
Lightcone algebra
Bosonic string

The Lorentz algebra in the lightcone formalism is the analog of the BRST algebra in the 
covariant formalism.  The calculations are very similar, as having 2 "anticommuting 
directions" (for vector indices; subsection XIIB8) to give  and .  In 
particular, 2D "field theory" and current algebra methods are again the most convenient.  
However, the lightcone gauge fixes conformal invariance:  As a result, transforming from 
the cylinder to the plane introduces explicit  dependence.


For convenience, we work with the closed string; the open string is obtained by the 
usual identification between left and right.  The only quantum (nonclassical) lightcone 
Lorentz algebra comes from that of 2 currents cubic in oscillators, .  Before Wick 
rotation and transformation to the complex plane, these generators are (see subsection 
XIB1; for the hermitian form):

X → C, B Ψ → γ, β
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Separating into left and right modes, and using the corresponding linear equations of 
motion,
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(summed over ).  Only the oscillators  contribute to the "loop" correction.  We could 
have done the same for the zero-modes, except that  are not periodic: 
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where the  term is required because  appears only with a derivative.  In the 
analogous BRST case, there is no  term in  to cancel.


In the Wick-rotated 2D Euclidean complex plane , the action, propagators 
(subsection VIIB5) and energy-momentum tensor (subsection XIB4) for real fields are:  
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where .  The zero-mode terms in  areX = α′ /2 φ X
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(As usual, we extend the open string into the lower-half complex plane to work with 
only  and not .  The  is from Wick rotation .  We’ll set  for the rest of 
these notes, to normalize  like a standard boson.)


 We then plug in the gauge condition and solution to the Virasoro constraints,

∂ ∂̄ i∂ τ → − iτ α′ = 2
X
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2i∂X+
, i∂X+ =

p+

z
(and similar for ) to get the final expression for the Lorentz 
generators 
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(  and  for  are understood.)  We added a normal-ordering constant as 
; it was prohibited in the conformal gauge by conformal 

invariance, and since the conformal vacuum is necessarily massless.  It’s a quantum 
correction whose trees contribute at 1 loop.  For all of the loop calculation we can deal 
separately with left and right-handed modes.  (We then drop the .)

z̄ ∂̄ X(−)
(pi)2 → (pi)2 + a/α′ 

( ± )



Ultimately the result for  must come out antisymmetric in , but it saves 
steps to antisymmetrize by hand:  In particular, we can ignore direct contraction of 

 in the last term: 

[Ji−, Jj−] [ij]

⟨Xi Xj⟩
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Looking at just "loop" terms, we get 3 types, from double contractions between 
 terms ofX(∂X)2

(for , with  for ).  The 3 terms then give operator products of the 2 currents 
proportional to  to powers 4,3,2 respectively.  Integration then gives terms 

 times

X(+) z̄ ( − )
1/(z − z′ )

−1/4(p+)2

⟨Xi Xj⟩ = − δij ln(z − z′ )

∮ (zXi)∂3(zXj) and ∮ Xi∂Xj

(the latter of which will be canceled by  trees) after using the rulea

A(z)B(z′ ) ≈ a(z)b(z′ ) 1
(z − z′ )n+1 ⇒ [∮ A, ∮ B} ≈ (−1)n

n! ∮ ab(n)



Carefully keeping track of all signs, the ’s, and the various permutations (2,8,4, 
respectively), the result for the  terms comes out proportional to, adding the 3 types 
of contractions, 

1/n!
∂3

D − 2
3

− 4 − 4 =
D − 26

3
(The  comes from summing  over transverse modes.)  The generated term 
is not part of the algebra, so it must die.  This implies .  The result for the  
terms is

D − 2 δij δij
D = 26 ∂

0 − 4 − 4 − 2a
where the  contribution comes from the ordinary commutator  between the  
term and the  in .  Thus

a [xi, pj] ax
p ∂X a = − 4

Exercise 1:  Consider replacing  with just its oscillator part , with propagators 
sans zero-modes

X Y

⟨Y Y⟩ = − ln(z − z′ ) + ln z + ln z′ 

Show by explicit calculation that the extra terms don’t contribute to these loops. 



Strings with fermions
The bosonic particle describes a scalar, so its Lorentz generators have only orbital 
pieces.  In the lightcone gauge we can set  (at ), and solve the Klein-
Gordon equation for .


For a relativistic quantum mechanical system with spin, there is also a spin piece,

x+ = 0 τ = 0
p−

Jab = x[apb] + Sab

But relativistic wave functions/fields satisfy more than just the KG equation:  It can 
be summarized (for field strengths) as (for the massless case)

Sabpb = 0
(There’s also a "normal-ordering term" , which we’ll neglect, and can be 
transformed away in the lightcone formalism.  See subsections IIB1-4.)  This 
constraint has the lightcone gauge and solution

∼ pa



Si+ = S+− = 0, Si− =
1

p+
Sijpj

for some real, self-conjugate fermionic worldsheet field , where  is its matrix 
representation of the Lorentz group.  Specifically, for these strings we have

F sab

ΔSab = ∮ ̂Sab, ̂Sab = 1
2 FTsabF

Alternatively, we can find  from the simple generators by closure of the 
algebra:

Si−

i[Ji+, Jj−] = Jij − δijJ+−

Exercise 2:  Show the above choices for longitudinal components of spin satisfy this 
commutation relation.


Both spinning and super strings are generalizations of this to the worldsheet:  Their 
contributions to the spin take the generic form

i[sab, scd] = δ[c
[bsa]

d]



(∂Xj)2 → (∂Xj)2 + FT∂F

with  as above, but for the reduced fermions  of the lightcone.  This includes the 
term .  The other modification to  is in , the transverse part of 
Virasoro:

̂Sij F
ΔSijpj/p+ Ji− ∂X−

ΔSi− = 1
p+ ∮ z ̂Siji∂Xj , ΔSi+ = ΔS+− = 0

(after subtracting a singular  term).  Using gauge symmetry generated by the super-
Virasoro or -symmetry constraint, respectively, we then find 

∂Xa

κ

Ψa[Ψ ⋅ (∂X)] or Θγa[γ ⋅ PD] ∼ ̂Sabi∂Xb

The analog of the  constraint then comes fromSp

isab = {
|[a ⟩⟨b] | (RNS)

− 1
4 γ[aγb] (GS)

The final Lorentz generators are then



Exercise 3:   Verify the part of the Lorentz algebra in Exercise 2 for these generators.


The contribution of  to the closure of the algebra is simple.  (Compare to 
the first of the 3 contraction terms of the bosonic case).  


Exercise 4:  Show that the result of the crossterm  vanishes.  (Hint:  
What happens to the matrix indices on ?)


But for the  contribution, we’ll need to evaluate a double 
contraction for 2 ’s.  The result is easily found to be

XX⟨F∂F F∂F⟩

X(∂X)⟨F∂F FsF⟩
s
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Ji− = xi 1
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a
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1
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D − 2
3

− 4 − 4 +
D − 2

6
+ 2c = {

D − 10
2 (RNS)

D − 10 (GS)

where the vector representation is for the RNS spinning string, and the spinor 
(dimension ) is for the GS superstring.  For the superstring, defined classically for 

 = 3,4,6,10, we have .  The modification to the coefficient in the 
bosonic string for the  term is then

D′ 

D D′ = D − 2
∂3

−tr (sijskl) = cδ j[kδl]i, c = {2 (vector)
D′ /4 (spinor)

The Dynkin index  of the SO( ) representation is (see subsection VIIIA3):c D − 2

So in either formalism we find .  The modification for the  term isD = 10 ∂

0 − 4 − 4 + 0 + 2c − 2a = {
−4 − 2a (RNS)

−4 − 2a + D − 10
2 (GS)



so , half the result for the bosonic string.


Finally, besides the  terms also found in the bosonic string, we get  terms from 1 
contraction of ’s and 1 of ’s.  Specifically, we get a term of the form  
times

a = − 2

XX FF
X F −1/4(p+)2

−i∮ (zF)sij∂2(zF)

This is required by worldsheet/spacetime supersymmetry to accompany the similar  
term; it’s like spin but with an extra .  Between the  and  terms, we get 
1 contribution from the latter with itself, and 1 from the crossterms.  The coefficients are

XX
(z∂)2 XF∂F FsF∂X

(D − 4) − 6
again requiring .  (The former comes from tracing ’s from .)  We also get a 
spin term  to go with the  term, with coefficient

D = 10 δ [s, s]
−i 1

2 FsF X∂X

0 − 4 − 2a


