dw′

w′
(cτ ′ + d)−2,

dz

z
=
dz′

z′
(cτ ′ + d)−1
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we get for D = 26 an expression for the amplitude of the same form as the above,

but with

z, w → z′, w′; G→ G(ν̃|τ̃); (−ln w)−13 → (−2πiτ)−13(cτ ′ + d)−N−1|c̃τ̃ + d̃|N−12

(Actually, in the cases considered later, c̃τ̃ + d̃ is pure imaginary for the open string,

so we can use the absolute value for the 12th power; for the closed string, everything

gets an absolute value anyway.)

To summarize the steps involved in analyzing string singularities:

1) We will first make the change of variables ν, τ → ν ′, τ ′ via an SL(2,Z) transfor-

mation. Specifically, we’ll use τ = −1/τ ′, ν = −ν ′/τ ′: This is the T-duality

transformation σ ↔ τ (really a Dolen-Horn-Schmid duality transformation, as

applied in subsection XIA2), the same one we applied to see the Hagedorn phase

transition. That will be sufficient for the orientable (planar and nonplanar) open-

string loops. However, for the nonplanar case the arguments of the closed-string

Green function G, in terms of which GO is expressed, will not be simply ν and τ

because not all vertices are on the same boundary.

2) For the unorientable (Möbius) case the arguments of G, and thus of wf 24, will not

be amenable to SL(2,Z) transformations in an obvious way, so we’ll make a second

change of variables in those quantities ν ′, τ ′ → ν̃, τ̃ . The arguments of G will then

be recognized as being an SL(2,Z) transformation, which will then be evaluated.

Following that, the second change of variables will be inverted, ν̃, τ̃ → ν ′, τ ′. (I.e.,

ν̃ and τ̃ were introduced only to make clear what second SL(2,Z) transformation

would be useful.) There is a final change of variables ν ′, τ ′ → ν ′′, τ ′′ for purposes

of comparison to the planar case.

4. Open

There are various types of singularities that occur in open string diagrams, all of

which are expected from Feynman diagrams, as long as we take topology into account

(and satisfy the usual conditions for dimension and string intercept):

1) poles, from external trees

2) cuts, from internal 2-particle states

3) external line divergences, from the loop sitting there (effectively all the usual UV

field theory divergences)

4) closed-string poles, from recognizing the open-string loop as a cylinder
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(The closed-string pole goes into the vacuum if the diagram is planar, i.e., if all

external states sit on the same boundary.)

The easiest poles to find are the open-string ones, since they are in the same

place as in the string trees (see subsection XIB6): When some number n + 1 of

consecutive insertion points approach each other, their Green function looks like the

one for trees. The worldsheet picture is that these external lines are stretched away

into a tree, emphasizing a propagator connecting that tree to a 1-loop graph. The ρ

integration diverges in that region in the same way as for trees, and the calculation

is the same, giving the same pole structure.

The most interesting poles are the closed-string ones, since they appear neither

in the trees nor in ordinary Feynman diagrams for particles (though higher-derivative

modifications of ordinary field theories can produce them: see subsection VIIIC5).

We saw in the particle case the usual UV divergence coming from the T integration

near T = 0, so we now examine w = e−T ≈ 1 for the string. The worldsheet picture

is that the annulus is very short in the τ (periodic) direction, but still π in the σ

direction, so it looks like a narrow cylinder, emphasizing the poles propagating along

the cylinder: closed-string poles. For the planar graph, this closed string goes into

the vacuum (zero momentum), but for the nonplanar ones there are states connected

at each end, so we can see the momentum dependence. (The analysis here is the

same as that at the end of subsection XIC2 for the Hagedorn temperature: The

transformation on w switches UV divergences to IR poles.)

We begin with the planar loop. First we make some changes of variables. The

first is the same as for the particle case, which we already evaluated: Separate the

Schwinger parameters into a scaling parameter and Feynman parameters

ρi = −Tαi

Next, in the language of the closed-string surface (found from doubling the open-

string one), we want to switch the 2 directions of periodicity. We want to use the
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same (closed-string) Green function (periods 2π and T ), but noting that it is only

the ratio of the 2 periods that is invariant under a scale transformation (a conformal

transformation that doesn’t change its shape), the effect of this switch is

T

2π
→ 2π

T
: T → T ′ =

(2π)2

T

Since now we replace the periodicities

ρ→ ρ+ 2πi, ρ→ ρ+ T

with

ρ′ → ρ′ + 2πi, ρ′ → ρ′ + T ′

we also define

ν ′ = α ⇒ ρ′ = 2πiα = −2πiρ

T

These imply

τ =
2πi

T ′
= − 1

τ ′
, ν =

ρ′

T ′
= −ν

′

τ ′
; w = e−(2π)2/T ′ = e(2π)2/ln w′ , z = e−2πiν′/τ ′

In the closed string case this transformation is a symmetry, but in the open-string

case it replaces our point of view (σ ↔ τ) from an open-string loop to a closed string

propagator. Thus the divergence at w = 1 (T = 0) is at w′ = 0.

In terms of the discussion of subsection XIC3, this means

ν̃, τ̃ = ν ′, τ ′,

(
a b

c d

)
=

(
ã b̃

c̃ d̃

)
=

(
0 1

−1 0

)

⇒ (−ln w)−13 → [−2πiτ(cτ ′ + d)]−13

(
cτ ′ + d

|cτ ′ + d|

)12−N

= −iN−1(2π)−13

The 2π’s can be attributed to our normalization of momentum integration, while the

i’s are because, although w′ is still real, z′ is now a phase (ρ′ is imaginary), and the

−1 is because the limits of integration for w′ have switched from w (0 ↔ 1). The

elimination of the ln w’s is an indication of the replacement of the 2-open-string cuts

with closed-string poles. Looking at just the w′ dependence, we find

A ∼
∫ 1

0

dw′

w′2
P (w′)

for some P that can be Taylor expanded in w′, with P (0) = 1, and the proportionality

factor given above. (The most convenient expansion for this result is the product form

of θ1/θ
′
1.) There are thus 2 divergences at w′ = 0, coming from the first 2 terms in

the expansion of P .
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The nonplanar case can be obtained by the same method: The only difference is

that when Vi and Vj are on opposite boundaries, Im(ρi− ρj) = ±π. (Also, the ρ’s on

each boundary are ordered separately.) We thus only need to replace for those G’s:

ρ→ ρ+ iπ : z → −z, ν → ν+ 1
2 , ν ′ → ν ′− 1

2τ
′, ρ′ → ρ′+ 1

2T
′, z′ → z′w′−1/2

(ρ, which was real, gets an imaginary part while ρ′, which was imaginary, gets a real

part.) The only effects on e−G/2 for w′ near 0 (besides the form of P (w′)) are from

the factors

z′1/2 − z′−1/2 → w′−1/4, e−(Re ρ′)2/2T ′ → w′1/8

The resulting extra contribution, again writing i = (I, I ′) for the 2 boundaries, comes

from the exponent ∑
I,I′

kI · kI′ = −

(∑
I

kI

)2

≡ s

for w′−1/8. The singular integral in w′ is thus now

A ∼
∫ 1

0

dw′ w′−s/8−2P̃ (w′)

This generates the usual closed-string poles at 1
2α
′s = 2(n − 1) = −2, 0, 2, ... . For

D 6= 26, there would be extra ln w′ factors generating cuts as for w → 0, but now

the cuts would be associated with closed strings (color singlets) instead of open, and

thus be inconsistent with duality (which implies single-closed-string states).

Exercise XIC4.1

Compare this analysis of generation of poles to the corresponding “stringy”

higher-derivative particle loop of subsection VIIIC5.

The interpretation of the singularities of the planar graph is now clear: They

represent a special case of the nonplanar one, where s = 0 because there is only the

vacuum at the end of the closed-string propagator, representing scalar fields getting

vacuum values. If we transform back to the usual Schwinger parameters,

A ∼
∫ 1

0

dw′ w′−s/8−2

∞∑
n=0

cnw
′n =

∞∑
n=0

cn

∫ ∞
0

dT ′e−T
′(n−1−s/8) =

∞∑
n=0

cn
n− 1− s/8

We can make the integral converge by analytic continuation from s < 8(n− 1). This

always works in Euclidean space, except for tachyons (n = 0). But for the planar case

s = 0: (1) We can ignore the leading divergence in A (
∫
dw′/w′2), evaluating it as

above by comparison with the nonplanar s 6= 0. The usual Schwinger parametrization

converges in Euclidean space except for tachyons, so one can blame the tachyon diver-

gence on that. (2) The next-to-leading divergence (
∫
dw′/w′) remains, coming from
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the dilaton pole. But a dilaton tadpole will always diverge, since both the momentum

and mass vanish. That’s why in field theory it’s necessary to avoid massless particles

with vacuum values by expanding around the correct vacuum, which bosonic string

theory doesn’t.

The unorientable (“occidental”?) loop (Möbius strip) is also easy to get from

the planar one. Note the interpretation of the open string as the closed string with

reflection about the real axis in the ρ plane. The Möbius strip is like the planar graph,

but after a period of T in the real direction there is a half-twist (flip). But because

of the reflection, a shift by iπ is the same as this twist. Thus unlike the nonplanar

(oriented) case, where we replaced (sometimes) ρ→ ρ+ iπ, we now replace (always)

T → T + iπ ⇒ τ → τ − 1
2 , w → −w

in the Green function. (In other words, we use the same expression as before for Gopen

in terms of Gclosed, but with Im T = π, so what we write as T below is really Re T .)

This makes it periodic instead for ρ → ρ + Re T + iπ, while for ρ → ρ + Re T we

instead get a flip. We do the same for the partition function f : In operator language,

the expression e−(T+iπ)N (in terms of the number operator N) performs this flip on

the “initial” states used to define the trace.

To look at the singularity near w = 1, we again use the transformation(
a b

c d

)
=

(
0 1

−1 0

)
but now this has the effect on G

G(ν|τ − 1
2) = G

(
−ν

′

τ ′

∣∣∣∣− 1

τ ′
− 1

2

)
The arguments of G are not of the form that allows SL(2) transformation to G(ν ′|τ ′)
(as they were not transformable to G(ν|τ) before). We therefore first make the

redefinition

ν̃ =
ν ′

2
, τ̃ =

τ ′

4
+ 1

2 ⇔ ν ′ = 2ν̃, τ ′ = 2(2τ̃ − 1)

which then allows simplification via a different SL(2) transformation(
ã b̃

c̃ d̃

)
=

(
1 0

−2 1

)

⇒ G

(
−ν

′

τ ′

∣∣∣∣− 1

τ ′
− 1

2

)
= G

(
ν̃

1− 2τ̃

∣∣∣∣ τ̃

1− 2τ̃

)
= G(ν̃|τ̃) + ln|1− 2τ̃ |2
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= G

(
ν ′

2

∣∣∣∣τ ′4 + 1
2

)
+ ln|12τ

′|2

The amplitude is then modified by

(−ln w)−13 → [−2πiτ(cτ ′ + d)]−13

(
cτ ′ + d

|c̃τ̃ + d̃|

)12−N

= −iN−1(2π)−13212−N

and the fact that the arguments of G and f (really wf 24), compared to the planar

case, are

z′ → z′1/2, w′ → −w′1/4

We therefore make a second change of variables

z′1/2 = z′′, w′1/4 = w′′

This also generates a factor 2N−1 from the dz/z measure and a 4 from dw/w, so now

the unorientable diagram looks the same as the planar one except for w ↔ −w in

G and f , and an extra factor of 213. However, the planar graph has an extra group-

theory factor of N for N “quarks” from tracing over its second, vertex-free boundary,

while the Möbius strip has an extra group-theory factor, coming from the twist, of
1 for USp(2N)

0 for U(N)

−1 for SO(N)

This factor is most easily seen from the massless vector (adjoint) propagator: To

preserve the symmetry of the adjoint representation, the massless vector propagator

must be symmetric in its 2 group (defining) indices for USp, antisymmetric for SO,

and asymmetric (no twist, but orientable) for U. We thus find the (leading, at least,)

divergences of these 2 graphs can cancel only for SO(213), at least for a regularization

scheme that respects this symmetric choice of integration variables.

5. Closed

For the closed string we’ll consider just the orientable loop (torus). The one-loop

amplitudes for the closed string can be obtained by methods similar to those for the

open string (except for one cheat, which we’ll discuss below). The changes from open

to closed are an extension of those for trees (see subsection XIB6): So the Schwinger

parameter T for the loop is complexified in the same way as the vertex positions

τ̃ → ρ:

dT e−TH0 → d2T

2π
e−(TT0+T̄ T̄0)
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Thus the sum over states in the trace includes averaging over arbitrary twists.

Then for the partition function we have

w−1 → |w|−2, [f(w)]2−D → [|f(w)|2]2−D

while the contribution to the volume element from the momentum integral is modified

by the replacement p→ 1
2p (or equivalently, by the closed string having half the slope

of the open string):

T−D/2 = (−ln w)−D/2 → (1
2Re T )−D/2 = (−1

2 ln|w|)
−D/2

The amplitude is then

A(1)
N =

∫
d2w

2π|w|4
|f(w)|2(2−D)(−1

2 ln|w|)
−D/2

∫ (
d2z

2π|z|2

)N−1

exp

[
−1

4

∑
i<j

ki · kjGij

]

Unfortunately this procedure has one flaw: The torus is invariant under the group

SL(2,Z), which divides the naive integration region for T into an infinite set of copies.

If we blindly follow the procedure above, the result for the amplitude will be infinite,

simply because of the over-counting. This error is easy to see from 2D geometry,

and can be fixed by hand. What is not clear is the error in the derivation, i.e., the

relationship of the loop to the trees, without which the calculation is meaningless. (If

the loops don’t follow from the trees, they don’t belong to the same theory, regardless

of any symmetry arguments. This is exactly the problem of anomalies.) The solution

should be found from string field theory, and is probably due to our implementing

∆N = 0 in too Abelian a way.

The “modulus” T is the residual part of the original 2D metric not gauged away by

the original invariances. Similarly, this SL(2,Z) “modular” invariance is the residual

discrete part of the original 2D coordinate plus Weyl scale invariance on the torus,

represented as a field transformation on the residual part of the metric T . (There is

also continuous translation invariance in the σ and τ directions.) We can describe the

torus as a parallelogram on the (flat) complex plane, with corners 0, ρ1, ρ2, ρ1 + ρ2.

Now consider an arbitrary point ρ somewhere on the torus: This point is identified

with the points

ρ→ ρ+ niρi

for integers ni (i = 1, 2). If we now consider SL(2,C) transformations of ρi (not the

conformal SL(2,C), but just transforming ρi linearly)

ρ′i = gi
jρj
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we see that to preserve the torus, as defined by its periodicity,

ρ→ ρ+ niρ′i = ρ+ n′iρi ⇒ n′i = njgj
i

that the matrix g must be integers, i.e., an element of SL(2,Z). We thus have

gi
j =

(
a b

c d

)
for integers a, b, c, d with ad − bc = 1. Actually, the determinant condition is au-

tomatic: It must be an integer, but the inverse of the group element is also in the

group, so its determinant is the inverse of an integer, but also an integer. Thus the

determinant must be 1. (The other possibility of −1 is uninteresting: It is the result

of combining the SL(2,Z) transformations with a switch of ρ1 with ρ2.)

The usual conformal transformations include complex scale transformations, un-

der which only the ratio

τ ≡ ρ1

ρ2

which we identify with the modulus, is invariant. Under a modular transformation

τ ′ =
aτ + b

cτ + d

Similarly, for any point ρ, the ratio

ν ≡ ρ

ρ2

is also conformally scale invariant. It transforms under a modular transformation

(where ρ is invariant) as

ν ′ =
ν

cτ + d

Effectively, we have “gauged” (by conformal transformation) ρ2 → 2πi, and identify

ρ1 as −T in this gauge, so the cτ + d denominators in the modular transformations

are compensating conformal transformations to maintain this gauge.

First we need to check that the closed-string amplitude is invariant under modular

transformations. (We already saw that the open-string amplitudes transformed in a

simple way.) Taking the transformations obtained in subsection XIC3, we need only

modify the results by taking some | |2’s in a few places. We also need the result (the

previous identity for Im τ ′)

ln|w| = ln|w′||cτ ′ + d|−2
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for SL(2,Z). Remembering that for the closed string the tachyon has k2 = 8, so∑
i<j ki ·kj = −4N , we find that each piece of the amplitude gives the same multiplied

by the following exponent for |cτ ′ + d| after replacing ν = ν(ν ′, τ ′), τ = τ(ν ′, τ ′):

1

2π

∣∣∣∣dww
∣∣∣∣2 → −4,

(
1

2π

∣∣∣∣dzz
∣∣∣∣2
)N−1

→ −2(N − 1), |w|−2|f |−48 → −24

(−1
2 ln|w|)

−13 → 26, e−
∑

Gk·k/4 → 2N

which cancel, proving invariance.

Next we need to divide up the region of integration for τ into “fundamental

regions”: For any such region, any point in the upper-half complex plane can be

mapped into it in a unique way by a “modular transformation” (which is unfortunately

also a “unimodular transformation” due to poor semantics). We started with the

conditions

−π ≤ Im T ≤ π, Re T ≥ 0 ⇒ −1
2 ≤ Re τ ≤ 1

2 , Im τ ≥ 0

The former condition already takes care of the transformation τ → τ+1. All modular

transformations can be obtained from that and τ → −1/τ , which takes the inside of

the unit circle to the outside: Choosing the outside, we get the final conditions

−1
2 ≤ Re τ ≤ 1

2 , Im τ ≥ 0, |τ | ≥ 1

It can then be shown that these choose one fundamental domain. (For example, by

showing that an arbitrary transformation on the unit circle can produce only vertical

lines, and circles centered on the real axis whose inverse radius is an integer, where

all the lines, or circles of the same radius, are related by τ → τ + n.) The extra

restriction also eliminates the usual UV singularity near Im τ = 0.

Exercise XIC5.1

Find several of the other fundamental regions.
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Divergences in the closed-string loop are similar to those in the open string, except

that now the divergence from the loop integral associated with a closed string going

into the vacuum has the torus on the end of that tadpole. Since restriction to the

fundamental region has already eliminated the UV divergence, this divergence now

shows up only as an IR divergence from all the Im ν’s near 0, i.e., factoring the graph

as a closed-string tree times the tadpole. (For the open string we had to perform a

modular transformation to change the UV divergence into closed-string IR, since

taking ν’s to 0 shows only the usual tree divergences.) Unlike the closed tree graph,

where 3 of the vertices had fixed positions, so no more than N − 2 vertices could

converge (which is symmetric with the fact that no less than 2 can), for the loop only

1 vertex is fixed, so all N can converge (and there is no symmetry n↔ N−n because

the loop itself is associated with vertices that don’t converge). The calculation is

the same as for the open string, except now we scale |ν|2 instead of just ν, and the

poles are closed-string instead of open. The divergence is again from the tadpole

propagator, and its interpretation is as for the nonplanar graph, coming from the

tachyon and dilaton, but with different coefficients.

Note that the dilaton that appears here as a 1-loop correction (at least for the

closed-string case) is really the determinant of the metric, in the usual string gauge

for (26D) local Weyl symmetry: Since the vacuum value of the true dilaton φ, defined

as the field that couples to the ghosts (or, at order α′, to the worldsheet curvature,

and thus the Euler number, which counts loops) and not to X, generates the string

coupling through its classical vacuum value, it appears in the effective action along

with h̄, homogeneously as (φ2/h̄)1−L, and thus not at all at 1 loop (except through

derivatives, as ∂φ/φ, etc.). Thus, the 1-loop term that couples to the determinant (or

trace, at linearized order) of the metric is actually the cosmological term. (Of course,

if field redefinitions of the metric are made to get the usual classical R term, this will

generate φ dependence, and φ will no longer count loops.)

6. Super

The calculation for 1-loop open superstring amplitudes with 4 or less external

vectors is very similar to the superparticle case (see subsection VIIIC4), combined

with the results for the open bosonic string. To begin, the vertex operator for the

vector takes the same form as for the particle (see subsection VIIIC5):

V = κaeik·X̂(
.
Xa − kbSab)

where the spin operator Sab is now represented by an appropriate current (evaluated

at the same z as X) expressed in terms of worldsheet fermions (see subsection XIB5).
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The simplest way to do these calculations (so far) is in the lightcone. For 4 or

fewer external lines we can choose the ≤ 4 external momenta (≤ 3 independent) and

≤ 4 external polarizations to all point in just the transverse directions, avoiding the

complications of nonlinearities in the longitudinal components. Then the transverse

part SO(8) of the spin current is simply (in somebody’s normalization)

Sij = 1
2Ψ[iΨj] = 1

8
Sγ[iγj]S

in terms of the vector fermions Ψ of Ramond-Neveu-Schwarz and the spinor ones S of

Green-Schwarz (see subsections XIA9 and B5), related by triality and bosonization.

In the RNS case we still have to consider summing over R and NS strings, so GS

is simpler. Among the various parts of the trace in evaluating the loop, we have in

particular the (super)trace over the zero-modes of S. In fact, this is the same trace

considered for the particle in subsection VIIIC4: It is the trace over all the massless

states created by those zero-modes. (As usual, the trace factorizes into that trace

times those for the oscillators that create massive states.) If we sum over those states

individually, we are performing (the lightcone version of) the same analysis we made

for the particle. But we can also make the analysis for all states together, by making

the same analysis as for a superparticle in the lightcone: For example, note that

the S’s form an SO(8) Clifford algebra – they are the usual γ matrices with indices

switched by triality. Then we see that the supertrace is just the usual trace with an

extra factor of “γ−1” (since S takes the bosonic vector to the fermionic spinor and

vice versa). So the first nonvanishing supertrace is that of 8 S’s (giving an ε tensor

in its spinor indices), i.e., 4 Sij’s. The result will then have the same structure as

the particle case: 4 F ’s times the loop integral (less the fermionic zero-modes) for 4

scalar vertices (tachyon-like, but massless). The explicit form of the F 4 factor is the

same as for the particle, and also the same as for the superstring tree. (Again the

tree calculation of this factor is more complicated. For the bosonic string even the

tree factor itself is more complicated, containing α′ corrections.)

Exercise XIC6.1

Repeat the calculation of exercise VIIIC4.1 of the zero-mode supertraces,

again using components (i.e., evaluating the spinor and vector contributions

separately), but now using just physical components, corresponding to the

SO(8) transverse spin operators. Compare to the SO(10) calculation reduced

to a lightcone gauge. For SO(8) there is also an ε tensor contribution (re-

member the spinor is Weyl), not appearing in SO(10): What happens to

it?
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Now that we have reduced the loop to a “kinematic” factor for the polarizations,

identical to that in the particle case, times a bosonic-string-like expression, we can

do the rest of the calculation in analogy to the bosonic case. The Green function

is the same as in the bosonic case, since we now have to deal with just X in the

vertex. The partition function is actually simpler: For the oscillators, we now have 8

bosons and 8 fermions with the same boundary conditions, so their supertrace is just

1. (Remember that ghost fermions gave the inverse of X bosons.) For the remaining,

bosonic zero-modes, the only difference is that the ground state is massless, so we

don’t get the extra w−1. Thus the volume element is simply

V = (−ln w)−5

coming from the momentum integration, now in D = 10. In summary, the result for

the 4-point amplitude is the same as the bosonic tachyon amplitude (see subsection

XIC1), except for:

(1) the F 4 factor,

(2) no power of f(w),

(3) w−2 → w−1,

(4) (−ln w) appears to the power −5, and

(5) external lines are massless.

This analysis applies to planar, nonplanar, and unorientable loops.

In the net transformation given at the end of subsection XIC3, used for changes

of variables in analyzing divergences, for the 4-point superstring amplitude we now

have instead

(−ln w)−5 → [−2πiτ(cτ ′ + d)]−5 = i(2π)−5

The main difference in the analysis of divergences is that the lack of the w−1f−24

factor (before and after changes of variables) removes the divergences associated with

the now-absent tachyon (see the argument at the end of subsection XIC4), so all

open-string divergences cancel for gauge group SO(2D/2) = SO(32) now. (There is a

2N+1 = 25 in the final change of variables for the unorientable loop.)

The missing factor also means that now closed-string poles start with massless

ones. The F 4 factors (of the form [tr(F 2)]2 for the nonplanar loop) now give spin to

these poles, and for the massless poles the singlet currents tr(FF ) can be associated

with the graviton, dilaton, and axion (4-form) coupling, as for the particle. The
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latter couples to the Hodge dual of the dual of the 2-form, i.e., an ε tensor times a

(D − 4)-form B̃: in form notation,

L1 ∼ B̃ ∧ tr(F ∧ F )

(In D = 4, B̃ would be the usual pseudoscalar axion.) This preserves the Abelian

gauge invariance of the (D− 4)-form, since tr(F ∧F ) is the curl of the Chern-Simons

form (see subsection IIIC6):

tr(F ∧ F ) = dC, C = tr(1
2A ∧ dA+ 1

3
A ∧ A ∧ A)

We can see how this relates to the usual 2-form B by a duality transformation:

Starting with a first-order form of the (D − 4)-form action (ignoring the dilaton or

graviton coupling),

L0 ∼ G ∧ dB̃ − 1
2G

2

and varying with respect to B̃ in L0 + L1, we find

L0 + L1 → 1
2G

2, G = dB + C

Gauge invariance of G under Yang-Mills transformation implies an unusual transfor-

mation for B:

δC ∼ tr(dλ ∧ dA) ⇒ δB ∼ tr(λ ∧ dA)

(This is the same coupling and duality considered in D = 4 in exercise XA3.1, and

supersymmetrized in exercise XB5.1.)

Remarks similar to those about the open string apply to the closed-string am-

plitude (torus), where everything is replaced with | |2’s again, but now including

left and right-handed copies of the kinematic factor, with products of left and right-

handed vector polarizations giving those of the massless states of the closed string.

The proof of modular invariance works as before, but with the changes listed above

for the open superstring. (For Type II strings one has only the torus, but Type I

is unorientable, and so has also the other graphs mentioned earlier. Here we don’t

consider the heterotic string.)

There are several ways to see that this amplitude has no divergences: (1) We

already saw previously that such a divergence would be associated with a cosmological

term. This term, if expanded about flat space, would give a 4-point interaction

with no derivatives. But we have already extracted a kinematic factor that contains

derivatives. Furthermore, it would contribute to lower-point functions, which we

saw vanish. (2) Non-renormalization theorems in supersymmetric theories prevent
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generation of a cosmological term in loops. (3) By duality, the limit where some

of the ρ’s get close would reveal this divergence as an intermediate dilaton state

connecting a tree with a lower-point loop. But we have already seen the lower-point

loop graphs vanish.

Let’s look at the last argument in more detail: Applying this method in the same

way as for open strings in section XIC4 and trees in subsection XIB6, we find

A ∼
∫ ε

0

dρ ρ2n−1+
1
2

∑
ki·kj

(1 ≤ n ≤ N − 1) where again n+ 1 ρ’s are taken close together, and the sum is over

i < j for those n+ 1 k’s, but now we get an exponent 2n because open-string ρ’s are

replaced with |ρ|2’s, and now

2
∑

ki · kj = −sn + (n+ 1)M2

where M2 = −8 for the closed bosonic-string tachyons, but 0 for closed superstring

ground states. (As before, the T integration converges because the fundamental

region restricts Re T >
√

3π.) So for the bosonic case we get

Abosonic ∼
∫ ε

0

dρ ρ−sn/4−3 ∼ 1

s+ 8

giving the usual closed-string tachyon pole (or divergence for no s). However, the

4-point superstring amplitude is convergent (at s = 0) for all n:

Asuper ∼
∫ ε

0

dρ ρ−sn/4+2n−1 ∼ 1

s− 8
for n = 1

(i.e., 2 k’s). As expected, there are no tachyons, and there is no contribution from

massless poles because the 3-point loop that has been factored out vanishes for ex-

ternal massless states. (Similar remarks apply for such singularities in the open-

superstring loop.)

7. Anomalies

There are no anomalies in odd dimensions, especially D = 11. Since string

theories are equivalent to D = 11 M-theory, they have no anomalies. (This is similar

to understanding cancellation of anomalies in the Standard Model by embedding it

in a manifestly anomaly-free GUT.) However, the manner of anomaly cancellation is

unusual, and may have application beyond the present string theories.

Axial anomalies arise from massless (chiral) particles inside the loop. Thus we will

first analyze anomalies in such field theories, then consider how these fields appear in
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string theory. The relevant field theories are 10D supersymmetric Yang-Mills coupled

to N=1 supergravity, or N=(2,0) supergravity.

In twice-odd dimensions (in particular D=10), unlike twice-even (like D=4), ir-

reducible spinors are truly chiral (Weyl is not the same as Majorana): In D=4,

Yang-Mills can couple chirally because a Weyl spinor and its complex conjugate may

be in different representations (i.e., complex), but in D=10 even a real group rep-

resentation can give an anomaly. Similar remarks apply to gravity: In D=10 even

gravity can couple chirally, because a chiral spinor need not be accompanied by its

opposite chirality to construct an action. Similar remarks apply to selfdual tensors

(which also exist only in twice-odd dimensions), which can be generated from prod-

ucts of selfdual spinors. Mass terms break chiral invariance, since they couple fields

of opposite chirality, so only massless fields running around the loop contribute to

the anomaly.

Exercise XIC7.1

Using the general results for irreducible spinors of subsection XC2, what are

the simplest spinor actions for all dimensions and all signatures? (Hint: There

is a simple correspondence with something in the big table.) How many

irreducible spinors are required to write an action in each case? What happens

when masses are introduced?

For the spinor in external Yang-Mills this calculation is standard (see subsections

VIIIB2-3). We are left to consider the group theory. To mimic string theory, we use

the ’t Hooft double-line notation for the adjoint representation in terms of indices of

the defining representation, as implied by the quark interpretation for Chan-Paton

factors. Thus each “planar” propagator has added to it a twisted propagator, with

the factor 0 or ±1 as described in subsection XIC4. (Equivalently, we could twist

the vertices instead.) In the planar and unorientable (with respect to this notation)

graphs, we get for the anomaly FD/2 without traces: For the planar case all vertices

are on one side, and there is a factor of N from tracing the other side, while for

the unorientable case there is only one side. However, there is only 1 planar graph,

while for the unorientable case there are 2D/2 (i.e., exactly half of all the graphs from

twisting any of the D/2 + 1 propagators). Thus this particular contribution to the

anomaly is canceled for SO(2D/2).

For the nonplanar graphs some F vertices are on a different side than the γ−1

one, so there is a trace of those F ’s. For the case D = 10, we already saw in

subsection VIIIC4 that (using Bose symmetry to get an anticommutator) tr(F 3)

vanishes for SO(32). Of course tr(F ) also vanishes, and for the same reason tr(F 5)
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can’t contribute because the anomaly itself is adjoint. Finally, by adding a local

counterterm to the action of the form tr(AF )tr(AF 3) we can always convert the

anomaly between tr(F 2)F 3 and tr(F 4)F . (At this lowest order in the fields we can

use the Abelian part of F and of the gauge transformation.) So for SO(32) in D = 10

we can cancel all of the anomaly except a term tr(F 4)F .

At this point we remember that the nonplanar open superstring loop generates

an unusual coupling in the 4-point amplitude between Yang-Mills and the axion (see

subsection XIC6). Using this fact, we can write a local counterterm that cancels the

anomaly (at least at this order), namely

B ∧ tr(F ∧ F ∧ F ∧ F )

Similar remarks apply to gravity anomalies, and mixed Yang-Mills/gravity anom-

alies. Again the Yang-Mills generators are replaced with Lorentz generators. But

for pure gravity there are no Chan-Paton factors, so cancellations must be between

different spins: spin 1/2, gravitino, and selfdual tensor. It turns out that cancellations

can be obtained in D=10 only for N=(2,0) supergravity or N=1 supergravity coupled

to SO(32) or E8⊗E8 Yang-Mills (or some uninteresting non-semisimple groups).

Superstring theories generally violate (spacetime) parity because they use chiral

spinors; the only exception is Type IIA, because the left-handed and right-handed

modes have spinors of opposite parity, so spacetime parity includes worldsheet parity

(switching left and right).

The calculation of the open-superstring anomaly is simpler in the covariant RNS

formalism than in the lightcone. It is very similar to the particle calculation of

subsection VIIIB2, replacing ∇/ with
∫
dσ Ψ · ∂X, Sab with 1

2Ψ[aΨb], γ−1 with its GSO

analog, etc., since the background appears via ∂X → ∂X(σ) + A(x)δ(σ), the δ(σ)

putting A on a boundary. Integrating out the fermionic zero-modes gives the same

kinetic factor, again leaving m2 times the graph with external massless scalars, the

internal mass2 shifted by m2, and no fermionic zero-modes.

Unfortunately, now that scalar graph is nontrivial, since there are always states

with mass much greater than m, no matter how big m gets. This is related to the

fact that this 6-point graph can be factored into a 4-point loop times a 4-point tree

(or 5-point loop times 3-point tree) in an appropriate limit, while in the particle case

we needed to consider only a 1PI graph. The evaluation of this graph is similar to

the one-loop superstring in the Green-Schwarz lightcone: The factors of f(w) again

cancel, 10 being reduced to 8 for both the X and Ψ oscillators by the ghosts.
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However, because of the shift in mass2, there is now an extra factor of wm
2/2

(i.e., the ground-state mass is now m). As a result, the limit m2 →∞ is dominated

by the region w ≈ 1 (T ≈ 0). Therefore, we again transform coordinates, and

again find the largest contribution comes from the (shifted) dilaton, whose propagator

now gives a factor 1/m2 going into the vacuum. (All other contributions die more

rapidly, and vanish as m → ∞ even after multiplying by the overall m2.) Again

as for the 4-point amplitude, this dilaton contribution cancels between the planar

and unorientable graphs for SO(32). However, for the nonplanar graph, this dilaton

contribution vanishes in the limit m→∞, again as for the 4-point; we have seen the

explanation in subsection XIC4.
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XII. MECHANICS
String theories describe particles of arbitrarily large spins: So far in this text we

have concentrated on lower spins, but we can describe (at least) free gauge-invariant

actions for arbitrary spins based on quantum mechanical BRST.

Gauge invariance is required in field theory to manifest Lorentz invariance. The

basic problem is that a four-vector wave function cannot have the obvious Minkowski

inner product, since the time component would have a minus sign in its normalization,

resulting in negative probability. In the classical action there is a gauge invariance

that allows the time component to be dropped from the action. However, such gauges

destroy manifest Lorentz invariance, since a three-vector cannot represent Lorentz

transformations in a local way. More useful gauges keep all components of the four-

vector, while also introducing scalar fermionic “ghosts” to cancel the effects of the

bad part of the four-vector. A certain symmetry between the bosonic and fermionic

unphysical degrees of freedom is needed to enforce this cancellation: It is the field

theoretic version of the BRST symmetry discussed in section VIA.

Another complication is that gauge transformations do not allow the elimination

of traces in a simple way: Although it is Lorentz covariant to constrain a tensor

to vanish when a pair of its vector indices is contracted, this interferes with gauge

invariance in interacting theories, such as gravity. A related complication is massive

theories, which can’t always be described simply by adding mass terms to massless

theories.

There is a simple solution to all these problems, which determines the free part

of the action for any theory. (Interactions are a separate problem.) This method

automatically introduces all the correct fields, including ghosts, for any massless or

massive theory. It also gives a simple universal expression for the BRST symmetry

that cancels unphysical modes, as well as providing a simple proof that these modes

disappear in the lightcone gauge. The method is based on the idea of introducing

extra fermionic dimensions to spacetime that are unphysical (unlike superspace for

supersymmetry), which cancel unphysical degrees of freedom associated with the time

dimension.

Although for most purposes the only spins of fundamental particles relevant in

field theory for are 0, 1/2, 1, 3/2 (maybe), and 2, and these few cases can be studied

separately, in this chapter we’ll analyze all free theories because:

(1) The ultimate theory of particles may require them;
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(2) some of the theories presently under most active investigation (such as strings

and membranes) require them;

(3) many observed, though perhaps not fundamental, particles have higher spin; and

(4) a better understanding of field theory can be obtained by determining exactly

which properties all fields have in common as well as how they differ.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. OSp(1,1 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This construction involves the introduction of spacetime symmetries that are not

manifest on the physical coordinates. An important analog is the conformal group in

D dimensions, which acts nonlinearly on the usual D spacetime coordinates, but can

be represented linearly on D+2 coordinates, since the group is SO(D,2). As described

in subsection IA6 for spin 0, 1 space and 1 time coordinate can be eliminated, so that

SO(D,2) is still represented, but SO(D−1,1) is the largest orthogonal group that is

still manifest. We have also seen that in the lightcone gauge this manifest symmetry

is reduced again in the same way, leaving SO(D−2). In our case the relevant group is

OSp(D,2|2), the natural generalization of the orthogonal group to D space, 2 time, and

2 anticommuting dimensions. This allows rotations between timelike and fermionic

directions, eventually resulting in their cancellation.

1. Lightcone

We saw in subsection IIB3 how the single equation of motion Sa
b∂b + w∂a = 0,

applied to field strengths, universally described all spins in all dimensions, for free,

massless particles. (A possible exception is the spinless case, where we need = 0,

which is redundant otherwise. However, we can use the universal field equation even

in that case if we use the vector field strength formulation of spin 0.) One way we

solved this equation was to perform a unitary transformation. We can use the same

unitary transformation, plus the constraints, to simplify the Lorentz generators. To

further simplify matters, we can use the constraint = 0, solved for ∂−, to choose

the gauge x+ = 0, which is equivalent to working in the Schrödinger picture (no

time dependence for operators). The procedure is thus: (1) Start with the manifest

(antihermitian) representation of the Lorentz generators,

Jab = x[a∂b] + Sab

(2) Apply the transformation

J → UJU−1, ln U = S+i ∂
i

∂+
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which eliminates the only S+i term, in J+i (while complicating J−i). (3) Finally, apply

the constraints, which have already been transformed by this same transformation,

= 0 (⇒ gauge x+ = 0), Sab∂b + w∂a = 0→ S+− − w = Si− = 0

Our Lorentz generators are then

J+i = −xi∂+, J+− = −x−∂+ + w, J ij = x[i∂j] + Sij

J i− = −x−∂i +
1

∂+
[1
2x

i(∂j)2 + Sij∂j + w∂i]

These generators satisfy the pseudo(anti)hermiticity condition

Jab†(∂+)1−2w = −(∂+)1−2wJab

This means that the Hilbert-space metric needs a factor of (∂+)1−2w. This is related

to the fact that the w terms can be eliminated by a nonunitary transformation with

the appropriate power of ∂+: As part of step 2, we could have applied a second

transformation

U2 = (∂+)S
−+

with the result of eliminating all S+− terms, so the redundant constraint S+− = w

would not have been needed, so w would not appear. U2 is in fact just the trans-

formation that takes the surviving independent part of the field strength F+...+i...j to

the lightcone gauge field Ai...j, taking us from the original constrained field strengths

to unconstrained gauge fields. In any case, we generally choose w = 0 for bosons.

We previously applied dimensional reduction to the field equations for the field

strengths, to obtain the equations for the massive, free theories from the massless

ones. The same methods can be applied to the Lorentz (or Poincaré) generators.

(The Lorentz generators will be used later to find the BRST operator, to obtain the

field equations in terms of the gauge fields, and the action. For that purpose the

dimensional reduction can be performed at any stage in the derivation.) We thus find

the general result

J+i = −xi∂+, J+− = −x−∂+ + w, J ij = x[i∂j] + Sij

J i− = −x−∂i +
1

∂+
{1

2x
i[(∂j)2 −m2] + Sij∂j + Si−1im+ w∂i}

(The −1 is still an index, and should not be confused with an inverse.)

Note that S−i and S−+ were eliminated (after the unitary transformation) by the

constraints, and that S+i just dropped out. (In other words, S+i = 0 was the gauge
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choice for the constraint S−i = 0.) This leaves only Sij (and Si−1 in the massive case),

whose representation is that of the highest-weight part of the original field strength.

However, we can more simply choose the representation of Sij as our starting point,

since it is just the transverse part of the gauge field; it defines the representation of the

Poincaré group. We therefore have an explicit construction of the generators of the

Poincaré group, for arbitrary representations, defined on just the physical degrees of

freedom, given directly by the little group SO(D−2) spin generators Sij (or SO(D−1)

generators Sij and Si−1 in the massive case) that identify the representation. For

example, in D=4, SO(2) has just one generator, the helicity, so for any state of a

given helicity we know the action of the Poincaré generators.

Exercise XIIA1.1

Check that this lightcone representation of the Lorentz generators satisfies

the correct commutation relations.

Classical free field theory is easy to define in the lightcone, since solving the

constraints in the lightcone formalism has picked out just the physical components,

so the only remaining constraint is the Klein-Gordon equation. Thus, the kinetic term

for any massless bosonic field is simply −1
2φ(1

2 )φ, where 1
2 = −∂+∂− + 1

2(∂i)2,

and ∂− is considered the time derivative. (In general, the kinetic operator for a

massless boson is some second-order differential operator, which reduces to on the

physical components.) For fermions we have instead /∂+, since we must then have

an odd number of derivatives to avoid getting a trivial result after integration by

parts. (For a boson, φ∂φ = ∂(1
2φ

2), for a fermion ψ∂∂ψ = ∂(ψ∂ψ)− (∂ψ)2 = ∂(ψ∂ψ)

by anticommutativity. In general, the kinetic operator for a massless fermion is some

first-order differential operator, which reduces to /∂+ after eliminating auxiliary

fields.)

This quantum mechanical representation of the Lorentz generators has a simple

translation into classical field theory, in terms of field theory Poisson brackets. The

definition of Poisson brackets in lightcone quantum field theory follows directly from

the action: Defining as usual the canonical momentum π as (minus, in our conven-

tions) the variation of the Lagrangian with respect to the time derivative ∂+ (= −∂−)

of the variable φ, we find the fundamental bracket for bosons

π = −∂+φ ⇒ [φ(x−, xi), φ(x′−, x′i)] = i
1

∂+
(2π)D/2δ(x− − x′−)δD−2(xi − x′i)

(Note that the ∂+ was essential for the antisymmetry of the bracket. We can also

evaluate its inverse as an integral, so 1
∂+
δ(x− − x′−) = 1

2ε(x
− − x′−). For fermions

we have instead an anticommutator and no 1/∂+.) We then find that any quantum
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mechanical group generator J (including internal symmetries) can be represented in

field theoretic form as

J =

∫
dx−dD−2xi

(2π)D/2
1
2φ∂

+Jφ = i1
2〈φ|Jφ〉

where we have used the relativistic inner product of subsection VB2, but for a lightlike

hypersurface: For positive-energy solutions

〈1||2〉 =

∫
dx−dD−2xi

(2π)D/2
ψ1*1

2(−i)
↔
∂+ψ2

Note that the free Poincaré generators are local in this form, from cancellation of

∂+’s. In interacting theories, the generator J −i, as well as the translation generator

P−, which is also the Hamiltonian, gets additional terms higher-order in the fields.

In this manner, relativistic quantum field theory can be quantized in a way that

more resembles nonrelativistic field theory than in non-lightcone methods, since

is quadratic in the usual time derivative ∂0. We won’t consider lightcone quantum

field theory further; however, in the following sections we’ll use this construction to

derive free gauge theory and its covariant quantization, in a way that we’ll generalize

straightforwardly to interactions. Thus, the same construction directly gives the

formulation of free representations of the Poincaré group, from field strengths to

transverse fields to covariant gauge fields.

2. Algebra

From the definition of the graded determinant in terms of Gaussian integrals (see

subsection IIC3), we see that anticommuting coordinates act like negative dimen-

sions: For example, sdet(kI) = ka−b for a commuting and b anticommuting dimen-

sions. Thus, if we add equal numbers of commuting and anticommuting dimensions,

they effectively cancel. Here we’ll do the same for theories with spin, which allows

the restoration of manifest Lorentz covariance to lightcone theories: Adding 2 com-

muting and 2 anticommuting dimensions to SO(D−2) gives OSp(D−1,1|2) (see also

subsection IIC3), which has an SO(D−1,1) subgroup.

We have seen that quantum field theory requires unphysical anticommuting fields

to cancel the commuting unphysical fields introduced by using gauges that do not

eliminate longitudinal polarizations. For example, the gauge field for electromag-

netism has only D−2 components in the lightcone gauge, but needs to keep all D

components to maintain manifest Lorentz covariance; this requires 2 “ghosts” to can-

cel the 2 extra components of the gauge field. The general result, at least for bosonic
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gauge fields, is to produce fields that form representations of OSp(D−1,1|2), includ-

ing gauge fields and ghosts. Furthermore, by adding 2 anticommuting dimensions the

BRST transformations that relate the ghosts to the longitudinal degrees of freedom

can be introduced in a natural way, as translations in the new coordinates. The result

is that OSp(D−1,1|2) multiplets are automatic, and gauge fixing receives a geometric

interpretation. In this section we’ll see that an even more natural interpretation of

these BRST transformations is as rotations of the anticommuting coordinates, and

that they not only make gauge fixing to the simplest Lorentz covariant gauge triv-

ial, but also give a simple derivation of the gauge invariant action itself. (The two

points of view are related in that translations can be considered as part of “conformal

rotations”, as we saw in subsection IA6.)

The basic idea is very simple: Take the lightcone representation of the Poincaré

generators, found in the previous subsection, and extend the SO(D−2) indices and

representations to OSp(D−1,1|2) ones (including appropriate signs for the grading).

Conversely, we can begin the construction with the “conformal” group OSp(D+1,3|2),

find the equations of motion for the “Lorentz” group OSp(D,2|2), and solve them for

the “lightcone group” OSp(D−1,1|2). So we can use the same expressions for the

generators, but now the “transverse” OSp(D−1,1|2) index is

i = (a, α)

where a is a D-component index of SO(D−1,1) and α is a 2-component index of Sp(2).

The OSp(D−1,1|2) metric is

ηij = (ηab, Cαβ)

Furthermore, we divide up the full OSp(D,2|2) index as

(±, i) = (A, a), A = (±, α)

We now interpret the SO(D−1,1) subgroup that acts on the a index as the usual

physical one, since the generators take the usual covariant form (because all the

transverse generators are linear). The orthogonal subgroup OSp(1,1|2) that acts

on the A index, and leaves the a index alone, is then interpreted as a symmetry

group of the unphysical degrees of freedom, an extension of BRST (and “antiBRST”).

(Note that OSp(1,1|2) is the group of coordinate transformations in 2 anticommuting

dimensions; for later reference, IGL(1) is the same for 1 such dimension). However, the

generators with − indices are nonlinear, since the ± indices are no longer independent

from the rest. (The + were gauged away, the − were fixed by equations of motion.)

As a result, they act on transverse indices in a nontrivial way.
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longitudinal, nonlinear SO(1,1): ±

transverse, manifest OSp(D−1,1|2): i =

{
α

a

}
= A : ghost OSp(1,1|2)

: Lorentz SO(D−1,1)

Since the OSp(1,1|2) generators act only in the unphysical directions, all physical

states should be singlets (with respect to the cohomology) under this symmetry.

This is clear from the original construction: We started with linear generators for

OSp(D,2|2) (and translations and dilatations for (D,2|2) dimensions), applied the

equations of motion in terms of them, and now we apply the OSp(1,1|2) singlet

condition last. If we had instead applied the OSp(1,1|2) singlet condition first to the

(D,2|2) dimensional space, we would have gotten the usual (D−1,1|0) dimensional

space, and finally applying the equations of motion would have given us the lightcone

results of subsection IIB3.

manifest symmetry:

↘ field equations (fix ±)

↙ BRST singlets (fix A)

↗ add 2+2 (extend i→ (a, α))

OSp(D,2|2)

↗↙ ↘
SO(D−1,1) =⇒ OSp(D−1,1|2)

field strengths gauge fields/BRST

↘ ↗↙
SO(D−2)

lightcone

Explicitly, the OSp(1,1|2) generators are (choosing w = 0)

J+α = −xα∂+, J−+ = x−∂+, Jαβ = x(α∂β) + Sαβ

Jα− = −x−∂α +
1

∂+
[1
2x

α( −m2 + ∂β∂β) + Sαb∂b + Sα−1im+ Sαβ∂β]

while the SO(D−1,1) generators take their usual manifest form

Jab = x[a∂b] + Sab

Exercise XIIA2.1

Write the general commutation relations of OSp(D−1,1|2). Specialize to the

case OSp(1,1|2), in lightcone notation. Show that this representation satisfies

them, paying special attention to signs. (Use the OSp(D−1,1|2) commutators

for the S’s.)
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We can also add a “nonminimal” part to the general “minimal” part of the

OSp(1,1|2) algebra we have already derived, in the sense that the two parts com-

mute and separately satisfy the commutation relations:

JAB → JAB + S̃AB

(This is similar to adding spin pieces to orbital in the absence of constraints relating

them.) The simplest choices are to choose this new part to be just quadratic in new,

“nonminimal” coordinates and momenta. It will prove convenient to perform some

transformations J → UJU−1 that make the OSp(1,1|2) generators more similar to

what they were before adding the spin parts. We therefore make two consecutive

transformations:

J → U2U1JU
−1
1 U−1

2 : U1 = eS̃
+α∂α/∂+ , U2 = (∂+)S̃

−+

to return J−+ and J+α to their previous forms. In fact, these are just the OSp(1,1|2)

version of the same transformations we used in the previous subsection to remove S+i

and S+−. The result is

J+α = −xα∂+, J−+ = x−∂+, Jαβ = x(α∂β) + Ŝαβ

Jα− = −x−∂α +
1

∂+
[xα(−K + 1

2∂
β∂β) +Qα + Ŝαβ∂β]

Here we have

K = −1
2( −m2), Ŝαβ = Sαβ + S̃αβ, Qα = S̃α− + Sαb∂b + Sα−1im− S̃+αK

but more generally we can satisfy the commutation relations by requiring only that

K, Qα, and Ŝαβ are independent of the unphysical coordinates x− and xα and their

momenta, and satisfy that their only nontrivial commutators are

{Qα,Qβ} = 2KŜαβ, [Ŝαβ,Qγ] = Q(αCβ)γ, [Ŝαβ, Ŝ
γδ] = δ

(γ
(αŜβ)

δ)

U2 is nonunitary, which makes S̃±α hermitian (rather than antihermitian) after

the transformation, requiring a modification of the usual representation for S̃. The

usual representation can also be used by introducing an i into the transformation,

which gives S̃±α a factor of ±i in Qα. However, this i can be removed by the same

method used in subsection IIB4 to remove i’s associated with the index −1, only now

it is applied to both the + and − indices.

As described in subsection IIB3, this construction has the ambiguity that any

column of height n (including n=0) in an SO(D−2) Young tableau can be replaced

with one of height D−2−n, at least when describing the free theory. Although the

resulting on-shell field strength will be the same SO(D−1,1) representation and satisfy

the same equations, the gauge field will differ, and thus also will the tensor that

appears as the field equation following from the gauge-invariant action.



A. OSp(1,1|2) 1019

3. Action

We saw in the previous subsection that physical states are singlets under the

OSp(1,1|2) BRST symmetry. It was introduced in a trivial way, but became nontrivial

after solving the equations of motion; on the other hand, applying the singlet condition

first reproduced the usual lightcone analysis. Reversing the order of applying the two

conditions has the advantage of allowing the physical state condition to be expressed

as a single equation, which can be derived from an action.

There are two ways of doing this: One is to use this algebra to generalize to gauge

fields the first-quantized BRST as applied to field theory in subsection VIA3. Because

of their quantum mechanical origin, the gauge-invariant ΦQΦ actions directly give a

form suitable for choosing the Fermi-Feynman gauge, where the kinetic operator is

simply −m2. However, this is somewhat unusual for fermions, whose simplest field

equation is first-order. (But it is useful for supersymmetry, where bosons and fermions

are treated symmetrically.) As a result, this approach gives actions for fermions with

an infinite number of auxiliary and ghost fields. The most convenient way to discover

the usual finite-component gauge-invariant first-order actions hidden there is by per-

forming an appropriate unitary transformation, after which this action (for bosons or

fermions) appears as the sum of three terms: the usual gauge-invariant action, a term

giving the usual second-quantized BRST transformations, and a nonderivative term

that would be considered nonminimal under second-quantized BRST. This approach

will be described in detail in the following sections.

The other way is to define a δ function in the generators of the group OSp(1,1|2),

and use it as the kinetic operator for the action:

S = −
∫
dx dx−d2xα 1

4
Φ∂+δ(JAB)Φ

where the integration is over all the coordinates appearing in the OSp(1,1|2) gener-

ators. (The dx part is the usual dDx/(2π)D/2.) ∂+ comes from the usual relativistic

inner product; it is also a “measure” factor, which is a consequence of our using

generators satisfying the pseudohermiticity condition

J†AB∂
+ = −∂+JAB

Equivalently, we could redefine Φ → (∂+)−1/2Φ, J → (∂+)−1/2J(∂+)1/2 (assuming

∂+ 6= 0, as usual in lightcone formalisms) to eliminate it and restore hermiticity.

(This would only affect J−+ → J−+ − 1
2 , Jα− → Jα− + ∂α/2∂+, making hermitian

the terms 1
2{x−, ∂+} and 1

4
{xα, ∂β∂β}/∂+.) Because of the δ function, this action has

the gauge invariance

δΦ = 1
2J

BAΛAB
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Thus, the field equations and gauge invariance reduce Φ to states in the OSp(1,1|2)

cohomology.

More explicitly, the δ function can be written as

∂+δ(JAB) = ∂+δ(Jαβ
2)δ(J−+)δ2(J+α)δ2(Jα−)

= δ(x−)δ2(xα)δ(Ŝαβ
2)∂+2J−α2

where we have used

J−+δ(J−+) = δ(J−+)J−+ = 0 ⇒ δ(J−+) =
1

∂+
δ(x−)

(There is freedom in ordering of the original δ functions: Reordering of any two δ’s

produces terms that are killed by the other δ’s.) The δ(Ŝαβ
2) can be interpreted as a

Kronecker δs0 in the Sp(2) “spin” s:

−1
2 Ŝ

αβŜαβ = 4s(s+ 1)

(remember Ŝαβ is antihermitian, and iŜ⊕	 is always integer while s can be half-

integer). The rest of the explicit δ’s are Dirac δ’s in the unphysical coordinates,

which can therefore be trivially integrated out, leaving:

S =

∫
dx Lgi, Lgi = 1

2φKgiφ, Kgi = 1
2(− +m2 + 1

2Q
αQα)

where φ is Φ evaluated at xα = x− = s = 0. Furthermore, the remaining gauge

invariance is

δφ = δs0
1
2Q

αΛα

from Jα−, since Jαβ, J+α, and J−+ have been used to gauge to s = xα = x− = 0,

respectively.

Exercise XIIA3.1

Show explicitly that this action is invariant under the OSp(1,1|2) gauge trans-

formations. (Hint: Use the same method as exercise XA2.1.)

4. Spinors

As we saw in subsection VIA3, the BRST algebra for the (Dirac) spinor requires

nonminimal terms. For the general case of fermions we add these terms in the general

way described in subsection XIIA2, choosing them in terms of a (second) set of

OSp(1,1|2) γ matrices:

S̃AB = −1
4
[γ̃A, γ̃B}, {γ̃A, γ̃B] = −2ηAB
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where γ̃A = (−κ,−µ; ξ̃, iζ̃) in the notation of subsection VIA3. In particular, we find

Ŝαβ = Sαβ − 1
4
γ̃(αγ̃β)

Qα = Sαb∂b + Sα−1im+ 1
2 γ̃

α[γ̃− + γ̃+ 1
2( −m2)]

The next step for general massless fermions (and similarly for the massive case)

is to apply

Q2 = 1
2S

αaSα
b∂a∂b − 1

2(γ̃− − γ̃+K)γ̃αSα
a∂a − 1

2K

where we have used
1
2 γ̃

αγ̃α = 1
2C

αβ 1
2 [γ̃β, γ̃α] = 1

At this point we note that the gauge invariance generated by Qα, for gauge parameter

Λα = γ̃αΛ, includes a term γ̃−Λ that allows us to choose the gauge

γ̃+φ = 0

One way to think of this is to treat γ̃+ as an anticommuting coordinate and γ̃− as

its derivative; another way is to treat them as 2×2 matrices. Alternatively, we can

unitarily transform the action to contain just the γ̃− term of the operator: From the

discussion of 2D γ matrices of subsection VIIB5 we find, including that part of the

spinor metric,

Υ̃ 1√
2
γ̃− = −

(
1
0

0
0

)
then acts as a projection operator. Either way, the net result is to reduce the action

to, now restoring the mass,

Sf =

∫
dx Lgi,f , Lgi,f = 1

2 φ̂Kgi,f φ̂, Kgi,f = γ̃α(Sα
a∂a + Sα−1im)

(for real φ̂) where φ̂ is φ with the γ̃±-dependence eliminated (the top component in

the above matrix representation). Thus, φ̂ differs from the bosonic case in that it not

only depends on xa and is a representation of Sij, but is also a representation of γ̃α,

which appears in Ŝαβ to define s = 0.

The only type of representation we have missed in this analysis is selfdual anti-

symmetric tensors. In terms of field strengths, these satisfy

Fa1...aD/2 = ± 1
(D/2)!

εa1...aD/2b1...bD/2F
b1...bD/2

which is consistent, with Lorentz metric, if D/2 is odd (as seen from applying the

ε tensor twice). A similar condition holds for the gauge field in the lightcone gauge

(with a (D−2)-dimensional ε tensor). Because of the ε tensor, this condition can’t be
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described by adding extra dimensions to the lightcone. However, the direct product of

two spinors contains all antisymmetric tensors, and the rank D/2 one can be picked

out by an appropriate OSp invariant constraint. The selfdual part of this tensor

comes from the direct product of chiral spinors.

Exercise XIIA4.1

We now consider this construction in more detail:

a Derive the generalization of γ−1 to OSp γ matrices, anticommuting with both

the fermionic and bosonic γ’s, {γ−1, γA} = 0. We can use the usual product

for the fermionic γ’s, but obviously the bosonic ones will need something

different. (Hint: For each pair of fermionic or bosonic γ’s there is a Klein

factor, as in exercise IA2.4d; for the fermionic γ’s the exponential is equal to

the usual product.)

b In twice-odd dimensions, consider the direct product of two spinors by rep-

resenting the OSp spin operators as a sum in terms of the two different sets

of OSp γ matrices acting on the two different spinor indices. Define the U(1)

(O(2)) symmetry that mixes the two γ matrices by taking linear complex

combinations of the γ matrices to form fermionic creation and annihilation

operators, so the OSp-invariant U(1) generator is a†AaA. Show that the eigen-

values of this generator pick out the different Lorentz representations. These

can be made irreducible by including γ−1 projections. Using explicit U(1)

and (both) γ−1 projectors in the action, show that selfdual tensors can be

described. (Note: This description contains an infinite number of auxiliary

fields.)

5. Examples

The OSp(1,1|2) method is thus an efficient method for finding gauge-invariant

actions (though not so useful for gauge fixing). We begin with examples of massless

bosons, for which the gauge-invariant kinetic operator is

Kgi = 1
2(− + 1

2Q
αQα), Qα = Sαa∂a

The scalar is a trivial example; the simplest nontrivial example is the massless vec-

tor: In terms of the basis |i〉 for an OSp(D−1,1|2) vector (D-vector plus 2 ghosts),

normalized to

〈i|j〉 = ηij ⇒ 〈a|b〉 = ηab, 〈α|β〉 = Cαβ
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we can write the OSp(D−1,1|2) generators as

Sij(1) = |[i〉〈j)|

The Sp(2)-singlet field is then (dropping the |α〉 term)

φ = |a〉Aa(x)

We then have

Qα = (|α〉〈a| − |a〉〈α|)∂a ⇒ Q2 ≡ 1
2Q

αQα = |a〉〈b|∂a∂b − 1
2 |
α〉〈α|

⇒ Lgi(1) = 1
8
(Fab)

2

and for the gauge invariance

δφ = δs0
1
2Q

αΛα ⇒ Λα = |α〉λ(x) ⇒ δAa = ∂aλ

A more complicated example is the graviton (massless spin 2): We write the field,

a graded symmetric, traceless OSp(D−1,1|2) tensor, in terms of the direct product

of two vectors, with basis |i〉|j〉. The spin operators are thus

Sij = Sij(1) ⊗ I(1) + I(1) ⊗ Sij(1)

where the first factor in each term acts on the first factor in |i〉|j〉, etc.; I(1) is the

spin-1 identity. The s = 0 part of the field is then

φ = |i〉|j〉hji, hii = haa + hαα = 0 ⇒ φ = (|a〉|b〉+ 1
2 |
α〉|α〉ηab)hab

where hab includes its trace. The rest is straightforward algebra; we use identities

such as:

Q2 = Q2
(1) ⊗ I(1) + I(1) ⊗Q2

(1) +Qα(1) ⊗Q(1)α

Qα(1) ⊗Q(1)α = (|α〉|α〉〈a|〈b|+ |a〉|b〉〈α|〈α|)∂a∂b

(〈α|〈α|)(|β〉|β〉) = −〈α|β〉〈α|β〉 = −2

where Q2
(1) was evaluated above, and in the last identity we used the fact that |α〉 is

anticommuting. The final result is then

Lgi(2) = −1
4
[hab hab + 2(∂bhab)

2 − haa hbb + 2haa∂
b∂chbc]

in agreement with subsection IXB1. The original OSp(1,1|2) gauge invariance reduces

to

Λα = (|α〉|a〉+ |a〉|α〉)λa ⇒ δhab = ∂(aλb)
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Exercise XIIA5.1

Consider a (D−2)-rank antisymmetric tensor (i.e., totally antisymmetric in

D−2 indices in D dimensions; see exercises IIB2.1 and VIIIA7.2, and subsec-

tion XA3).

a Show from a lightcone analysis that it is equivalent to a scalar. Derive the

gauge-invariant action using OSp methods. Find the gauge transformations

and field strength.

b Find a first-order form for the action, (auxiliary field)2 + (auxiliary field) ×
(field strength). Show that eliminating the gauge field as a Lagrange multi-

plier results in the action for a scalar. Show that switching between scalar and

antisymmetric tensor is equivalent to switching field equation and constraint

for the field strength.

c Find the description for the massive case by dimensional reduction.

Exercise XIIA5.2

Consider a tensor totally symmetric in its vector indices. In the lightcone

gauge, the irreducible tensor is traceless. Show that, upon covariantiza-

tion, the field appearing in the gauge-invariant action satisfies a double-

tracelessness condition (or equivalently the fields appearing there are the

totally traceless tensor and another totally tracelsss tensor with two less in-

dices).

For massless fermions we saw

Kgi,f = γ̃αSα
a∂a

The next step is to use the fact that arbitrary fermionic representations are con-

structed by taking the γ-traceless piece of the direct product of a (Dirac) spinor with

an irreducible bosonic representation. (Just as an irreducible bosonic representation

of an orthogonal group is found by taking the direct product of vectors, choosing an

appropriate symmetry, as described by the Young tableau, and requiring the trace

in any two vector indices to vanish; here we also require that using a γ matrix to

contract the spinor index with any vector index also vanishes. Of course, simpler

methods can be used for SO(3,1), but we need methods that apply to all dimensions,

so they can be applied to orthosymplectic groups.) We then can write

Sij = Šij − 1
4
[γi, γj} ⇒ Ŝαβ = Šαβ − a†(αaβ)

where Šij is the part of the spin acting on just the vector indices, and we have

combined γα and γ̃α into creation and annihilation operators, as in subsection VIA3:

aα = 1
2(γα + iγ̃α), a†α = 1

2(γα − iγ̃α); [aα, a
†β] = −δβα
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For spin 1/2 Š = 0, δs0 projects to the ground-state of the oscillators, and we

immediately find

Sα
a = −1

2γαγ
a ⇒ Lgi(1/2) = 1

2 φ̂γ
ai∂aφ̂

where we have used

γ̃αγα = i(a†αaα − aαa†α) = 2i(a†αaα − 1) = −2i(N + 1)

and this “N” counts the a†α excitation level. (Note that the Hilbert-space inner

product between the spinors includes the usual factor of γ0.) A less trivial case is

spin 3/2: Now

φ = |i〉φi, Sαa = −1
2γ

αγa + |[α〉〈a]|

where φi has an explicit vector index, and an implicit spinor index. Then from γ-

tracelessness (for irreducibility) we have for the Sp(2) singlets

γiφi = 0 ⇒ φα = −1
2γαγ

aφa ⇒ aαφa = 0, φα = −1
2a
†
αγ

aφa

After a little algebra, using identities such as

1
6
γ[aγbγc] = γaγbγc + (ηb(aγc) − ηacγb)

we find

Lgi(3/2) = − 1
12
φ̂aγ

[aγbγc]i∂bφ̂c

From inspection, or from δφ = δs0
1
2QαΛα, we find the gauge invariance

δφ̂a = ∂aλ

Exercise XIIA5.3

Let’s now examine some massive examples:

a Find the gauge-invariant actions for massive spin 2 and spin 3/2 by dimen-

sional reduction of the massless cases.

b Note that for the spin-2 case the part of the mass term quadratic in h is

proportional to −h[a
ahb]

b. More generally, we might have expected (hab)
2 +

k(ha
a)2 for arbitrary constant k, since the first part gives mass to the physical

(transverse, traceless) part of h, while the second term affects only the unphys-

ical pieces. Find the Stückelberg terms generated from this generalized mass

term by the linearized gauge invariance. Looking at just the terms quadratic

in the Stückelberg vector, what is special about k = −1, and why do other

values of k give ghosts? (Hint: Compare gauge-fixed electromagnetism.)
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lightcone representations of Poincaré algebra, and covariant actions, for arbitrary spin
and dimension.

4 G. Parisi and N. Sourlas, Phys. Rev. Lett. 43 (1979) 744:
cancellation of extra dimensions.

5 R. Delbourgo and P.D. Jarvis, J. Phys. A15 (1982) 611;
J. Thierry-Mieg, Nucl. Phys. B261 (1985) 55;
J.A. Henderson and P.D. Jarvis, Class. and Quant. Grav. 3 (1986) L61:
ghosts from extra dimensions for indices.

6 W. Siegel, Nucl. Phys. B284 (1987) 632:
1st-quantized BRST for fermions.

7 N. Berkovits, [arXiv:hep-th/9607070], Phys. Lett. 388B (1996) 743:
1st-quantized BRST for selfdual tensors.

8 Siegel, loc. cit.
9 Fierz and Pauli, loc. cit. (ref. 2 above):

mass term for spin 2.

http://arXiv.org/abs/hep-th/9607070


B. IGL(1) 1027

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B. IGL(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Although the OSp(1,1|2) method is the simplest way to derive general free gauge-

invariant actions, it does not yield a simple method for gauge fixing, even though

the Hilbert space contains exactly the right set of ghosts. We now describe a related

method that is slightly less useful for finding gauge-invariant actions (it includes

redundant auxiliary fields), but allows gauges to be fixed easily.

1. Algebra

For this method we use a subset of the OSp(1,1|2) constraints, and show they are

sufficient. A simple analog is SU(2): To find SU(2) singlets, it’s sufficient to look for

states that are killed by both T3 and the raising operator T1 + iT2. This approach

gives a formalism that turns out to be easier to generalize to interacting theories, as

well as allowing a simple gauge-fixing procedure. We first divide up the Sp(2) indices

as α = (⊕,	) (not to be confused with ±). We then make a similarity transformation

that simplifies some of the generators (while making others more complicated):

J → UJU−1 : U = (∂+)iJ
⊕	

which changes the Hilbert-space metric (and corresponding hermiticity conditions) to

Υ = U †U = (−1)iJ
⊕	
, 〈Ψ |Ξ〉 =

∫
Ψ †ΥΞ

This simplifies (looking at the massless case without S̃AB for simplicity)

J+	 → 1

∂+
J+	 = −x	

J−+ → J−+ − iJ⊕	, J⊕	 → J⊕	

J⊕− → J⊕−∂+ + iJ⊕	∂⊕ = (−x−∂+)∂⊕ + 1
2x
⊕ + S⊕a∂a + S⊕⊕∂⊕

(We use the same conventions for raising and lowering Sp(2) indices as for SU(2) in

subsection IIA4 and SL(2,C) in subsection IIA5.) These four generators form the

subgroup GL(1|1) of OSp(1,1|2) (=SL(1|2)): We can write the generators as JI
J ,

where I = (+,⊕). In subsection XIIB4 we’ll see that the singlets of this GL(1|1) are

the same as those of OSp(1,1|2).

On the other hand, because of the simplified form of these generators, it’s easy to

see how to reduce the group even further: Applying some of the constraints on wave

functions/fields to the right,

J+	 = −x	 = 0, J−+ + iJ⊕	 = x−∂+ = 0
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⇒ J⊕	 = −ix⊕∂⊕ + i+ S⊕	, J⊕− = 1
2x
⊕ + S⊕a∂a + S⊕⊕∂⊕

(Of course, this further reduction could have been performed even without the trans-

formation.) We are now left with the group IGL(1), with just J⊕	 and J⊕− as gener-

ators. (J⊕− acts as translations for the GL(1) generator J⊕	.) Also, we have reduced

the unphysical coordinates to just x⊕. We now simplify notation by relabeling

c = x⊕, b = ∂⊕, S3 = iS⊕	, J = iJ⊕	 + 1, Q = J⊕−

⇒ J = cb+ S3, Q = 1
2c + S⊕a∂a + S⊕⊕b

J and Q are versions of the ghost-number and BRST operators introduced in sub-

section VIA1. The net result for obtaining these IGL(1) generators from the original

OSp(1,1|2) generators can also be stated as

J = iJ⊕	|∂⊕=0,∂+=1, Q = J⊕−|∂⊕=0,∂+=1

where ∂⊕ = 0 can be regarded as a gauge condition for the constraint x	 = 0, and

∂+ = 1 for x−∂+ (∼ ∂/∂(ln ∂+)) = 0. The IGL(1) algebra is

[J,Q] = Q, Q2 = 1
2{Q,Q} = 0

Exercise XIIB1.1

Show that any IGL(1) subgroup of OSp(1,1|2) (J = iJ⊕	, Q = J⊕−) satis-

fies these commutation relations. Check that this final representation of the

IGL(1) algebra satisfies them.

Exercise XIIB1.2

Using the results of subsection XIIA2,

a Give expressions for Q and J in terms of (c, b,) K, Qα, and Ŝαβ.

b Derive {Qα,Qβ}, assuming only Q2 = 0 and the previous results for [Ŝ, Ŝ]

and [Ŝ,Q].

2. Inner product

The new inner product can be derived by the same steps: Starting with the

lightcone inner product of subsection XIIA1, we add extra dimensions to get the

OSp(D,2|2) inner product. We next drop dependence on x	, which will be eliminated

in the IGL(1) formalism. Then we perform the transformation with (∂+)iJ
⊕	

=

(∂+)J−1 used to simplify the BRST operator. This acts on both fields in the inner

product; applying integration by parts turns one such factor into (−∂+)−J . The net
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effect is that it cancels the ∂+ in the Hilbert-space metric, which allows us to drop

the x− integration, and it introduces a factor of (−1)J .

Rather than defining a Hilbert-space inner product, which is sesquilinear, it is

slightly more convenient to define a symplectic inner product, replacing the Hermitian

conjugate of the wave function/state on the left with the transpose, in analogy to an

ordinary vector inner product. The inner product is then

〈Ψ |Ξ〉 = −i(−1)Ψ
∫
dx dc ΨT (x, c)(−1)JΞ(x, c)

A Hilbert-space inner product can then be defined simply as 〈Ψ*|Ξ〉 (where (Ψ*)T =

Ψ †). We have included a sign factor corresponding to what would be obtained if the

dc integration were moved to the symmetric position between the two wave functions:

By (−1)Ψ we mean take Ψ = 0 in the exponent if Ψ is bosonic and 1 if Ψ is fermionic.

We can make this manifest by defining

Ψ(x, c) = 〈x, c|Ψ〉 ⇒ I = −i
∫
dx dc |x, c〉(−1)J〈x, c|

which allows the inner product to be evaluated between 〈Ψ | and |Ξ〉 by inserting this

form for the “identity” I.

Exercise XIIB2.1

Work out the inner product for the vector field in terms of all of the compo-

nents (both expanding over c and separating physical and ghost parts of the

OSp(D−1,1|2) vector).

As a result, any commuting or anticommuting constant factor “a” can be moved

out of the inner product from the left or right in the usual way:

〈Ψ |Ξa〉 = 〈Ψ |Ξ〉a, 〈aΨ |Ξ〉 = a〈Ψ |Ξ〉

As a consequence of the anticommutativity of the integration measure, we have

(−1)〈Ψ |Ξ〉 = (−1)Ψ+Ξ+1

meaning that the statistics of the inner product is the opposite of an ordinary product;

we can think of “ | ” as a fermion.

Because of the change in metric from the lightcone, the IGL(1) generators now

satisfy

JT = 1− J, QT = Q
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where the constant comes from dropping the extra coordinates, and the transpose

“ T ” indicates integration by parts (the usual transpose in the infinite-matrix repre-

sentation of operators): ∫
ΨOΞ =

∫
(−1)ΨO(OTΨ)Ξ

Before our transformations the generators all satisfied GT = −G; now they are pseu-

doantisymmetric with respect to the metric (−1)J , up to the constant:

〈Ψ |OΞ〉 = 〈ÕΨ |Ξ〉 ⇒ Õ = (−1)JOT (−1)J

J̃ = 1− J, Q̃ = −Q

From JT = 1− J also follows the symmetry property of the inner product:

〈Ψ |Ξ〉 = (−1)(Ψ+1)(Ξ+1)〈Ξ|Ψ〉

This can be interpreted as antisymmetry once the anticommutativity of the “ | ”
(metric) is taken into account.

The hermiticity conditions that follow from the change from the lightcone are

J† = 1− J, Q† = Q

Before all generators were antihermitian; now they are pseudoantihermitian, up to a

constant:

Ô = (−1)JO†(−1)J

⇒ Ĵ = 1− J, Q̂ = −Q

The factor of i in the inner product compensates for the funny hermiticity of (−1)J .

We then find the usual hermiticity condition for a vector inner product,

〈Ψ |Ξ〉* = 〈Ξ†|Ψ †〉

3. Action

As explained in subsection VIA1, we are interested in states in the cohomology

of the BRST operator Q, which means states satisfying

QΦ = 0, δΦ = iQΛ

In particular, the physical states are states in the cohomology of Q at ghost number

J = 0. However, now QΦ = 0 is the wave equation (as in subsection VIA3), and QΛ
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contains the usual gauge transformations (as in the OSp(1,1|2) action of the previous

section).

The free gauge-invariant action for an arbitrary field theory is then

S0 = −(−1)Φ
∫
dx dc 1

2Φ
T δJ1QΦ = −(−1)Φ

∫
dx dc 1

2Φ
TQδJ0Φ

for a real column-vector field Φ. (Complex fields can be decomposed into their real

and imaginary parts. For relating to quantum mechanics, we will usually consider

the column-vector in our OSp Hilbert-space notation.) This action gives QΦ = 0 as

the equations of motion, and has δΦ = QΛ as a gauge invariance, so the solutions are

the cohomology of Q. The projector δJ0 is a Kronecker δ restricting Φ to vanishing

ghost-number (and thus QΦ to ghost number 1, since [J,Q] = Q). As we’ll see

in section XIIC, this projector is redundant: The states in the cohomology with

nonvanishing momentum automatically have vanishing ghost-number, and the states

with nonvanishing ghost-number are needed for gauge fixing. The projection is useful

only for eliminating states that are redundant for discussing gauge invariance; we’ll

drop it for the remainder of this section. The “complete” free action is then

S0 = −(−1)Φ
∫
dx dc 1

2Φ
T (−1)J−1QΦ = 1

2〈Φ|iQΦ〉 = S0
†

where we have included the inner-product metric. This is just the translation of

the free BRST operator from first- to second-quantized form, as for the lightcone in

subsection XIIA1.

We now consider some simple examples, to see how this method reproduces the

usual results. The simplest example is the scalar: As shown in subsection VIA3,

Q = c1
2( −m2) ⇒ −

∫
dc 1

2Φ(−1)J−1QΦ = −1
2φ

1
2( −m2)φ

without restrictions to vanishing ghost number, unitary transformations, gauge fixing,

etc. Thus the scalar is in no way a gauge field: The kinetic operator follows from

simple kinematic considerations.

The fundamental example of a gauge theory is a vector: It is the defining repre-

sentation of the Lorentz group, and of the extended Lorentz group we used to define

the BRST operator. In the rest of this chapter we will see from its action most of the

general properties of gauge theories: ghosts, gauge invariance, BRST transformations

of the fields, the gauge-invariant action, gauge fixing, backgrounds, mass, etc. In

addition to the equations given for this case in subsection XIIA5, we will use

〈⊕|	〉 = −〈	|⊕〉 = i
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The BRST and ghost-number operators are

Q = 1
2c + (|⊕〉〈a| − |a〉〈⊕|)∂a + 2|⊕〉〈⊕|b, J = cb+ i(|⊕〉〈	|+ |	〉〈⊕|)

The field is real; it can’t be called hermitian, since it is a column vector, but each

component of that vector is hermitian. (This is the same as reality, but for anti-

commuting objects reality includes extra signs that are defined to be exactly those

coming from hermitian conjugation.) Thus,

Φ = Φ* = (|a〉Aa − i|	〉C + i|⊕〉C̃)− ic(|a〉Ǎa − |	〉 ˇ̃C − |⊕〉Č)

ΦT = Φ† = (Aa〈a|+ iC〈	| − iC̃〈⊕|) + (Ǎa〈a| − ˇ̃C〈	| − Č〈⊕|)ic

where we denote the “antifields” (those at order c) by a “ ˇ ”.

The BRST transformations of the fields can be found by comparing terms in Φ

and QΦ: If we define a second-quantized BRST operator Q̂ such that QΦ = Q̂Φ, but

Q̂ acts only on the fields while Q (as usual) acts on |i〉 and the coordinates (x and c),

then

Φ = |i〉(φi − icψi) ⇒ QΦ = Q̂Φ = |i〉[(−1)iQ̂φi − ic(−1)i+1Q̂ψi]

(Note that Φ = |i〉Φi and ΦT = Φi〈i|, where Φi, not Φi, is Hermitian. Also, keeping

track of i’s and signs is a bit easier if one works in terms of φ and ψ to start with,

then plugs in appropriate i’s for reality at the end. Technically, there would normally

be a “−” sign to relate Q and Q̂, which is irrelevant since Q2 = 0: A nicer way to

understand Q̂ will be given in subsection XIIC1.) In other words, we compare terms

in Φ and QΦ, and throw in a minus sign for transformations of fermions. (So, e.g.,

“Q̂Aa” is the coefficient of |a〉 in QΦ.) Dropping the “ ˆ ” on Q, the result is

QAa = −∂aC, QC = 0, QC̃ = −2i( ˇ̃C − 1
2∂ · A)

QǍa = −i(1
2 Aa − ∂a ˇ̃C), QČ = 1

2 C̃ + ∂ · Ǎ, Q ˇ̃C = −1
2 C

Note that although Q is hermitian, it is antihermitian with respect to the inner-

product metric (−1)J , as expected from our convention of using antihermitian gener-

ators for spacetime symmetries. (The same extra sign for hermiticity vs. pseudoher-

miticity, also because of ghosts introduced by relativistic quantum mechanics, occurs

for the spatial Dirac matrices γi: see subsection XC2.) As a result, our transforma-

tions agree with those of subsection VIA4. However, while the first-quantized Abelian

transformations also agree with those of subsections VIA1-3, the second-quantized

nonabelian transformations will have the extra i demonstrated in subsection VIA4,
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following from the i introduced in the inner-product metric in the previous subsec-

tion. (This minor yet annoying factor will be further discussed in section XIIC when

we relate first- and second-quantized BRST.)

The Lagrangian then can be expanded as (after some integration by parts)

L0 = −
∫
dc 1

2Φ
T (−1)J−1QΦ = −i1

2(A ·QǍ−CQČ− C̃Q ˇ̃C+ Ǎ ·QA− ČQC− ˇ̃CQC̃)

= 1
8
(Fab)

2 + ( ˇ̃C − 1
2∂ · A)2 − iC̃ 1

2 C + iǍ · ∂C

where we have used the transpose of the field on the left of ΦQΦ. To find the gauge-

invariant action, we can evaluate it by keeping just the (anti)fields with vanishing

ghost number (Aa and ˇ̃C), and then eliminate the remaining antifields by their equa-

tions of motion:

L→ 1
8
(Fab)

2 + ( ˇ̃C − 1
2∂ · A)2 ⇒ Lgi = 1

8
(Fab)

2

Exercise XIIB3.1

Consider the example of the second-rank antisymmetric tensor (see exercises

IIB2.1, VIIIA7.2, and XIIA5.1, and subsection XA3):

a Construct the states by direct product of two vectors. Decompose into fields

plus antifields, physical plus ghost: In particular, note the Sp(2) representa-

tion of each SO(D−1,1) representation.

b Find the BRST transformations for all the (anti)fields. In particular, note

that the tensor transforms into vector ghosts (as expected from the gauge in-

variance), which themselves transform into scalar ghosts (“ghosts for ghosts”).

c Graph all the states for s (of the Sp(2) Sαβ) vs. J , and indicate there how

BRST relates them.

d Find the gauge-invariant action from ΦQΦ.

e Generalize to arbitrary-rank antisymmetric tensors. Compare the results of

exercise XIIA5.1a.

4. Solution

The identity of the cohomology and the physical states can be proven most easily

by making a unitary (“gauge”) transformation to the “lightcone gauge”:

(Q, J)→ U(Q, J)U−1 : U = e(S+i∂i+S
+⊕b)/∂+
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which simplifies Q while leaving J unchanged:

Q→ 1
2c − S⊕−∂+, J → cb+ S3

These are the usual lightcone indices ± of any D-vector, not to be confused with the

± used earlier when reducing from D+2 bosonic dimensions. Except for the extension

to include the ⊕ index, this is the same transformation used in subsection IIB3 (and

XIIA1).

This makes the generators separable, allowing us to treat the two terms in Q and

J independently. Specifically, if we integrate the action over c,

Φ = φ−icψ ⇒ −
∫
dc 1

2Φ
T (−1)J−1QΦ = −1

4
φT (−1)S

3

φ−iψT (−1)S
3−1S⊕−∂+φ

Then ψ is just a Lagrange multiplier enforcing the algebraic constraint S⊕−φ = 0

(ignoring ∂+, which we always assume is invertible in the lightcone approach), leaving

just the Klein-Gordon term for the part of φ that satisfies the constraint. We also

have the gauge invariance

Λ = λ+ cχ, δΦ = iQΛ ⇒ δφ = −iS⊕−∂+λ, δψ = −S⊕−∂+χ− 1
2 λ

so we can shoose the gauge where φ is restricted (algebraically) to be in the cohomol-

ogy of S⊕−.

To solve for the cohomology of S⊕− it is sufficient to consider the reducible repre-

sentations formed by direct products of vectors (for bosons), or the direct products of

these with a single Dirac spinor (for fermions), since by definition the OSp(D−1,1|2)

generators Sij don’t mix different irreducible OSp(D−1,1|2) representations. We’ll

show that this cohomology restricts any reducible OSp(D−1,1|2) representation to

the corresponding reducible SO(D−2) lightcone representation, and therefore restricts

any irreducible OSp(D−1,1|2) representation to the irreducible SO(D−2) represen-

tation from which it was derived. (Also, the irreducible representations in arbitrary

dimensions are most conveniently found by such a construction, where reduction is

performed by symmetrization and antisymmetrization and subtracting traces of vec-

tor indices, and in the fermionic case also subtracting gamma-matrix traces and using

Majorana/Weyl projection.)

For bosons, we first consider the representation from which all the rest are con-

structed, the vector. Writing the basis for the vector states as |i〉, where Sij|k〉 =

|[i〉ηj)k, we find

S⊕− = 0 ⇒ not |+〉, |	〉

δ = S⊕− ⇒ not |−〉, |⊕〉
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This leaves only the transverse lightcone states, as advertised. For the direct product

of an arbitrary number of vectors, we find the same result: The unphysical directions

are eliminated from each vector in the product.

We might worry that extra states in the cohomology would arise from a can-

cellation of two terms, resulting from the action of the “⊕” and “−” parts of S⊕−.

Specifically, this could happen if we could separate out the supertraceless part of

(the graded symmetric part of) the product of two OSp(1,1|2) vectors. (For exam-

ple, for an SO(n) vector we can separate the traceless part of a symmetric tensor as

Tij − 1
n
δijTkk.) However, this is not possible, since for OSp(1,1|2)

str(δBA ) = 2− 2 = 0

Explicitly, we can look at the two likely candidates for extra states in the cohomology,

|+〉|−〉 ± i|⊕〉|	〉

(and their transposes). But using

S⊕−|+〉 = −|⊕〉, S⊕−|	〉 = −i|−〉

for these states we find

S⊕−(|+〉|−〉+ i|⊕〉|	〉) = −2|⊕〉|−〉

S⊕−i|+〉|	〉 = |+〉|−〉 − i|⊕〉|	〉

so neither state is in the cohomology. Note that we take S⊕− to anticommute with

|α〉; the states in the Hilbert space are assigned statistics. (This is the simplest way

to allow a direct relation between wave functions and fields.)

Exercise XIIB4.1

Check this analysis for spin 3.

Note that in the Lagrangian −1
4
φT φ − iψTS⊕−∂+φ the fields in φ that are

nonzero when acted upon by S⊕− are auxiliary, killed by the Lagrange multiplier ψ.

On the other hand, the fields that are S⊕− on something are pure gauge, and do not

appear in the ψS⊕−φ term because S⊕− is nilpotent, while they drop out of the φ φ

term because the fields multiplying them there are exactly the auxiliary ones that

were killed by varying ψ. This follows from the fact that a field that is pure gauge

with respect to S⊕− has a nonvanishing inner product only with an auxiliary field,

since φ1 = S⊕−λ⇒ φ2φ1 = φ2S
⊕−λ. Equivalently, a field redefinition ψ → ψ +A φ

can cancel any terms in φ φ where one φ is S⊕− on something.
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For the example of the vector, we have explicitly for the transformation to the

lightcone

ln U =
1

∂+

[
(|+〉〈i| − |i〉〈+|)∂i + (|+〉〈⊕| − |⊕〉〈+|)b

]
under which the Lagrangian becomes

L→ L′ = −1
4
A · A− iC̃ 1

2 C + ˇ̃C∂+A− − iǍ−∂+C

The lightcone gauge transformations are

δA+ = −∂+λ, δ ˇ̃C = −1
2 λ

δC̃ = −∂+ζ, δǍ− = −1
2 ζ

δČ = 1
2 ξ	, δǍ+ = 1

2 ξ+, δǍi = 1
2 ξi

where “i” here refers to the transverse (D−2) components.

5. Spinors

In general we can add nonminimal terms S̃AB of subsection XIIA2: The easiest

way is to add them as the last step, remembering that Q comes from J⊕− and J from

J3; this yields

Q→ 1
2c + S⊕a∂a + S⊕⊕b+ S̃⊕−, J → cb+ S3 + S̃3

This result can also be seen from first-quantization of spin 1/2 (subsection VIA3).

Alternatively, if we add S̃ at the beginning as in subsection XIIA2, performing the

transformations given there, followed by the transformation

U = (∂+)iJ
⊕	

of subsection XIIB1, where J⊕	 itself now contains S̃ terms, we again find

J+	 → 1

∂+
J+	 = −x	, J−+ → J−+ − iJ⊕	

J⊕	 → J⊕	, J⊕− → J⊕−∂+ + iJ⊕	∂⊕

Adding a final transformation

U = e−S̃
+⊕b

(which actually undoes part of an earlier one), we again obtain the above result.

As in the previous subsection, we can also transform to the lightcone gauge, to

find

Q→ 1
2c − S⊕−∂+ + S̃⊕−
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When analyzing the BRST cohomology in the lightcone gauge, the effect of this

nonminimal term is to replace (again ignoring the factor of −∂+)

SAB → ŜAB = SAB + S̃AB

(although actually only the S⊕− and S3 parts are used here).

As in subsection XIIA4, when treating fermions we choose the Dirac spinor rep-

resentation of OSp(1,1|2) for S̃AB. Thus, for the case of spin 1/2, where SAB also

is a Dirac spinor representation, ŜAB is represented by the direct product of two

OSp(1,1|2) spinors. We now use the harmonic oscillator interpretation of the ghost

coordinates used in subsection XIIA5 (extending it trivially to the fermionic ones),

which can be applied to arbitrary OSp groups:

SAB = −1
4
[γA, γB}, S̃AB = −1

4
[γ̃A, γ̃B}

aA = 1
2(γA + iγ̃A), a†A = 1

2(γA − iγ̃A)

⇒ {aA, a†B] = −ηAB, ŜAB = −a†[AaB)

By expanding about the oscillator vacuum, we find this representation of OSp(1,1|2)

consists of the direct sum of totally (graded) antisymmetrized tensors: |0〉, |A〉 =

a†A|0〉, |[AB)〉 = a†Aa†B|0〉,... . But we have already treated this case for the bosons,

the result being that only the singlet (vacuum) survives. Of course, the complete spin

representation is given by the direct product of the representation of the unphysical

variables (γA, γ̃A) and the physical ones, namely the transverse lightcone gamma

matrices. Thus, the states in the cohomology are given by the direct product of all

the lightcone states with the vacuum of the unphysical variables. To treat arbitrary

fermions, generalization to direct products of the Dirac spinor with arbitrary numbers

of vectors works the same way, since the spinor looks like the direct sum of parts of

direct products of vectors as far as ŜAB is concerned.

Exercise XIIB5.1

Work out the explicit Q and Hilbert space for spin 3/2.

6. Masses

As usual masses can be added by dimensional reduction: Our complete result for

application to massless and massive, bosons and fermions is then

Q = 1
2c( −m2) + S⊕a∂a + S⊕−1im+ S⊕⊕b (+S̃⊕−), J = cb+ S3 (+S̃3)

with extra i’s introduced implicitly by the procedure given in subsection IIB4.
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For example, for the vector we have (the “Stückelberg formalism”)

Q = 1
2c( −m2) + (|⊕〉〈a| − |a〉〈⊕|)∂a + (|⊕〉〈−1|+ |−1〉〈⊕|)m+ 2|⊕〉〈⊕|b

J = cb+ i(|⊕〉〈	|+ |	〉〈⊕|)

Compared to the massless case treated in subsections XIIB3-4, the corresponding

field now has the extra terms

Φ→ Φ+ |−1〉φ− ic|−1〉φ̌

giving the action

L0 = Lgi + [ ˇ̃C − 1
2(∂ · A+mφ)]2 − iC̃ 1

2( −m2)C + iC(∂ · Ǎ+mφ̌)

Lgi = 1
8
(Fab)

2 + 1
4
(mA+ ∂φ)2

For the spinor

Q = 1
2c( −m2)− 1

2γ
⊕(∂/ − im)− 1

2(γ⊕)2b− 1
2 γ̃
⊕γ̃−

J = cb− i1
2γ
⊕γ	 − i1

2 γ̃
⊕γ̃	

where in the notation of subsection VIA3,

γ⊕ = ξ, γ	 = iζ, γ̃⊕ = ξ̃, γ̃	 = iζ̃, γ̃− = −µ

Exercise XIIB6.1

Use this method to work out the action and gauge transformations for massive

spin 2.

7. Background fields

The coupling of external fields can be treated by suitable modification of the

BRST operator. In terms of self-interacting field theories, this corresponds to writing

the field as the sum of quantum and background fields, and keeping in the action only

the terms quadratic in the quantum fields, as discussed for semiclassical expansions

in subsection VA2 and for the background field method in subsection VIB8.

One interesting case is the coupling of an external vector gauge field. Clearly the

spacetime derivatives in Q must be modified by the minimal coupling prescription

∂ → ∇ = ∂ + iA, but dimensional analysis and Lorentz covariance also allow the
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addition of a nonminimal term proportional to F abSab to . With the appropriate

coefficient, the general result is (see subsection VIIIA3)

QI = 1
2c( − iF abSba) + S⊕a∇a + S⊕⊕b

where is now the covariant ∇2. (J is unchanged.)

In the case of spin 0, this modification is trivial. For spin 1/2, we substitute

the graded generalization of the Dirac matrices, Sij = −1
4
[γi, γj}, as discussed in

subsection XIIA5. We then find Q2
I = 0 fixes the above coefficient of the nonminimal

term, the same as from squaring γa∇a. This follows from the simple factorization of

Sij in QI :

QI = −c1
2(γa∇a)

2 − 1
2γ
⊕(γa∇a)− 1

2(γ⊕)2b = −1
2(γa∇a + γ⊕b)c(γb∇b + γ⊕b)

where we have neglected the S̃⊕− term of subsection XIIB5, and used

[γa, c] = {γ⊕, c} = 0

In the spin-1 case, we find the interesting result that Q2
I = 0 requires not only the

above coefficient for the nonminimal term (as expected from supersymmetry), but

also that the background terms satisfy the field equation ∇bF
ab = 0. On the other

hand, for spins >1, Q2
I = 0 implies Fab = 0, so these spins can’t couple minimally (at

least in flat spaces). Similar remarks apply to coupling gravity (spin 2) to spins >2.

Exercise XIIB7.1

Check these statements for spin 1. Compare the analogous result for back-

ground fields in the field theoretic approach from exercise VIB8.2 for Yang-

Mills for both the gauge transformations of the gauge-invariant action and

the field-theoretic BRST transformations of the gauge-fixed action.

Exercise XIIB7.2

Show that electromagnetism can’t couple minimally to (massless) higher spins

(i.e., they can’t have charge):

a Show this for the graviton by considering Q2
I = 0 for spin 2 (symmetric

traceless OSp tensor) in an external vector field.

b Do the same for spin 3/2.

Another interesting feature of the spin-1 case is that we can define a “vacuum”

state

|0〉 = |	〉
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which is in the free BRST cohomology of Q only at zero momentum (constant field),

where Q simplifies to S⊕⊕b without background. However, this state has ghost num-

ber J = −1. In fact, it corresponds to the global part of the gauge invariance of

the theory: Gauge parameters satisfying QΛ = 0 have no effect in the free theory

(where δΦ = iQΛ), but can act in the interacting theory: They do not contribute

an inhomogeneous term to gauge transformations. However, gauge parameters of the

form Λ+QΞ have the same effect as Λ, up to trivial transformations proportional to

the field equations. Thus, while the BRST cohomology at J = 0 gives the physical

states, that at J = −1 gives the global invariances associated with the gauge field.

Now the physical states can be derived by operating on the vacuum with appro-

priate vertex operators: If we expand QI about the free BRST operator Q,

QI = Q+W

Q2
I = 0 ⇒ {Q,W}+W 2 = 0

δQI = i[QI , λ] ⇒ δW = i[Q+W,λ]

where λ is the gauge parameter for the background field. The usual operator coho-

mology, relevant for asymptotic states, follows from linearization:

W → W0 ⇒ {Q,W0} = 0, δW0 = i[Q, λ]

in the weak-coupling limit, where W0 is the part of W linear in the background fields.

The asymptotic states in the cohomology of Q are then given by

Φ = W0|0〉, Λ = λ|0〉 ⇒ QΦ = 0, δΦ = iQΛ

We can check this explicitly, as

W = i1
2c({Aa, ∂

a}+ iA2 − F abSba) + iAaS
⊕a ⇒ W0|0〉 = Aa|a〉+ ic1

2(∂aAa)|0〉

The second term gives ˇ̃C = 1
2∂ · A, in agreement with the free field equations.

8. Strings

Another interesting example is strings. Since first-quantization is essential in

string S-matrix calculations, it’s natural to associate string field theory with quantum

mechanical BRST. As usual, for massive fields this formalism automatically includes

the Stückelberg fields that would have been found by dimensional reduction, as well

as all the ghosts. However, the explicit expression for the BRST operator does not

explicitly correspond to that obtained by dimensional reduction: Although the spin



B. IGL(1) 1041

operators S⊕a, S⊕⊕, and S3 are quadratic in oscillators, S⊕−1 is cubic (because P̂−,

and thus X−, is quadratic in the lightcone gauge). Nevertheless, the representation

on any particular irreducible Poincaré representation contained among all the string

states is the same as obtained by dimensional reduction, as follows from the generality

of our analysis.

As for any Poincaré representation, reducible or not, all we need is the lightcone

spin operators, given for the general case in subsection XIIA1. In subsection XIIA2

we saw that the OSp(1,1|2) generators followed immediately from just a change in

notation. The IGL(1) generators were then found in subsection XIIB1 by a uni-

tary transformation and solving half the constraints of GL(1|1); the net result was

equivalent to applying “gauge conditions” to the original OSp(1,1|2) generators:

J = iJ⊕	|∂⊕=0,∂+=1, Q = J⊕−|∂⊕=0,∂+=1

For the string, the gauge condition ∂+ = 1 simply removes the last vestige of X+,

whose oscillator modes were already eliminated by the string lightcone gauge. On the

other hand, the condition ∂⊕ = 0 makes X⊕ = X⊕(+)+X
⊕
(−) the sum of two conformally

covariant objects: With the elimination of the linear τ term in the expansion of X⊕,

X⊕(±) are periodic in their arguments, and have the usual mode expansion in terms of

exponentials only (no linear term).

Before relating this result to the string BRST operator obtained by standard first-

quantization in the conformal gauge (see subsection XIB8), we note that the solution

for the cohomology of Q is easy in this case, since following the method of subsection

XIIB4 we can transform to the lightcone gauge by unitary transformation, where S⊕−

is of the same quadratic form as in exercise VIA1.2, leaving just the usual physical

states of the lightcone gauge.

As a result, the decomposition of Q as obtained from the lightcone becomes

trivial (J was easy anyway, since it’s quadratic): Relabeling the result for the string’s

lightcone Lorentz generators from subsection XIB1,

J⊕− = i

∫
dσ

2πα′
(X⊕

.
X− −X−

.
X⊕)

(where now the “i” comes from using the antihermitian form of the Lorentz spin),

separating
.
X⊕ into its (±) pieces, using their “chirality”

.
X⊕(±) = ±X ′⊕(±) to convert

the τ derivative into a σ derivative, integrating by parts, and applying the definition

P̂(±) = 1√
2α′

(
.
X ±X ′)
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to X−, we obtain

Q = i

√
2

α′

∫
dσ

2π

∑
±

X⊕(±)P̂
−
(±)

In this form we can easily apply the Virasoro constraint, as solved in the lightcone,

P̂ 2 = 0, P̂+ = κ
√

2α′p+ ⇒ P̂− = i
1

2κ
√

2α′
(P̂ i)2

where we have applied ∂+ = 1. Finally, we relabel

X⊕(±) = C(±)

for purposes of identification with the usual BRST procedure in terms of ghosts C

and antighosts B (see subsections XIB2 and XIB8); comparison of the (equal-time)

commutation relations then gives the further identification

[P̂ i
(±)(1), P̂ j

(±)(2)} = ∓iηij2πδ′(2− 1)

⇒ [P̂ i
(±)(1), Xj

(±)(2)} = −i
√

α′

2
ηij2πδ(2− 1)

{B(±)(1), C(±)(2)} = 2πδ(2− 1)

⇒ B(±) = −
√

2
α′
P̂	(±)

The final result is then

Q =
1

κ

∑
±

∫
dσ

2πα′
C(±)(−1

2 P̂
2
(±) ± iC ′(±)B(±))

in agreement with direct first-quantization of this string in the conformal gauge, in

terms of the constraints P̂ 2
(±). (The Virasoro constraints T are here in Hamiltonian

language, as in subsection XIA3.) The ghosts can be separated into zero- and nonzero-

modes as

C(±) = 1
2c+

√
α′

2
Y ⊕(±), B(±) = 2κb∓

√
2
α′
Y ′	(±)

(For the closed string there is also an extra zero-mode in C and B, enforcing the

constraint that the “+” contributions to M2 equal the “−”.)

Exercise XIIB8.1

By separating zero-modes in the string’s Q, and comparing with its generic

expression

Q = 1
2c( −M2) + S⊕a∂a + iS⊕−1M + S⊕⊕b

show that

Sij = i
∑
±

±
∫
dσ

2π
Y i

(±)Y
′j

(±)
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Si−1M =
1

2κ
√

2α′
i
∑
±

∫
dσ

2π
Y i

(±)(Y
′j

(±))
2

M2 =
1

2κα′

∑
±

∫
dσ

2π
(Y ′i(±))

2

Of particular interest is the massless level: As mentioned in subsection XIA4,

using the fact that the Hilbert space of the closed string is the direct product of the

Hilbert spaces of open strings gives a simple analysis of the massless states of any

closed string, since the massless states of any open string are given by a vector (multi-

plet) plus perhaps some scalars in the nonsupersymmetric case. To find the complete

off-shell structure, including auxiliary fields and ghosts, we can either take the direct

product of the two lightcone representations and then add 2+2 dimensions, or first

add the 2+2 dimensions and then take the direct product of the two OSp(D−1,1|2)

representations. In the supersymmetric case the latter is more convenient, since the

procedure of adding dimensions to superspace is not yet understood, but quantization

of the vector multiplet is (at least for N=1, and probably for N=2, in D=4).

For example, for the bosonic closed string we just multiply two OSp vectors,

producing a tensor tij, which we can decompose into its symmetric traceless part

hij (graviton plus ghosts), antisymmetric part Bij (axion plus ghosts), and trace χ

(physical scalar):

tij|j〉 ⊗ |i〉 → hij = t(ij] − 2
D−2

ηijt
k
k, Bij = t[ij), χ = tii

(See subsection XIIA5.) However, we know that string theory prefers to treat fields

in the string gauge for Weyl invariance, where the action (kinetic term) is not diag-

onalized in the fields (until coordinate invariance is fixed also). This is understood

from this direct product structure: The “natural” string fields are

string gauge :


t(ab) graviton

t[ab] axion

tαα dilaton (T-duality invariant)

since duality affects only the X modes, while the diagonal fields (representations of

OSp(D−1,1|2)) are

normal gauge :


hab = t(ab) − 2

D−2
ηab(t

c
c + tγγ) graviton

Bab = t[ab] axion

χ = taa + tαα physical scalar

Exercise XIIB8.2

Show that the above OSp analysis is consistent with the diagonalizing field
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redefinitions of the low-energy string action found in exercise XIA6.2. Explain

the result in terms of the redefinitions

Φ2 1√
−g
→ e2φ, Φ2gmn →

√
−ggmn

In the heterotic case, as mentioned in subsection XIA4, we take the product of

the real prepotential plus two chiral ghosts of super Yang-Mills with the usual vector

plus two scalar ghosts of bosonic Yang-Mills:

(V ⊕ φα)⊗ (Aa ⊕ Cα) = Ha ⊕ (Vα ⊕ φaα)⊕ φ⊕ φ(αβ)

The result is a vector prepotential Ha describing the physical supergravity and tensor

multiplets (in a string gauge, G = 1), a chiral scalar compensator (“superdilaton”) φ

appropriate for “old minimal” supergravity, first-generation ghosts (Sp(2) doublets)

Vα and φaα, and second-generation ghosts (an Sp(2) triplet, for the tensor multiplet)

φ(αβ). If the vector is accompanied by scalars, the closed string also has additional

vector multiplets:

(V ⊕ φα)⊗ ϕI = VI ⊕ φIα

We saw in subsection XIIB7 that for Yang-Mills it’s natural to think of the (con-

stant) ghost as the “vacuum” state. In open string theory, this happens automat-

ically in conformal field theory. Thus, we again have a direct relation between the

operator BRST cohomology and state BRST cohomology, creating states from the

BRST-invariant vacuum with operators V described in subsection XIB9.

9. Relation to OSp(1,1|2)

For comparison to OSp(1,1|2), we perform a unitarity (gauge) transformation on

the IGL(1) action. (The most general OSp(1,1|2) expressions are given at the end of

subsection XIIA2.) We first define an almost-inverse of Ŝ⊕⊕: Since Ŝ⊕⊕ annihilates

states with s3 = s, where we define

−1
2 Ŝ

αβŜαβ = 4s(s+ 1), Ŝ3|s〉 = 2s3|s〉

(so that s and s3 take their usual integer or half-integer values), we can define Ŝ⊕⊕−1

such that

Ŝ⊕⊕−1Ŝ⊕⊕ = 1− δs3,s, Ŝ⊕⊕Ŝ⊕⊕−1 = 1− δs3,−s

Ŝ⊕⊕Ŝ⊕⊕−1Ŝ⊕⊕ = Ŝ⊕⊕, Ŝ⊕⊕−1Ŝ⊕⊕Ŝ⊕⊕−1 = Ŝ⊕⊕−1
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We then apply the transformation

Q→ Qdiag = UQU−1

Q = −cK +Q⊕ + Ŝ⊕⊕b, ln U = c[{Ŝ⊕⊕−1,Q⊕} − Ŝ⊕⊕−1Ŝ⊕⊕Q⊕Ŝ⊕⊕−1]

The exponent of U is nilpotent from the c, so it generates only a linear term, U =

1 + ln U . Using the commutation relations from subsection XIIA2

[Ŝ⊕⊕,Q⊕] = 0, (Q⊕)2 = KŜ⊕⊕

we find

Qdiag = cδs3,s(−K +Q⊕Ŝ⊕⊕−1Q⊕)δs3,−s + (cbQ⊕δs3,s + bcδs3,−sQ⊕) + Ŝ⊕⊕b

Now we apply the identity

[Ŝ3, A] = 0 ⇒ δs3,sAδs3,−s = Aδs0

since any matrix element between 〈s, s3|...|s′, s′3〉 gives s = s3 = s′3 = −s′ → s =

s′ = 0, as well as the facts

Ŝ⊕⊕Q	δs0 = [Ŝ⊕⊕,Q	]δs0 = 2iQ⊕δs0 ⇒ Ŝ⊕⊕−1Q⊕δs0 = −1
2iQ

	δs0

{Qα,Qβ}δs0 = 0

This yields the final result

Qdiag = −c(K + 1
4
QαQα)δs0 + (cbQ⊕δs3,s + bcδs3,−sQ⊕) + Ŝ⊕⊕b

Exercise XIIB9.1

Use the commutation relations of Ŝαβ, as well as −1
2 Ŝ

αβŜαβ = 4s(s + 1), to

derive

Ŝ		Ŝ⊕⊕ = 4[s(s+ 1)− s3(s3 − 1)]

from which follows the explicit expression

Ŝ⊕⊕−1 =
1

Ŝ		Ŝ⊕⊕
Ŝ		 =

1− δs3,s
4(s− s3)(s+ s3 + 1)

Ŝ		

Integrating over c in the action Sdiag = −
∫

1
2Φ

T (−1)J−1QdiagΦ as in subsections

XIIB3-4, we find the Lagrangian

Ldiag = 1
2φ

T (K + 1
4
QαQα)δs0φ+ iψT (−1)Ŝ

3−1δs3,−sQ⊕φ− 1
2ψ

T (−1)Ŝ
3

Ŝ⊕⊕ψ
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(Note that in a product of the form ψTχ a state of eigenvalue s3 multiplies one of

eigenvalue −s3, since (Ŝ3)† = (Ŝ3)T = −Ŝ3.) We now see that in this action only the

s = 0 (physical) part of φ appears in the φφ term, while only the s3 = −s (“minimal”)

part (including physical) appears in the φψ term. The only part of ψ that appears in

the φψ term is the s3 = s (minimal) part of ψ (the “antifields” to the corresponding

ones in φ), while all, but only, the remaining (“nonminimal”) part of ψ appears in

the ψψ term. In particular, the φφ term is recognized as the OSp(1,1|2) action of

subsection XIIA3. The terms involving ψ can be eliminated by ψ’s gauge invariance

and field equation, and ψ contains no propagating degrees of freedom (fields with

equations of motion), as can be seen by the methods used to analyze the cohomology

in subsection XIIB4. However, the auxiliary fields ψ, and the ghosts in (the s 6= 0

part of) φ to which they couple, are useful in gauge fixing, as we’ll see in the next

section.

Again looking at the example of the vector:

Ŝ⊕⊕ = 2|⊕〉〈⊕| ⇒ Ŝ⊕⊕−1 = 1
4
Ŝ		 = 1

2 |
	〉〈	|

Q⊕ = (|⊕〉〈a| − |a〉〈⊕|)∂a ⇒ ln U = −i1
2c(|

	〉〈a|+ |a〉〈	|)∂a

The result of the transformation is then (cf. subsection XIIB3)

Qdiag = 1
2c( − |a〉〈b|∂a∂b)δs0 + cb|⊕〉〈a|∂a − bc|a〉〈⊕|∂a + 2|⊕〉〈⊕|b

Ldiag = 1
8
(Fab)

2 + iǍ · ∂C + ˇ̃C2

The BRST transformations now simplify to

QAa = −∂aC, QC = 0, QC̃ = −2i ˇ̃C

QǍa = −i1
2∂

bFba, QČ = ∂ · Ǎ, Q ˇ̃C = 0

Exercise XIIB9.2

Find the ghosts and simplified BRST transformations for massless spin 2.

REFERENCES

1 M. Kato and K. Ogawa, Nucl. Phys. B212 (1983) 443;
S. Hwang, Phys. Rev. D28 (1983) 2614;
K. Fujikawa, Phys. Rev. D25 (1982) 2584:
1st-quantized BRST (for strings).

2 W. Siegel, Phys. Lett. 149B (1984) 157, 151B (1985) 391:
gauge-invariant actions from 1st-quantized BRST.

3 E. Witten, Nucl. Phys. B268 (1986) 253;
A. Neveu, H. Nicolai, and P.C. West, Phys. Lett. 167B (1986) 307:
BRST operator as kinetic operator.



C. GAUGE FIXING 1047

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . C. GAUGE FIXING . . . . . . . . . . . . . . . . . . . . . . .

Although the quantum mechanical BRST operator is clearly useful for gauge fix-

ing, its relation to the second-quantized BRST we applied in chapter VI is not obvious,

since the latter BRST operator does not include the gauge-invariant action. Here we

relate the two, and extend the former to interacting field theories. In particular, we

show how the ΦQΦ action leads directly to the gauge-fixed kinetic term as simply as

it led to the gauge-invariant one, without applying any transformations.

1. Antibracket

In the usual Hamiltonian formalism we work in a phase space (q, p) on which is

defined a Poisson bracket, useful for studying symmetry properties and equations of

motion in the classical theory, and for relating to the commutator of the quantum

theory (see subsections IA1-2). We want to interpret the present case of interest as

an analogous phase space, for which the fields φ (in Φ = φ − icψ) correspond to q

and the antifields ψ to p. This automatically follows from the lightcone commutator

of subsection XIIA1, by the same steps used to derive the IGL(1) algebra and inner

product

〈Ψ |Ξ〉 = −i(−1)Ψ
∫
dx dc ΨT (x, c)(−1)J(c)Ξ(x, c)

in subsections XIIB1-2: We thus define this generalization of the Poisson bracket (see

subsection IA2) in terms of the inner product as

(f [Φ], g[Φ]) = f ◦ g, ◦ = ηJI

〈 ←
δ

δΦI

∣∣∣∣∣ δ

δΦJ

〉

where we have expanded the column vector Φ over a basis in the usual way (see

subsections IB1,5),

Φ = |I〉ΦI , ΦT = ΦI〈I |

〈I |J〉 = ηIJ = (−1)IηJI , (ηIJ)* = ηJI , ηIKηJK = δJI

etc., where this last inner product is for the vector space of I (not the IGL(1) inner

product), and the indices I, J (not to be confused with the ghost-number operator

J(c) appearing in the definition of the IGL(1) inner product above) run over all indices

on the field, which determine the statistics of the corresponding component as (−1)I .

(Thus Φ is always bosonic, the statistics of the fields coming always from expansion

over |I〉.) This generalized commutator “( , )” is called an “antibracket” because of

the unusual statistics associated with it, following from the same unusual statistics
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of the inner product. Plugging in the definition of the inner product, we have more

explicitly

◦ = i

∫
dx dc

←
δ

δΦI(x, c)
ηIJ(−1)J(c) δ

δΦJ(x, c)

(We changed the ordering of indices on ηIJ from the previous definition to incorporate

the (−1)I from (−1)Ψ = (−1)I+1 for Ψ = δ/δΦI .) Note that while the inner product is

defined between two functions of the coordinates, the antibracket is defined between

two functionals of Φ, f and g, which don’t depend explicitly on (x, c) (although we

can specialize to cases where they depend on other values of the coordinates (x′, c′)).

Thus the orbital term cb in J(c) acts only on the argument c of ΦJ(x, c) (and not on

g), while the spin term S3 acts only on the index J of ΦJ(x, c). (Technically, it acts

on the |J〉 of Φ = ΦJ |J〉, but we have expressed it in “second-quantized” notation for

convenience.)

We have used the fact that δ/δΦ is antihermitian, as follows from the fact that

the graded commutator between it and Φ is always a commutator, since they always

have opposite statistics:

δ

δΦI(x, c)
ΦJ(x′, c′) =

(
δ

δΦI(x, c)
ΦJ(x′, c′)

)†
=

[
δ

δΦI(x, c)
, ΦJ(x′, c′)

]
= δJI δ(x

′ − x)δ(c′ − c)

⇒
(
δ

δΦ

)†
=

(
δ

δΦ

)T
= − δ

δΦ

Thus, (
δ

δΦ
f †
)†

=

[
δ

δΦ
, f †
}†

=

[
f,− δ

δΦ

}
= f

←
δ

δΦ

(Remember that a derivative acting from the right is the same as one acting from the

left, except for a possible sign from reordering.)

Other properties of the bracket follow directly from those of the inner product:

(−1)(f,g) = (−1)f+g+1

(f, ga) = (f, g)a, (af, g) = a(f, g)

(f, g) = −(−1)(f+1)(g+1)(g, f)

(f, gh) = (f, g)h+ (−1)(f+1)gg(f, h)

(−1)(f+1)(h+1)(f, (g, h)) + cyc. = 0
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(f, g)† = (g†, f †)

(for some commuting or anticommuting constant a). Thus, the bracket has the exact

opposite symmetry as the inner product (as is the case with the usual brackets):

It would be symmetric in its two arguments if not for the
∫
dc that sits effectively

between the two arguments. Most of the properties follow from this fact, and that the

signs obtained from pushing things around are determined by moving things naively

while treating the “ , ” in the middle as anticommuting. Furthermore, the existence

of a bracket with these properties allows the definition of a Lie derivative,

LAB ≡ (A,B)

Exercise XIIC1.1

Find all the usual properties of this derivative (statistics, linearity, distribu-

tivity, hermiticity, algebra, etc.), and relate to the usual Lie derivative.

We also have functional identities such as

δ

δΦI(x, c)
〈Φ|Ψ〉 = i(−1)J(c)(−1)IΨI(x, c)

(ΦI(x, c), f [Φ]) = −i(−1)J(c)ηJI
δ

δΦJ(x, c)
f [Φ]

from which follow

(ΦI(x, c), ΦJ(x′, c′)) = −i(−1)J(c)ηJIδ(c′ − c)δ(x′ − x) = −i(−1)S
3

ηJI(c+ c′)δ(x− x′)

as well as

(Φ(x, c), 〈Φ|Ψ〉) = Ψ(x, c), (〈Ψ |Φ〉, 〈Φ|Ξ〉) = 〈Ψ |Ξ〉

The last identities are the most important for what follows; they can be taken as the

definition of the antibracket in terms of the inner product. Here Ψ and Ξ are wave

functions in the same space as Φ, but need not be taken as bosonic (or real): We

can even take them as functionals of Φ when applying the chain rule, using the above

expressions for the terms where the δ/δΦ’s don’t act on them.

Expressions quadratic in Φ will be used to perform the second-quantized (or just

classical field theoretic) version of linear first-quantized transformations:

OA ≡ 1
2〈Φ|AΦ〉 ⇒ (OA,OB) = O[A,B}, AΦ = (Φ,OA)

df = −
∫
dx dc (−1)IdΦI

δ

δΦI
f ⇒ (OA, f) =

∫
dx dc (−1)I(AΦI)

δ

δΦI
f
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where A and B must satisfy

[(−1)J(c)A]T = (−1)J(c)A ⇒ A = −(−1)J(c)AT (−1)J(c)

to give nontrivial contributions when appearing symmetrically between the two fac-

tors of Φ. Corresponding group elements come from exponentiating bosonic first-

quantized generators, yielding fermionic second-quantized generators:

δf = (OA, f) = LOAf ⇒ f ′ = eLOAf

(−1)A = 1 ⇒ (−1)OA = −1 ⇒ (OA, f) = −(f,OA)

Clearly, the latter relations must hold when replacing OA with their nonlinear second-

quantized generalizations. We then find (also for bosonic A)

AΦ = (Φ,OA) = −(OA, Φ)

where the minus sign is the usual from translating first-quantized to second-quantized

language (see subsection IC1).

Expanding (Φ,Φ) in c as

ΦI = φI − icηJI(−1)S
3

φ̌J

we find

(φ̌I(x), φJ(x′)) = −(φJ(x), φ̌I(x
′)) = δJI δ(x− x′)

This allows us to reexpress the antibracket as

◦ = −
∫
dx (−1)I

( ←
δ

δφ̌I

δ

δφI
+

←
δ

δφI
δ

δφ̌I

)

For example, the antibrackets of the component fields for the vector are

Φ = |i〉Φi = |i〉[ηjiAj−ic(−1)i+S
3

Ǎi] = (|a〉Aa−i|	〉C+i|⊕〉C̃)−ic(|a〉Ǎa−|	〉 ˇ̃C−|⊕〉Č)

(Ǎi(x), Aj(x′)) = −(Aj(x), Ǎi(x
′)) = δji δ(x− x′)

⇒ (Ǎa, Ab) = ηabδ, (Č, C) = δ, ( ˇ̃C, C̃) = δ

where now “i” refers to the OSp(D−1,1|2) index (and we use C = A⊕, C̃ = A	,

Č = Ǎ⊕, ˇ̃C = Ǎ	).
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2. ZJBV

To prove gauge independence of the path integral, it’s useful to draw an anal-

ogy of relativistic quantum mechanical BRST to second-quantized BRST. (We’ll see

below that this is not just an analogy, but an equivalence.) Translating the BRST

quantization of subsection VIA2 into path integral language, the general Lagrangian

path integral for BRST quantization in quantum physics is

A =

∫
Dq e−iS

′
, S ′ = S + {Q,Λ}

where q is all coordinates, including ghosts. While S and Λ depend only on q, the

BRST operator is linear in the conjugate momenta p — It generates a coordinate

transformation:

[Q, qm} = −iδQqm ⇒ Q = (δQq
m)pm

Here the index “m” includes all dependence of q, including time. (We saw a more

explicit expression of this result in subsection VIA2, assuming the constraints Gi are

themselves linear in the physical momenta.) We also have

[Q,S] = 0

where S can include not only the gauge-invariant action, but arbitrary additional

gauge-invariant pieces. Such pieces can be used to construct states in the BRST

cohomology from the vacuum. (This is the path-integral translation of the operator

construction given in subsection VIA1.) It can also include pure BRST variations,

{Q,Λ0}. Thus, to prove gauge independence of A, we need only prove the vanishing

of its variation under infinitesimal change of Λ,∫
Dq e−iS{Q, δΛ} = 0

But this is trivial, since Q acts as a total derivative, and [Q,S] = 0. More generally,

we require only

0 = 1 ·
←
Q− i[Q,S] = −i(δQqm)

←
∂m − (δQq

m)∂mS

where ∂m = ∂/∂qm, and “1 ·
←
Q ” means the derivatives in Q act backwards onto the

1 (and itself), as found by integration by parts. In cases we have considered (and

almost always), 1 ·
←
Q and [Q,S] separately vanish. More generally, since there is a 1/h̄

multiplying S implicitly, nonvanishing values would require a “quantum correction”

to S. We can also write this condition as

e−iS
←
Q = 0
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Furthermore, we can write

1 ·
←
Q = −i ∂2Q

∂pm∂qm

These manipulations can be applied to the field theory expressions J for group

generators, as found in subsection XIIA1 for the lightcone: The BRST operator as

found from these generators is

S = 1
2〈Φ|iQΦ〉, Q2 = 0 ⇔ (S, S) = 0

Then a unitary transformation can be implemented by exponentiating the infinitesi-

mal transformation

δQ = [G,Q] ⇔ δS = 1
2〈Φ|i(δQ)Φ〉 = (G, S), G = 1

2〈Φ|GΦ〉

Q′ = eGQe−G ⇔ S ′ = 1
2〈Φ|iQ

′Φ〉 = eLGS

We want to implement gauge fixing by performing a unitary transformation on

Q and then evaluating S at the antifields ψ = 0:

A =

∫
Dφ e−iS

′ |ψ=0, S ′ = eLΛS ⇒ Sgf = (eLΛS)|ψ=0

By similar manipulations to the BRST case, we see that gauge independence means

0 =

∫
Dφ e−iS(S, δΛ) = i

∫
Dφ (e−iS, δΛ)

where we evaluate this expression at ψ = 0, and we have again included arbitrary

gauge-invariant pieces in S. We thus obtain gauge independence from (S, S) = 0, or

more generally (again using integration by parts)

0 =

∫
dx (−1)I

δ2

δφ̌IδφI
e−iS =

∫
dx (−1)I

δ2S

δφ̌IδφI
+ i1

2(S, S)

This is the approach to BRST of Zinn-Justin, Batalin, and Vilkovisky (ZJBV).

Exercise XIIC2.1

Find the unitary transformation, in ZJBV language, that transforms the

“untransformed” action for the massive vector (that which gives the gauge-

invariant action upon dropping antifields) into the action that has only the

vector field (and not the scalar) upon dropping antifields.

Writing the BRST transformations in this second-quantized ZJBV notation will

allow us to gauge fix interacting theories (found by adding interaction terms to the

free S) in a gauge-independent way. In particular, it proves the equivalence of the

manifestly unitary lightcone gauge (which has no ghosts, only physical degrees of
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freedom) to the manifestly Lorentz covariant Fermi-Feynman gauges (where the ki-

netic operator is simply − m2). Specifically, the ΦQΦ action is already unitarily

transformed to the Fermi-Feynman gauge: Keeping just the φ terms, we have for a

bosonic theory

SFF = S|ψ=0 = −
∫
dx dc 1

2Φ
T (−1)J−1c1

2( −m2)Φ = −
∫
dx 1

2φ
T (−1)S

3 1
2( −m2)φ

In other words, the Fermi-Feynman kinetic term is just the sum over all fields (but

not antifields) of a − m2 term (using the OSp(D−1,1|2)-invariant inner product:

the (−1)S
3

is just a sign, and can be absorbed by a field redefinition). This can

also be seen from the result for the complete ΦQΦ action after dropping the antifield

terms: For example, for a vector the gauge-fixed (free) action is simply (see subsection

XIIB3)

LFF = −1
4
Aa Aa − iC̃ 1

2 C

(The Fermi-Feynman gauge for fermions also gives a −m2 kinetic term, but with

an infinite number of ghosts; this may be useful for supersymmetry.)

Exercise XIIC2.2

Let’s again consider arbitrary-rank antisymmetric tensors (see exercises

XIIA5.1 and XIIB3.1):

a Find the Fermi-Feynman actions.

b Do the same for the massive case. (Note: There are more fields.)

On the other hand, we saw in subsection XIIB9 that a unitary transformation,

and evaluation at ψ = 0, gave the gauge-invariant OSp(1,1|2) action in terms of just

the physical fields:

Λ0 = 1
2〈Φ|c[{S

⊕⊕−1,Q⊕} − S⊕⊕−1S⊕⊕Q⊕S⊕⊕−1]Φ〉 ⇒ S ′ = Sdiag

Sdiag =

∫
dx [1

2φ
T (K + 1

4
QαQα)δs0φ+ iψT (−1)S

3−1δs3,−sQ⊕φ− 1
2ψ

T (−1)S
3

S⊕⊕ψ]

Sgi = Sdiag|ψ=0 =

∫
dx 1

2φ
T (K + 1

4
QαQα)δs0φ

In the usual gauge-fixing approach, we would start with Sdiag and do the inverse

transformation to obtain the Fermi-Feynman gauge:

Λ = −Λ0 ⇒ SFF = (e−LΛ0Sdiag)|ψ=0

The same Λ can be used in the interacting case, since the effect on the quadratic

piece of the action will be the same. Thus, to apply the usual ZJBV procedure we

can either start with Sdiag and apply some Λ 6= 0 sufficient to fix the gauge, or we can
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start with S (the one we found from quantum mechanical BRST) and apply some

equivalent Λ, or no Λ at all (for Fermi-Feynman gauge).

To compare with the lightcone gauge, we start with

Slc =

∫
dx [−1

4
φ(−1)S

3

φ− iψ(−1)S
3−1S⊕−∂+φ]

which was itself obtained by unitary transformation from S (see subsection XIIB4),

and make a further unitary transformation, of the form Λ =
∫
dx 1

2φA φ, that has

the effect ψ → ψ+A φ for A such that all terms in φ φ containing auxiliary fields,

and thus also pure-gauge fields, are canceled. For this transformed Slc we then have

Slc,diag|ψ=0 = −
∫
dx 1

4
φ δ(SAB)φ

where the projection operator δ(SAB) picks out the singlets of SAB (A = (±, α)),

i.e., the transverse (physical) degrees of the light cone. A similar procedure can be

applied in the interacting case.

For the example of the vector:

ln U = −i1
2c(|

	〉〈+|+ |+〉〈	|)(∂+)−1

Qlc = 1
2c − S⊕−∂+ → Qlc,diag = 1

2c |
i〉〈i| − S⊕−∂+

Llc → Llc,diag = −1
4
Ai Ai + ˇ̃C∂+A− − iǍ−∂+C

which has just the transverse (lightcone) degrees of freedom when the antifields are

dropped:

Llc,gf = −1
4
Ai Ai

3. BRST

In subsection VIA2, we saw that BRST could be used to gauge fix by adding a

BRST variation to the gauge-invariant Lagrangian. In that case, physical states are

those that are not only in the BRST cohomology, but also satisfy the equations of

motion.

On the other hand, for relativistic mechanics we saw that the equations of motion

are rather redundant, since τ is unphysical, and so p2(+m2) = 0 is already included

as a constraint, and contained in the quantum mechanical BRST operator. In fact,

we have seen how in the most general case of a free field the correct spectrum is

specified by just the cohomology of the quantum mechanical BRST operator.

We therefore want to identify the quantum mechanical BRST cohomology condi-

tion with the combination of the second-quantized BRST cohomology condition and
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the wave equation. This essentially has been accomplished in subsection XIIC2 by

decomposing Qdiag with respect to c, as we’ll now see by some further analysis.

From subsection XIIB9 we have

Qdiag = −c(K + 1
4
QαQα)δs0 + (cbQ⊕δs3,s + bcδs3,−sQ⊕) + S⊕⊕b

where the first term gives Lgi in terms of the physical part (s = 0) of φ, the second

term gives the minimal BRST transformations in terms of the minimal (anti)fields,

and the last term adds the nonminimal stuff needed for fixing to general gauges. In

particular, we see that the BRST transformation of the physical fields are

δ(δs0φ) ∼ δs0Q⊕φ = δs0Q⊕(δs,1/2δs3,−1/2φ)

(Note that this differs somewhat from the expression found from Q, since the trans-

formation to Qdiag is effectively a redefinition of ψ, adding to it a piece proportional

to an operator on φ.)

Thus the only occurrences of the physical fields in Qdiag are in the term that

gives the gauge-invariant action and the term that gives their BRST transformation;

the remaining terms introduce nonminimal fields, as well as account for the BRST

transformations of the ghosts. But this is the definition of BRST: Take the classical

action in terms of physical fields, construct the BRST transformation from the gauge

transformation that leaves the classical action invariant, add terms to the BRST

operator that insure its nilpotency on these ghosts, and add nonminimal terms to

allow gauge fixing. We have just seen that Qdiag is exactly of this structure, where

gauge fixing gives the desired Fermi-Feynman gauge by unitary transformation to Q

(which becomes a canonical transformation in second-quantized language, using the

antibracket).

All that is left to see is how the ZJBV combination of the gauge-invariant action

with the BRST operator is equivalent to ordinary BRST. Expanding in antifields,

ZJBV gives the gauge fixed action as

S = S0 + 1
2ψm(Qφm) + 1

2ψnmψnm

⇒ Sgf = S0 + (δΛ/δφm)(Qφm) + (δΛ/δφnm)(δΛ/δφnm)

where we have used the fact that the three terms in Qdiag contain only the physical,

minimal (“m”; including physical), and nonminimal (“nm”) fields, respectively. In

the usual ZJBV and BRST formalisms, derived from BRST without antifields, there

is no ψ2 term, since this generates a BRST transformation

iQφnm = (S, φnm) ∼ ψnm
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One instead introduces further nonminimal fields, the “Nakanishi-Lautrup fields”,

such that

Qφnm = φNL

and use an extended gauge-fixing function

Λ̂ = Λ+ φnmφNL

Then the gauge fixed action is

Sgf = S0 + {Q, Λ̂} = S0 + (δΛ/δφm)(Qφm) + (δΛ/δφnm)φNL + 1
2φ

2
NL

After eliminating the NL fields by their (algebraic) equations of motion, we obtain

the same result as found from ZJBV. (Of course, the NL fields can also be introduced

directly into the ZJBV formalism, but are redundant for purposes of finding Fermi-

Feynman gauges.)

Consider the special case of Yang-Mills: Generalizing our results for free Yang-

Mills to the interacting case, making use of the BRST transformations of subsection

VIA4, we have

LZJBV = 1
8
(Fab)

2 + ˇ̃C2 + iǍ · [∇, C]− ČC2

The basic antibrackets are

(Ǎa, Ab) = ηabδ, (Č, C) = δ, ( ˇ̃C, C̃) = δ

From the general relations we saw earlier, and the definition of S in terms of Q for

the free case, we have

iQΦ = (Φ, S) = (S, Φ)

Since in the above we have pulled out factors to the left of the fields, as

Φ = |i〉Φi = |i〉[ηjiAj − ic(−1)S
3

Ǎi]

we pull them out of the left of the antibracket, to obtain

i(Qφ)I = (S, φI), i(Qφ̌)I = (S, φ̌I)

where as before (Qφ)I , etc., means to evaluate the corresponding component of QΦ

and introduce the corresponding signs for effectively pulling those factors to the left.

We then find the previous results for the BRST transformations of the fields (by

construction), but also those of the antifields:

QAa = −[∇a, C], QC = iC2, QC̃ = −2i ˇ̃C
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QǍa = −i1
2 [∇b, Fba] + i{C, Ǎa}, QČ = [∇·, Ǎ] + i[C, Č], Q ˇ̃C = 0

(Remember that the funny signs of the antibracket come from its symmetry, plus

treating the comma in “( , )” as anticommuting. Note the generic terms i[C, }.)

Exercise XIIC3.1

Generalize the above results for the action and BRST transformations with

antifields when Yang-Mills is coupled to matter.

BRST was described in a different way in subsection VIA4: Here we apply quan-

tum mechanical BRST, and find it equivalent to applying the ZJBV form of BRST

to second-quantization. The ZJBV action consists of the gauge-invariant action, plus

the antifields times the BRST transformations of the fields, plus (antifield)2 terms.

The difference between the BRST transformations obtained by the general methods

of subsection VIA1 as applied to second-quantization, and those found in this chap-

ter by applying OSp methods to first-quantization of relativistic systems, is that the

Nakanishi-Lautrup field is treated as a field in the former approach and as an an-

tifield in the latter. The two give equivalent results: The latter uses fewer fields,

but is slightly more restricted in choices of gauge; however, this restriction is avoided

in practice. (More “nonminimal” fields can be added to allow more general gauge

choices in either case.) For example, the ZJBV action for the former treatment of

Yang-Mills can be obtained from that for the latter by the replacement

ˇ̃C2 → ˇ̃CB

The gauge-fixed action is the canonically transformed action (with respect to the

antibracket) evaluated at vanishing antifields:

Sgf = eLΛSZJBV |

Consider Yang-Mills in the most common type of gauge, where some function of A is

fixed. From the usual BRST approach (see subsection VIA4), or the ZJBV approach

with B, we find

Λ = tr

∫
1
2C̃[f(A) + 1

2αB] ⇒ Lgf = Lgi − 1
2B[f(A) + 1

2αB]− 1
2iC̃

∂f

∂A
· [∇, C]

while in the ZJBV approach without B we have

Λ = tr

∫
1
2C̃f(A) ⇒ Lgf = Lgi + 1

4
f(A)2 − 1

2iC̃
∂f

∂A
· [∇, C]

which is equivalent to the previous for positive α (after elimination of B).
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Conversions to other common conventions

ηab → −ηab, S → −S

g2 → g2

8π2

[
via 1

2(m2 − )→ m2 − ,
dDx

(2π)D/2
→ dDx

]
or nonabelian

g2

16π2

Natural (Planck) units

c = h̄ = k = κ = 1 (G = π)

1

e2
=

8π2

e2
ft

=
2π

e2
m

=
2π

α
= 861.02257594(28), H−1 = 1.507(27)× 1061

1 kg = 2.59218(16)× 107, 1 m = 1.096680(66)× 1035, 1 s = 3.28776(20)× 1043

1 K = 3.98205(24)× 10−33, 1 GeV = 4.62097(28)× 10−20

Indices
a, b, c, ... — (flat) vector

i, j, k, ... — transverse (D−1 or D−2) vector or internal

m,n, p, ... — (curved) vector or large summation

A,B,C, ... — (flat) super or conformal vector

I, J,K, ... — internal

M,N,P, ... — (curved) super

A,B, C, ... — conformal spinor

α, β, γ, ...;µ, ν, π, ... — spinor (usually 2-valued) or fermionic

ι, κ — internal

0 — time

−1 — mass (dimensional reduction)

±; t, t̄ — lightcone (longitudinal; transverse)

⊕,	 — spinor or spacecone reference line

Integration ∫
dx ≡

∫
dDx

(2π)D/2
,

∫
dp ≡

∫
dDp

(2π)D/2

δ(x− x′) ≡ (2π)D/2δD(x− x′), δ(p− p′) ≡ (2π)D/2δD(p− p′)

〈x|x′〉 = δ(x− x′), 〈p|p′〉 = δ(p− p′); 〈x|p〉 = eip·x, 〈p|x〉 = e−ip·x; pa = −i∂a

on− shell : 〈p||p′〉 =
δ(p− p′)

2πδ[1
2(p2 +m2)]
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ELEMENTARY IDENTITIES (I,II,V,VII)

Matrices
M =

(
A B

C D

)
⇒

M−1 =

(
Ã B̃

C̃ D̃

)
=

(
(A−BD−1C)−1 (C −DB−1A)−1

(B − AC−1D)−1 (D − CA−1B)−1

)

=

(
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

)

det M =
det A

det D̃
= det A · det(D − CA−1B)

LAB ≡ [A,B] : eABe−A = eLAB , (deA)e−A =
eLA − 1

LA
dA =

∫ 1

0

dτ eτA(dA)e−τA

Dirac delta functions

lim
ε→0

1√
ε
e−x

2/2ε =
√

2πδ(x)

lim
ε→0

(
i

x+ iε
− i

x− iε

)
= 2πδ(x)

lim
ε→0

2ε

x2 + ε2
= 2πδ(x)

lim
ε→0

2ε2

(x2 + ε2)2
= 2πδ2(x)

lim
ε→0

Γ (D
2

)
ε

[1
2(x2 + ε2)]D/2

= (2π)D/2δD−1(x)

lim
ε→0

Γ (n)

Γ (n− D
2

)

(1
2ε

2)n−D/2

[1
2(x2 + ε2)]n

= (2π)D/2δD(x)
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GROUP THEORY (I,II)

Covering groups

SO(2) = U(1), SO(1,1) = GL(1)

SO(3) = SU(2) = SU*(2) = USp(2), SO(2,1) = SU(1,1) = SL(2) = Sp(2)

SO(4) = SU(2)⊗SU(2), SO(3,1) = SL(2,C) = Sp(2,C), SO(2,2) = SL(2)⊗SL(2)

SO(5) = USp(4), SO(4,1) = USp(2,2), SO(3,2) = Sp(4)

SO(6) = SU(4), SO(5,1) = SU*(4), SO(4,2) = SU(2,2), SO(3,3) = SL(4)

SO*(2) = U(1), SO*(4) = SU(2)⊗SL(2), SO*(6) = SU(3,1), SO*(8) = SO(6,2)

Norms

n− ⇒ 0 1 2 3

m n norm symmetry : zT = reality : z* =

1 2 z′z z′ z (z′* = z′)

2 3 zαβzγδεγαεδβ z −εzε z
4 zαβ

′
zγδ

′
εγαεδ′β′ −εzε zT z

4 5 zαβzγδεδγβα −z (zαβΩβα = 0) 1
2εz

1
2ε(ΥzΥ ) z

6 zαβzγδεδγβα −z 1
2εz −ΩzΩ 1

2ε(ΥzΥ ) z

Graded (anti)symmetrization

(−1)AB for moving adjacent indices past each other.

“( ]” (“[ )”) for (anti)symmetrization, except for such factors (i.e., fermionic pairs).

(Anti)symmetrization by adding all permutations of indices, with appropriate signs.

Superconformal

D = 3 : OSp(N|4)

4 : SU(2,2|N) (or PSU(2,2|4))

6 : OSp*(8|2N)
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SPINORS (X)

D− 0 1 2 3
D Euclidean Lorentz conformal

ψα ψα′ ψα ψ .
α ψα ψα′ ψα ψ .

α

0 ηαβ η .
α
β η

.
αβ ηαβ ηαβ Ω .

α
β Ω

.
αβ ηαβ

σαβ′ σ
α
.
β

σαβ′ σ
α
.
β

ψα ψα ψα ψα
1 ηαβ η .

α
β η

.
αβ ηαβ η .

α
β η

.
αβ ηαβ Ω .

α
β Ω

.
αβ ηαβ Ω .

α
β Ω

.
αβ

σ(αβ) σ(αβ) σ(αβ) σ(αβ)

ψα ψ
α ψα ψ

α ψα ψ
α ψα ψ

α

2 η
.
αβ η .

α
β Ω

.
αβ Ω .

α
β

σ(αβ) σ
(αβ) σ(αβ) σ

(αβ) σ(αβ) σ
(αβ) σ(αβ) σ

(αβ)

ψα ψα ψα ψα
3 Ωαβ Ω .

α
β η

.
αβ Ωαβ η .

α
β Ω

.
αβ Ωαβ η .

α
β Ω

.
αβ Ωαβ Ω .

α
β η

.
αβ

σ(αβ) σ(αβ) σ(αβ) σ(αβ)

ψα ψα′ ψα ψ .
α ψα ψα′ ψα ψ .

α

4 Ωαβ Ω .
α
β η

.
αβ Ωαβ Ωαβ η .

α
β Ω

.
αβ Ωαβ

σαβ′ σ
α
.
β

σαβ′ σ
α
.
β

ψα ψα ψα ψα
5 Ωαβ Ω .

α
β η

.
αβ Ωαβ Ω .

α
β η

.
αβ Ωαβ η .

α
β Ω

.
αβ Ωαβ η .

α
β Ω

.
αβ

σ[αβ] σ[αβ] σ[αβ] σ[αβ]

ψα ψ
α ψα ψ

α ψα ψ
α ψα ψ

α

6 η
.
αβ Ω .

α
β Ω

.
αβ η .

α
β

σ[αβ] σ
[αβ] σ[αβ] σ

[αβ] σ[αβ] σ
[αβ] σ[αβ] σ

[αβ]

ψα ψα ψα ψα
7 ηαβ η .

α
β η

.
αβ ηαβ Ω .

α
β Ω

.
αβ ηαβ Ω .

α
β Ω

.
αβ ηαβ η .

α
β η

.
αβ

σ[αβ] σ[αβ] σ[αβ] σ[αβ]
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LORENTZ (I,II)

−m2 = p2 = papbηab = −(p0)2 + (p1)2 + (p2)2 + (p3)2 = −2p+p− + 2ptp̄t

E = p0 = −p0; p± = 1√
2
(p0 ± p1), pt = 1√

2
(p2 − ip3)

−ds2 = dx2 = dxadxbηab, pads = mdxa, padτ = dxa

p2 +m2 = Sa
bpb + Sa,−1m+ wpa = S−1

apa + wm = 0

2-spinor
Cαβ = −Cαβ = C .

α
.
β

=
(

0
i
−i
0

)
; pα

.
β =

(
p+

pt
p̄t

p−

)
ψα = ψβCβα, ψ .

α = ψ
.
βC.

β
.
α
; ψ2 = 1

2ψ
αψα = iψ⊕ψ	 = −iψ⊕ψ	

ψ̄
.
α = (ψα)† ⇒ (ψα)† = −ψ̄ .

α, (ψ2)† = ψ̄2 = 1
2 ψ̄

.
αψ̄ .

α = iψ̄
.
⊕ψ̄

.
	

A[αβ] = Aαβ − Aβα = CαβC
γδAγδ, A[αβγ] = 0; V 2 = −2 det V = V α

.
βV

α
.
β

η
α
.
α,β

.
β

= CαβC .
α
.
β
, ε

α
.
α,β

.
β,γ

.
γ,δ

.
δ

= i(CαβCγδC .
α
.
δ
C.
β
.
γ
− CαδCβγC .

α
.
β
C.
γ
.
δ
)

〈ψ| = ψα〈α|, |ψ〉 = |α〉ψα; [ψ| = ψ
.
α[ .α|, |ψ] = |

.
α]ψ .

α

V = |α〉Vα
.
β[.
β
|, V * = −|

.
α]V β .

α〈β|; f = |α〉fαβ〈β|, f* = |
.
α]f .

α

.
β[.
β
|

〈ψχ〉 = 〈χψ〉 = ψαχα, [ψχ] = ψ
.
αχ .

α; 〈ψχ〉† = [ψχ]

〈ψ|V |χ] = ψαVα
.
βχ.

β
, 〈ψ|f |χ〉 = ψαfα

βχβ; VW* +WV * = (V ·W )I

ε0123 = −ε0123 = 1, ε(V,W,X, Y ) = i tr(VW*XY *− Y *XW*V )

4-spinor

Ψ = 2−1/4

(
ψα

χ̄ .
α

)
, Ψ̄ = Ψ †Υ = 2−1/4(χα ψ̄

.
α); −γaγb = ηab + 2Sab

∇/ =
√

2

(
0 ∇α

.
β

∇β .
α 0

)
, Υ = γ0 =

(
0 C̄

.
α
.
β

Cαβ 0

)
, γ−1 =

(
δβα 0

0 −δ
.
β.
α

)
γaγa = −4, γaa/γa = 2a/, γaa/b/γa = 4a · b, γaa/b/c/γa = 2c/b/a/

1
4
tr(I) = 1, 1

4
tr(a/b/) = −a · b, 1

4
tr(a/b/c/d/) = a · b c · d+ a · d b · c− a · c b · d

21/4Ψ = |α〉ψα + |
.
α]χ̄ .

α, 21/4Ψ̄ = 21/4Ψ † = χα〈α|+ ψ̄
.
α[ .α|

2−1/2γ
α
.
β

= −|α〉[.β| − |.β]〈α|; Π+ = |α〉〈α|, Π− = |
.
α〉〈 .α|



1064

ACTIONS (III-VI,XII)

L = −1
2
.
q2g(q) +

.
qA(q) + V (q), S =

∫
dt L

LH = − .
qp+H(q, p), SH =

∫
dt H − dq p

A =

∫
Dφ e−iSΨ ; Wick : A =

∫
Dφ e−SΨ, S ≥ 0

Mechanics
OSp(1,1|2):

K = −1
2( −m2), Qα = Sαa∂a + Sα−1im [+1

2 γ̃
α(γ̃− − γ̃+K)]

Ŝαβ = Sαβ (−1
4
γ̃(αγ̃β)), −1

2 Ŝ
αβŜαβ = 4s(s+ 1)

S =

∫
dx Lgi, Lgi = 1

2φ
TKgiφ, Kgi = 1

2(− +m2 + 1
2Q

αQα) (Ŝαβφ = 0)

δφ = δs0
1
2Q

αΛα

Sf =

∫
dx Lgi,f , Lgi,f = 1

2 φ̂Kgi,f φ̂, Kgi,f = γ̃α(Sα
a∂a + Sα−1im)

IGL(1):

Q = 1
2c( −m2) + S⊕a∂a + S⊕−1im+ S⊕⊕b (+S̃⊕−), J = cb+ S3 (+S̃3)

S = −(−1)Φ
∫
dx dc 1

2Φ
T (−1)J−1QΦ = 1

2〈Φ|iQΦ〉, Sgi = S|JΦ=0

SFF = S|bΦ=0 = −
∫
dx 1

2φ
T (−1)S

3 1
2( −m2)φ

Quantum ChromoDynamics

Gi
† = Gi, [Gi, Gj] = −ifijkGk, (Giψ)A = (Gi)A

BψB

∇a = ∂a + iAa = ∂a + iAa
iGi, −i[∇a,∇b] = Fab = Fab

iGi = ∂[aAb] + i[Aa, Ab]

L = 1
8g2
tr F abFab + L(∇, ψ), trD(GiGj) = δij, trA(GiGj) = 2Nδij

QAa = −[∇a, C], QC = iC2, QC̃ = −iB, QB = 0, Qφ = iCφ (for δφ = iλφ)

Sgf = Sgi−iQΛ, Λ = tr

∫
1
2C̃(f+ 1

2αB) ⇒ Lgf = Lgi− 1
2B(f+ 1

2αB)+ 1
2iC̃(δf)|λ=C

LMajorana = ψαi∇α

.
αψ̄ .

α + m
2
√

2
(ψαψα + ψ̄

.
αψ̄ .

α) → −1
4
ψα( −m2)ψα − 1

2ψ
αfα

βψβ

LDirac = Ψ(i∇/ +m)Ψ = (ψ̄
.
αi∇α .

αψα + χ̄
.
αi∇α .

αχα) + m√
2
(ψαχα + ψ̄

.
αχ̄ .

α)
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FEYNMAN (V)

S = S0 + SI , S0 =

∫
1
2φKφ; AN =

N∏
i=1

(∫
ψNi

δ

δφ

)
Z[φ]

Z[ϕ] = e−W [ϕ] =

∫
Dφ e−(S0[φ]+SI [φ+ϕ]) = exp

(∫
1
2

δ

δϕ

1

K

δ

δϕ

)
e−SI [ϕ]

Effective action Γ [φ] (unrenormalized): (E.g., L = −1
4
φ( −m2)φ+ 1

6
gφ3.)

(A1) 1PI graphs only (plus S0). (For W [φ], connected graphs only.)

(A2) Momenta: label consistently with conservation, with
∫
dp for each loop.

(A3) Propagators: 1/K for each internal line. (E.g., 1/1
2(p2 +m2).)

(A4) Vertices: read off of −SI . (E.g., −g)

(A5) External lines: attach the appropriate (off-shell) fields and
∫
dp, with δ(

∑
p).

(A6) Statistics: 1/n! for n-fold symmetry of internal/external lines

(or keep just 1 of n! related graphs); −1 for fermionic loop; overall −1.

Vacuum: (Renormalize before for minimal subtraction/after for MOM.)

(B1) Find the minimum of the effective potential (for scalars).

(B2) Shift (scalar) fields to perturb about minimum; drop constant in potential.

(B3) Find resulting masses; find wave function normalizations.

T-matrix:

(C1) Connected trees of (shifted, renormalized) Γ : (A2-4) for L=0 with S → Γ .

(C2) Amputate external Γ0-propagators.

(C3) External lines: appropriate to Γ0 wave equation K̃ψ = 0. (E.g., 1.)

(C4) External-line statistics: No symmetry factors; −1 for fermion permutation.

Probabilities
Sconnected = iδ

(∑
p
)
T

dP = |Tfi|2δD
(∑

p
)∏

all

(2π)D/2

ω

∏
out

dD−1p

(2π)D−1
, P = 2(Im Tii)(2π)−D/2

∏
in

(2π)D/2

ω

dP

dt
=

2 Im Tii
ω

,
dP

ds
=

2 Im Tii
m

= −2 Im M,
dP

dτ
= 2 Im Tii = −Im M2

dσ =
dP

v12

= |Tfi|2δD
(∑

p
) (2π)D

λ12

∏
out

dD−1p

(2π)D/2−1ω
, σ = 2(Im Tii)

(2π)D/2

λ12

λ2
12 = (p1 · p2)2 −m2

1m
2
2 = 1

4
[s− (m1 +m2)2][s− (m1 −m2)2]

dσ

dt
= 1

2(2π)3|Tfi|2
1

λ2
12

(4D); s = −(p1 + p2)2, t = −(p1 + p3)2, u = −(p1 + p4)2

dσ

dΩ
= (2π)2|Tfi|2

|~p3|D−1

λ12[1
2(s−m2

3 −m2
4)ω3 −m2

3ω4]
= (2π)2|Tfi|2

λD−3
34

λ12sD/2−1
(CoM)
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GAUGES (II,VI): Gervais-Neveu

LA = −1
4
A · A− iAaAb∂bAa − 1

4
AaAbAaAb

Y ang −Mills : L = LA + LC , LC = −1
2iC̃(∂ + iA)2C − 1

2C̃C(∂ · A+ iA2)

Gervais−Neveu : L = LA + 1
4
m2A2

Twistors

〈p| = pα〈α|, |p〉 = |α〉pα; [p| = p
.
α[ .α|, |p] = |

.
α]p .

α

〈pq〉* = [qp] = −[pq], 〈pq〉〈rs〉+ 〈qr〉〈ps〉+ 〈rp〉〈qs〉 = 0

P = |p〉[p| = p+|+〉[+|+ p−|−〉[−|+ pt|−〉[+|+ p̄t|+〉[−|, −P* = |p]〈p|

p+ = 〈p−〉[−p], p− = 〈+p〉[p+], pt = 〈+p〉[−p], p̄t = 〈p−〉[p+], 〈+−〉 = [−+] = 1

Spacecone

axial gauges non-null null (+ auxiliary field eq.)

(partly) temporal timelike : A0 = 0 lightcone : A+ = 0, δ/δA−

spacelike Arnowitt-Fickler : A1 = 0 spacecone : At = 0, δ/δĀt

scalar unitary : φ = φ† Gervais-Neveu : φ = 〈φ〉, δ/δφ†

n · A = 0, n = |+〉[−|; tree ∼ 〈 〉2−E+ [ ]2−E−

L = L2 + L3 + L4

L2 = A+(−1
2P

2)A− + ψ+−
1
2P

2

p
ψ−

L3 =

(
p∓

p
A±
)

([A±, pA∓] + {ψ+, ψ−}) +

(
p∓

p
ψ±
)

[A±, ψ∓]

L4 = ([A+, pA−] + {ψ+, ψ−}) 1

p2
([A−, pA+] + {ψ+, ψ−})− [A+, ψ−]

1

p
[A−, ψ+]

A+ =
[−p]
〈+p〉

, A− =
〈+p〉
[−p]

; ψ+ = [−p], ψ− = 〈+p〉

ref. lines :
p−

p
A+ =

p+

p
A− =

p−

p
ψ+ =

p+

p
ψ− = 1

P⊕ = |−〉[−|, P	 = |+〉[+|; P a
⊕ = δa−, P a

	 = δa+

Background-field

φ→ ϕ+ φ; ∇ → D + iA, Fab → Fab +D[aAb] + i[Aa, Ab]

∂ · A→ D · A, C̃∂ · ∇C → C̃D2C + C̃D · i[A,C]

1− loop : K = −1
2( − iFabSba)
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SUPERSYMMETRY (II,IV,VI): Superspace

qα = −i
(

∂

∂θα
− 1

2 θ̄
.
βp

α
.
β

)
, q̄ .α = −i

(
∂

∂θ̄
.
α
− 1

2θ
βpβ .

α

)
; (qα)† = q̄

.
α

dα =
∂

∂θα
+ 1

2 θ̄
.
βp

α
.
β
, d̄ .

α =
∂

∂θ̄
.
α

+ 1
2θ

βpβ .
α; (dα)† = −d̄

.
α

{qα, q̄
.
β} = {dα, d̄

.
β} = pα

.
β,

∫
d2θ = d2 = 1

2d
αdα, d̄2d2d̄2 = 1

2 d̄2

∂M = (∂µ, ∂.
µ, ∂m) = ∂/∂zM , zM = (θµ, θ̄

.
µ, xm)

dA = (dα, d̄ .
α, ∂α .

α) = EA
M∂M ; [dA, dB} = TAB

CdC

T
α
.
β
γ
.
γ = T.

βα
γ
.
γ = −iδγαδ

.
γ.
β
, rest = 0

Super Yang-Mills

∇A = dA + iAA, [∇A,∇B} = TAB
C∇C + iFAB

∇ .
αφ = 0 ⇒ {∇α,∇β} = {∇ .

α,∇.
β
} = 0; {∇α,∇.

β
} = −i∇

α
.
β

[∇α,∇β
.
γ] = CαβW .

γ; ∇ .
αWβ = 0, ∇αWα +∇

.
αW .

α = 0

[∇α
.
α,∇β

.
β
] = i(Cαβ f̄ .

α
.
β

+ C .
α
.
β
fαβ), fαβ = 1

2∇(αWβ)

Actions

LN=1 = − 1
g2
tr

∫
d2θ 1

2W
αWα + ζ

∫
d4θ V −

∫
d4θ φ̄eV φ+

[∫
d2θ f(φ) + h.c.

]

LN=2 = − 1
g2
tr

(∫
d2θ W 2 +

∫
d4θ e−V φ̄eV φ

)
+

∫
d4θ ζ0V +

(∫
d2θ ζ+φ+ h.c.

)
−
∫
d4θ φ̄i

′
(eV τ )i′

j′φj′ +
1
2

[∫
d2θ τ i

′j′φi′(φ+M)φj′ + h.c.

]
LN=4 = 1

g2
tr

[
−
∫
d2θ W 2 −

∫
d4θ e−V φ̄IeV φI +

(∫
d2θ 1

6
εIJKφI [φJ , φK ] + h.c.

)]
Supergraphs

(A21
2) θ’s: one for each vertex, with an

∫
d4θ.

(A3′) Propagators:

(V V, φ̄φ, φφ, φ̄φ̄) :

(
1,−1, m√

2

d2

−1
2p

2
, m√

2

d̄2

−1
2p

2

)
1

1
2(p2 +m2)

δ4(θ − θ′)

(A41
2) Chiral vertex factors: d̄2 on the φ end(s) of every chiral propagator,

d2 on the φ̄ end(s), but drop any one such factor at a superpotential vertex.
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LOOPS (VII,VIII): Gamma function

Γ (z) =

∫ ∞
0

dλ λz−1e−λ = 1
z
e−γz

∞∏
n=1

1

1 + z
n

ez/n = 1
z
exp

[
−γz +

∞∑
n=2

1
n
ζ(n)(−z)n

]

γ = lim
n→∞

(
−ln n+

n∑
m=1

1
m

)
= 0.5772156649..., ζ(z) =

∞∑
n=1

1

nz

Γ (z + 1) = zΓ (z), Γ (z)Γ (1− z) = π csc(πz),
Γ (z)

Γ (2z)
=

21−2z
√
π

Γ (z + 1
2)

Γ (n+ 1) = n!, Γ (n+ 1
2) = (n− 1

2)(n− 3
2
)...12
√
π =

(2n)!

n!22n

√
π

lim
z→∞

Γ (z) ≈
√

2π

z

(z
e

)z
, lim

z→∞
Γ (az + b) ≈

√
2π(az)az+b−1/2e−az

B(x, y) =

∫ 1

0

dz zx−1(1− z)y−1 =

∫ ∞
0

dτ τx−1(1 + τ)−x−y =
Γ (x)Γ (y)

Γ (x+ y)

Regularization
Γ (a)

[1
2(p2 +m2)]a

=

∫ ∞
0

dτ τa−1e−τ(p2+m2)/2

1 =

∫ ∞
0

dλ δ
(
λ−

∑
τi

)
, τi = λαi∫

dk e−k
2/2 = 1,

∫
dk

ka...kb
(1

2k
2)a

= 0∫
dk eik·x

1
1
2(k + 1

2p)
2 1

2(k − 1
2p)

2
=

(1
2p

2)D/2−2Γ (D
2
− 1)Γ (2− D

2
)
∞∑
n=0

Γ (n+ D
2
− 1)

n!Γ (2n+D − 2)
{1

4
[p2x2 − (p · x)2]}n∫

dk
Γ (a)

(1
2k

2)a
Γ (b)

[1
2(k + p)2]b

=
Γ (a+ b− D

2
)

(1
2p

2)a+b−D/2 B(D
2
− a, D

2
− b)

Schemes
MS : h̄

MS : Γ (D
2

)h̄, Γ (1− ε)h̄, etc.

G :
(−1)D0/2

εΓ (2− D
2

)B(D
2
− 1, D

2
− 1)

h̄,
Γ (1− 2ε)

Γ (1 + ε)[Γ (1− ε)]2
h̄, etc.

Running coupling

Γ1,2g ≈ tr

∫
dx 1

8
F abβ1(ln − 1

ε
)Fab; β1 = 1

2cR(−1)2s(4s2− 1
3
); cD+D̄ = 2, cA = 2N

ΓM ≈ tr

∫
dx 1

8
F

[
β1ln

M2
+
β2

β1

ln

(
β1ln

M2

)]
F,

µ2

M2
= e1/β1g2(g2)β2/β

2
1
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GRAVITY (IX)

[Mab, Vc] = V[aηb]c ⇒ 1
2λ

ab[Mba, Vc] = λc
aVa, [Mab,M

cd] = −δ[c
[aMb]

d]

1
2λ

abMba = 1
2λ

αβMβα + 1
2λ

.
α
.
βM.

β
.
α

[Mαβ, ψγ] = ψ(αCβ)γ ⇒ 1
2λ

αβ[Mβα, ψγ] = λγ
αψα, [Mαβ,M

γδ] = δ
(γ
(αMβ)

δ)

∇a = ea + 1
2ωa

bcMcb, ea = ea
m∂m; [∇a,∇b] = Tab

c∇c + 1
2Rab

cdMdc

−ds2 = dxmdxngmn, gmn = em
aen

bηab

S =

∫
dx e−1L, e = det ea

m L = −1
4
R + L(∇, ψ), R = Rab

ab

Rab − 1
2ηabR = 2Tab, Rab = Rc

acb, δSM =

∫
dx e−1(em

aδebm)Tab

Methods

(1) : D = 1 ⇒ ∇ = ∂

(2) : ds2 = ds2
1 + ds2

2 ⇒ ∇ = (∇1,∇2)

(3) : ∇a(x)→ ∇a(x
′)

(4) : ds′2 = Φ−2ds2 ⇒ ∇′a = Φ∇a + (∇bΦ)Mab,

R′ab
cd = Φ2Rab

cd + Φδ
[c
[a∇b]∇d]Φ− δc[aδdb](∇Φ)2

[M12, V2] = η22V1, [M12,M23] = η22M13

[∇1,∇2] = [e1 + ω1, e2 + ω2]

= {[e1, e2] + (e1ω2)M2 − (e2ω1)M1}+ {ω1[M1,∇2]− ω2[M2,∇1]− ω1ω2[M1,M2]}

Examples

LG = −1
4
e−1R = 1

16
εmnpqεabcdem

aen
bRpq

cd = 1
8
εmnpqem

aen
bR̃pqab

= i1
8
εmnpqem

α
.
α(R̄np

.
α

.
βe

qα
.
β
−Rnpα

βeqβ .
α)

SG = 4D−1
D−2

∫
dx e−1 1

4
φ( − 1

4
D−2
D−1

R)φ

−ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2(dθ2 + sin2θ dφ2)
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SUPERGRAVITY (X)

∇A = EA
M∂M + 1

2ΩA
βγMγβ + 1

2ΩA

.
β
.
γM.

γ
.
β

+ iAAY, [Y,∇α] = −1
2∇α

[∇A,∇B} = TAB
C∇C + 1

2RAB
γδMδγ + 1

2RAB

.
γ
.
δM.

δ
.
γ

+ iFABY

{∇ .
α,∇.

β
} = BM .

α
.
β
, {∇α,∇.

β
} = −i∇

α
.
β

[∇ .
α,−i∇β

.
β
] = C.

β
.
α
Wβ − 1

2(∇βB)M .
α
.
β
, [−i∇α

.
α,−i∇β

.
β
] = C.

β
.
α
fαβ − h.c.

Wα = −B∇α −Gα

.
β∇.

β
+ 1

2(∇
.
βGα

.
γ)M .

β
.
γ

+ 1
2Wα

βγMγβ + iWαY + i1
6
W βMβα

fαβ = i1
2G(α

.
γ∇β)

.
γ − 1

2(∇(αB + i1
3
W(α)∇β) +Wαβ

γ∇γ − 1
2(∇(αGβ)

.
γ)∇.

γ

− (1
2∇

2B̄ +BB̄ + 1
12
i∇γWγ)Mαβ − i 1

16
[(∇(α

.
δG

γ)
.
δ
)Mβ

γ + α↔ β]

+ 1
2Wαβ

γδMδγ + 1
4
(∇(α∇

.
γGβ)

.
δ)M .

δ
.
γ

+ i1
2(∇(αWβ))Y

Wαβγδ = 1
4!
∇(αWβγδ)

Ga = Ḡa, ∇ .
αB = ∇ .

αWα = ∇ .
αWαβγ = 0, ∇

.
αGα

.
α = ∇αB − iWα

∇αWαβγ − i1
3
∇(βWγ) = −i1

2∇(β

.
αGγ)

.
α, ∇αWα +∇

.
αW .

α = 0

Ectoplasm

S =

∫
dx (− 1

4!
)εmnpqeq

Dep
Cen

Bem
ALABCD

Lαβcd = εα
.
α
,β

.
α,cdL̄, Lαbcd = iεα .

α,bcd∇
.
αL̄, Labcd = εabcd[(∇

2
+ 3B)L̄+ h.c.]

∇ .
αL = 0 ⇒ L = (∇2

+B)L

Action
SSG,c = 3

∫
dx d4θ E−1Φ̄Φ

LSG = LG + Lψ + e−1La

LG = −1
4
e−1R, Lψ = εmnpqψ̄m .

α
1
2{en

α
.
α,∇p}ψqα, La = −3

8
(Ga)

2 + 3B̄B

ωmbc = em
a[
◦
ωabc − 1

2(T̂bca − T̂a[bc])], T̂ab
c = εab

cdGd + iψ[a
γψ̄b]

.
γ

δem
α
.
α = −i(εαψ̄m

.
α + ε̄

.
αψm

α), δψm
α = ∇mε

α + iem
β
.
β(εβG

α .
β
− ε̄.

β
δαβB)

δB = −2
3
εαtαβ

β, δGα
.
α = −εβ(tβα .

α + 1
3
Cβαt.γ

.
β

.
β) + h.c.

Tab
γ = −eamebn∇[mψn]

γ + i(ψaβG
γ .
β
− ψ̄

a
.
β
δγβB − a↔ b) ≡ Cαβt .α

.
β
γ + C .

α
.
β
tαβ

γ
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STRINGS (XI)

SL =
1

α′

∫
d2σ

2π

√
−ggmn 1

2(∂mX
a) · (∂nXb)ηab

α(s) = κα′s+
1

κ
, κ =

{
1 (open)
1
2 (closed)

A4 = g2

∫ 1

0

dz z−α(s)−1(1− z)−α(t)−1

= g2B[−α(s),−α(t)] = g2Γ [−α(s)]Γ [−α(t)]

Γ [−α(s)− α(t)]

= g2

∞∑
J=0

{
[α(s) + J ][α(s) + J − 1] · · · [α(s) + 1]

J !

}
1

J − α(t)

= in lim
s→−∞
t fixed

g2Γ [−α(t)][−α(s)]α(t)

∼ in lim
s→−∞
θ fixed

e−f(cos θ)α(s); cos θ ≈ 1 + 2
t

s
,

f ≈ t

−s
ln

(
−s
t

)
+

u

−s
ln

(
−s
u

)
Conformal field theory

L = χ̄(1−w)∇χ(w) ⇒ T = −χ̄1
2

↔
∂χ+ (w − 1

2)∂(χ̄χ)

L = 1
4
ηij(∇φi) · (∇φj) + 1

2Rµ
iφi ⇒ T = −1

2ηij(∂φ
i)(∂φj) + µi∂

2φi

〈0|χ(z)χ̄(z′)|0〉 =
1

z − z′

〈0|φi(z)φj(z′)|0〉 = −ηijln(z − z′)

eia·φ(z)eiã·φ(z′) = (z − z′)a·ãei[a·φ(z)+ã·φ(z′)] + ...[∫
dz′

2πi
λ(z′)T (z′), χ(w)(z)

]
= λ(z)(∂χ(w))(z) + w(∂λ)(z)χ(w)(z)[∫

dz′

2πi
λ(z′)T (z′), φi(z)

]
= λ(z)(∂φi)(z) + µi(∂λ)(z)

w
(
eia·φ

)
= 1

2a
2 + iµ · a

anomaly ∼ 6(w − 1
2)2 − 1

2
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Topics are listed by subsection (or section, etc.).

Abelian . . . . . . . . . . . . . . . . . . . . . . . . . . . . IB2

Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . III-IV
Adjoint representation . . . . . . . . . . . IB2,5,C2

Advanced propagator . . . . . . . . . . .VA3,B1-2

Affine parametrization . . . . . . . . . . . . . . IIIB2

Affine transformation . . . . . . . . . . . . . . . . IB1

Analytic S-matrix theory . . . . . . . . . . . .XIA1

Anni’l’n op.IC1,IIB3,C5,IIIA2,VIA1,3,XIB2

Anomaly . . . . . . . . VIIIA7,B2-4,C1,XIB4,C7

Antibracket . . . . . . . . . . . . . . . . . . . . . . .XIIC1

Anticommutation . . . . . . . . . . . . . . . . . . . . IA2

Anticommuting number/variable . . . . . . IA2

Anti-de Sitter . . . . . . . . . . . . . . . IXC2-3,XIA8

Antifield . . . . . . . . . . . . . . . . . . . . VIA3,XIIB3

Anti-Gervais-Neveu gauge . . . . . . . . .VIB4-5

Antighost . . . . . . . . . . . . . . . . . . . . . . . . . VIA2

Antiparticle . . . . . . . . . . . . . . . . IA4-5,IIIB4-5

Antisym.tensor IIB2,VIIIA7,XA3,XIIA5,B3

Arnowitt-Fickler gauge . . . . . . . . . . . . . IIIC2

Asymptotic fr’dom VIIC1,VIIIA3-4,C,XIA7

Atiyah-Drinfel’d-Hitchin-Manin . . . . . . IIIC7

Auxiliary variable . . . IIIA1,5,B2,C2,4,IVC2

Axial anomaly . . . . . . . . . . . .VIIIA7,B2-4,C1

Axial current . . . . . . . . . . . IVA4,VIIIA7,B2-4

Axial gauge . . . . . . . . . . . IIIC2,VIB6-8,IXB3

Axial vector . . . . . . . . . . . . . . . . . . . . . . . . . IA5

Axion . . . . . . . . . VIIIC4,XIA4-7,C6-7,XIIB8

B’g’nd fieldVC1,3,VIIB2,XIA5-6,B8,XIIB7

Background-field gauge . . . VIB8,10,VIIIA3

Bag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IVB1

Baryon number . . . . . . . . . . . . . . . . . IVA4,B1

Baryon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IC4

Bhabha scattering . . . . . . . . . . . . . . . . . .VIC4

B’nchiIIA7,IIIC1,IVC3,IXA2,XB2,C5,XIA9

Big Bang . . . . . . . . . . . . . . . . . . . . . IVA7,IXC3

Birkhoff’s theorem . . . . . . . . . . . . . . . . IXC5,7

Bjorken scaling variable . . . . . . . . . . . VIIIC3

Black hole . . . . . . . . . . . . . . . . . . . . . . . . . IXC7

Bohr-Sommerfeld quantization . . . . . . . VA2

Borel summation/transform . . . . . . . . VIIC3

Bosonization . . . . . . .VIIB5,XIA5-6,B7-8,C2

Bnd.cond.IIIC2,6-8,VA,C3,VIIIC5,XIA3,B1

Bnd.state . VC1,VIIB3,5,C2,VIIIB4,XIA1-2

Bracket . . . . . . . . . . . . . . . . . . . . . IA1-2,XIIA1

BRST . . . . . VIA-B,VIIA1,IXB1,XIB8-9,XII

Cabibbo-Kobayashi-Maskawa matrix IVB3

Cartan metric . . . . . . . . . . . . . . . . . . . . . . . IB2

Cartan subalgebra . . . . IB4-5,C6,IIC4,XIB5

Casimir operator . . . . . . . . . . . . . . . . . . . . . IB2

Causality . . . . . . . . . . . . . . . . . VA4,C6,VIIA1

Center-of-mass frame . . . . . . .IA4,VC7,VIC4

Central charge . . . . . . . . . . . . . . . . . IVC7,XC5

Channels . . . . . . . . . . . . . . . . . . . .VIIB7,XIA1

Chan-Paton factors . . . . . . . . . . . . . .XIA4,C7

C. conj. IA5,IIC5,IIIA4,IVA4,B1,XC1,XIA4

Chern-Simons formIIIC6,IVC5,VIIIB2,XC5

Chirality . . . . . . . . . . . . . . . . . IIA7,C4-5,IVC1

Chiral projector . . . . . . . . . . . . . . . . . . . IIA6-7

Chiral representation . . . . . . . . . IIC5,IVC4-5

Chiral spinor . . . . . . . . . . . . . . . . . . IIA7,IIIC4

Chiral superfield . . . . . . . . IIC5,IVC1-2,VIB7

Chiral superspace . . . . . . . . . . . . . . IIC4,IVC1

Chiral symmetry . . . . . . . . . IVA4,VIIIB2-4,7

Chiral theory . . . . . . . . . . . . . . . . . . . . . . . IIA7

Chromodynamics . . . . . . . . .IC4,IVB1,VIIC4

Classical group . . . . . . . . . . . . . . . . . . IB4,IIC3

Classical limit . . . . . . . . . . . . IA1-2,IIIA2-3,V

Clebsch-Gordan-Wigner coefficientIB5,IIA4

Closed string . . . . . . . . . . . . . IVB1,VIIC4,XI

Coherent state . . . . . . . . . . . . . . . . . . . . . . . IA2

Cohomology . . . . . . . . . . . . . VIA1,3,XB2,XII

Coleman-Weinberg mechanism . . . . . .VIIB2

Colinear divergence/particle . . . . . . . .VIIA6

Color . . . . . . . . . . . . . . . . . . . . . . . . . . IC4,IVA4

Color decomposition/expansion VC9,VIIC4

Color ordering . . . . . . . . . . . . . . .VC9,VIC1-3

Compact group . . . . . . . . . . . . . . . . . . . . IB2,4

Compactification . . . . . . . . . . . . . . IIB4,XIA4

Compensator . . . . . . . . . . . . IVA5,IXA7,XA3

Complex projective . . . . . . IIB6,IVA2,VIIB3

Complex representation . . . . . . . . . . . . . IB1-2

Component approach . . . . . . . . . . . . . . . .XB4
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Component transformation . . . . . . IIC2,XB3

Compton scattering . . . . . . . . . . . . . . . . VIC4

Confinement . . . . . . . . . . . . . . . . IVB1,VIIIB7

Conformal . . . . . . . . . . . . . IA6,IIB-C,IIIC5-7

Conformal anomaly . . . . . . . . . .VIIIC1,XIB4

Conformal boost . . . . . . . . . . . . . IA6,IIB1,6-7

Conformal field theory . . . . . .XIA8,B,XIIB8

Conformal gauge . . . . . . . . . . . . . . . . . . .XIB1

Conformally flat . . . . . . . . . . . . . . . . . . . . IXC2

Connected graph . . . . . . . . . . . . . . . . . . . .VC2

Conservation . . . . . . . . . . . . . IA1,IIIB4,IXA6

Constituent quark . . . . . . . . . . . . . . . . . . . IC4

Constraint . . . . . . . . . . . . . . . . . . . . . . . . . IIIA5

Constructive quantum field th. IIIC4,VIIC3

Continuum limit . . . . . . . .VA1,VIIIB7,XIA7

Contour integral . . . . . . . . . . . . . . . . . . . . IIA1

Contracted indices . . . . . . . . . . . . . . . . . . . IA1

Contraction . . . . . . . . . . . . . . . IA4,IIC3,IXC2

Coordinate representation . . . . . . . . . . . . IC1

Coordinate transform. . IA,C2,IIIB1,3,IXA1

Coset space . . . . . . . . . . . . . . . . . . . . IC6,IVA3

Cosmological red shift . . . . . . . . . IVA7,IXC4

Cosmological term . . . . . IXA5-7,C2,XB1,6-7

Cosmology . . . . . . . . . . . . . . . . . . . IVA7,IXC3

Counterterm . . . . . . . . . . . . . . . . . . . . . .VIIA1

Cov.der IC6,IIC2,IIIA4,C1,IVC3,IXA2,XA1

Covariant momentum . . . . . . . . . . . IA5,IIIC1

Covering group . . . . . . . . . . . . . . . . . . . . . . IC5

CP(n) model . . . . . . . . . . . . . . . . .IVA2,VIIB3

CPT theorem . . . . . . . . . . . . . . . . . IVB1,VC8

Creat’n op. IC1,IIB3,C5,IIIA2,VIA1,3,XIB2

Critical dimension . . . . . . . . . . . . . . .XIA7,B4

Crossing symmetry . . . . . . . . . . . . VC8,VIC4

Cross product . . . . . . . . . . . . . . . . . . . . . . IIA1

Cross section . . . . . . . . . . . . . . . . . .VC7,VIC4

Current . . . . . . . . . . . . . . . IIA7,IIIA4,B4,VC3

Current algebra . . . . . . . . . . . . . .XIA3,5,9,B2

Current quark . . . . . . . . . . . . . . . . . . . . . . . IC4

Curvature . . . . . . . . . . . . . . . . . . . . . IC6,IXA2

Curved indices . . . . . . . . . . . . . . . . . . . . . IXA1

Cut propagator . . . . . . . . . . . . . . . . . . . . . VC7

Cutting rule . . . . . . . . . . . . . . . . . . . . . . . .VC6

Decay rate . . . . . . . .VC7,VIIA4,VIIIA3,B4

Deceleration parameter . . . . . . . . IVA7,IXC3
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. . . . . . . . . . Comments on Warren Siegel’s Fields: . . . . . . . . . .

“The price is right.”

“Oh, Warren, what have you done to your students now?”

“I can see you put a lot of work into it.”

“That’s nice, honey.”

“You might want to add a reference to my paper...”

“It’s different.”

“Is this going to be on the exam?”

“I’ll have a look at it when I get the time.”

“Aren’t there enough field theory books already?”

“So this is why you haven’t written any papers lately.”

“Where are the jokes?”
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