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Symmetry generators

A Lie group is a space, so we generally want to introduce some coordinates. Since

it’s a curved space, the choice of coordinates generally varies according to application.

A simple choice is the exponential one,

g = eiα
I
GI

but it’s usually not the most convenient one. For coset spaces, we often use

g = eiα
i
Tieiα

ι
Hι

since under the gauge group g� = gh, so h will transform only the αι, not the αi. For

various other purposes (see below), we may want to further factorize g. Group multi-

plication of such exponentials can be performed using the Baker-Campbell-Hausdorff

theorem.

Generally, it’s convenient to eliminate exponentials as much as possible, since it

may be difficult to evaluate them explicitly in closed form. For example, we might

use

g = eiα
+
G+eiα

0
G0eiα

−
G−

where the generators have been divided up into “raising operators” G+, “lowering

operators” G−, and those of the “Cartan subalgebra” (a maximal Abelian subalgebra)

G0. (We here take +, 0,− as multivalued indices.) Since G0 is Abelian, its exponential

is easily evaluated as phase factors. The expansions of the rest will terminate, leaving

polynomials.

Exercise

Evaluate this group element in these coordinates using the definining repre-

sentation of SU(2) for the generators. What are the reality properties of the

coordinates?

Another possibility for classical groups is to work in the defining representation,

and then solve the constraints on the group matrices in terms of some rational expres-

sion. We have already seen (incomplete) examples of this above for cosets represented

as projective spaces.

Once a coordinate representation has been chosen, we also want such a repre-

sentation for the action of the symmetry group on this space, i.e., a translation into
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coordinate language of g� = g0g. For many purposes it will be sufficient to evaluate

the infinitesimal transformation (using, e.g., the BCH theorem)

δg ≡ i�IGIg = (ei�
IGI − I)g(α) = i�I �GIg

where �GI is a differential operator. Since it generates an infinitesimal coordinate

transformation, we can write

i �GI = LI
M
(α)∂M , δαM

= �ILI
M

where ∂M ≡ ∂/∂αM
. We thus have

GIGJg = GI
�GJg = �GJGIg = �GJ

�GIg

[GI , GJ ] = −ifIJ
KGK ⇒ [ �GI , �GJ ] = +ifIJ

K �GK

so technically it’s − �GI that’s a coordinate representation of GI . (Cf. subsection IC1,

where we saw coordinate representations of the generators on spaces other than the

group space.)

Equivalently, we can solve the “dual” equation, in terms of differential forms

instead of derivatives,

(dg)g−1 ≡ [g(α + dα)− g(α)]g−1
(α) = i dαMLM

IGI

where LM
I
is the matrix inverse of LI

M
. (As usual, when expressing transformations

in terms of coordinates it’s often convenient to eliminate all i’s in the above equations

by absorbing them into the G’s and working with antihermitian operators.)

Covariant derivatives

If symmetry (known by mathematicians as “isometry”) generators are defined

by the left action of group generators on a group element, then generators of the

gauge (known by mathematicians as “isotropy”) group are defined by right action.

The latter are known as “covariant derivatives” because they commute with the sym-

metry generators. (Commutativity of left and right multiplication is equivalent to

associativity of multiplication.) From the same arguments as above, we have

gGI = DIg, iDI = RI
M
(α)∂M

g−1dg = i dαMRM
IGI

[ �GI , DJ ] = 0
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We now have

gGIGJ = DIgGJ = DIDJg ⇒ [DI , DJ ] = −ifIJ
KDK

There is a very simple relation between the symmetry generators and covariant

derivatives. Consider the coordinate transformation that switches each group element

with its inverse; then

g� = g0gh ⇒ (g−1
)
�
= h−1g−1g−1

0

g ↔ g−1 ⇒ g0 ↔ h−1 ⇒ GI ↔ −DI

(For the sake of this argument we need not distinguish between global and local

groups, and h can be taken as in the full group.) This relation can also be seen from

the explicit expressions for L and R as (dg)g−1 ↔ −g−1dg. Thus, in the exponential

coordinate system, we have simply L(α) = R(−α) (with the extra “−” canceling the

sign change of ∂/∂α).

We can “integrate” the (symmetry) invariant differentials dαMRM
I
to get finite

differences. But the result can be guessed directly:

g(α12) ≡ g−1
(α2)g(α1) = g−1

(α21)

Thus the group element g(α12), and hence α12 itself, is symmetry invariant. α12

reduces to the above differential in the infinitesimal case. In coordinates where

g−1
(α) = g(−α) (for example, parametrization with a single exponential), we have

also α21 = −α12. The action of the covariant derivatives on the symmetry invariants

is given by (using d(g−1
) = −g−1

(dg)g−1
)

DI(α1)g(α12) = g(α12)GI , DI(α2)g(α12) = −GIg(α12)

The invariant differentials can also be used to define a group-invariant (“Haar”)

measure: The wedge product of all the differentials dαMRM
i
(i ranges over the coset)

is not only invariant under the symmetry group, but also under the gauge group,

since the determinant of the gauge group element is 1 for the coset representation

(even for GL(1), if we use the exponential parametrization).

Exercise

Evaluate all the above (L,R,α12) for the coset U(1)/I.
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Wave functions and spin

To define a Hilbert space for wave functions, we begin with a vacuum state defined

to be invariant under the gauge group:

Hι|0� = �0|Hι = 0

(For some purposes, we can think of the gauge generators as “lowering operators”. In

general, we don’t need a Hilbert space for this construction, but only a vector space;

the bras then form the dual space to the kets, as described in subsection IB1.) A

coordinate basis for the coset can then be defined as

|α� = g(α)|0�, �α| = �0|g−1(α)

(where g(0) = I) and thus invariant under a gauge transformation

g
�|0� ≡ gh|0� = g|0�

The wave function is then defined with respect to this basis as

ψ(α) ≡ �α|ψ� = �0|g−1(α)|ψ�

from which it follows that its covariant derivative with respect to the gauge group

vanishes:

−Dιψ(α) = �0|Hιg
−1(α)|ψ� = 0

On the other (right) hand, the symmetry generators act in the expected way:

−ĜIψ(α) = �0|g−1(α)GI |ψ� = (GIψ)(α)

So far we have analyzed only coordinate representations. But usually in quantum

mechanics we want to consider more general representations by adding “spin” to

such “orbital” generators. This is accomplished by first introducing spin degrees of

freedom, and then tying them to the group by modifying the gauge-group constraints.

So we first introduce a basis |A� (and its dual �A|) for a matrix representation H̃ι for

the gauge group,

�A|Hι = H̃ιA
B�B|, Hι|A� = |B�H̃ιB

A

then define a basis for the Hilbert space by using this gauge group basis as our new

(degenerate) vacuum,

|A,α� ≡ g(α)|A�
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to get the generalizations of the previous

ψA(α) ≡ �A,α|ψ� ⇒ −DιψA(α) = H̃ιA
B
ψB(α), −ĜIψA(α) = (GIψ)A(α)

The wavefunction now depends on the gauge-group coordinates, but this dependence

is fixed independent of the state: For example, in the 2-exponential coordinate system

ψA(α) = �A|e−iα
ι
Hιe

−iα
i
Ti |ψ� = (e−iα

ι
H̃ι)A

M�M |e−iα
i
Ti |ψ� ≡ eA

M(αι)ψM(αi)

where eA
M is a “vielbein” depending on only the gauge coordinates, and can be

gauged to the identity, while ψM depends on only the coset coordinates. Since we

know D in terms of derivatives, Dι = −H̃ι can be solved to replace partial derivatives

with respect to gauge-group coordinates with matrices, in both DI and ĜI . We’ll see

applications of this to the conformal group (and thus also the Poincaré group) later.

The commutation relations of the surviving covariant derivatives

[Di, Dj} = fij
k
Dk + fij

κ
Dκ

then identify fij
k as the “torsion”, while fij

κ is the “curvature”.


