
Green-Schwarz superstrings
There are difficulties with covariant quantization of superstrings in a way that

manifests supersymmetry, so previously we discussed only the lightcone gauge for

Green-Schwarz superstrings, following from RNS by triality. However:

• Triality operates at the (nonperturbative) quantum mechanical level, so it’s dif-

ficult to describe supersymmetry in the Ramond-Neveu-Schwarz formalism for

cases like AdS5/CFT4.

• Lightcone approaches to strings have had little success beyond 1 loop.

So now we look at the covariant formulation (with respect to both Lorentz and su-

persymmetry).
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We have already seen (e.g., in 1-loop 4-particle S-matrices) that superstrings can

be understood by combining knowledge of bosonic strings with that of superparticles.

So far we have discussed “superparticles” only in terms of supersymmetric field theory

or the zero-modes of the lightcone superstring. Thus we now examine covariant

approaches to classical mechanics of superparticles.

Action

Actually it’s quite easy to write a manifestly supersymmetric action for a particle

in superspace. Only the interpretation and application are difficult. To be general,

we define supersymmetry q in arbitrary dimensions as (see subsection XC4)

δθ = ε , δx = iεγθ = i(δθ)γθ

where γaαβ are symmetric matrices so that

{qα, qβ} = 2γaαβpa

for transformations generated by δ = [iεq, ] (the missing indices should be clear by

context). Then the supersymmetry invariant currents (differentials) are

dθ , dx+ i(dθ)γθ

In terms of these we write the action for a massless, superspinless superparticle

as (cf. the bosonic particle, section IIIB)

−
∫
dτ 1

2v
−1(

.
x+ i

.
θγθ)2
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(The other invariant is forbidden by dimensional analysis, and sometimes even by

Lorentz invariance.) One obvious complication is that the action is nonlinear even in

the covariant gauge (worldline metric) v = 1.

A Hamiltonian analysis is rather straightforward, as we’re already in “one dimen-

sion” for the worldline. The result can be written as∫
dτ [−(

.
xp− i

.
θπ) + (v 1

2p
2 + λd)] , d = π + p/θ [q = −i(π − p/θ)]

or manifestly supersymmetry covariantly as∫
dτ{−[(

.
x+ i

.
θγθ)p− i

.
θd] + (v 1

2p
2 + λd)]

The Lagrangian form is directly obtained by eliminating the auxiliary field p and

Lagrange multiplier λ. (Note the simplifications introduced by using the current

p ∼ .
x+ i

.
θγθ in place of explicit

.
x’s in the constraints.)

κ symmetry

Quantization is a problem because unlike the “1st-class constraint” p2 from vary-

ing the Lagrange multiplier v (which makes v a gauge field, see subsection IIIA5),

the constraint d is a mixture of 1st and “2nd-class” (so λ is not pure gauge), as seen

from the commutation relations:

{d, d} = 2γp

but p is not a constraint. (Effectively p = −i∂x and π = ∂θ.)

The problem is separating, and dealing with, both kinds of constraints. We

won’t provide a complete solution here, but note that that 1st-class ones can easily

be separated: Introducing γaαβ (in general up and down spinor indices may denote

different, but dual, spinor representations; see subsections IA4, XC2, and XC4), we

choose

B = p/d

since (normalizing {γ, γ} = 2η)

{B,B} = 2p/p2

shows that p2 and B have an algebra that closes. (We could also choose p/π, which

commutes with itself, and differs only by a term proportional to p2, but it isn’t super-

symmetry invariant like d and p.) In particular, the gauge transformation generated

by B acts on θ and x as

δθ = p/κ , δx = −iκp/γθ = −i(δθ)γθ
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modulo a term proportional to the constraint d (which can always be canceled by δλ;

there are also the usual implied gauge transformations for v).

To see how much of the problem this solves, we examine the lightcone gauge.

Since there p+ is always invertible (by assumption), we concentrate on its terms:

Besides the usual gauge x+ = τ (for p2) and ensuing manipulations, for B

δθ = −p+γ−κ+ ... ⇒ gauge γ+θ = 0

(using the projection operator ∼ γ+γ−). What’s left is∫
dτ [(

.
x− + i

.
θγ−θ)p+ − 1

2
.
xi2]

The remaining 2nd-class constraints thus state that what’s left of θ is essentially

canonically conjugate to itself. (There is also a factor of p+, but it’s a constant by

the equations of motion, so it can be scaled away by a redefinition of θ, up to a sign.)

But we should have expected this from triality in the string case, where the same is

true for RNS (or spinning particle) fermions.

What’s the spectrum of this superparticle? For the case of most interest, D=10

N=1 supersymmetry, it’s easy to see using triality: x is described the same as for a

scalar particle. So all spin comes from θ. But (after scaling out the p+), it has the

same action as for a spinning (Dirac) particle (in lightcone gauge), except that the

SO(8) vector fermion has been replaced with an SO(8) Weyl-Majorana spinor fermion.

It still has anticommutation relations of a Dirac/Clifford algebra. In the Dirac case,

a vector operator led to states that were a Weyl spinor ⊕ the other chirality Weyl

spinor. By triality, which simply permutes the 3 8-representations, a Weyl spinor

operator must lead to states that are a vector ⊕ the other-chirality Weyl spinor. This

is exactly the spectrum of 10D N=1 super Yang-Mills, the massless sector of the open

superstring.
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The main complication for the superstring (besides 1 more dimension for the

worldsheet) is that we want to maintain separation into left and right-handed modes

(with respect to worldsheet propagation) in a way that’s clear even in a nonlinear

action. Such a problem generally arises when defining 2D theories on group spaces.

(Here the group is supersymmetry.) The solution is to include a 2-form (“Wess-

Zumino”) term in the action. This has a natural group-theoretic interpretation if

we choose a 2-form whose 3-form field strength (which automatically appears upon

varying that term in the action) is identified with the structure constants of the group

(which appear upon reordering terms from varying the metric term in the action).

In this subsection we analyze the case of simple groups at the classical level. (There

are also interesting quantum effects, but they aren’t relevant to the non-semisimple,

supersymmetry case.)

Group

So our 2D fields g are elements of some group. For purposes of considering coset

spaces (relevant for supersymmetry), we consider only global (on the worldsheet) sym-

metry transformations corresponding to left multiplication of this field by a constant

group element g0,

g′ = g0g

(The actions we’ll consider later for superstrings will break symmetry corresponding

to right multiplication.) Then the symmetry invariant current (“field strength” for

the scalars g), which is an element of the Lie algebra (and a worldsheet vector) is

iJ = g−1dg

and the metric term in the action comes from squaring this, and taking the group-

theory trace. (For cosets we take only some of these currents, whose square is invariant

under a subgroup under right multiplication, as we already did for the superparticle.)

We can also simplify this (for the full group) as (since ∂(gg−1) = 0)

(g−1∂g)(g−1∂g) = −(∂g−1)(∂g)

We similarly note the “Bianchi identities” for the field strength (“Maurer-Cartan

equations”)

dJ + iJ ∧ J = 0
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and defining a covariant variation (also in the Lie algebra, but a worldsheet scalar)

i∆ ≡ g−1δg

that (since δ commutes with d)

δJ = d∆+ i[J,∆]

Pulling out a factor of ∆ (after integration by parts) from the trace and integral, the

field equation from the metric term is then proportional to

−∂ · J

In (2D) lightcone notation, if we normalize

A ·B = −A+B− − A−B+ , A ∧B = d2σ (−A+B− + A−B+)

then we would find (using the field equations ± MC equations)

−2∂±J∓ ∓ i[J+, J−] = 0

not summed over ± (but independent of the normalizations), spoiling the equations

∂±J∓ = 0 that would indicate decomposition into left and right-handed currents.

2-form

On the other hand, a worldsheet 2-form in a general theory (not necessarily related

to groups) would contribute a term to the field equations (making only indices for

the “2D fields” αm explicit)

δB = δ(1
2dα

m ∧ dαnBmn) ≈ 1
2dα

m ∧ dαnδαpHmnp

after manipulations similar to those used to derive δJ , but “≈” means up to a total

derivative that we drop in the action so that we can apply integration by parts to the

dδα term. Here we normalize

Hmnp = 1
2∂[mBnp]

where “[ ]” means to sum over all permutations with weight +1 for even and −1 for

odd.

To compare the contribution of such a term to the equations of motion, we need to

convert “curved” (coordinate-basis) indices to “flat” (group-invariant) indices by use
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of the current itself: Making the matrix representation of the Lie algebra generators

Ga explicit,

J = JaGa , Ja = dαmem
a

where the “vielbein” em
a is a function of what are now the group coordinates αm.

(We could do similar for currents invariant under right group multiplication, but we’ll

avoid that here for simplicity.) In the Abelian case, J would just be (dα)G, and e

would be a Kronecker δ. Since the algebra is identical (δ is like d in a third dimension),

we also have

∆ = ∆aGa , ∆a = δαmem
a

Using this vielbein to convert the indices on H, the field equations (± MC) now

become

(−2∂±J
b
∓ ∓ J c+Jd−fcdb)ηba − J c+Jd−Hcda = 0

where the η is the Cartan metric coming from the trace (which we can assume to be

for the adjoint representation). Thus

Habc = ±fabdηdc ⇒ ∂∓J± = 0

allowing us a left-handed current J+ or right-handed J− (both invariant under left

group multiplication), but not both, unless vanishing of structure constants (as for

Abelian or non-semisimple groups) allows the corresponding components of H to

vanish. (This is a “Wess-Zumino term”, a Chern-Simons term for scalars.)

The same result follows from imposing T-duality invariance (electric-magnetic

self-duality in the 2D theory): Start with the Bianchi identities for J (MC equations),

replace J with its Hodge dual (J± → ±J±, or the opposite sign), and require that

those are the field equations. That determines the action as above and, again taking

the sum or difference of the 2 equations, fixes the handedness of 1 component.

In a Hamiltonian analysis, we could instead analyze the current algebra: We

assume the existence of a left-handed algebra

[Ja(1), Jb(2)] = −iδfabcJc − iδ′(2− 1)ηab

in some convenient normalization, where the “1” and “2” refer to σ1 and σ2, and

the δ functions include 2π’s corresponding to the measure
∫
dσ/2π. This “affine Lie

algebra” generalizes the usual particle Lie algebra with the metric term. The Jacobi

identities are then the usual ff identity of a Lie algebra, and an identity that imposes

the total antisymmetry of f after lowering the last index with η:

f[ab
dfc]d

e = 0 = fa(b
dηc)d

Finding a group-coordinate representation then leads to the previous results.
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Action

We now consider the action for Type II strings, with group coordinates X,ΘL, ΘR;

i.e., the coordinates of N=2 superspace. (Type I follows from boundary conditions,

heterotic from truncation.) Since the only nonvanishing structure constants come

from {d, d} ∼ p, we would only have a problem with left and right-handed Θ’s. But

we saw that (at least in the lightcone gauge for the superparticle) Θ satisfies a first-

order differential equation, so it’ll be enough to get each Θ to have a current of 1

handedness. Then the only nonvanishing H will be

Hαβc = ±2γdαβηdc

where the η comes from the worldsheet metric term having only the square of the p

current. This H is identified with the field strength of the B superfield for background

supergravity in superspace in the string frame, which is nonvanishing even in flat space

because the scalar field strength gets a vacuum value. (This is related to the fact that

the “structure constants” for a spacetime symmetry group are the torsion, which is

also nonvanishing in flat superspace.)

We first introduce the notation

χL,R ≡ i(dΘL,R)γΘL,R , P ≡ dX + χL + χR

(where P and χ are vectors in both the worldsheet and spacetime): P is the same

invariant current we used for the superparticle. (The other currents are again dΘL,R.)

Then the action is

S =

∫
d2σ

2π
[1
2P

2 − dX ∧ (χL − χR) + χL ∧ χR]

where the worldsheet metric is implicit for the first term. The worldsheet chirality of

the Θ’s is associated with the fact that the metric term, which is even in σ derivatives,

is LR symmetric in Θ’s, while the 2-form terms, odd in ∂/∂σ, are antisymmetric.

Exercise 1

Show that variation of the WZ terms give

δB ≈ −1
2J

A ∧ JB∆CHCBA

with the above H.
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Again, the 2-form term is required by T-duality invariance. In terms of the action,

one introduces a first-order formalism for the metric term with auxiliary field F :

1
2P

2 → P · F − 1
2F

2 : δ/δF ⇒ F = P , δ/δX ⇒ F = ε(∂X̃ + χL − χR)

where the latter is the solution to the X field equation ∂ · [F − ε(χL − χR)] = 0.

The T-duality is performed with respect to X only (P is its supersymmetry invariant

current), but invariance requires also ΘL → ΘL, ΘR → iΘR (i.e., X̃ → X, χL → χL,

χR → −χR), because the transformation switches the Θ contributions to metric and

2-form terms. (This transformation is similar to CPT on real spinors.) Note that X

is a contravariant vector in spacetime, while X̃ is a covariant one.

Another method is to use κ symmetry: It now comes in left and right versions

for left and right-handed Θ’s, respectively, which “square” to left and right Virasoro

generators. This effectively imposes that D comes in left and right versions. Then

(here ± are worldsheet indices)

δΘL = P/+κL , δΘR = P/−κR , δX = −i(δΘL)γΘL − i(δΘR)γΘR

For the lightcone gauge, we can use the usual Hamiltonian procedure for gauge

fixing the bosons (subsection XIB1), and the same κ gauge for the fermions used for

the superparticle. The result is (with p+ again an independent variable)

S =

∫
d2σ

2π
[
.
x−p+ + 1

2(−
.
X i2 +X ′i2) + i(

.
ΘL −Θ′L)γ−ΘLp

+ + i(
.
ΘR +Θ′R)γ−ΘRp

+]

(Here “
.

” is again the τ derivative, while “ ′ ” is the σ derivative.)

Current algebra

An equivalent analysis can be made by Hamiltonian methods. This still looks

covariant for a 2D worldsheet because the conformal group factors into separate left

and right 1D general coordinate transformations. Then we look at the current algebra,

from which we can construct Virasoro and κ generators quadratically. It also suggests

generalizations that can be simpler in some respects, and relates to field theory, where

we need the “covariant derivatives” that generalize d and p for the particle. Because

they appear in field equations, they also correspond to vertex operators for the string.

Since the left and right algebras are independent (at least for the free string in

flat space), we look at just the left-handed one. (As usual, the relation of the spinors
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between left and right-handed algebras differs for Types IIA and IIB.) We can start

with just the D current and generate the rest from it:

{Dα(1), Dβ(2)} = δ2γaαβPa

[Dα(1), Pa(2)] = δ2γaαβΩ
β

[Pa(1), Pb(2)] = −iδ′(2− 1)ηab

{Dα(1), Ωβ(2)} = −iδ′(2− 1)δβα

The appearance of the current Ω might be unexpected, as there was no analog in

the free particle case. It’s required by the Jacobi identities (discussed previously for

compact groups): The fη identity requires a metric forD by defining a “dual” current.

Since the group is not (semi)simple, the metric appearing in the current algebra (and

action) is not required to be related to the Cartan metric, which vanishes in this case.

Exercise 2

Find the Jacobi identity (cubic in currents) that requires the existence of Ω.

(Hint: There are no Ω’s appearing until commutators are evaluated.) Relate

the nontriviality of this identity to the nonvanishing components of H.

However, when the superparticle is coupled to an external super Yang-Mills field,

D and P are replaced by the corresponding Yang-Mills covariant derivatives, and Ω

by the spinor superfield strength. In both cases, the satisfaction of one of the ff

identities requires a Fierz identity:

γa(αβγ
a
γ)δ = 0

After contracting spinor indices with more γ’s, this is found to imply spacetime

dimension D=3,4,6, or 10. These are the dimensions for which Yang-Mills with simple

supersymmetry has no scalars, i.e., the maximal dimensions with various numbers of

supersymmetries (scalars coming from dimensional reduction). Of course, Yang-Mills

is the massless sector of the open string, so this result is part of the relation of the

“vertex operators” in the 2 theories.

For the bosonic string the left-handed algebra consists of just

P = P̂ ≡ 1√
2
(
◦
P +X ′)

where
◦
P is the canonical conjugate to X. But for the superstring the coordinate

representation of the current algebra is

Ω = −iΘ′

P = P̂ + χσ

D = Π + (P̂/ + 1
2χ/σ)Θ
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where Π is the canonical conjugate of Θ. (χσ is the σ component of χL defined

earlier.) As expected, this differs from the particle by σ-derivative terms.

Only ηab and γaαβ appear in the current algebra, but ηab (just the inverse) and

γaαβ appear in the extended Virasoro algebra,

T = 1
2P

2 , κ = P/D

as was the case for the particle. (The complete algebra is rather complicated, and

won’t be discussed here.) Also as for the particle, the action can be straightforwardly

reconstructed from the Virasoro constraints T and the mixed first and second-class

constraints D, but now with both left and right-handed sets.
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For the AdS/CFT correspondence, we need to perturb the Type IIB superstring

about an AdS5×S5 background, whose curvature comes from flux from the selfdual

5-form RR field strength. Unfortunately, in the RNS formalism such perturbations

can’t be treated semiclassically, or by functional integral, since there spinors act

appropriately only at the fully quantum mechanical level (all orders in α′). So we

look instead at its GS formulation, where spacetime (conformal) supersymmetry is

manifest.

Action

The 4D N=4 superconformal group is the supergroup PSU(2,2|4). This super-

group has bosonic subgroup SU(2,2)⊗SU(4) (the covering group of SO(4,2)⊗SO(6),

conformal and R-symmetry), plus 32 fermionic generators in the defining represen-

tations of both SU(2,2) and SU(4) (4×4 complex). (The “P” means a factor pro-

portional to the identity is gauged away.) We can then write the group generators

as

GA
B A = (a, α)

where a is an SU(4) 4-index, and α is for SU(2,2). The commutation relations for

U(2,2|4) (from which we can subtract traces for “PS”) are

[GA
B, GC

D} = δA
DGB

C − δBCGA
D

where the reverse ordering δBA or GB
A (vs. the “natural” δA

B and GA
B) means there’s

an extra statistics sign when reordering 2 “fermionic” indices α, β. An arbitrary

element of the supergroup is then

g = eiαA
BGB

A

where another statistics ordering sign is understood for contracting A
A (the “super-

trace”) opposite to the natural contraction order A
A. The currents are given by

−ig−1dg = J = GA
BJB

A

The AdS5 realization of SO(4,2) is the coset space G/H=SO(4,2)/SO(4,1). (For

more on cosets see subsection IVA3, or my string notes on superconformal symme-

try.) The “vacuum” preserves SO(4,1), meaning we use the usual 5D coordinates

with manifest SO(4,1) Lorentz symmetry, while the coset comes from the transla-

tion generators, which close only on Lorentz. (In the boundary limit, the SO(4,1) is
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contracted to the 4D Poincaré group ISO(3,1). The resulting coset is 4D Minkowski

space, plus an extra coordinate that parametrizes scale weight.) Similar remarks ap-

ply to the sphere S5 as the coset SO(6)/SO(5). We thus are left with 10 bosonic

coordinates, and keep the full 32 fermionic coordinates of Type IIB supergravity. So

the superspace is G/H=PSU(2,2|4)/USp(2,2)⊗USp(4). (USp(4), USp(2,2), and Sp(4)

cover SO(5), SO(4,1), and SO(3,2).) This means that the only symmetry invariant

(because symmetry acts to the left of g) and gauge covariant currents are

J〈ab〉, J〈αβ〉, Jaβ, Jαb

(the former bosonic, the latter fermionic), where the B index on JA
B has been lowered

with the USp(4) and USp(2,2) metrics Cab and Cαβ, and 〈 〉 means we keep only the

antisymmetric, (Sp-)traceless parts. (The symmetric parts were eliminated by the Sp

gauge groups, the traces by the P and S.)

The action can then be written by methods similar to those we have discussed.

By a fortunate accident, the WZ term in this action can be written in manifestly

supersymmetric form, as the square of currents (but using the ε tensor, not the

worldsheet metric). (Actually this can also be done for the GS action in general, but

not without the introduction of extra fermionic coordinates.) The Lagrangian is then

proportional to

J2
〈ab〉 − J2

〈αβ〉 + 1
2J

aβ ∧ Jaβ − 1
2J

αb ∧ Jαb

(κ symmetry can be used to determine the coefficient of the WZ terms, but also

T-duality, see below.)

Coordinates

For purposes of a nice coordinate realization, we Wick rotate to the real super-

coset GL(4|4)/[GL(1)⊗Sp(4)]2. (The bosonic subcoset is (SO(3,3)/SO(3,2))2.) Then,

rather than annoying cosh’s and sinh’s, we can write things in terms of fractions, be-

cause we can write a group element of GL(4|4) as an arbitrary matrix instead of an

exponential.

We then use matrix decompositions, writing the group element in factorized form,

each factor being either block diagonal, or the identity plus block off-diagonal. This

makes the currents polynomial in the off-diagonal variables. For example, consider a

decomposition of the form, for 2 arbitrary size diagonal blocks,

gM
A =

(
I w

0 I

)(
u 0

0 ū−1

)(
I 0

−v I

)
A = (A,A′)
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(We now use indices from the middle of alphabets to indicate the action of the sym-

metry group G from the left, and indices from the beginning for the gauge group H

acting from the right.) It’s clear that w will appear in the currents g−1dg only as

dw, since it will cancel in the middle if undifferentiated. This allows T-duality trans-

formations to be transformed easily on w, for which there’s an Abelian translation

invariance. (w is the coordinates for a torsion-free superspace.)

As an example, consider a term for AdS5 (or S5) alone, taken as the coset

GL(4)/GL(1)⊗Sp(4). In a triangular Sp(4) gauge we can write the group element X

as

Xµ
α =

(
I x

0 I

)(
Ix0 0

0 I

)
=

(
Ix0 x

0 I

)
⇒ X−1 =

(
I/x0 −x/x0

0 I

)
in terms of a real 2×2 matrix x and a fifth coordinate x0. Then the current is

X−1dX =
1

x0

(
dx0 dx

0 0

)
Squaring gives the metric in Poincaré coordinates

dx2 + dx2
0

x2
0

where dx2 is the determinant of dx, giving that part signature − − ++. (These

coordinates are globally sufficient when working with Euclidean AdS.)

For the full superconformal group, 2 particular choices for which the action is

invariant under T-duality are (for w as “chiral” and “projective” superspaces)

(1) A = α , A′ = (a, a′,
.
α)

(2) A = (a, α) , A′ = (a′,
.
α)

where a, a′, α,
.
α are SL(2) 2-indices (or SU(2) and SL(2,C) before Wick rotating). In

both these cases we can choose triangular gauges

v = 0

by using part of the Sp(4)’s for the bosons (as above for AdS5) and part of κ symmetry

for the fermions. Then we can also write (dropping the “i” because we already

dropped a lot of them for Wick rotation)

g−1dg =

(
Ju Jw

−Jv −Jū

)
Jw = u−1(dw)ū−1 , Ju = u−1du , Jū = (dū)ū−1 , Jv = 0

For purposes of w T-duality we can then write the Lagrangian as

F · ∂w − C(uF+ū)C(uF−ū)T + J2
u + J2

ū

where again varying F gives the original form while varying w gives the dual.
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T-duality

T-duality is then almost trivial for w: Effectively it just replaces

wM
M ′ → w̃M ′

M , uM
A → (u−1)A

M , ūA′
M ′ → (ū−1)M ′

A′

after which the action has the same form. (Note that again covariant and contravari-

ant indices have been switched on w vs. w̃.) There is a fine point: When we dualized

dw → εdw̃ there was a factor u ⊗ ū (because of the 2 indices on w), which would

appear in a Jacobian determinant, and so could contribute α′ corrections. Using the

identity

sdet(eA) = estr A ⇒ sdet(A⊗B) = (sdetA)str IB(sdetB)str IA

(for identities I in the A and B spaces), and using the “S” condition sdet u = sdet ū,

we find the Jacobian

sdet(u⊗ ū) = (sdet u)str Iū(sdet ū)str Iu = (sdet u)str Iu+str Iū = 1

since str Iu + str Iū = 0 for PSU(2,2|4).

In case (1) we dualize 4 coordinates of AdS5, in case (2) we also dualize 4 from

S5; in both cases also 8 fermionic coordinates. Of course, we could have modified

case (1) by dualizing 4 from S5 and none from AdS; case (2) then follows from doing

both types of case (1). These dualities have interesting effects on the D3-branes often

associated with AdS5: Depending on which of these dualities we consider, we can get

D−1-branes, D7-branes, or again D3-branes, where the brane spaces are associated

with either 0 or 4 dimensions of both AdS5 and S5.

This invariance implies the existence of PSU(2,2|4) symmetry on the dual space.

As we saw previously for the bosonic string (subsection XIA7), T-duality for the string

corresponds to Fourier transformation for the Feynman diagrams of the “partons” of

which it’s composed. In the AdS/CFT correspondence, the partons are identified

with the 4D N=4 Yang-Mills CFT, while the string is identified with “hadrons”

(or whatever the analog is for color-singlet composites in this Yang-Mills theory).

Thus the new PSU(2,2|4) symmetry resulting after dualizing the 4 coordinates of

the AdS boundary (and perhaps simultaneously 4 of S5) is a “dual superconformal

symmetry” acting in some way on this CFT. This symmetry, combined with the usual

superconformal, closes on an infinite-dimensional “Yangian symmetry” (not directly

related to Yang-Mills symmetry, but the same guy) that places strong restrictions

(“integrability”) on S-matrices in the theory.
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Limits

There are various limits one can take to simplify the AdS action, corresponding

to group contractions. One type of contraction acts on only the gauge group, not

the symmetry group. In the above triangular language, it corresponds to defining the

limit with respect to flat and not curved indices:

gM
A → εgM

A , gM
A′ → ε−1gM

A′ ; ε→ 0

and thus on the currents

Jw → ε−2Jw , Ju → Ju , Jū → Jū , Jv → ε2Jv

or in terms of the block coordinates,

wM
M ′ → wM

M ′ , uM
A → εuM

A , ūA′
M ′ → εūA′

M ′ , v′A
A → ε2v′A

A

For a simple example, look at just bosonic AdS: There the effect of

x→ x , x0 →
√
εx0

(taking into account the GL(1) gauge) is to reduce the metric, up to an overall factor,

as
dx2 + dx2

0

x2
0

→ dx2

x2
0

The limit x0 → 0 for the bulk coordinate x0 is the boundary limit. The metric is still

SO(4,2) conformal invariant, but the coset is now SO(4,2)/ISO(3,1): The gauge group

SO(4,1) has been contracted. Similar results hold for the full supergroup, yielding

Minkowski-space representations from the AdS ones.

Another interesting limit contracts also the symmetry group. The “Penrose limit”

is one that generates simple wave solutions from any metric. In this case it’s the limit

w → εw , v → εv

combined with a scaling of the ratio “x−” of the x0 from AdS5 and the corresponding

one from S5:

ln(x0/y0)→ ε2ln(x0/y0)

Taken on just the (Wick rotated) AdS5×S5 metric, the simplest form comes from the

redefinitions

x→ εex
+

x , y → εex
+

y , x0 → ex
++ε2(x−+y2−x2)/4 , y0 → ex

+−ε2(x−+y2−x2)/4

Then the ε→ 0 limit is proportional to

dy2 + dy2
0

y2
0

− dx2 + dx2
0

x2
0

⇒ −dx+dx− + dy2 − dx2 + (y2 − x2)dx+2

In the lightcone gauge x+ = τ , this gives a harmonic oscillator action (also for the

fermions).
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