Improved methods for hypergraphs

Dharmesh Jain and Warren Siegel

[arXiv:1302.3277]

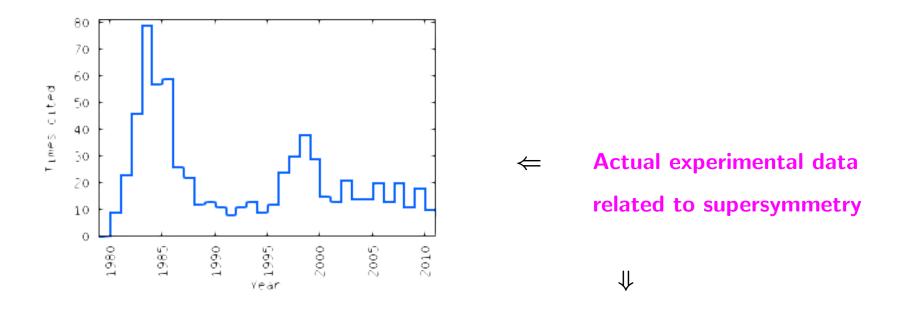
```
Earlier work:
```

```
"Hypersymmetry": N=2 supersymmetry — Fayet ('76)
: (cf. "Bambi Meets Godzilla")
Hypergraphs: Ivanov, Galperin, Ogievetsky, Sokatchev ('85)
Gonzalez-Rey, Roček, Wiles, Lindström, von Unge ('97-8)
Jain, Siegel ('09-12)
Background hyperfields: Buchbinder², Ivanov, Kuzenko, Ovrut,
McArthur, Petrov ('97-'02)
```

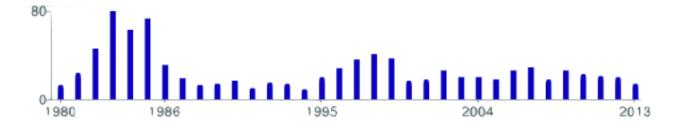
This paper does for N=2 supergraphs what was done for N=1 by ...

Improved methods for supergraphs

Marcus T. Grisaru, W. Siegel (Brandeis U.), M. Roček (Cambridge U.). Jun 1979. 32 pp. Published in Nucl.Phys. B159 (1979) 429 Cited by 742 records (INSPIRE)



Cited by 910 (Google scholar)



Background field formalism

	N = 1	N = 2 (6D N=1)
quantum superfield	scalar	scalar
superspace	x, full $ heta$	x , analytic $(rac{1}{2})$ $ heta$, (internal) y
representation	chiral	analytic
background superfield	spinor	spinor
superspace	x, full $ heta$	x, full $ heta$, no y
representation	real	real
nonrenormalization	obvious*	obvious*
effective action	x, $ heta$	x, $ heta$ (no internal)

Quantum superfield is scalar prepotential of dimension 0;

background superfield is spinor (or maybe vector) potential with dimension > 0.

^{*}As for N=1,

N=4 Yang-Mills

1-loop cancelations in N=4 Yang-Mills as formulated in N=1 or N=2 superspace:

	N = 1	N = 2
scalar multiplets	3	1
Faddeev-Popov ghosts	-2	-2
Nielsen-Kallosh ghosts	-1	1
total	0	0
vector multiplets	1	1
"extra" ghosts	0	1-2
total	1	0*

^{*}Same propagator, different vertex \Rightarrow cancels only y-divergence $\delta(0)$. In both cases, vector multiplets etc. contribute only @ 4-point & higher, scalar multiplets etc. also @ lower-point.

Equations

In case there's too much time left, some actual equations:

scalar/FP/NK propagator:
$$rac{1}{y_{12}^3}
abla_{1artheta}^4
abla_{2artheta}^8(heta_{12})rac{1}{rac{1}{2}k^2}$$

vector/XR propagator:
$$\dfrac{\delta(y_{12})}{y_1}
abla_{1artheta}^4 \delta^8(heta_{12}) \dfrac{1}{\frac{1}{2}k^2}$$

scalar/FP/NK vertex:
$$\int d^4 heta \, dy \, (\hat{\Box} - \Box_0)$$

vector vertex:
$$\int d^4 heta \, dy \, y (\hat{\Box} - \Box_0)$$

XR vertex:
$$\int d^4 heta\,d^2y\,[-1+y_1\delta(y_{12})](\hat{\Box}-\Box_0)$$

Above are for just 1 loop (free quantum in background).

For vertices, use ∇_{ϑ}^4 from propagator to make $\int d^4\theta \ \nabla_{\vartheta}^4 = \int d^8\theta$.

Conclusions

- (1) Same kind of simplifications for N=2 as for N=1 (1 loop & higher)
- (2) Quantum field $V(x,\theta,y)$, where $A_{\vartheta}=0$; background fields A_{θ},A_{ϑ} , where $A_{y}=0$, trivial dependence on y
- (3) Classical action in analytic superspace $d^4x \, d^4\theta \, dy$, nonlocal in y; effective action in "full" superspace $d^4x \, d^4\theta \, d^4\vartheta$, no y
- (4) N=3 supergraphs (for N=4 Yang-Mills): in progress
- (5) Supergravity
- (6) 1st-quantization?

That's a good question!

Quantum vertices (background appears only through ∇^4_{ϑ}):

scalar:
$$-\int d^4 heta \, ar{\Upsilon}(e^V-1) \Upsilon$$

vector: $\int d^4 heta \, d^4 heta \, d^n y \, rac{(-1)^n}{n} rac{(e^{V_1}-1) \cdots (e^{V_n}-1)}{y_{12} y_{23} \cdots y_{n1}}$

FP: $-\int d^4 heta \, (yb+ar{b}) \mathcal{L}_{V/2} \left[coth(\mathcal{L}_{V/2}) \left(c-rac{ar{c}}{y}
ight) + \left(c+rac{ar{c}}{y}
ight)
ight]$

Nonlocality in y gets no background covariantization, since $A_y=0$.