Generalizations of string theory

Outline

W 5/11 10:50-11:30

(feel free to add "super-" anywhere; always in superspace)

T-theory

- (1) Current algebra: $strings \Rightarrow double field theories$
- (2) New spaces: field strengths as gauge fields
- (3) Chiral strings: boundary cond. \Rightarrow finite spectrum
 - (a) Effective actions: new for (massive) gravity
 - (b) Particle amplitudes: scattering eqs. & KLT

(not your father's) F-theory (nor mother's M-theory)

- (1) Current algebra: $branes \Rightarrow exceptional gravity$
- (2) 0th-quantized ghosts

T-theory

Current algebra: strings \Rightarrow double field theories T-duality (worldsheet, no background) (WS '83) Fields $d{=}1$ dimensionally reduced (Buscher '87) $d{>}1$: $O(d,d)/O(d)^2$ scalars (Duff '89, Tseytlin '90) "Double field theory", bosonic & heterotic (WS '93):

- O(D,26)/O(D-1,1)O(25,1); D = 10,26; for gauge fields g, B, A (spont. broken O(D,26))
- "strong constraint" (sectioning) \Leftrightarrow (gauge inv.)²
- "C-bracket" & "D-bracket" (nonabelian for het.)
- ullet $abla_A, T_{ABC}, R_{AB}{}^{cd}$, field equations, action
- gauge fixing: LR factorization of Feynman rules

Our recent work (see MH talk for some details) Spin S_{ab} & dual Σ_{ab} (WS '11, Poláček & WS '13)

- ullet \oplus current super algebra $D_{lpha}, P_a, \Omega^{lpha}$ (WS '85)
- curvature as torsion
- Lorentz connection couples to string

Type II & RR (Hatsuda, Kamimura, WS '14-'15)

- RR gauge fields in central currents $\Upsilon_{\alpha\alpha'}$, $F^{\alpha\alpha'}$
- Type II algebra from string action

3D Type II off-shell background (Poláček & WS '14)

- prepotential in vielbein without derivatives on it
- $O(3,3)/O(2,1)^2 (= O(2,2))$
- O(3,1) M-theory & O(3,2) F-theory (see later)

New spaces: field strengths as gauge fields (WS '11)

T-theory methods generalize to particle field theory, e.g., gravity

- S_{ab} : 1st-quantization of spin
- spin coordinates ⇒ curvature as torsion (tangent space as subspace of enlarged manifold)

But also Yang-Mills

- Σ_{ab} : field strength $F_{ab}=$ gauge connection for Σ
- first-order action = $PP\Sigma$ Chern-Simons

Chiral strings: b.c. ⇒ finite spectrum (see BZ talk) Effective actions (Hohm, Zwiebach, WS '13)

- ullet chiral (non-conformal) gauge: X(z) (no $ar{z}$)
- ullet chiral boundary conditions: $N+\overline{N}=0$ (not -)
- Virasoro algebra ⇒ field equations
- ullet complete $oldsymbol{0}$ 6 derivatives $(lpha'^2) \Rightarrow ... + R^3$
- ullet α' modifications to brackets
- unconstrained fields (not O(26,26))
- cubic action (except for dilaton)
- like 2D CP(n), nonlinear $\sigma \to \text{linear } \mathbb{Q} \text{ } O(\alpha')$: Lagrange multiplier $\to \text{massive}$, propagating (understood recently: see below)

Particle amplitudes for all dimensions

- "Scattering equations" (Cachazo, He, Yuan '13)
- From string-like theories (Mason & Skinner '13)
- Derivation from usual string theories (WS '15)
 - chiral boundary conditions (HSZ)
 - "almost" chiral gauge (HSZ): \bar{z} as IR regulator
 - usual string vertex operators
- KLT factorization (Huang, Yuan, WS '16)
 - chiral boundary conditions, but conformal gauge
 - ullet ordinary open strings, except $\eta_{ab}
 ightarrow \eta_{ab}$ for $ar{z}$
 - sign change cancels 0's against usual poles
 - fixes earlier bosonic failure: (few) massive modes

F-theory (& M-theory) (Linch & WS '15)

Before branes: more-than-DFT for exceptional SG (Coimbra, Strickland-Constable, Waldram '11; Berman, Cederwall, Kleinschmidt, Thompson '12)

Current algebra on fundamental branes

- brane background: exceptional (super)gravity
- X: selfdual gauge fields on worldvolume
- worldvolume indices are spacetime indices
- worldvol. metric constrained \Rightarrow nonpropagating
- sectioning for worldvolume (Gauss's law)
- sectioning = 0-modes of dimensional reduction
- solve Virasoro → M-theory; Gauss → T-theory

Oth-quantized ghosts (WS '16)

- $\langle X X \rangle = -\ln z^2$ for higher-d z (branes)?
- ghosts for every order of quantization:
 - (2) usual ghost fields for g(X), B(X), etc. (2nd-quantization)
 - (1) worldvolume ghost "fields" c, b for X(z) (1st-quantization)
 - (0) ghost coordinates for z (0th-quantization)

Appendix: Some technical details

T-theory current algebra with Ramond-Ramond

Currents:
$$(S_{ab},D_{lpha},P_{a},\Omega^{lpha},\Sigma_{ab})_{\pm}$$
 ; $\Upsilon_{lphalpha'}$

$$egin{aligned} \{D_\pm,D_\pm\}&=P_\pm\delta\;,\quad \{D_+,D_-\}&=\varUpsilon\delta\ &[D_\pm,P_\pm]&=\Omega_\pm\delta\;,\quad [D_\pm,\mathsf{F}]&=\Omega_\mp\delta\ &[S_\pm,\mathsf{not}\,\varSigma]\sim\mathsf{not}\,\varSigma\;,\quad [S_\pm,\varSigma_\pm]&=\varSigma_\pm\delta+\delta'\ &[P_\pm,P_\pm]&=\varSigma_\pm\delta+\delta'\;,\quad [\varUpsilon,\mathsf{F}]&=(\varSigma_++\varSigma_-)\delta+\delta'\ &\{D_\pm,\Omega_\pm\}&=\varSigma_\pm\delta+\delta' \end{aligned}$$

1st-order Yang-Mills as Chern-Simons

With torsion $[d_A,d_B\}=T_{AB}{}^Cd_C$, the CS form is

$$X_{ABC} = \frac{1}{2}A_{[A}d_{B}A_{C)} - \frac{1}{4}A_{[A}T_{BC)}{}^{D}A_{D} + \frac{1}{3}iA_{[A}A_{B}A_{C)}$$

In particular, for

$$[p_a,p_b]=\sigma_{ab} \quad \Rightarrow \quad T_{a,b}{}^{cd}=rac{1}{2}\delta^c_{[a}\delta^d_{b]}$$

we choose

$$L=rac{1}{2}a^{a,b,cd}X_{a,b,cd}\;,\quad a^{a,b,cd}=\eta^{a[c}\eta^{d]b}$$

Then, labeling $A_p o A, A_\sigma o F$,

$$L \sim A\sigma A + FpA - FF + FAA$$

gives the usual 1st-order action after $\sigma \to 0$.

Scattering equation δ from almost-chiral gauge

Change in boundary condition,

$$\Delta = -\ln z - \ln \bar{z} \rightarrow -\ln z + \ln \bar{z}$$

followed by change in gauge (with $\beta \to \infty$),

$$ightarrow - \ln z + \ln(\bar{z} - \beta z)
ightarrow - \frac{1}{\beta} \frac{\bar{z}}{z}$$

modifies \bar{z} half of Koba-Nielsen integral

$$\int dar{z}_i \, \exprac{1}{2eta} \sum k_i \cdot k_j rac{ar{z}_{ij}}{z_{ij}} \sim \prod_i \delta \left(\sum_j rac{k_i \cdot k_j}{z_{ij}}
ight)$$

KLT for chiral string (toy example, m=0)

Normal \rightarrow chiral $[\sin(\pi t) = -\pi/\Gamma(-t)\Gamma(1+t)]$:

$$egin{split} &-rac{\Gamma(-s)\Gamma(-t)}{\Gamma(u)}rac{1}{\Gamma(-t)\Gamma(1+t)}rac{\Gamma(1-t)\Gamma(-u)}{\Gamma(1+s)} \ &=rac{1}{s}rac{\Gamma(-s)\Gamma(-t)\Gamma(-u)}{\Gamma(s)\Gamma(t)\Gamma(u)} \end{split}$$

$$ightarrow \; - \; rac{\Gamma(-s)\Gamma(-t)}{\Gamma(u)} rac{1}{\Gamma(-t)\Gamma(1+t)} rac{\Gamma(1+t)\Gamma(+u)}{\Gamma(1-s)}$$

$$=rac{1}{s}$$

F-theory dimensional reduction & sectioning

$$\sigma$$
 – Virasoro $\mathcal{S}\equiv PP$
dim. reduction $\overset{\circ}{\mathcal{S}}\equiv pP$ $\mathcal{U}\equiv\partial P$
sectioning $\mathcal{S}\equiv pp$ $\mathcal{U}\equiv\partial p$ $\mathcal{V}\equiv\partial\partial$

P= bosonic current (selfdual field strength); p= 0-mode, ∂ for worldvolume Downward: $P\to p$ (otherwise same) Dimensional reduction kills X's ($\mathcal{U}=$ Gauss) Section conditions kill 0-modes (background) & σ 's $(\mathring{\mathcal{S}}, \mathcal{S})=0 \Rightarrow$ M-theory; $(\mathcal{U}, \mathcal{U}, \mathcal{V})=0 \Rightarrow$ T-theory

A little F-theory current algebra

d worldvolume coordinates: $au, \sigma_{\mathcal{M}}$

Spacetime coordinates: $\Theta^{\mu}, X^m, Y^{m'}, \widetilde{Y}_{\mathcal{M}m'}$ (32 Θ 's, <10 worldvolume scalars Y, their duals \widetilde{Y})

Currents: $(S,)D_{\mu},P_{m},\varUpsilon_{m'},\mathsf{F}^{\mathcal{M}m'},\varOmega^{\mathcal{M}\mu}(,\varSigma)$

$$\{ eta_M, igtriangledown_N \} = f_{MN}{}^P igtriangledown_P \delta + 2i\eta_{MN\mathcal{R}} \partial^{\mathcal{R}} \delta$$

$$\Rightarrow \quad f_{[MN|}{}^Q f_{Q|P)}{}^R = 0 = f_{M(N|}{}^Q \eta_{Q|P]\mathcal{R}}$$

$$\mathcal{S}^{\mathcal{R}} = \eta^{MN\mathcal{R}} \, lackbox{}_N \, lackbox{}_M$$

f's \sim super YM, but doubled spinor indices

Types of F-theories (N=1 D-dim. SG bosons in G/H)

D	d	Н	G	$oldsymbol{X}$	σ
1	3	GL(1)	GL(2)	2+1	2
2	4	GL(2)	SL(3)SL(2)	(3,2)	(3',1)
3	6	Sp(4)	SL(5)	10	5 ′
4	11	Sp(4,C)	SO(5,5)	16	10
5	28	USp(4,4)	$E_{6(6)}$	27	27′
6	134	SU*(8)	$E_{7(7)}$	56	133

$$\begin{aligned} &\text{G} = \text{``E}_{D+1}\text{''}, \\ &\text{H} = \text{covering of SO}(D-1,1) \text{ with double argument,} \\ &\text{H'} = \text{SO}(10-D) \end{aligned}$$

Y= vector of H', $\Theta=$ spinor of H \otimes H' (32)