Lightcone algebra

Bosonic string

The Lorentz algebra in the lightcone formalism is the analog of the BRST algebra in the
covariant formalism. The calculations are very similar, as having 2 "anticommuting

directions" (for vector indices; subsection XIIB8) to give X — C,Band ¥ — 7, /. In

particular, 2D "field theory" and current algebra methods are again the most convenient.
However, the lightcone gauge fixes conformal invariance: As a result, transforming from

the cylinder to the plane introduces explicit z dependence.

For convenience, we work with the closed string; the open string is obtained by the
usual identification between left and right. The only quantum (nonclassical) lightcone
Lorentz algebra comes from that of 2 currents cubic in oscillators, J'~. Before Wick

rotation and transformation to the complex plane, these generators are (see subsection
XIB1; for the hermitian form):
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(summed over X). Only the oscillators Y contribute to the "loop" correction. We could
have done the same for the zero-modes, except that X(+) are not perlodlc




Then

where the x™ term is required because X~ appears only with a derivative. In the
analogous BRST case, there is no ¢ term in C 4, to cancel.

In the Wick-rotated 2D Euclidean complex plane z = ¢*1%?, the action, propagators
(subsection VIIB5) and energy- momentum tensor (subsection XIB4) for real fields are:
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where X =+/a’/2 ¢. The zero-mode terms in X are
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(As usual, we extend the open string into the lower-half complex plane to work with
only d and not 0. The id is from Wick rotation 7 — — ir. We'll set a’ = 2 for the rest of

these notes, to normalize X like a standard boson.)

We then plug in the gauge condition and solution to the Virasoro constraints,

laXl 2 +
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(and similar for 5) to get the final expression for the Lorentz
generators . 1 a _ 1 : - i 2
ST =X —xTp o »(X(s) + ip'In2)z(i0X],)

(z and d for X(_) are understood.) We added a normal-ordering constant as

(p’.)2 — (p")2 + a/a’; it was prohibited in the conformal gauge by conformal

iInvariance, and since the conformal vacuum is necessarily massless. It’s a quantum
correction whose trees contribute at 1 loop. For all of the loop calculation we can deal

separately with left and right-handed modes. (We then drop the ( % ).)



Looking at just "loop" terms, we get 3 types, from double contractions between

X(0X)? terms of
((0X)? (0X)?) ((0X)* X0X) (X0X X0X)

Ultimately the result for [J'~, J/~] must come out antisymmetric in [77], but it saves
steps to antisymmetrize by hand: In particular, we can ignore direct contraction of

X' X7) in the last term: _ :
( ) in the last term (X! X7y = — §U1n(z — 2)

(for X, with Z for ( —)). The 3 terms then give operator products of the 2 currents

proportional to 1/(z — Z’) to powers 4,3,2 respectively. Integration then gives terms
—1/4(p™)? times | | o
$(zX)0’(zX)) and $X'0X

(the latter of which will be canceled by a trees) after using the rule

A(2)B(Z) ~ a(2)b(z) = [$A,$B} ~ =L ab®
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Carefully keeping track of all signs, the 1/n!’s, and the various permutations (2,8,4,

respectively), the result for the d° terms comes out proportional to, adding the 3 types
of contractions, D_2 D — 26

3 3
(The D — 2 comes from summing 517 517’ over transverse modes.) The generated term

is not part of the algebra, so it must die. This implies D = 26. The result for the 0
terms Is 0—4 —4 —2g

where the a contribution comes from the ordinary commutator [x’, pj] between the ax

term and the p in 0X. Thus g =—_4

Exercise 1: Consider replacing X with just its oscillator part Y, with propagators

sans zero-modes
(YY)=—In(z—2z)+Inz+In7

Show by explicit calculation that the extra terms don’t contribute to these loops.



Strings with fermions

The bosonic particle describes a scalar, so its Lorentz generators have only orbital
pieces. In the lightcone gauge we can set x™ = 0O (at ¢ = (), and solve the Klein-

Gordon equation for p .

For a relativistic guantum mechanical system with spin, there is also a spin piece,
Jab — x[apb] n Sab

But relativistic wave functions/fields satisfy more than just the KG equation: It can
be summarized (for field strengths) as (for the massless case)

Sabpb — O

(There’s also a "normal-ordering term" ~ p“, which we’ll neglect, and can be
transformed away in the lightcone formalism. See subsections [IB1-4.) This
constraint has the lightcone gauge and solution
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Alternatively, we can find § "~ from the simple generators by closure of the
algebra: - . ¥ ¥
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Exercise 2: Show the above choices for longitudinal components of spin satisfy this
commutation relation.

Both spinning and super strings are generalizations of this to the worldsheet: Their
contributions to the spin take the generic form

ASab _ ggsvab, Svab _ %FTSabF

- dy _ d
iLs, ., s = 5[[15%1 :

for some real, self-conjugate fermionic worldsheet field F, where s is its matrix
representation of the Lorentz group. Specifically, for these strings we have

b



DT (RNS)
1597 = U lab)
-7 (GS)
The analog of the Sp constraint then comes from
YUY - (0X)] or Oy%y-PD] ~ §%ioX,

(after subtracting a singular dX“ term). Using gauge symmetry generated by the super-
Virasoro or k-symmetry constraint, respectively, we then find

AS™ = —$z8i0X.,  AS™t=ASTT =0
P

with S¥ as above, but for the reduced fermions F of the lightcone. This includes the
term ASYp,/ p™. The other modification to J'~ is in 0X~, the transverse part of

Virasoro: | |
(0X7)? = (0X7)? + F1oF

The final Lorentz generators are then
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Exercise 3: Verify the part of the Lorentz algebra in Exercise 2 for these generators.

The contribution of XX(F0F FOF) to the closure of the algebra is simple. (Compare to
the first of the 3 contraction terms of the bosonic case).

Exercise 4. Show that the result of the crossterm X(0X)(FoF FsF’) vanishes. (Hint:
What happens to the matrix indices on s7?)

But for the (0X)(0X){FsF' FsF) contribution, we’ll need to evaluate a double
contraction for 2 §¥’s. The result is easily found to be

($98M) = Z—ir (s7sM)



The Dynkin index ¢ of the SO(D — 2) representation is (see subsection VIIIA3):

2 (vector)
D'/4  (spinor)

where the vector representation is for the RNS spinning string, and the spinor
(dimension D’) is for the GS superstring. For the superstring, defined classically for
D =3,4,6,10, we have D' = D — 2. The modification to the coefficient in the
bosonic string for the @° term is then

D — 10
D—_2—4—4+D_2+26= 2 (RNS)

3 6 D—-10 (GS)
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So in either formalism we find D = 10. The modification for the 0 term is

—4 — 2a (RNS)

0—4—4+0+2c—2a= i
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so a = — 2, half the result for the bosonic string.

Finally, besides the XX terms also found in the bosonic string, we get F'F' terms from 1

contraction of X’s and 1 of ['’s. Specifically, we get a term of the form — 1/4(p+)2
times

—1i </F (zF)sY0%(zF)

This is required by worldsheet/spacetime supersymmetry to accompany the similar XX

term; it’s like spin but with an extra (zd)°. Between the XFOF and FsFoX terms, we get
1 contribution from the latter with itself, and 1 from the crossterms. The coefficients are

(D—-4)—-6
again requiring D = 10. (The former comes from tracing o’s from [s, s].) We also get a
spin term —i%FSF to go with the X0X term, with coefficient

0—-4—2a



