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4D N = 4 Yang-Mills

Prerequisites in Fields

4D 2-component spinor notation IIA

supersymmetry, superspace IIC, IVC

classical groups IB4

10D IIB supergravity

1/N expansion VIIC4

4D N = 4 super Yang-Mills has interesting quantum properties: Because of its

4 (times the minimal number of) supersymmetries, it has more spacetime symme-

try than any other renormalizable 4D theory. But it’s also conformal, so its N = 4

superconformal symmetry gives it an even larger symmetry. Whereas any 4D, scale-

invariant theory is conformal classically, when such theories are ultraviolet finite order

by order in perturbation theory, this (super)conformal invariance is preserved at the

quantum level. (This also implies some nonperturbative advantages, such as absence

of renormalons.) N = 4 Yang-Mills was the first known example of this behavior.

(This requires at least N = 1 supersymmetry.) Having the largest symmetry group

gives it the simplest quantum S-matrix elements of any interacting 4D theory. Partly

due to the Anti-de Sitter/Conformal Field Theory correspondence (see below), its

4-point amplitude is known to all orders in Ng2, to leading order in 1/N (colors

for U(N), not to be confused with the (S)U(N) internal symmetry for N = 4 super-

symmetries). As a consequence of these properties, the N = 4 theory is often used

as a starting point or approximation for calculations in the Standard Model. It is

also the CFT with the most number of explicit calculations for testing AdS/CFT.

There are even methods motivated by AdS/CFT that don’t explicitly make use of

the string: For example, Yangian symmetry and the dual Wilson loop are two ap-

proaches to N = 4 Yang-Mills that use only the T-duality property of string theory

to imply useful methods to determine properties and perform calculations entirely

on the CFT side, but with methods that might not have been found otherwise. For

these reasons, most of what is discussed below relates specifically to this theory, but

some generalizations are also outlined.
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4D N = 4 Yang-Mills can be described in superspace by the commutation rela-

tions of derivatives covariant with respect to both the Yang-Mills gauge group and

supersymmetry. These derivatives are with respect to both the spacetime coordinates

xα
.
α (in SL(2,C) spinor notation) and fermionic coordinates θaα and their hermitian

conjugates θ̄a
.
α (with also SU(4) “R-symmetry” indices). (In general we’ll use under-

lined indices for those for defining representations that will be broken up finally into

two smaller indices as direct sums.) The superfield strengths that appear give the

usual component field strengths when evaluated at θ = θ̄ = 0: For all N ≤ 4,

{∇aα,∇b .
β
} = −iδba∇α

.
β

{∇aα,∇bβ} = Cαβφ̄ab

{∇a .
α,∇b .

β
} = C̄ .

α
.
β
φab

[∇aα,∇β
.
β
] = Cαβλ̄a

.
β

[∇a .
α,∇β

.
β
] = C̄ .

α
.
β
λaβ

[∇α
.
α,∇β

.
β
] = C̄ .

α
.
β
fαβ + Cαβ f̄ .

α
.
β

from which we can see the 6 scalars φab = −φba, 4 (Weyl) spinors λ, and selfdual

and antiselfdual Yang-Mills field strengths fαβ = fβα and f̄ . (Of course, all fields are

in the adjoint representation of the Yang-Mills group, by supersymmetry.) Here we

have used the SL(2,C) metrics

Cαβ = −Cαβ = C̄ .
α
.
β

= −C̄
.
α
.
β =

(
0 −i
i 0

)
The Jacobi identities imply the supersymmetry relations between these field

strengths (through covariant spinor derivatives, i.e., Taylor expansion in θ), and that

N ≤ 4. For N = 4, they also imply their field equations, and the reality condition

φ̄ab = 1
2εabcdφ

cd

up to a phase whose choice breaks U(4) to SU(4). (N = 3 implies equivalent fields

and field equations, but doesn’t need a reality condition.)

In this notation, the action can be written in components as

S =
1

g2
tr

∫
d4x { − 1

2f
αβfαβ + 1

8
[∇α

.
α, φ̄ab][∇α

.
α, φ

ab]− 1
32

[φ̄ab, φ̄cd][φ
ab, φcd]

+ λ̄a
.
α[−i∇α

.
α, λ

aα] + 1
2i(λ

aα[φ̄ab, λ
b
α] + λ̄a

.
α[φab, λ̄b .α] }
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The simplest derivation is by dimensionally reducing 10D super Yang-Mills, which

has no scalars: Then the first line comes from the F 2 term, while the second comes

from the λ∇/ λ term. (The covariant derivative commutators can also be done there.)

Later we’ll consider a smaller superspace that includes only ∇a′α and ∇a .
α as

nontrivial on the field strength that lives there. (For N = 4, a is 4-valued, a and a′

are each 2-valued.) For N = 4 only 1 complex scalar appears explicitly (at θ = 0) in

the above commutators of the other spinor covariant derivatives:

{∇aα,∇b′ .
β
} = 0

{∇aα,∇bβ} = CαβCabφ

{∇a′ .
α,∇b′ .

β
} = C̄ .

α
.
β
Ca′b′φ

The same φ appears in both equations (and not φ̄, because of the reality condition),

and because of the Jacobi identities it satisfies

∇aαφ = ∇a′ .
αφ = 0

Correspondence

The AdS/CFT conjecture is that (10D) superstring theory is equivalent to 4D

N = 4 super Yang-Mills. (In string theory, the identification of physical dimensions

can be ambiguous because of compactification/bosonization, branes, etc.) This equiv-

alence is nonperturbative, as is the conjectured equivalence between all superstring

theories (I, IIA, IIB, and both heterotic) and the suspected “M-theory”. In partic-

ular, this equivalence is seen perturbatively about the vacuum of 5D anti-de Sitter

space × the 5-sphere, where these 2 spaces have the same radius of curvature R (so

the 10D curvature scalar cancels).

The basic idea is that we live on the boundary of AdS5, so we don’t see the

fifth dimension “x0” directly as a dimension, in the same way that we don’t see the

other 5 dimensions of S5. In terms of the boundary being “branes”, the fields with

which we are most familiar are located there. The idea that the boundary conditions

determine all fields in the “bulk” is called “holography”. Specifically, the relation is

between arbitrary fundamental fields of 10D IIB superstring theory and color-singlet

composite operators on the boundary, which act as sources for the string fields (or

vice versa).

The corresponding vacuum on the YM side is the usual YM vacuum. Remember

that a vacuum does not define a theory, but is only a particular state in a theory,

usually for purposes of perturbation. For example, giving some YM scalars vacuum
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values corresponds to moving some D-branes away from the boundary. These and

other modifications to the vacuum, such as modifying the S5, can be useful for more

general correspondences, like “AdS/QCD”. In practice, such modifications make the

theory more realistic, but more difficult to calculate.

The AdS/CFT relation is summarized by the equation

Zstring[φ(x)] =
〈
e
∫
dxφO

〉
CFT

On the lefthand side Z is the S-matrix generating functional as calculated in string

theory, where φ is a background string field satisfying the “free” (on AdS) field equa-

tion, evaluated at the boundary. (For most of what we do, these string fields will

be taken to be those of 10D IIB supergravity; “stringy” contributions come from the

massive fields.) This is the same as the S-matrix element as calculated in ordinary

field theory, where external line factors are always fields (not sources). However, un-

like ordinary field theory, we keep boundary terms in Zstring, so there are quadratic

terms, which give 2-point correlators. (For example,
∫

(∂φ)2 is nonzero on shell, be-

cause of boundary terms surviving integration by parts. In usual field theory there is

no analogous “2-point S-matrix”.) Since there really isn’t any sensible “momentum

space” for AdS (not all translations commute), this is generally done in coordinate

space, at least for the extra dimension x0 of the bulk. Also, “initial/final” states

are now states on the AdS boundary x, so the free external field φ(x, x0) attached

as an external line factor to a vertex is related to the boundary field φ(x) by a free

propagator.

On the righthand side the calculation is performed in a corresponding conformal

field theory on the boundary. It’s conformal because the conformal group SO(D,2)

in D dimensions is the same as the AdS symmetry group in D+1 dimensions. (In

particular that means the scale weights of φ and O must add up to D.) The x integral

is of course performed on the boundary, where the CFT lives. (There will also be

powers of x0 that cancel.) In that calculation O is some color-singlet composite of

the fundamental fields of the CFT, while φ appears only as a source. Of course, one

must determine which fundamental field φ of the string theory corresponds to which

composite of the CFT (including normalization): This is usually done by comparing

φφ propagators on the string side with 2-operator correlators 〈OO〉 on the CFT side.

Just being able to find a match is some confirmation of the AdS/CFT correspondence:

It involves only free strings on the string side, but (generally) interacting fields on

the CFT side.

The most calculable case is the AdS5×S5 solution to the supergravity sector of

the Type IIB superstring. The solution comes from constant Riemann curvature
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tensor and constant selfdual 5-form field strength for the 4-form gauge field (both

with flat indices, for coordinate independence); the other fields vanish (or the dilaton

is constant, depending on how you define it). Like the metric, the 5-form has a “direct

product” form, being proportional to the 5D Levi-Civita tensor in each sector. As

a result, it is effectively a pseudoscalar in each 5D space, and hence also covariantly

constant, so its curl and divergence vanish, which are its field equations.

The 2 (dimensionless) couplings gYM and Nof (super) Yang-Mills are related to

the 2 (dimensionless) couplings gs and R2/α′ of string theory on AdS by (up to some

normalization conventions)

gs = g2
YM ,

(
R2

α′

)2

= 4πNg2
YM

Thus perturbation in α′ on the string side does not relate directly to that in the

’t Hooft coupling on the YM side: Weak coupling in one is strong in the other. The

former equation is based on identifying the CFT fields with (some of the) open string

states whose ends are attached to the boundary. (The fields are said to “Reggeize”:

Quantum corrections are expected to show that the massless fields lie on Regge tra-

jectories, giving the other states of the open string.) The motivation is to consider

the boundary as N (D−1)-branes. (The “string fields” are then the usual IIB closed

string fields.)

The latter equation comes from solving the equations of motion of 10D IIB super-

gravity for an AdS5×S5 solution using just the metric and 4-form. Since the 4-form is

the only source of energy-momentum, its charge is related to the radius of curvature:

As it appears in the field equations,

1

g2
sα
′4

1

R2
=

(
4πN

R5

)2

⇒ N =
1

4πgs

(
R2

α′

)2

Everything comes from the way gs appears in the action (with α′ to make it dimen-

sionless), dimensional analysis, and the definition of charge (flux on S5), except the

4π: Because of selfduality the charge N is both electric and magnetic, and therefore

(Dirac) quantized to be integer. (Consider separate sets of branes with charges e1

and e2: Then e1e2 always integer implies the same for e1 and e2 separately.) Actually

N can have a sign (branes vs. “anti-branes”), and this corresponds to the fact that

open string ends can be associated with the N or N representation of U(N).
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Notation

There are way too many kinds of indices and coordinates. We’ll try to maintain

some degree of consistency. Much of the following won’t make sense till you get to it,

but at least you can see some pattern.

General:

When the distinction is relevant, we use indices from

beginning of alphabet : “flat”: tangent space, coset gauge group

middle of alphabet : “curved”: base space(time), coset symmetry group

Super:

For supersymmetric theories (and often nonsupersymmetric ones) with bosonic

symmetries that have factors of SO(6) or smaller, spinor notation (indices of defining

representations) are usually more convenient. The rules for indices are

Capital : super (graded)

lower-case roman : bosonic, internal

lower-case grεεκ : fermionic, spacetime

underlined : direct sum of 2
.

dotted, primed′ : complex conjugate, other

where “super” or “graded” means an index is interpreted as running over both bosonic

and fermionic “values”, with the statistics of the object carrying them changing ac-

cordingly. Thus (with groups to be defined later)

A : (P)SU(2,2|N), GL(N|4) (superconformal)

a : SU(N) (full internal)

α : SU(2,2) (conformal)

A,A′ : GL(2|N/2)2, GL(2|n)⊗GL(2|N−n) (super projective)

a, a′ : SU(2)2, SU(n)⊗SU(N−n) (projective internal)

α,
.
α : SL(2,C) (Lorentz)

(An exception is 10D spinor indices α, since 10 > 6.) Coordinates then tend to carry

pairs of indices:
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ZM
A, ZA

M : superconformal

zA
M , z̄M

A′
: rectangles

wM
N ′

: projective

uM
A, ūA′M

′
: gauge

xµ
.
ν : spacetime

ym
n′

: internal (projective)

θµ
n, θ̄m

.
ν : fermionic (supersymmetry)

ζM , ζ̄M : supertwistor

xα
ν , Xµν : AdS5

ym
b, Y mn : S5

θm
ν(θα), θ̄µ

n(θ̄α) : IIB fermions (on AdS5×S5)

(For 4D supertwistors there is a hidden U(1) index for the little group; in D = 6 it

becomes an explicit SU(2) index.)

Bosonic:

A small minority of the following text will be about AdS or CFT without reference

to the correspondence, supersymmetry, number of dimensions, etc. Rather than waste

symbols or alphabets, we’ll use some conventions that contradict the above, restricted

to bosonic discussions (which won’t last long). Single indices are then carried by

coordinates:

I Y SO(p+1,q+1)

A X SO(D,2), SO(p+1,q), SO(p,q+1)

A X SO(D,1), SO(p,q)

a x SO(D−1,1)

+,− Y , X SO(1,1)

0 x, y bulk

General Lie:

Even fewer indices for general algebras (but not the above special cases):

I : symmetry (adjoint)

ι : gauge (adjoint)

i : coset (adjoint)

A : gauge, arbitrary representation
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Miscellaneous symbols:

g : group element

G : algebra generator

G : group

d : spinor covariant derivative

D : general covariant derivative

D : dimension

N : Yang-Mills U(N)

N : R-symmetry (S)U(N), number of supersymmetries

R : radius of curvature, gravitino field strength

R : curvature

∆ : dilatation generator, propagator

< : scale weight (“spin” piece of dilatation ∆)

K : conformal boost generator

k : conformal boost covariant derivative (“spin” piece of K)

Sab : first-quantized spin

Mab : second-quantized spin

Grading signs:

We hide signs due to statistics in ordering of graded indices. The analogy is to

signs in the Minkowski metric when separating vector indices into time and space

pieces: We don’t put in those signs explicitly when doing calculations with covariant

equations, only just before doing the separation; we even avoid putting in explicit

metric tensors by raising and lowering indices. The signs are important when doing

the separation: E.g., a traceless, symmetric tensor is a matrix that is traceless with

one index up and one down, but symmetric with both the same. In our case, the

signs are made explicit just before the separation into bosons and fermions (or when

dealing with just one or the other).

The rules are:

1) Moving a fermionic index past a fermionic index produces a minus sign. (Since

moving a fermion past a fermion does.)

2) The usual Einstein summation convention applies when adjacent identical indices

are ordered upper-left with lower-right, as in V AWA. (This is a sign convention.)

Any adjacent indices contracted the opposite way imply a − sign for the part of

the sum over the fermionic part of the index.
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3) The ordering of indices on a matrix relevant for matrix multiplication is MA
B.

(This follows from the previous, since (MV )A = MA
BVB, (MN)A

C = MA
BNB

C ,

etc.) In particular, the usual Kronecker δ is the one with indices ordered as δA
B.

(So δA
BVB = VA.)

An alternative notation, which is more explicit but messier, would include sign

factors such as (−1)A or (−1)AB, where bosonic indices are given the value 0 and

fermionic ones are given the value 1. For example, we could write graded antisym-

metrization of indices as

M[AB) ≡MAB −MBA → MAB − (−1)ABMBA

We could also write the graded commutator in general as

[A,B} ≡ AB − BA → AB − (−1)ABBA

by writing the symbols for the operators themselves as the indices for the operators.

An obvious consequence of the above is the “supertrace”:

strM ≡MA
A → (−1)AMA

A

is required for consistency with strMN = str NM . It’s the same sign that appears

in fermion loops in quantum field theory. (Consider an operator ψ̄AMA
BψB.)
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General

The simplest way to study representations of spacetime symmetry groups is on the

group space, which includes the usual spacetime coordinates as those for translations.

(Here it is the coordinates that are elements of the group, not the fields themselves.)

The alternative is to use a Hilbert space approach, but we know that wave functions

are more useful in general from quantum mechanics, and especially in quantum field

theory, where they become interacting fields. Later we’ll focus on applying our results

for conformal representations and their properties specifically to the case of 4D N = 4

Yang-Mills. Note that here we are discussing the coordinates themselves living on a

group, not the fields living there, so this group should not be confused with the Yang-

Mills group or other internal symmetry groups in general. Also, the groups we now

have in mind will also be spacetime symmetry groups. However, these distinctions

can be moot in some cases, e.g.: (1) R-symmetry is an internal symmetry that’s part

of the superconformal group. (2) In Kaluza-Klein reduction, the Yang-Mills fields

that come from the vielbein have Killing vectors as Yang-Mills group generators. So

there will always be close analogies.

We’ll begin with a general discussion of wave functions on group spaces. To relate

to the more common (at least for quantum mechanics) Hilbert space approach, we

will use a Hilbert space notation; but we can think of this space more generally as an

infinite dimensional vector space. (The bras then form the dual space to the kets.)

We begin by choosing an arbitrary state 〈0| in this space to call the “vacuum”, and

define the group G in terms of operators g(α) acting on this space, parametrized by

coordinates α. Then a coordinate basis for the group space is given by

〈α| = 〈0|g(α)

where g(0) = I, so the vacuum is identified with the identity operator, and thus

the origin of the group space. (But the choice of vacuum can be changed by a group

transformation, corresponding to a coordinate transformation that changes the choice

of origin.) The wave function is then defined with respect to this basis as

ψ(α) ≡ 〈α|ψ〉 = 〈0|g(α)|ψ〉

Next we notice that there are 2 different ways for the group to act on these wave

functions, corresponding to left and right group multiplication: In terms of the Lie
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group generators ĜI that act on the Hilbert space (as does g), we define differential

operators GI and DI that act on the wave function:

DIψ(α) ≡ 〈0|ĜIg(α)|ψ〉 , GIψ(α) ≡ 〈0|g(α)ĜI |ψ〉 = (ĜIψ)(α)

Thus the derivatives GI generate an infinitesimal group transformation directly on the

state |ψ〉, while the derivatives DI act on the vacuum. Thus GI should be interpreted

as symmetry (or “isometry”) generators. At this point, we note only that DI commute

with GI ,

[GI , DJ} = 0

since left and right multiplication in the Hilbert space commute, because multiplica-

tion there is associative. We therefore call DI “covariant derivatives” (but actually

they are invariant under symmetry transformations at this point of our discussion.)

Similarly we can define symmetry invariant products and differentials

g(α′) = g(α)(g0)−1 , g(α12) ≡ g(α1)g−1(α2) ⇒ α′12 = α12

i dαMEM
I(α)ĜI = (dg)g−1 ⇒ (dαMEM

I)′ = dαMEM
I

(The latter is the infinitesimal version of the former.) These are related to the co-

variant derivatives as

DI = EI
M∂M

(where ∂M = ∂/∂αM and EI
M is the inverse of EM

I), and similarly for explicit

coordinate representations for the symmetry derivatives GI from g−1dg. (As usual,

this “vielbein” can be used to define an integration measure invariant under the

symmetry group.)

However, we know from general group theory constructions (e.g., for the simple

case of SU(2) that you learned in your graduate quantum mechanics course), that it’s

sufficient to start with a vacuum that is a “lowest-weight state”, annihilated by “low-

ering operators” (or maybe “highest” and “raising”, depending on your preference)

that are themselves generators of the group. In general, these lowering operators gen-

erate a subgroup of the original group. In an appropriate basis, we can then divide

up the group index as

I = (ι, i) , 〈0|Ĝι = 0

where Ĝι generate a subgroup H of G. (We don’t yet specify whether Gι are hermi-

tian.) It then follows that the corresponding covariant derivatives vanish on the wave

function:

Dιψ(α) = 〈0|Ĝιg(α)|ψ〉 = 0
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(In CFT parlance, these have recently been dubbed “shortening” conditions, at least

in the fermionic case.) In an appropriate coordinate system, this condition eliminates

the dependence of the wave function on the coordinates of H; in group theory language

we call the space parametrized by the remaining coordinates the “coset space” G/H.

If we then write left and right group multiplication as

g′(α) = h(α)g(α)g−1
0

we can choose h(α) to be an element of the subgroup H, but otherwise to have

arbitrary dependence on the coordinates α (since it annihilates the vacuum), while

g0 is independent of α. Thus h(α) describes a “gauge” (“isotropy”, “stability group”,

or “little group”) transformation that can be used to eliminate dependence on the H

coordinates, while g0 yields a symmetry transformation on the state |ψ〉 that’s basis

independent.

The gauge group constraints cause first-quantized, spontaneous symmetry break-

ing: first-quantized because the vacuum and all other states are single-particle states

(so no Goldstone particles), spontaneous because we consider the action of ĜI on the

vacuum 〈0|, not the state |ψ〉 (so the symmetry is still realized, but nonlinearly in

the coordinates, at least when a unitary gauge is chosen).

This is sufficient for coordinate representations. But usually in quantum me-

chanics we want to consider more general representations by adding “spin” to such

“orbital” generators. This is accomplished by first introducing spin degrees of free-

dom, and then tying them to the group by modifying the gauge-group constraints.

So we first introduce a basis 〈A| for a matrix representation G̃ι for the gauge group

(since that’s all we can fix on the vacuum),

〈A|Ĝι = G̃ιA
B〈B|

We then define a basis for the Hilbert space by using this gauge group basis as our

new (degenerate) vacuum,

〈A, α| ≡ 〈A|g(α)

to get the generalizations of the previous

ψA(α) ≡ 〈A, α|ψ〉 ⇒ DιψA(α) = G̃ιA
BψB(α), GIψA(α) = (ĜIψ)A(α)

The wave function now depends also on the gauge-group coordinates, but this depen-

dence is fixed independent of the state: For example, in the 2-exponential coordinate
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system αI = (βi, γι) where dependence on the gauge and coset generators is explicitly

factorized,

ψA(α) = 〈A|eiγ
ιĜιeiβ

iĜi |ψ〉 = (eiγ
ιG̃ι)A

M〈M |eiβ
iĜi |ψ〉 ≡ eA

M(γ)ψM(β)

where eA
M is a “vielbein” depending on only the gauge coordinates γ and independent

of the state ψ, and can be gauged to the identity in a “unitary” gauge, while ψM

depends on only the coset coordinates β. Since we know D in terms of derivatives,

Dι = G̃ι can be solved to replace partial derivatives with respect to gauge-group

coordinates with matrices, in both DI and GI .

A special case of this treatment is when H consists of the Cartan (maximal

abelian) subgroup and the lowering operators it defines. Then only the Cartan sub-

algebra needs a nontrivial matrix representation, but since this algebra is abelian,

the vacuum needs only 1 component, and the “matrix” is just a set of eigenvalues.

This feature makes this choice preferable, except when we want to make more of the

symmetry manifest. In an appropriate coordinate system, the vielbein factor above

is then simply

e(γ) = eiγ
ιnι

where A and M have been dropped because that take only a single value, ι runs over

only the Cartan subalgebra, and nι are their eigenvalues.

SU(2)

A simple example of all these concepts is the group SU(2). (In fact, one method

of analysis for general groups is to consider SU(2) subgroups.) Here we’ll look at

SU(2) in some detail to illustrate the concepts discussed so far, as well as motivate

the analysis to come for the special case of superconformal groups.

If we make the usual division of the generators into D0 and D±, we can pick D0

and D− to generate the gauge group H, by setting

D−ψ = 0 , D0ψ = −jψ

on the wave function. After the first constraint eliminates 1 of the 3 coordinates of

SU(2), the 2 remaining coordinates can be taken as the usual ones for the sphere.

(The eliminated coordinate was the usual third Euler angle of that parametrization

of SU(2).) The second constraint then fixes the dependence on the azimuthal angle

φ. This gives a representation, but a reducible one: It still has arbitrary dependence

on the polar angle θ. There are various methods (but all with the same result) to
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limit this dependence to give a finite-dimensional representation: One is to fix, for

some nonnegative integer n,

(D+)n+1ψ = 0

⇒ 0 = D−(D+)n+1ψ ∼ (n+ 1)(n− 2j)(D+)nψ

bu pushing D− and all subsequent D0’s to the right. So recursively we find: If n < 2j,

ψ = 0; if n > 2j, the same constraint holds for lower n at least down to 2j; and only

for n = 2j can the constraints terminate. Thus we can impose nontrivially just

(D+)2j+1ψ = 0

This additional constraint is not a coset constraint (except for the trivial case j =

0); its analog for the superconformal group will be analyzed soon: They will be

interpreted as field equations. In particular, the case j = 1
2 satisfies a quadratic

condition, which is related to the quadratic nature of free field equations. In general,

such equations will be satisfied only by field strengths on shell, not by gauge fields

nor off-shell field strengths, which will contain infinite-dimensional representations of

SU(2) (or a larger R-symmetry group): For extended 4D supersymmetry, superfields

or their gauge parameters have infinite numbers of auxiliary fields.

For the usual reasons it may be convenient to use various different sets of co-

ordinates. Here for pedagogical purposes we’ll derive a particular set of somewhat

unusual coordinates from a more familiar one. (For the superconformal case, we’ll

just choose our coordinates directly.) The chief unusual feature is that our coordi-

nates are defined by Wick rotation: As we know from the usual field theory method

of Wick rotation to Euclidean space, this technique can wreak havoc with reality

conditions. For SU(2), a standard space for defining SU(2) is the sphere, which is

the coset SU(2)/U(1) (i.e., SO(3)/SO(2)). For algebra and analysis, it’s often more

convenient to use stereographic coordinates than the usual spherical (trigonometric)

ones. Then the metric and volume are given by similar expressions:

ds2 =
dz dz̄

(1 + 1
2zz̄/R2)2

, d2V =
i

2

dz ∧ dz̄
(1 + 1

2zz̄/R2)2

where R is the radius of the sphere.

If we perform some sort of Wick rotation, z and z̄ no longer need be complex

conjugates: Thus we throw caution to the wind and freely make the coordinate change

z → Rz , z̄ → −2R/z̄

which implies

ds2 → 2R2 dz dz̄

(z̄ − z)2
, d2V → iR2 dz ∧ dz̄

(z̄ − z)2
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(This looks more like Wick rotation in string theory for the usual coordinate ρ = ln z,

so ρ̄ → constant−ρ̄.) Except for normalization, these are recognized as (Liouville-

Beltrami-)Poincaré coordinates for the hyperbolic plane (the Poincaré half-plane).

This is the coset SU(1,1)/U(1) (i.e., SO(2,1)/SO(2), or maybe SO(2,1)/SO(1,1)), so

clearly we have Wick rotated. It’s now convenient to separate z and z̄ into (what

would have been) its real and imaginary parts as

z = y + iRy0 , z̄ = y − iRy0

to give these coordinates in their usual form

ds2 = −1
2

dy2 +R2dy2
0

y2
0

, d2V = −1
2R

dy ∧ y0

y2
0

where y0 > 0 for the upper half-plane (which is disconnected from the lower half).

Obviously we can realize SU(2) (or SU(1,1), depending on where we put our i’s)

on these coordinates. But it will be simpler to consider the limit R → 0, which takes

the hyperbolic plane to a “projective” cone:

ds2 → dy2

y2
0

, d2V → dy ∧ dy0

y2
0

The realization of SU(2) on this space (at least in the way that generalizes to higher-

dimensional spheres) is a bit simpler; we’ll give a nice derivation later, but for this

simple case it’s easy to check that the answer is

y → ay + b

cy + d
, y0 →

y0

(cy + d)2
; g =

(
a b

c d

)
∈ SU(2)

which leaves both the degenerate metric and the volume element invariant.

But already we can realize SU(2) on y alone; why do we need y0? The coset with

just y is SO(2,1)/ISO(2). (ISO(2) is rotations and translations in D = 2. This can

also describe SO(2,1)/ISO(1,1).) Because of the contraction, it’s actually the “I” that

came from contracting the SO(2) of SO(2,1)/SO(2); the new SO(2) is what eliminates

y0. There is a simple relation to our Hilbert space discussion of SU(2) previously: D−

killed the first coordinate, while D0 fixes y0. Explicitly, we have

D0 = y0∂0 , D+ = y0∂y

These are invariant under SU(2) except for D+ under the “c” part, because we elimi-

nated the third coordinate (which would appear in the D’s) with D−. Then the wave

function for spin j takes the form

ψ(j)(y, y0) = (y0)−j
2j∑
n=0

(
2j

n

)
ψ(j)ny

n
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(The (y0)−j is the “vielbein” factor.) If we look at infinitesimal transformations, we

see that the “b” part gives translations in y, giving δcn ∼ cn+1. The “a, d” part scales

δcn ∼ (n − j)cn; this is a phase for SU(2). Finally, the “c” part gives δcn ∼ cn−1.

Explicitly, we have

G+ = ∂y , G0 = y∂y + y0∂0 , G− = 1
2y

2∂y + yy0∂0

The coordinate y0 was necessary to implement SU(2) completely as a coordinate

transformation; otherwise we would need a “spin” operator to give the action of D0.

Next, we consider complex conjugation and reality. Unitarity of SU(2) (along

with the unit determinant condition) give(
a b

c d

)∗
=

(
d −c
−b a

)
which tells us that the pair (−1/y*, (y0/y

2)*) transforms the same way as (y, y0). So

we define the charge conjugate of a field as

(Cψ)(y, y0) ≡
[
ψ

(
− 1

y*
,
y0*

y2*

)]∗
where Cψ depends only on y and y0 because of the double complex conjugation. In

terms of components, we have

(Cψ)n = (−1)2j−nψ2j−n*

This nonlinear realization can also be derived from a projective approach, as

CP(1). Starting from the defining representation

z =

(
z1

z2

)
, z′ = gz

we define (
z1

z2

)
=

1
√
y0

(
y

1

)
which yields the above transformation laws for y and y0. The defining representation

of SU(2) is pseudoreal, so we know we also have

Cz =

(−z2*

z1*

)
=

y*√
y0*

(−1/y*

1

)
as above. If we want to eliminate y0, we do something similar to a coset by gauging

by an overall complex scale (λ(z) has one component), and finding a gauge invariant:

z → λ(z)z ⇒ y =
z1

z2
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If we define a spin-j state as totally symmetric in 2j spinor indices, and contract

each spinor index with a factor of the above spinor z, we arrive at exactly the wave

function ψ(j)(y, y0) found above.

Because of the Wick rotation and singular limit R → 0, integration is funny. We

can define an SU(2)-invariant bilinear inner product by starting with an ordinary-

looking integral and inserting a δ function in y to make a double integral:

〈A|B〉 =

∮
dy0

y0

dy′0
y′0

∫
dy

y0

dy′

y′0

[√
y0y′0δ(y − y′)

]
A(y, y0)B(y′, y′0)

where we have arranged factors into invariant combinations. (We won’t need locality

in y0.) Then we substitute√
y0y′0δ(y − y′)→

y0y
′
0

(y − y′)2 + y0y′0

up to some normalization, valid for small y0 and y′0, which we can take for our y0

contours. If we then Taylor expand the “δ” in y0y
′
0, these contour integrals match up

equal spins (∼ y−j0 ) in A and B. (This is a cheat, but similar to how δ’s will appear in

the AdS/CFT correspondence, so we can define our source term there accordingly.)

The y integrals then give an invariant inner product for each spin,∫
dy dy′

(y − y′)2j+2
A(j)(y)B(j)(y

′)

This can be evaluated by appropriate choices of contours, e.g., the first open between

arbitrary points a and b, and the second as a closed figure 8 about those points (giving

a result independent of a, b). The result is proportional to

2j∑
n=0

(−1)n
(

2j

n

)
A(j)nB(j)2j−n

(as also expected from treating A and B as having 2j spinor indices).

Conformal

Before looking at any explicit representations (even for just coordinates) of con-

formal groups, we want to give the algebras, and identify which generators are familiar

from massive theories and which are new. Let’s begin with the ordinary conformal

group (no supersymmetry), in arbitrary spacetime dimensions (really just D > 2),

where the group is SO(D,2). We choose a lightcone basis for the extra (with respect to
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SO(D−1,1)) space and time “dimensions”: In terms of a vector index, A = (+, a,−).

So the metric is

ηAB =


− b +

− 0 0 −1

a 0 ηab 0

+ −1 0 0


Then the SO(D,2) generators can be divided up as

GA
B =


− b +

− G−
− G−

b 0

a Ga
− Ga

b Ga
+

+ 0 G+
b G+

+



=

 scale translation 0

conformal boost Lorentz translation

0 conformal boost scale


Note that GAB = −GBA as usual, but we have lowered one index with the metric

(which only really matters for the ± indices) for comparison to later results, and so

the dimensionless stuff lies along the diagonal. The algebra then follows as usual

from the SO(D,2) algebra. So we have the familiar Poincaré group, as well as scale

transformations (or “dila(ta)tions”), but also “conformal boosts”, which we’ll say

more about later. (SO(D,2)⊃SO(D−1,1)⊗SO(1,1), and the scale generator G+− of

the SO(1,1) counts the number of +’s minus −’s on the generators, giving the engi-

neering dimensions.) At this point we only note that they allow us to imbed the usual

massless symmetries into a classical (orthogonal) group, which is easier for certain

applications. (Notational point: Because of a shortage of alphabets, when discussing

supersymmetry, these letters will not represent the types of indices indicated here.)

SO(D,2) is also the anti-de Sitter group in D+1 dimensions; the appropriate

decomposition is then to separate 1 spatial index to get just translations (now non-

abelian) and Lorentz. (We’ll make a few passing remarks on AdS from time to time,

but consider it in detail much later.)

For the conformal case we have the full set of covariant derivatives

D+a = P a , Dab = Sab , D+− = < , D−a = ka

for momentum P , spin S, scale weight <, and covariant derivative for conformal

boosts k. Out of these we usually choose the gauge group to be generated by all

generators of nonpositive engineering dimension:

conformal: Dι = (S,<, k)
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Specifically, we set k = 0 without loss of generality (for physics), while < is fixed to

some constant and S gets the usual matrix representations. Then the only arbitrary

coordinate dependence is on the translation coordinates.

Note that we are here considering SO(D,2) as the conformal group in D dimen-

sions, not the AdS group in D+1 dimensions, for which a related analysis can be

made. There k is replaced by k−P , giving the gauge group SO(D,1) with S; < must

then be dropped from the gauge group, hence the extra dimension: P + k and < (no

longer just a number) are then covariant, nonabelian translations in D+1 dimensions.

AdS: Dι = (S, k − P )

This corresponds to separating out a timelike index as A = (0, A), where

GAB = Dι , G0A = (P + k,<)

So, SO(D,2)/SO(D,1) is AdSD+1, while SO(D,2)/ISO(D−1,1) is Minkowski space in

D dimensions (more on this later). (Notational note: “0” will generally be used

differently below, as a spacelike index.)

We will not give more detail on this approach now, since a nicer and more useful

form of the algebra in 4 dimensions (especially for spinors) comes from noting that

SO(4,2) is the same algebra as SU(2,2).
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Groups

The cases where there are infinite sets of superconformal groups, corresponding

to graded generalizations of classical groups, are for D = 3,4,6, where the groups are

essentially the same except for being over the real, complex, or quaternionic numbers.

(Octonions are a problem, but would in principle be for D = 10. There is a single

“exceptional” supergroup for D = 5.) Sticking to the usual representation over just

real or complex numbers, we have:

D =


3 : OSp(N|4)

4 : (P)SU(N|2,2)

6 : OSp*(8|2N)

“OSp(*)” means that the group preserves a graded metric, orthogonal (symmetric)

over the first set of indices, symplectic (antisymmetric) over the second. OSp has

a real defining representation, OSp* has pseudoreal; thus the first case has bosonic

subgroup SO(N)⊗Sp(4), while the last has SO*(8)⊗USp(2N). For the algebras, we

have Sp(4) = SO(3,2), SU(2,2) = SO(4,2), SO*(8) = SO(6,2). These are also AdS

supergroups in D = 4,5,7. Most of the time we’ll focus on D = 4.

The superconformal group with N supersymmetries in 4 dimensions is the graded

group (P)SU(N|2,2) (or equivalently, (P)SU(2,2|N); we use the other order because it

will prove convenient to list first the index we treat as bosonic). This makes for more

convenient algebra, since we can treat it as GL(N|4) with a funny reality condition

(hermiticity, or unitarity for the group) and 1 (S) or 2 (PS, for N = 4) elements

missing. So we begin by defining GL(N|4) in terms of the defining representation,

an N+4 vector with N components of one statistics and 4 of the other: In accor-

dance with the usual spin-statistics relation of physics, we treat the 4-spinor index

as anticommuting and the N-valued internal index as bosonic. This representation of

GL(N|4) then consists of otherwise arbitrary matrices that preserve these statistics.

So we can divide up the graded matrices, or the corresponding generators, into their

bosonic and fermionic parts:

GA
B =

( b β

a Ga
b Ga

β

α Gα
b Gα

β

)

where underlined Latin indices are bosonic internal R-symmetry GL(N) indices and

underlined Greek are fermionic spacetime GL(4) spinor indices. But SL(4) (which over
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the reals is actually SO(3,3)), which will become SU(2,2) after we apply reality, is the

4D conformal group, so we should really further divide the GL(4) spinor indices into

2 Lorentz GL(2) Weyl spinor indices, since SL(2)2 (which over the reals is SO(2,2))

will become SL(2,C), which is the same algebra as SO(3,1). After reordering as

determined by dimensional analysis (again fixed by SO(4,2)⊃SO(3,1)⊗SO(1,1), or

now SL(4)⊃SL(2)2⊗GL(1), where the 2 kinds of SL(2) indices have opposite GL(1)

weight),

GA
B =


β b

.
β

α Gα
β Gα

b Gα

.
β

a Ga
β Ga

b Ga

.
β

.
α G .

α
β G .

α
b G .

α

.
β


=

 Lorentz + scale supersymmetry translation

S-supersymmetry internal supersymmetry

conformal boost S-supersymmetry Lorentz − scale


where we now have also internal symmetry, supersymmetry, and “Special”-supersym-

metry. Again the scale weights (engineering dimensions) increase from lower-left to

upper-right. The internal symmetry is U(N), except for N = 4, SU(4) (from the P).

The commutation relations, except for statistics, are those expected for multiply-

ing general matrices:

[GA
B, GC

D} = δBCGA
D − δDAGC

B

In the alternative notation, this would be

[GA
B, GC

D} = (−1)BδBCGA
D − (−1)(B+C)D+BCδDAGC

B

The “S” condition is then written as

str G = GA
A ≡ Ga

a −Gα
α = 0

in terms of the “supertrace”, where we have used the implicit signs for the A su-

perindex but never do so for the subindices. Since group elements g are exponentials

of elements of the Lie algebra, this condition can also be written in terms of the

superdeterminant as

sdet g = 1 , sdet(eG) ≡ estr G

(Conversely, if det is defined by Gaussian integration, sdet can be defined as for

integrals over graded coordinates, and then the definition of str follows.) The “P”

condition is the gauge invariance

δGA
B = δA

BO
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This is independent from S only if str(I) = 0; in our case that means N = 4. In that

case, the S generator acts on the other generators but is not produced from them by

commutators, while for the P generator the opposite is true.

In general, S must be treated as a gauge invariance (like P), for which str G = 0

is a gauge condition. This is because str D is the “superhelicity” (more on this later),

which in general takes a nonvanishing value. For example, for N = 4, Yang-Mills is

superhelicity 0, while supergravity is superhelicity 1.

Field equations

We have reduced arbitrary representations of groups (general functions defined

on the group space) by imposing constraints linear in the covariant derivatives, which

does not interfere with symmetry transformations. To define irreducible represen-

tations of groups, we may need further conditions, quadratic or higher order in the

covariant derivatives. (For people who call the linear conditions “shortening”, the

higher order ones are called “semi-shortening”.) This approach is effectively what

is done in the usual analysis of the ordinary conformal group, or just the Poincaré

group: For example, in Wigner’s analysis of 4D Poincaré representations, the spin

is defined essentially as the covariant derivative left over when orbital angular mo-

mentum is subtracted from the full Lorentz generators. Then the Klein-Gordon and

Pauli-Lubański equations, expressed in terms of group generators, directly reduce to

expressions quadratic in covariant derivatives.

We first briefly discuss some examples for the ordinary conformal group in arbi-

trary dimensions; then we give a more detailed analysis for the more interesting case

of the 4D superconformal group. The generators thus carry SO(D,2) vector indices,

and we can decompose expressions quadratic in covariant derivatives as

SO(D, 2) :
(
⊗

)
S

= ⊕ ⊕ ⊕ •

Not all of these should be constrained to vanish on the wavefunction, or we get trivial

representations. A closer analysis reveals that we should only consider subsets of

the second representation, such that their algebra closes with themselves and with

the linear constraints. This is the conformal representation that includes the usual

Klein-Gordon equation. The first yields trivial representations. The last 2 describe

only scalars if combined with the second. (When applied separately they describe

anti-de Sitter space, but only for the massless case:. The last is the massless AdS

Klein-Gordon equation.)
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Decomposing SO(D,2) indices to SO(D−1,1), we find:

dim DD

2 ++ P 2

1 +a SabPb +<P a

0 ab SacSc
b + k(aP b) − tr

0 +− S2 + (D + 1)<2 + (D− 2)k · P

−1 −a Sabkb −<ka

−2 −− k2

(All these expressions should be symmetrized with anticommutators.) Since S is

part of the gauge group, any quadratic constraints we choose must be covariant with

respect to it. K is also part, and it takes any item in the table to ones of lower

dimension. If we impose P 2 = 0, all the rest follow, and we find general free massless

field equations (for field strengths: Dirac equation, Maxwell’s equations, Einstein’s

equations in terms of the Weyl tensor, etc.), with < determined by S, from the

SP +<P constraint, and S constrained to rectangular Young tableaux of height D/2

from the next. (In odd dimensions only spin 0 and 1/2 are allowed.)

Besides the linear constraints, which define the gauge group, and the quadratic

constraints, which give field equations, there can also be constraints higher-order in

derivatives: E.g., conservation laws for currents appear at third order as Sa
bSb

cPc+....

The constraints at any number of derivatives always imply those of higher derivatives,

so the general pattern is that these constraints are always consistent subsets (with

respect to their algebra closing) of

DA1

A2DA2

A3DA3

A4 ...DAn
An+1 − tr = 0

A similar analysis can be made for the superconformal group in D = 3,4,6:

OSp(N|4) :
(
⊗

)
S

= ⊕ ⊕ ⊕ •

(P)SU(N|2, 2) : ( • ⊗ • )S =
•
• ⊕ • • ⊕ • ⊕ •

OSp*(8|2N) :
(
⊗

)
S

= ⊕ ⊕ ⊕ •

The second representation of each is the relevant one for the conformal group in flat

space. (But again the last 2 are relevant for AdS.)

We use graded symmetrization, so “symmetric” in the tableaux means symmetric

in the former label of the group, since in the first and last cases that has the sym-

metric metric. For the unitary case, dots in boxes refer to the complex conjugate
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representation; ordering of the dotted block with respect to the undotted block is

arbitrary. We thus find a supersymmetrization of the results described above for the

bosonic case, only vector index notation has been replaced by spinor index notation:

For example, since P now appears as Pα
.
β in D = 4 (cf. above matrix decomposition

for GA
B), the massless Klein-Gordon operator appears in D = 4 as P[α

[
.
βPγ]

.
δ]. (Anti-

symmetrization effectively contracts SL(2) indices, so Lorentz indices get contracted

in these equations.)

In general, we can apply subsets of these quadratic field equations: E.g., just the

first 2 in the list of conformal equations give those are arbitrary massless (but not

necessarily conformal) representations of the Poincaré group. Or we can apply some

of the lower equations, consistently with k = 0, to get conformal representations;

we then need also higher-derivative constraints to get irreducible ones. But if we

apply the full (super)conformal set (at any order in derivatives), to get “shorter”

conformal representations, we can express them in terms of just symmetry generators

as well as just covariant derivatives, since D and G are (coordinate-dependent) linear

combinations of each other. (This can be seen, e.g., by their derivation in terms of

g−1dg and (dg)g−1.)

To see that this classification of (quadratic) constraints is consistent with the usual

identification of the superconformal mass shell, we evaluate them in the supertwistor

representation. (Supertwistors are basically a covariantization of the lightcone gauge.

They have received a lot of attention recently in the search for simpler methods to

calculate 4D scattering amplitudes, especially for N = 4 Yang-Mills.) Supertwistors

also exist for the special values D = 3,4,6: The generators G in terms of supertwistors

ζ are

D = 3 : GAB = 1
2 [ζA, ζB}, {ζA, ζB] = ηAB

D = 4 : GA
B = 1

2 [ζ̄A, ζ
B}, {ζ̄A, ζB] = δBA , h = 1

2 [ζA, ζ̄A}

D = 6 : GAB = 1
2{ζ

a
A, ζaB], [ζaA, ζbB} = CabηAB, hab = 1

2{ζa
A, ζbA]

with indices A,B in the defining representation (and defining Sp(2) = SU(2) indices

a, b for D = 6) and η the OSp metric (and C the Sp(2) metric), where h is the

superhelicity (generating the little group U(1) for D = 4, or SU(2) for chiral D = 6).

For D = 4 we have given the U(N|2,2) generators; in coordinate representations, only

(P)SU(N|2,2) need be defined. Note that twistors are essentially γ-matrices for OSp,

or creation/annihilation operators for U, satisfying graded anticommutation relations;

thus the bosonic ones anticommute with the fermionic ones. Since each supertwistor

carries one index, it’s easy to order them (ζ and ζ̄ separately for D = 4) in the field
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equations so that the graded symmetrization defined by the Young tableaux reduces

them by their commutation relations to δ terms (which are also generated by ordering

them), which are subtracted by the definition of the Young tableaux. We’ll return to

supertwistors later.

Note that for D = 4, even for representations other than supertwistors,

superhelicity ≡ str G = str D

where str G ≡ GA
A = (−1)AGA

A (making the signs explicit for the more common

index ordering). The equivalence for G and D is because str Ĝ is abelian, and so

commutes with g(α). The superhelicity is thus part of the “spin”, and becomes

nontrivial when relaxing the “S” constraint of the superconformal group (P)SU. It’s

related to the Abelian gauge invariance δGA
B = δBAO, except in the case N = 4, where

str I = 0, and the latter gauge invariance is the definition of the “P” in “PSU(4|2,2)”.

In the twistor representation, it counts the number of ζ̄’s minus ζ’s.

Again, all higher-derivative constraints follow this pattern: E.g., for D = 4, all of

them are consistent subsets of the parts of the form

• • •
...
... •

(Note that for N = 2 and no fermionic indices this agrees with our earlier result for

SU(2).) Explicitly, we have consistent subsets of

D(A1

(B1 ...DAn+1]
Bn+1] − δ terms = 0
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Supercosets

An element of the group (or algebra) GL(N|4) is just an arbitrary real matrix

(with appropriate grading). Thus, no consideration of exponentiation or constraints

on the coordinates is necessary. This construction is simpler than using (the defin-

ing representation of) SO(D,2) for arbitrary D (for N = 0), or the superconformal

groups OSp(N|4) for D = 3 or OSp*(8|2N) for D = 6, since the latter require a

quadratic (orthosymplectic) constraint on the matrices. The fact that the relevant

cosets are projective spaces is a significant further simplification. Then we can relate

to (P)SU(N|2,2) by (1) implementing (P)S as gauge invariances (or constraints), and

(2) finding the modification of the reality conditions corresponding to Wick rotating

to GL(N|4).

We therefore use as coordinates the unconstrained matrix ZM
A, or its inverse

ZA
M , where “A” and “M” are “local” (gauge) and “global” (symmetry) GL(N|4)

indices, respectively. The symmetry generators and covariant derivatives are then

very simple:

GM
N = ZM

A∂A
N , DA

B = (∂A
M)ZM

B

where ∂A
M = ∂/∂ZM

A, and we ordered the derivatives to the left in D to allow use

of matrix notation (later), and keep grading signs trivial. (The derivatives are meant

to act only to the right of the Z. It’s a kind of “normal ordering”.) This corresponds

to the identification of the symmetry generators G acting to the left of the group

coordinates ZM
A and the covariant derivatives D to the right, or the reverse for the

inverse ZA
M . This is seen from the index structure, but easily checked by performing

an infinitesimal transformation on Z generated by εM
NGN

M or εA
BDB

A. In fact, Z

is simply g(α) in the defining representation: i.e., g(Z) = Z.

The usual full superspace is then obtained by gauging away the diagonal blocks,

as well as the lower-left triangle (“lowering operators”), leaving only the coordinates

for translations and supersymmetry:

ZM
A →


α a

.
α

µ I θµ
a xµ

.
α

m 0 I θ̄m
.
α

.
µ 0 0 I


More choices can be obtained by also subdividing the N-valued internal indices, per-

haps not equally, into n and N−n: Again gauging away diagonal blocks and the
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lower-left triangle, we are left with an additional n(N−n) internal (R-symmetry) co-

ordinates,

ZM
A →


α a a′

.
α

µ I θµ
a θµ

a′ xµ
.
α

m 0 I ym
a′ θ̄m

.
α

m′ 0 0 I θ̄m′
.
α

.
µ 0 0 0 I


For N = 1 (“simple” superspace) this is identical to the previous case, but for N > 1 it

allows for generalizations that have proven necessary for most practical applications.

However, so far only N = 2 superspace (“hyperspace”) has been developed to a point

approaching the usefulness of N = 1.

Projective spaces are obtained by gauging away parts of GL groups in the same

manner as above (diagonal blocks + lower triangle), but dividing up the indices into

only 2 parts. So we reassemble the previous 4 parts, but differently than the 2 original

blocks (bosonic + fermionic) as indicated by our reordering. We then do a second

reordering, as the standard bosonic + fermionic within each block:

ZM
A →

(A A′

M I wM
A′

M ′ 0 I

)
=


a α a′

.
α

m I 0 ym
a′ θ̄m

.
α

µ 0 I θµ
a′ xµ

.
α

m′ 0 0 I 0
.
µ 0 0 0 I


where M = (m,µ), M ′ = (m′,

.
µ), etc. We also have a simple expression for the

inverse matrix, in this gauge:

ZA
M →

(M M ′

A I −wAM
′

A′ 0 I

)

where this matrix w is the same as the previous. (Symmetry and gauge indices lose

their distinction after gauge fixing.)

This case has the same bosonic coordinates but half the anticommuting coordi-

nates of the previous. Superspaces with half the fermionic coordinates of the full

superspace are called “chiral” (if all θ’s), “antichiral” (if all θ̄’s), or “twisted chiral”

(if mixed). (Frequently this is called “BPS” after papers by Bogolmon’yi and by

Prasad and Sommerfeld about nonsupersymmetric monopoles, for obscure reasons.)

This is the smallest number of fermions we can get, since the gauge algebra must

close, and we can’t kill both a supersymmetry and its complex conjugate without
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killing translations. This is useful for constructing actions, since
∫
dθ = ∂/∂θ has

positive mass dimension, so more θ’s would require a Lagrangian lower in dimension.

For N = 1, this is either chiral superspace (N = 0, no θ̄’s), in the chiral representation,

or antichiral (n = 1, no θ’s), in the antichiral representation. For general N, n = 0 is

again chiral, and n = N antichiral, both with no y’s. Other important special cases

are N = 2n, where w is a square matrix; this applies to N = 4 (Yang-Mills), N = 2,

and of course N = 0. (The last example should be kept in mind in all of the following.)

Note that the supertwistor representation is also a projective space. Besides

dividing up the N-valued a index as n + (N−n) for arbitrary n, we could have done

the same for 4-valued index α. (This would do the same kind of thing for the x

coordinates as we have done for the y’s.) The 0+4 case is trivial (it gives no spacetime

coordinates), the 2+2 case gives normal 4D spacetime as discussed above, while the

1+3 case gives supertwistors. However, this would give a complex space, so we need

to include the complex-conjugate twistor to define real fields. Identifying the complex

conjugate with the canonical conjugate (as for creation and annihilation operators)

then prevents doubling the dimension of the space.

The super Penrose transform gives the solution to the equations of motion in pro-

jective superspace by identifying G’s for “translations” in w (obvious by generalization

from the SU(2) and conformal cases, but we’ll derive it later) to the corresponding

ones for supertwistors: For scalars,

−i∂M ′
M = ±ζ̄M ′ζM ⇒ Φ(w) =

∑
±

∫
dζ dζ̄ e±iζwζ̄χ±(ζ, ζ̄)

(restoring the “i” for hermiticity), relating the projective superfield Φ(wM
M ′

) with

the twistor superfields χ±(ζM , ζ̄M ′) for positive and negative-energy solutions. The

choice of n determines how the fermionic twistor coordinates are distributed between

ζ and ζ̄. Note that, unlike ζM or ζ̄M , these coordinates are not a representation (but

only a nonlinear realization) of the superconformal group: For example, the confor-

mal boosts are represented as quadratic in their “momenta”. In comparison to the

usual projective superspaces given above, supertwistors are like lightcone superspace,

keeping: (1) just 3 out of 4 x’s (since they’re on shell), (2) 1/2 the θ’s (say θm
′+ and

θ̄m
.
+), and (3) none of the y’s.

As usual, the twistor superfields can be Fourier transformed to functions of just

ζM (or just ζ̄M , or something in-between): Integrating over just ζ̄M ′ ,
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Φ(w) =
∑
±

∫
dζM χ̃±(ζM ,−ζNwNM

′
) =

∑
±

∫
dζM δ(ζM

′
+ ζNwN

M ′
) χ̃±(ζM)

=
∑
±

∫
dζM δ(ζMZM

A′
) χ̃±(ζM)

(There is a similar relation with δ(ZA
M ζ̄M).)

As we’ll discuss in detail later, only the case n = N/2 (and thus even N) allows real

superfields, since only it makes w a square matrix, with equal range for the A index

and its “charge conjugate” A′. This is especially clear if we note that it’s the only

case where there are equal numbers of θ’s and θ̄’s. (Of course, the full superspaces

also allow real superfields.) Since this makes them the most useful, we’ll often use

the term “projective” to refer to them specifically.

Projective approach

The interesting properties of projective spaces follow from the fact that the coset

coordinates fit into a rectangle. Furthermore, although the full, “left” index is re-

quired for manifest symmetry, the gauge group necessarily breaks the “right” index

into 2 pieces. We can therefore begin, before choosing a gauge, with a rectangle that

keeps the full left index, but only the part of the right index that contains the coset:

ZM
A → z̄M

A′
=

( A′

M zM
A′

M ′ zM ′A
′

)
And we can do the analogous for the inverse group element:

ZA
M → zA

M =
( M M ′

A zA
M zA

M ′
)

Then all that’s left of the relation between the group element and its inverse is the

orthogonality relation

zA
M z̄M

A′
= 0

(Similar orthogonality relations appeared for supertwistors above.) Furthermore, all

that’s left of the original gauge invariance is the block diagonal pieces, one of which

acts only on z (GL(n|2) for the superconformal group), and the other only on z̄

(GL(N−n|2)). (But all the symmetry remains linear, since that index hasn’t been

restricted.) Note that neither z nor z̄ contains the coordinates for conformal boosts.
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Some simple but interesting cases of projective spaces are RP(n) (which is related

to Sn) and CP(n), which are described by (n+1)-vectors (i.e., (n+1)×1 rectangles),

real or complex, for which the gauge parameter is a single number, real or complex.

Using a vector for a representation of SO(n) or SU(n) (which becomes a nonlinear

realization after fixing the gauge) is much simpler than using a coset space. The

chiral case of the above superconformal is HP(1
2N|1).

The surviving coordinates w can be defined in a gauge-invariant way, which is

a simpler way to see their symmetry transformations. An easy way to do this is by

solving the orthogonality condition, as

z̄M
A′

= (wM
N ′
, δ
N ′

M ′)ūN ′
A′
, zA

M = uA
N(δ

M
N ,−wN

M ′
)

or in matrix notation

z̄ =

(
w

I

)
ū−1, z = u−1 ( I −w )

Only u and ū transform under their respective gauge transformations. This defines

w as the “ratio” of the 2 blocks of either z or z̄:

wM
M ′

= z̄M
A′

(z̄M ′
A′

)−1 = −(zA
M)−1zA

M ′

where the inverses are matrix inverses of those blocks.

It’s actually easier to derive the explicit form of the symmetry generators on w

from the form of finite transformations, rather than using G = g∂g and D = (∂g)g.

On the original full group element ZM
A, the transformation was Z ′ = g0z and thus

Z ′−1 = Z−1g−1
0 , so in terms of

g0 =

(
a b

c d

)
, g−1

0 =

(
d̃ −b̃
−c̃ ã

)
the symmetry transformation of w follows as a “fractional linear” (“projective”) trans-

formation: From the rectangles,

z̄′ = g0z̄, z′ = zg−1
0 ⇒ w′ = (aw + b)(cw + d)−1 = (wc̃+ d̃)−1(wã+ b̃)

(Of course, ã, b̃, c̃, d̃ can be expressed in terms of a, b, c, d, and vice versa: See Fields ,

subsection IIC3 if you want to see explicit expressions.) A special case is ordinary

conformal symmetry (N = 0), where all the above are 2×2 matrices: This takes a

simpler form than in the usual vector notation, just as for the case of SO(3,1) on 2D

Euclidean space. Here the simplification arises from using quaternions instead of 4D

vectors, while in the 2D case it was complex numbers in place of 2-vectors.
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From the same derivation we also have the transformations of the u’s:

ū′ = ū(cw + d)−1, u′ = (wc̃+ d̃)−1u

Eventually we need to apply the “S” gauge condition (or constraint):

sdet(g0) = 1 ⇒ sdet(cw + d) = sdet(wc̃+ d̃)

sdet Z = 1 ⇒ sdet u = sdet ū ≡ 1/x−

We can also construct symmety invariants in a similar way to (and implied by)

the coset construction (consider g−1dg and g−1
2 g1), as differentials or finite differences:

zA
Mdz̄M

A′
= uA

M(dwM
M ′

)ūM ′
A′
, z2A

M z̄1M
A′

= u2A
M(w1 − w2)M

M ′
ū1M ′

A′

The u’s are pure gauge; symmetry- and gauge-invariant quantities depend only on

differentials or differences of w, according to the translation (“b”) part of the sym-

metry. (An analog in field theory is the dilaton, or local Weyl scale compensator of

general relativity, which cancels in all locally scale invariant actions.) These transla-

tions include the usual spacetime ones, some of the internal symmetry, and half the

supersymmetries (as in the special case of chiral superspace).

The transformation law for the projective integration measure dw can be found

from dz̄ (or dz), which is invariant because sdet g = 1. (The relation of the superde-

terminant to Jacobians, as the generalization of the bosonic case, follows from its

definition in terms of a Gaussian integral.) This is true already for the part of the

measure dz̄ coming from any one particular value of A′ in z̄M
A′

. We then separate

out dw and dū in z̄ = (w, I)ū−1:

dz̄M
A′

= (dwM
N ′
, 0)ūN ′

A′
+ (wM

N ′
, δ
N ′

M ′)dūN ′
A′

⇒ dz̄ = dw (sdet ū)−str Iu × d(ū−1), str Iu = n− 2

where the exponent comes from multiplying the contributions from each particular

value of M . The superconformal transformation of d(ū−1) then follows from that of

ū−1 by a similar manipulation:

d(ū−1)′ = d(ū−1)[sdet(cw + d)]str Iū , str Iū = (N− n)− 2

⇒ dw′ = dw [sdet(cw + d)]−str I , str I = N− 4

So we have invariant measures

dw(x−)N−4 , dw dx−(x−)N−5
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We have already looked at SU(2) in such a treatment; it follows as a special case

of the above:

SU(2): w → y , x− → 1/
√
y0

(and drop the “4”’s in the above measure expressions: N−4 → 2 = str I). Another

important and simple example is SU(2,2) as the N = 0 case of SU(N|2,2) (only

fermionic indices):

SU(2,2): w → x , x− → x0

Then we have a 2×2 matrix x, with

x′ = (ax+ b)(cx+ d)−1

as a simple matrix generalization of the SU(2) case. We can easily recognize b as

translations, and a and d as SL(2,C) Lorentz on the 2 spinor indices, and scale. This

leaves c to give conformal boosts.

Correlators

As an example of (super)conformal invariants, we consider 2- and 3-point corre-

lators. For scalars, these can be constructed directly from the symmetry invariants

considered above. (The more complicated case of operators with spin can be treated

by slight generalization with the methods given in the next section.) To illustrate,

we’ll look at the simplest case, N = 0. The symmetry (but not gauge) invariant is

then

z2α
µz̄1µ

.
α = u2α

µx12µ

.
µū1

.
µ

.
α = u−1

2 x12ū
−1
1

for any two points 1,2 (including switching 1↔2), where x12 = x1 − x2. The idea is

then to cancel all the “Lorentz” pieces of all the u’s and ū’s, to get invariants under

not only the symmetry group (conformal) but also the gauge group (SL(2,C)). In

particular, we have the invariant

det(u−1
2 x12ū

−1
1 ) =

det(x12)

det(u2)det(ū1)

where det x12 = x2
12. Furthermore, the S of SU(2,2) says

detu = det ū ≡ x0

which is the N = 0 case of x−, while the power of det u at any point gives the scale

weight of the operator there. The 2-point correlator is then easily found to be

〈
◦
O1(1)

◦
O2(2)〉 ∼

(
x01x02

x2
12

)<
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in terms of the 4D (composite) scalar fields
◦
O, where < is the scale weight of both,

attributed to
◦
O(x, x0) = x<0O(x)

by dimensional analysis, or by the coset constraint on the covariant derivative for

dilatations. (The x<0 is one of the “vielbein”-type factors e(γ) for coset spaces.)

Clearly both
◦
O’s must have the same weight (although they might still be different

operators, if we haven’t diagonalized our basis.)

For higher-point functions, we could try to contract indices on the u−1xū−1’s,

but there is no nontrivial way to do this till 4-point. (Consider, in Dirac notation,

tr(a/b/...c/).) But this means the 3-point function is till given by just det’s, namely

〈
◦
O1(1)

◦
O2(2)

◦
O3(3)〉 ∼

(
x01x02

x2
12

)a(
x02x03

x2
23

)b(
x03x01

x2
31

)c
The x0 dependence then tells us

<1 = a+ c , <2 = a+ b , <3 = b+ c

⇒ a = 1
2(<1 +<2 −<3) , b = 1

2(<2 +<3 −<1) , c = 1
2(<1 +<3 −<2)

4-point and higher are where things start to get interesting: They give “ampli-

tudes”, not just weights and “couplings”. Unfortunately, the result is not unique,

even up to a constant, since there are ratios of conformal invariants that are also

gauge invariant.

Generalization to spin is easy: Just as the scale weight of a field is carried by

x0, the spin is carried by (the unit determinant part of) u and ū. (I.e., all of u

and ū, subject to det u = det ū = 1, now make up the vielbein for arbitrary spins.)

Matching u’s and ū’s with the fields then gives factors of xij (with free indices) in the

correlators. For example, for the 2-point, after removing the u’s and ū’s, including

the x0’s, (i.e., going to a “unitary gauge”)

〈O.
µ...

.
ν
σ...τ (1) O.

µ′...
.
ν′
σ′...τ ′(2)〉 ∼

x(σ .
µ′ ...x

τ) .
ν′x

(σ′ .
µ...x

τ ′) .
ν

(x2)<̃

where here x ≡ x12 and <̃ is < + 1/2 the number of spinor indices on O. The result

looks much worse in vector notation, especially for half-integer spin. It’s also much

simpler when written with these local indices instead of global ones (the “embedding”

formalism), a general truth for anything in coset spaces. Similar generalizations are

possible for superfields, particularly those that live in projective superspaces.
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Spin

We start with the parametrization of a group element of PSU(2,2|4) as for pro-

jective superspace, but keeping all elements:

ZM
A =

(
I w

0 I

)(
u 0

0 ū−1

)(
I 0

−v I

)
=

(
u− wū−1v wū−1

−ū−1v ū−1

)
We separate the derivative form of the symmetry generators and covariant derivatives

as

G = Z∂Z ≡
(
Gu −Gv

Gw −Gū

)
, D = ∂ZZ ≡

(
Du −Dv

Dw −Dū

)
For spin, as for the bosonic case (and in analogy to SU(2)), we keepDv = 0 unmodified

from the spinless case, and gauge v = 0. (Then w, u, and ū appear as previously.) But

we introduce spin to replace Du and Dū, since they include Lorentz. (Of course, Dw is

not in the gauge group.) Then (as easily seen from the finite gauge transformations)

Du ≡ ∂uu = su ≡ u−1ŝuu, Dū ≡ ū∂ū = sū ≡ ūŝūū
−1

where the ŝ’s are defined to act on “curved” indices M,M ′ rather than “flat” indices

A,A′.

Our flat/curved terminology is by analogy to general relativity, where “flat”

indices carry the Lorentz gauge symmetry, and are how spin is introduced, while

“curved” indices, and the coordinates that carry them, are acted on by any global

symmetry of the space under consideration. In fact, in the bosonic case our gauge

group GL(2)⊗GL(2) is just the Lorentz group, scale transformations (for which the

“spin” part is the scale weight), and the purely gauge GL(1) that reduces GL(4) to

the (Wick-rotated) conformal group SL(4).

Since our gauge group is GL(n|2)⊗GL(N-n|2), it’s clear how this works: The

gauge group covariant derivatives Du and Dū carry flat indices; their irreducible

matrix representations carry arbitrary mixtures of these defining indices, up and

down, with arbitrary graded (anti)symmetrizations (but with arbitrary values of the

Abelian GL(1) charges, and maybe some supertrace conditions). Thus our original

fields Φ(w, u, ū) carry these flat indices, are scalars with respect to the symmetry

group, and satisfy the constraints Du− su = Dū− sū = 0. But we can explicitly solve

these constraints in terms of fields Φ that carry only curved indices, by using u and ū

as “vielbeins” to convert flat indices into curved. The fields with curved indices then
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depend only on w, and are gauge invariant, but are no longer scalars: The ŝ’s in G

act the same way on the curved indices as the s’s acted on the flat (and themselves

carry curved indices).

It’s sufficient to consider an example with one of each type of index, primed and

unprimed (up vs. down indices should be obvious):

sA
CΦB′

D = δ
D
AΦB′

C − rδCAΦB′
D, sA′

C′
ΦB′

D = δ
C′

B′ΦA′
D − r̄δA′

C′
ΦB′

D

(with extra signs from index reordering implicit) where r+ r̄ is the superscale weight

(see below) and str s − str s̄ (the “−” comes from the definition of Dū and Gū) is

related to the super-(internal-)U(1) charge (or superhelicity). The solution to the

constraints is

ΦA′
A(w, u, ū) = (x−)r+r̄ūA′

M ′
ΦM ′

M(w)uM
A, Φ′A′

A(w, u, ū) = ΦA′
A(w′, u′, ū′)

⇒ Φ′M ′
M(w) = [sdet(cw + d)]r+r̄(cw + d)−1

M ′
N ′
ΦN ′

N(w′)(wc̃+ d̃)−1
N
M

where r and r̄ appear only in the combination r + r̄ because we have used the “S”

constraint.

In the physically most interesting cases (e.g., the N = 2 scalar multiplet or the

N = 4 vector multiplet) the field strength Φ(w, u, ū) is a scalar (and r+ r̄ is nonzero).

It then depends on only w and the “extra coordinate” x−. This is well known from

the nonsupersymmetric case, where this extra coordinate is the x0 of the projective

lightcone.

A linear form of transformation on indices can be obtained by using z and z̄ to

convert flat indices into full GL(N|4) curved indices; e.g.,

ΦM
N ∼ z̄M

A′
ΦA′

AzA
N

But such fields are constrained,

zA
MΦM

N = ΦM
N z̄N

A′
= 0

Solving the constraints leads back to the above fields and yields their nonlinear trans-

formations.

Note that the fermionic part of the spin is usually assumed to vanish, in agreement

with known physical examples. This implies that their superpartners do also, so in

those cases s vanishes except for the chiral case, where only su (consisting of just

sα
β) is nonvanishing, or the antichiral case, where only sū is. In some of the most

interesting cases (like N = 4 Yang-Mills), the only nonvanishing parts of the spin are
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the r and r̄ pieces. (Some of the restrictions come from the quadratic field equations,

which we consider below.)

The form of the symmetry generators in terms of w and u can again easily be

derived from the finite forms of the transformations (taking the infinitesimal limit).

We thus find the basis

Gw = ∂w, Gu = w∂w+u∂u, Gū = ∂ww+∂ūū, Gv = w∂ww+u∂uw+w∂ūū

If we apply the spin constraints, the symmetries then become

Gw = ∂w, Gu = w∂w + ŝu, Gū = ∂ww + ŝū, Gv = w∂ww + ŝuw + wŝū

(For the special case of N = 0, we can replace w with x, and ŝ with Lorentz and

scale, to find the usual in spinor notation.) One can also check that for N = 2n

these operators are permuted by the “inversion” (a particular case of the above finite

transformations)

g0 =

(
0 −I
I 0

)
: w → −w−1, u→ w−1u, ū→ ūw−1

Although the covariant derivatives Du and Dū for the gauge group are obvious

from the way they act on the group indices, the remaining derivatives Dw can’t be

found that commute with the symmetry generators Gv. However, we can define

Dw = ū∂wu

that commute with all but Gv. This is the usual procedure for ordinary conformal

symmetry, where coordinates are not introduced for conformal boosts, so (“covari-

ant”) translational derivatives don’t commute with them. (We would have found

the same result if we had derived truly invariant derivatives before fixing the gauge

v = 0.)

Field equations

We saw before the 4D superconformal (free) field equations

D(A
(CDB]

D] = 0 mod δ terms

that includes the massless Klein-Gordon equation p2 = 0. The equation is determined

only up to Kronecker δ terms, which don’t contribute to the Klein-Gordon equation,

and has this ambiguity because of the gauge invariance

DA
B → DA

B + δBAA
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for arbitrary operator A. (Because it’s Abelian, this is the same gauge symmetry as

in the gauge group generated by G’s; “Abelian” means it can be considered as either

left or right.)

The supersymmetric equation of motion also includes the general (massless) su-

persymmetry free field equation p/d = 0, the Pauli-Lubański equation, several dd

equations often seen in supersymmetry, equations involving the internal symmetry

generators, and various redundant equations.

The number of field equations we wrote above is reduced by the gauge constraints.

The net result is that the equations on projective space reduce to (all mod δ terms

for the s’s)

∂(M ′
(P∂N ′]

Q] = sM
(P∂N ′

Q] = s(M ′
P ′
∂N ′]

Q = 0

sM
P sN ′

Q′
= s(M

(P sN ]
Q] = s(M ′

(P ′
sN ′]

Q′] = 0

The first set of equations is for arbitrary massless representations of supersymme-

try, the second set restricts the index structure for specialization to conformal su-

persymmetry. (A similar separation can be made for the bosonic case in arbitrary

dimensions.) Specifically, the second set places the restriction that superconformal

representations have only primed or only unprimed indices, and fixes the value of the

superscale weight.

In supertwistor space, we find that already the equations linear in spin and in

derivatives restrict the supertwistor space solutions to the analog of those for the

bosonic case:

ΦM ′...N ′
M...N(w) =

∑
±

∫
dζ dζ̄ e±iζwζ̄ ζ̄M ′ · · · ζ̄N ′ζM · · · ζNχ±(ζ, ζ̄)

Since a ζ and ζ̄ are produced by a w derivative, this effectively reduces Φ to have only

unprimed or only primed indices, graded antisymmetric in all of them, as implied by

the second (spin-only) set of superconformal field equations. (However, fields that are

total derivatives on shell need not be so off; but such field strengths are generally not

conformal.) In the purely ζM or ζ̄M form, the full indices can be used, but because

of the constraint enforced by the δ function, the fields will satisfy the analogous

constraints on the indices, as described in the previous section. The superhelicity is

now given by the number of unprimed minus primed indices.

Moving back to coordinate space, the spin-free part of these equations decomposes

as:

∂x∂x = ∂x∂θ = ∂θ∂θ = ∂θ∂θ̄ + ∂x∂y = ∂y∂θ = ∂y∂y = 0
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(and complex conjugates). Internal indices are symmetrized, while Weyl spinor indices

are contracted (antisymmetrized). The ∂y-free equations should be familiar from

N = 1 chiral scalars: They include the Klein-Gordon, Weyl spinor, and auxiliary field

equations, respectively. The equation with all types of derivatives (and thus 2 different

types of terms, each with only 1 of each kind of index, and thus no symmetrization

possible) shows that any y-dependent term shows up without y at higher order in θ

and θ̄ with x-derivatives, and that all terms with both θ and θ̄ are of this form.

Taylor expansion is sufficient for the y’s, since setting both primed indices equal

and both unprimed indices equal in the ∂y∂y equation says the field is linear in

each y. (Of course we can always Taylor expand in the θ’s.) Then the non-∂x

equations say that all component fields in this Taylor expansion in y’s and θ’s are

totally antisymmetric in unprimed internal indices and separately also in primed.

We now examine the component expansion for N = 4, n = 2. (So only the

SU(2)2⊗U(1) subgroup of SU(4) is realized linearly.) The result is straightforward:

Φ(w) = (φ+ ym
m′
φm′

m + 1
2y

2φ̄) + θµ
m′

(λm′
µ + ym′

mλm
µ) + θ̄m

.
µ(λ̄.

µ
m + ym′

mλ̄.
µ
m′

)

+(θ2
µνf

µν + θ̄2
.
µ
.
ν f̄.
µ
.
ν)− iθµm

′
θ̄m

.
µ∂.

µ
µ(φm′

m + ym′
mφ̄)

−iθ2
µν θ̄m

.
µ∂.

µ
µλmν − iθ̄2

.
µ
.
νθµ

m′
∂.
µ
µλ̄.

νm′ − θ2
µν θ̄

2
.
µ
.
ν∂.

µ
µ∂.

ν
νφ̄

where we have used the internal SL(2)2 metrics to raise, lower, and contract indices.

Each component field, as a function of x, satisfies the Klein-Gordon equation, and

each non-scalar satisifies a Weyl equation (which for f is the combination of the usual

field equation and Bianchi identity for the Yang-Mills field strength). Note that all

component fields appear at y = 0, but some only with x derivatives; as stated above,

this is a general feature, following from the equation ∂θ∂θ̄ + ∂x∂y = 0; the same is not

true off shell.

The usual component (bosonic-)twistor fields are obtained by evaluating the ex-

pansion of χ over the fermionic ζ’s. (As mentioned previously, this is like expanding

in only 1/2 the θ’s.) The expansion of the Penrose transform in y gives new com-

ponent fields, but the expansion terminates because of the anticommutativity of the

corresponding ζ’s. The expansion in θ (and θ̄) also gives new component fields, but

with spinor indices from bosonic ζ, which then satisfy the usual Weyl equation (as in

the nonsupersymmetric twistor formalism), and faster termination because there are

fewer fermionic ζ’s than θ’s, and because y dependence may give extra fermionic ζ’s.

Also note that expansion in both θ and θ̄ will give both ζµ and ζ̄.µ, which is equivalent

to an x derivative. We also see that all fields with y dependence also occur without

y, but with x derivatives, because fermionic ζ’s can come from either θ or y (but y’s
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give only equal numbers of ζµ and ζ̄.µ). All of this agrees with our previous evaluation

in terms of the field equations directly.

Powers of the projective superfield Φ, multiplied at the same point in projective

superspace, are still projective. Of particular interest are their Yang-Mills traces,

which are gauge-independent: The operators

tr(Φn)

for arbitrary nonnegative integer n (though n = 0 is just a constant, and n = 1 is

nontrivial only in the abelian case) satisfy nonrenormalization theorems for similar

reasons to those for chiral operators in N = 1 supersymmetry. In the AdS/CFT

correspondence, they correspond to 10D IIB supergravity on the AdS side (and not

the rest of the string). They satisfy the “field equations”

D(A1

(B1 ...DAn+1]
Bn+1] tr(Φn) = 0 mod δ terms

since at least one of the Φ’s will have (at least) 2 D’s hitting it in the same way

as the Φ field equations. (Actually, the Φ field equations generally involve gauge-

covariant derivatives and terms nonlinear in field strengths. But the lowest-dimension,

y-derivative ones don’t, and the rest then follow from repeated application of the coset

constraints.) Thus, for n = 1 we get the free field equations satisfied by an abelian

Yang-Mills multiplet. Another interesting case is n = 2 (corresponding to 5D maximal

supergravity on AdS), which is the multiplet including the energy-momentum tensor;

the cubic constraint then includes the conservation laws for this tensor and other

conserved currents. A less exciting case is n = 3, where the quartic constraint (as

for lower n) restricts how far in the θ expansion independent operators appear. (The

θ4θ̄4 term is independent only for n ≥ 4.) For all n, the lowest dimension, y-derivative

equations (together with the U(1) weight) determine the SU(4) representation of the

scalar composite at θ = 0: It’s a rank-n totally symmetric, traceless SO(6) tensor.

General composite operators constructed from this field strength will no longer be

projective, because the covariant derivatives will introduce u dependence. (Compare

chiral superfields for N = 1.) But if only certain spinor derivatives are used, only

certain fermionic coordinates will be introduced, so the operators will depend on

some number of θ’s intermediate between those of the full superspace (16) and those

of projective superspace (8). Sometimes these go by the name of “semi-chiral”, or

“1/4-BPS” (12), “1/8-BPS” (14), etc. (“BPS” is then called “1/2-BPS”.) Similar

remarks apply to other supersymmetric theories.
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One might wonder why projective superspace was enough to describe N = 4

Yang-Mills: An internal space of 4 coordinates is insufficient to describe all repre-

sentations of SU(4), which would require 6 coordinates (from constraining just the

Cartan subalgebra and corresponding lowering operators). The reason is that there is

a correspondence between the internal SU(4) and spacetime SU(2,2) (or just SL(2,C))

representations: Any field (or composite) in the theory (and any other physical theory

for that matter) is a “spinor” representation of each or a “tensor” representation of

each. So the y coordinates need provide only a subset of those required (specifically,

the traceless totally symmetric tensors of SO(6)), while the rest are provided by the

SU(4) transformations of the θ coordinates. (On the AdS side, the 4 coordinates

produce the representations found from the Kaluza-Klein expansion for S5.)

Charge conjugation

As explained previously, only the cases N = 2n, where w is square, allow the exis-

tence of real superfields. Because of the Wick rotation used to conveniently describe

the superconformal group, fields will satisfy nontrivial reality conditions. We really

don’t need to Wick rotate: If you ignore reality, it doesn’t make a difference; just treat

any variable and its complex conjugate as algebraically independent. (However, there

can be some topological complications, which we’ll ignore, at least for now.) Reality

for the superconformal group is expressed as a pseudo-unitarity condition (the “U”

in (P)SU(N|2,2)),

g†Υg = gΥg† = Υ, Υ 2 = I, Υ † = Υ ; Υ
.
MN =


n ν n′

.
ν

.
m I 0 0 0
.
µ 0 0 0 −iC
.
m′ 0 0 I 0

µ 0 iC 0 0


in terms of the SL(2) and U(2) metrics, e.g.,

Cµν =

(
0 i

−i 0

)
, I

.
mn = δnm

(The dots on indices refer to complex conjugation.)

It isn’t useful to solve for the reality conditions on the components of g because

of the nonlinearity, and because some of the complex conjugates of components of w

have been gauged away. (So we have chosen a complex gauge by eliminating them.)

Instead, we use this unitarity condition to define “charge conjugates” of elements of
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g that transform in the same way under the symmetry group, although differently

under the gauge group. Specifically, we need this only for the coset:

C(w′) = (Cw)′

where C acts on w′ as if it were w, and ′ acts on Cw as if it were w; thus superconformal

transformations and charge conjugation commute. We therefore need to use only the

fact that the symmetry transformation g0 used in Z ′ = g0Z satisfies the same unitarity

condition as g above. This fact can then be applied as well to the transformations

on the projective space, z̄′ = g0z̄ and z′ = zg−1
0 . The goal will be to define a charge

conjugation C of fields that involves their complex (hermitian) conjugation, but still

gives fields that depend on w (and not w†, whatever that is). Thus

(CΦ)(w, u, ū) ≡ [Φ(Cw, Cu, Cū)]†

where “Cw” is some function of w† (so Φ† gives back w) that transforms the same

as w under superconformal transformations. The relation for curved superfields then

follows. For real fields (when they can be defined), CΦ is identified with Φ.

We thus define the action of charge conjugation C on the full coordinates ZM
A by

CZ ≡ ZΥΥ̂ = Υ (Z−1)†Υ̂ , Υ̂
.
AB =

(B B′

.
A 0 −I
.
A′ I 0

)
In the former form the symmetry transformation is obvious, while in the latter form

Υ mixes only the symmetry indices, with Υ̂ chosen to mix the gauge indices to relate

the pieces appearing in the projective approach:

(Cz̄MA′
)† = −zANΥN .

M
, (CzAM)† = Υ

.
MN z̄N

A′

relating z to the complex conjugate of z̄. (The “−” sign, from Υ̂ , preserves sdet g =

1.) The gauge indices don’t match because charge conjugation switches primed and

unprimed indices; but w is gauge invariant.

Independent of coordinate choice, we find as a result

(CG)† = −Υ−1GΥ, (CD)† = −Υ̂ †DΥ̂ †−1

(but we have chosen Υ−1 = Υ , Υ̂−1 = Υ̂ † = −Υ̂ ). More explicitly, and taking

into account (i.e., undoing) that the above hermitian conjugation includes matrix

transposition,

C : Dw → −Dw, Dv → −Dv, Du ↔ −Dū
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We then find the conjugation of w, which we can write as

(Cw)†
.
M ′ .

N
=

( .
n

.
ν

.
m′ −y−1

m′n −iy−1
m′nθ̄n

.
µC.

µ
.
ν

µ −iCµνθν
n′
y−1

n′n −Cµν(xν
.
µ − θνn

′
y−1

n′nθ̄n
.
µ)C.

µ
.
ν

)

For N = 0, Cx is just x. (The factors of C in its hermitian conjugation are because

it’s xµ
.
µ that’s hermitian. Note that Cµν = −Cµν .) But Cy is −y−1. Thus C treats x

normally, while on y it acts like an inversion for SU(N) (as we have already seen for

SU(2)).

For considering spin, we also have

(Cu)† = ūĀ−1(w), (Cū)† = A−1(w)u

A
M

.
N ′ =

( .
n′ ν

m ym
n′

0

µ θµ
n′ −iCµν

)
, Ā

.
MN ′

=

( n′
.
ν

.
m ym

n′
θ̄m

.
ν

.
µ 0 −iC

.
µ
.
ν

)

⇒ sdetA = sdet Ā = det y

For our previous spin example, we then have

(CΦM ′
M)(w) = (det y)r+r̄Ā−1

M ′
.
N

[Φ(Cw)]†
.
N .
P ′A−1

.
P ′M

The field equations for N = 4 Yang-Mills are also implied by the combination of

Taylor expandability in y with the “reality” condition,

CΦ = Φ, r + r̄ = 1

where the latter equation implies a factor of det y = y2 (4-vector square of the 4

y’s) under charge conugation. (If we keep the factor x− in the “flat” version of Φ, it

comes from there.) The fact that Φ is Taylor expandable in y implies that CΦ is no

higher than y2 (indices contracted), which is equivalent to the ∂y∂y = 0 field equation

(indices symmetrized); we then know the other equations must also be satisfied by

superconformal invariance.

(Similar remarks apply for the N = 2 scalar multiplet, also described by a scalar

with r + r̄ = 1. In that case, since C2 = (−1)(N/2)(r+r̄), the field is pseudoreal,

so the field is doubled and satisfies (CΦ)i = CijΦj. In the interacting case, the

reality condition for the scalar hypermultiplet involves the prepotential for the vector

hypermultiplet. That prepotential is also real, but it has superscale weight 0, so no

field equations are implied for it.)



AdS 43

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AdS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Maximally symmetric spaces

We begin with a discussion of fields on anti-de Sitter space and how they represent

the AdS symmetry. We’ll restrict our discussion of general massive fields to just their

spectrum: Later we’ll go into more detail on 10D IIB supergravity (which is 10D

massless) on AdS5×S5, and how Kaluza-Klein reduction over S5 gives specific massive

AdS5 fields.

First we define AdS, as a maximally symmetric space. (This discussion is taken

from Fields subsection IXC2.) This can be done in either an “analytic” or “algebraic”

way. The analytic way is to look at a curvature tensor that has only a scalar com-

ponent, which is a constant. The curvature can be determined from the torsion-free

covariant derivative with a “flat” index:

[∇A,∇B] = 1
2RAB

CDMDC

To be general, we start with a space XA with p space and q time coordinates. Here

MAB, which gauges SO(p,q), is a “second-quantized” spin operator, meaning it’s

defined to act only on fields; thus its action on covariant derivatives themselves is

determined by acting before an explicit spacetime solution is chosen:

MAB∇C = ∇[AηB]C ⇒ [MAB,M
CD] = −δC[AδDB]

We then constrain the curvature to be

RAB
CD = kδC[Aδ

D
B] ⇒ [∇A,∇B] = −kMAB , |k| = 1

R2

In convenient coordinates, we can choose the radius of curvature R = 1, unless k = 0

(flat space). Then the usual definition of the curvature scalar, by tracing, is

R = D(D− 1)k , D = p+ q

Since the rest of the curvature tensor vanishes, this space can be expressed in appro-

priate coordinates as a Weyl scale transform of flat space:

∇A = Φ∂A + (∂BΦ)MAB ⇒ RAB
CD = Φδ

[B
[A∂C]∂

D]Φ− δC[AδDB](∂Φ)2

where we started with only flat local indices, but the right-hand sides have only flat

global indices (in terms of raising/lowering and contracting). For D > 2 the condition

on the curvature separates into

2Φ∂2Φ−D(∂Φ)2 = Dk , D∂A∂BΦ = ηAB∂
2Φ
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for flat d’Alembertians ∂2. (For D = 2 the latter equation isn’t implied.) The latter

equation for A 6= B says that Φ is the sum of functions of a single coordinate; for A =

B it says the functions are quadratic and have the same quadratic coefficient. (This is

of the same form as the ∂y∂y equation we encountered for the N = 4 superconformal

field strength previously; there it appeared in spinor notation. This is related to the

fact that the y coordinates on the AdS side describe S5.) Then the former equation

gives k:

Φ = A+BAXA + C 1
2X

AXA , k = 2AC −B2

Common coordinate choices are

Φ =

{
1 + 1

4
kX 2 (Cartesian) stereographic

B · X “Poincaré” (due to Liouville and Beltrami)

where B is chosen to give k the appropriate sign and magnitude. (We can even

choose it complex if we don’t mind complex “gauges”.) Such coordinates may not

cover the whole space, but are sufficient when spacetime has Euclidean signature, as

for Feynman diagrams.

The algebraic approach is to consider a D-dimensional hyperboloid, embedded

in D+2 flat dimensions YI (with 1 extra space and 1 extra time dimension), as the

intersection of a (hyper)cone

Y2 = 0 ⇒ YI = eWI , (W+,WA,W−) = (1,XA, 1
2X

2) , dY2 = e2dX 2

(since W2 = 0⇒W · dW = 0; e is a variable related to the worldline metric) with a

plane

nIYI = 1 ⇒ e−1 = n · W = n+ + nAXA + n−
1
2X

2

(Without this second constraint we would just have a general conformally flat metric.)

We then see the relation to the previous as

e−1 = Φ , k = −n2

nI =

{
(1, 0, 1

2k) stereographic

(0, nA, 0) Poincaré

Besides the metric, we can also look at invariants for finite differences in position as

(Y1 − Y2)2 = −2Y1 · Y2 = e1e2(X1 −X2)2

(This is the chord length in the embedding space, which is a function of, but not the

same as, the arc length through the symmetric space.)
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From this approach we can easily see the cosets in terms of the unbroken symme-

try: Noting that the symmetry group leaves n · y invariant, while the “vacuum” has

symmetry SO(p,q), the coset is

k > 0 : SO(p+1,q)

k = 0 : ISO(p,q)

k < 0 : SO(p,q+1)

 /SO(p,q)

(The SO(p,q) indicates both the number of dimensions of the space and its signature.)

Note the relation to general relativity, where SO(p,q) is identified with the local

Lorentz symmetry on the tangent space, as appears in the covariant derivatives, while

the global symmetry is described by Killing vectors that commute with the covariant

derivatives. Some frequent examples are

k > 0 = 0 < 0

q = 0 sphere Euclidean hyperbolic

1 de Sitter Minkowski anti-de Sitter

(For D = 1 you can easily picture this construction as giving an ellipse, parabola, and

hyperbola, respectively, though you need higher D to get actual geometry.)

Another way to look at it for n2 6= 0 is to pick a coordinate in Y in the n direction:

Then

YI = (Y0,YA) = (R, XA) ⇒ X2 + n−2 = 0 , dY2 = dX2

from which we recognize the hyperboloid in constrained coordinates XA where the

symmetry group is manifest, with R = |n2|−1/2. In comparison with Poincaré coor-

dinates of the previous discussion

XA = (x0, x
a) , nAXA = x0/R

−ds2 = R2 dx
2 ± dx2

0

x2
0

, (Y1 − Y2)2 = R2 (x1 − x2)2 ± (x01 − x02)2

x01x02

where “x” now refers to just xa, and −1/k = n−2 = ±R2, we now have

I = (+, 0, a,−) , A = (+, a,−) , A = (0, a)

XA = (X+, Xa, X−) =
R
x0

(1, xa, 1
2(x2 ± x2

0))

What is often called the “horizon” (x0 = ∞) in AdS, because of its derivation

from the near-horizon limit of D-brane solutions to supergravity, is actually part

of the boundary (x0 = 0) of AdS, as can be seen if one uses coordinates that are

nonsingular there: AdSD is a maximally symmetric space, and has a boundary and
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the bulk, nothing else. In fact, in the Euclidean version of AdS (x2 ≥ 0), the so-

called “horizon” is actually the point (since the 1/x2
0 kills the dx2) at infinity on the

boundary, which completes it topologically from RD−1 to SD−1. (This is the same as

what we do in 2D electrostatics or on the worldsheet, where the complex plane is then

treated as a sphere topologically.) This is convenient for conformal transformations

on the boundary: For example, inversions X+ ↔ X− switch infinity with the origin.

In terms of the embedding coordinates XA, these are the 2 related points (0,0,∞)

and (∞,0,0). So, statements often found in the literature about the “horizon limit”

of AdS should properly be stated as “long-distance” limits on the boundary. (Note

that in CFT, as on the boundary, geometry is poorly defined, as we really have only

conformal geometry: The metric is defined only up to a scale, which is here 1/x2
0.)

Fields on AdS

We next look at the Klein-Gordon equation on AdSD+1. (So in the previous

construction, Y would be for SO(D+1,2) in D+3 dimensions, and X would be for

SO(D,2) in D+2 dimensions, before constraining.) Rather than find the general solu-

tion, we examine how the mass relates to the asymptotic behavior of wave functions

toward the AdS boundary. (This will prove useful later for checking the AdS/CFT

correspondence.) A convenient coordinate system for this is Poincaré coordinates:

From the above analysis we see for AdS k < 0 ⇒ n2 > 0, so we must pick a spatial

coordinate x0 for which

−ds2 = R2 dx
2 + dx2

0

x2
0

Since for dx = 0, −ds2 = R2(d ln x0)2, the space has ln x0 ∈ [−∞,∞]⇒ x0 ∈ [0,∞],

so the boundary is x0 = 0. (For quantum purposes, we’ll stick mostly to Euclidean

signature, i.e., hyperbolic space: Then x0 = ∞ is just a point. In Lorentzian signa-

ture, these coordinates don’t cover the whole space.)

The mass2 is defined by the d’Alembertian, e.g., as a Casimir of the spacetime

symmetry group; this definition is independent of the representation of this group; it

is the relation between energy and spatial momentum. Using the above expression

for the covariant derivative

Φ =
x0

R
⇒ R∇0 = x0∂0 , R∇a = x0∂a +Ma0

⇒ R2m2 = R2 ≡ R2∇A∇A = [(x0∂0)2 −Dx0∂0 + (Ma0)2] + [2x0∂
aMa0] + [x2

0∂
2
a]

where we have used [Ma0,∇a] = −D∇0 for D values of a.
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We now want to evaluate the boundary limit x0 → 0. Noting that the metric

in the x0 direction goes like dx2
0/x

2
0, it’s clear that ln x0 should be interpreted as

the usual coordinate. So we’re looking for the usual exponential fall-off in a spatial

coordinate at ∞ (compare, e.g., a massive flat-space propagator). Here that means

x0 = ∞, which is a point in hyperbolic space (Euclidean, Wick-rotated signature).

Another way to think of it is that we are looking for solutions generated by sources

near the boundary, so they should have exponential decay in ln x0 away from x0 = 0.

For the AdS/CFT correspondence, we’ll have a source term
∫
dx

◦
φ
◦
O: If the CFT

operator O has some scale weight <, then the AdS field φ must have weight D−< for

scale invariance. (< will always be nonnegative, and 0 only for the identity operator.)

Thus

lim
x0→0

◦
φ(x, x0) = (x0)D−<φ(x)

Similarly
◦
O = (x0)<O

The conformally invariant boundary integration measure is actually

dx ≡ dDx/(x0)D

so x0’s cancel, a manifestation of scale invariance.

The leading power of x0 in the above Klein-Gordon equation then gives (x0∂0 =

D−< on φ)

R2m2 = <(< −D) +M2
a0

(Note that there is no ordering ambiguity in M2
a0, since for each a we have a square.)

We can also think of M2
a0 as the difference of the 2 quadratic Casimirs of SO(D,1)

and SO(D−1,1),

M2
a0 = 1

2(M2
AB −M2

ab)

i.e., it’s the Casimir of the coset SO(D,1)/SO(D−1,1), dSD.

For example, for scalars Ma0 = 0. From the reality of <, we then have the

Breitenlohner-Freedman bound

R2m2 = <(< −D) = (< − 1
2D)2 − (1

2D)2 ≥ −(1
2D)2

We next evaluate M2
a0 for some of the more interesting cases. After the trivial

case of the scalar comes the Dirac spinor, for which in our conventions

SAB = −1
2γ[AγB] , {γA, γB} = −ηAB ⇒ M2

a0 = −1
4
D
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where we have used the relation between first- and second-quantized operators that

SAB = −MAB acting on a field. (Remember that x0 is spacelike. Also note that in

our conventions (γ0)2 = −1/2.) However, the mass in the Klein-Gordon equation

(which is more useful for supersymmetric comparison to the scalar), is not the same

as the mass parameter in the Dirac equation; the only way we know to identify it as

mass is by squaring the Dirac equation (even if only for purposes of normalization).

The relation is

0 =

(
∇/ +

i√
2
M

)(
∇/ − i√

2
M

)
= γAγB∇A∇B + 1

2M
2

= 1
2{γ

A, γB}∇A∇B + 1
2 [γA, γB]∇A∇B + 1

2M
2 = 1

2(− +M2) + 1
2γ

AγBR−2 1
2γ[AγB]

where we have used the AdS curvature in [∇A,∇B]. We thus find

R2M2 = R2m2 + 1
4
(D2 + D) = <(< −D) + 1

4
D2 = (< − 1

2D)2

⇒ RM = |< − 1
2D|

The next case we consider is p-forms. Looking only at forms for which the “lon-

gitudinal” (0) components vanish towards the boundary (after evaluating the action

of MAB), and noting that MAB acts the same on a vector as on ∇A, we have

M2
a0 = −p

However, again the mass parameter M2 appearing in the field equation that follows

from the action is not the same as the mass in the Klein-Gordon equation derived

from it by gauge fixing (in the Stückelberg formalism when massive) or applying the

divergence of the field equation as a constraint. We can make that comparison in a

way similar to the Dirac spinor, by treating p-forms as Dirac matrices, i.e., writing an

arbitrary spinor⊗ spinor as a sum over antisymmetric products of γ-matrices. The

field equation then looks like the Dirac equation, with the γ in ∇/ multiplying from

one particular side of this field matrix. (This is not the usual massive field equation

for p-forms, which instead involves the sum of multiplying on either side of the field

matrix by ∇/ , with similar results: See exercise IIB4.1 in Fields .) But MAB yields a

spin operator SAB that’s the sum of terms multiplying from either side. Using the

identity

γAγB1...BpγA = −1
2(−1)p[2p− (D + 1)]γB1...Bp

(e.g., using Bn = n for the totally antisymmetrized γB1...Bp) we find
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R2M2 = R2m2 − 1
2γ

AγB(γ[AγB] + γ′[Aγ
′
B]) = R2m2 + 1

4
(D2 + D)− 1

2γ
AγB(...)γ[BγA]

= <(< −D) + p(D− p)

Fortunately, for the comparison we’re interested in we’ll only need to look at the

true mass m2 that appears in the Klein-Gordon equation. Also, for the simple case

we consider we’ll only need to look at the scalar, as the rest will be determined by

supersymmetry.

Boundary limit

The basic idea is that AdSD+1 is described by the coset SO(D,2)/SO(D,1), in

the same way that SD+1 is SO(D+2)/SO(D+1). (In particular, for D = 4 we have

SU(2,2)/USp(2,2) and SU(4)/USp(4).) The boundary of AdS can then be defined by

taking a group contraction where SO(D,1) becomes the Poincaré group ISO(D-1,1),

while preserving the symmetry group. This corresponds to a limit where the radius

R becomes small in a particular way. If we Wick rotate the sphere so it gains a

boundary, a similar procedure can be applied there.

The (singular) boundary limit x0 → 0 is equivalent to the limit R → 0 (if R
dependence is defined appropriately), describing flat space of one less dimension. This

can be interpreted as the relation between active and passive approaches: Instead of

moving to the boundary, we shrink the distance scale, effectively moving the boundary

closer. (It is a type of long-distance limit, in contrast to the short-distance limit

R →∞ related to flat space.) In terms of the above metric, we first rescale

x0 → Rx0 ⇒ −ds2 → dx2 +R2dx2
0

x2
0

(Alternatively, we can scale x→ x/R instead.) The limit R → 0 pinches AdS into a

lightcone, reducing the conformal analysis to that of the projective lightcone: If we go

back to our treatment of maximally symmetric spaces and use the same construction,

but drop the condition n · Y = 1, we have a hypercone with metric dY2 = e2dX 2,

with e arbitrary. (This is the same as we did for SU(2), after Wick rotation.) In this

limit for the hyperboloid, x takes the place of X (and e was already 1/x0).

This limit contracts the gauge group SO(D,1) of the coset to ISO(D−1,1), while

leaving the symmetry group SO(D,2) intact. In this limit x0 survives in a trivial

way: It makes dx2/x2
0 conformally invariant, and gives a simple way of seeing it.

For purposes of describing just this flat space, it can be removed by introducing a
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“projective” scale invariance δX = λ(X )X (as exists for the hypercone coordinates

Y before applying n · Y = 1). The only symmetry generators with dependence on x0

are the dilatation and conformal boosts.

As a simple, well-known example we consider a free, massless scalar field on

AdSD+1. Explicitly, we have for the symmetry generators for dilatations and confor-

mal boosts

∆ = x · ∂x + x0∂0

Ka = xa(x · ∂x + x0∂0)− 1
2(x2 +R2x2

0)∂a

(Here “∆” has nothing to do with propagators.) In the limit R → 0, these take the

D-dimensional flat-space form, with x0∂0 acting as the scale weight.

A simple example of the AdS/CFT correspondence is the classical kinetic term

for a scalar: Using the free field equation, this term becomes a total derivative, and

thus a boundary term:∫
dDx dx0

√
−g [(∇

◦
φ)2 +m2

◦
φ2] =

∫
dDx dx0 ∂0(

◦
φ
√
−gg00∂0

◦
φ) = x1−D

0

∫
dDx

◦
φ∂0

◦
φ

But the leading power in x0 of ∂0

◦
φ in the boundary limit is related nonlocally in x to

the leading power in
◦
φ, since they come from different powers in x0 of

◦
φ. However,

we know that the propagator 〈
◦
φ
◦
φ〉 in the bulk must be a function of the invariant

(x2
12 + x2

012)/x01x02, so that in a boundary limit

∆(1, 2) ≡ lim
x01 or x02→0

〈
◦
φ(1)

◦
φ(2)〉AdS ∼

(
x01x02

x2
12 + x2

012

)a
for some a. The propagator is used in general as

◦
φ(1) ∼

∫
dΣm

2 ∆(1, 2)
↔
∂ 2m

◦
φ(2)

where in our case, as from integration by parts above,

dΣm = δm0 x
1−D
0 dDx

Taking x02 → 0, using also the asymptotic dependence of
◦
φ on x0,

lim
x0→0

◦
φ = xD−<0 φ(x) ⇒

◦
φ(1) ∼ x1−D

02

∫
dDx2

(
x01x02

x2
12 + x2

012

)a
xD−<−1

02 φ(x2)

We see that we can now take x02 = 0 consistently if

a = <
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so
◦
φ(1) ∼

∫
dDx2

(
x01

x2
12 + x2

01

)<
φ(x2)

In particular, since

lim
x01→0

(
x01

x2
12 + x2

01

)<
∼ xD−<01 δD(x12)

this is consistent with that limit. We can now neglect the x0’s in x2
12 + x2

01 in the

limit x01 → 0 when taking the derivative,

(∂0

◦
φ)(1) ∼ x<−1

0

∫
dDx2

(
1

x2
12 + x2

01

)<
φ(x2)

(One might expect again a δD, times a different power of x01, but this is spoiled by

the term we dropped, higher order in x01.) Finally, the term in (the exponent of)

Zstring is then

Zstring ∼
∫
dDx1 d

Dx2
φ(x1)φ(x2)

(x2
12)<

⇒ 〈O(x1) O(x2)〉CFT ∼
1

(x2
12)<

which is the expected result.

Note that 〈O(x1) O(x2)〉CFT is similar to 〈φ(1) φ(2)〉AdS (at least near the bound-

ary), in spite of the fact that they are “dual” to each other, in the sense that
◦
φ ∼ xD−<0

while
◦
O ∼ x<0 . (See the δ function definition above.)
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IIB supergravity

The field strengths of 10D IIB supergravity have a simple description on chiral

superspace, where the chiral 16-component θ is the complex combination of the left-

and right-handed θ’s, as θ = θ1 + iθ2, which we can do for IIB because both θ’s

have the same Lorentz-chirality. There is a U(1) symmetry that mixes θ1 and θ2

(as the usual SO(2)), so the complex θ and its complex conjugate θ̄ have opposite

U(1) eigenvalues. (This is a continuous symmetry for supergravity, but broken to a

discrete subgroup by the massive string states.) The superfield strength is a scalar,

with expansion

χ(θ) = φ+ θαλα + 1
2θ

αθβHαβ + 1
6
θαθβθγRαβγ + 1

24
θαθβθγθδRαβγδ + ...

where H is the field strength of the complex 2-form, R is the γ-traceless one of

the complex gravitino, and R is the Weyl tensor + the covariant derivative of the

selfdual field strength (less curl and divergence) of the real 4-form. (Note that the

constant vacuum values of the Ricci tensor and selfdual field strength for AdS5×S5

don’t contribute to χ.) The counting for spinor notation vs. mixed vector-spinor is

(from the Young tableaux for SO(16) vs. SO(10))

H : 16 · 15/2 = 120 = 10 · 9 · 8/6 , R : 16 · 15 · 14/6 = 560 = (10 · 9/2− 10) · 16 ,

R (+∇F ) : 16 · 15 · 14 · 13/24 = 1820 = 770 + 1050

= (11 · 10 · 10 · 9/12− 11 · 10/2) + 1
2(11 · 10 · 9 · 8 · 7 · 6/144− 10 · 9 · 8 · 7/24)

Since R and F are real, the U(1) weight of θ implies increasing (or decreasing, de-

pending on convention) U(1) weights for the fields as one moves lower in orders in

θ.

The reality condition on R, and the determination of the unlisted higher-θ com-

ponents in terms of spacetime derivatives of the complex conjugates of the lower ones,

as well as the field equations, are all contained in the condition

d4
αβγδχ = d̄4

αβγδχ̄

where d4 and d̄4 refer to chiral and antichiral covariant spinor derivatives, totally

antisymmetric in spinor indices, corresponding to the θ expansion. When comparing

to the 4D boundary later, we’ll see this θ includes both 4D supersymmetry θ’s and

4D S-supersymmetry θ’s (as the full superspace has 32 θ’s, not 16), so expansion in
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the 10D θ produces components that can have either higher or lower 4D conformal

weight.

This chiral superspace has a nice coset on AdS5×S5: Starting with PSU(2,2|4),

we just separate the bosonic and fermionic indices:

ZM
A =

( a α

m y θ

µ θ̄ x

)

The gauge group then has the bosonic part USp(2,2)⊗USp(4), which gives AdS5×S5 =

(SU(2,2)/USp(2,2))⊗(SU(4)/USp(4)), while the fermionic is just 1 of the 2 fermionic

blocks of the matrix, leaving the other block as the chiral θ. This makes it more

convenient to use rectangles than the full square, like the 4D projective spaces:

za
M z̄M

α = 0

z̄ = z̄M
α = (θm

ν , δνµ)xν
α =

(
θ

I

)
x−1, z = za

M = ya
n(δmn ,−θn

µ) = y−1 ( I −θ )

The covariant derivatives thus take a similar form to those of the projective spaces

considered earlier: Noting the correspondence

(y, x, θ)↔ (u, ū, w)

we then have

Dy = ∂yy , Dx = x∂x , Dθ = x∂θy

This x and y are the “square roots” of the usual 6D unit-vectors X and Y for

AdS5 and S5: The latter are the gauge-group invariants (using the antisymmetric

USp metrics Ω)

X = −XT = Xµν = xα
µΩαβxβ

ν = xTΩx

and similarly for Y = yΩyT . The norms of X and Y are given by their Pfaffians

(which are quadratic); they are unity only after the P and S conditions have been

imposed, which are

detx = det y = 1

In a convenient USp gauge, corresponding to Poincaré coordinates, we can choose
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xα
µ =

( µ
.
µ

α δµα xα
.
µ

.
α 0 δ

.
µ.
αx0

)
x
−1/2
0

⇒ Xµν =

( ν
.
ν

µ Cµν xµ
.
ν

.
µ −xν

.
µ C

.
µ
.
ν(x2 + x2

0)

)
x−1

0 =

(
CµνX+ Xµ

.
ν

X
.
µν C

.
µ
.
νX−

)
(In stereographic coordinates the square roots would be much messier.)

Note that these θ’s carry 6D “curved” spinor indices and not 5D “flat” spinor

indices. Of course, this does not generalize to arbitrary curved spaces, where spinors

can carry only flat indices. We have converted flat into curved with x and y, the

“square roots” of X and Y . Thus the θ expansion of any superfield will effectively

contain extra factors of square roots of X and Y in the coefficient component fields.

The result is that the chiral scalar superfield strength of 10D IIB supergravity satisfies

a Klein-Gordon equation, at linear order in this field perturbed about the vacuum,

that involves no θ derivatives: This modified definition of the component fields sat-

isfies a Klein-Gordon equation that is independent of spin. (The same would not be

true if we did a “covariant” expansion in θ as defined by the covariant θ derivatives,

since they don’t commute with the covariant x and y derivatives. This corresponds

to a coordinate redefinition to flat θ’s.)

Both 10D IIB supergravity and 4D N = 4 super Yang-Mills are representations of

the group PSU(4|2,2). But the physical interpretation is different: For example, they

satisfy different field equations, even at the free level. We saw the free field equations

for (the field strengths of) 4D super Yang-Mills,

linearized 4D N=4 super Yang-Mills: D(A
(CDB]

D] = 0 mod δ terms

and applied them in projective superspace. On the other hand, 10D supergravity

satisfies different, weaker equations (since more dimensions), and with different coset

gauge constraints: Its free field equations are

linearized 10D IIB supergravity on AdS5×S5: DA
CDC

B = 0 mod δ terms

In the boundary limit these are not the 4D Yang-Mills equations, but the equations

satisfied by fields coupling to BPS color-singlet composites of the Yang-Mills super-

fields.

We saw the stronger equations implied p2 = 0 in D = 4 by picking indices giv-

ing the highest (engineering) dimension; thus the rest of the equations followed by
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conformal supersymmetrization. That was easy, since all 4 indices were free in that

case, whereas here some are contracted. Now we restrict to the bosonic sector of

the weaker 10D equations, which is sufficient, as the supersymmetric generalization

is unique. This means we truncate the symmetry group to SU(4)⊗SU(2,2), which is

not the same as considering the N = 0 case. The field equations are then of the form

Da
cDc

b = δbaO, Dα
γDγ

β = δ
β
αO

for some operator O. These can be translated into vector notation as

D[ABDCD] = D[MNDPQ] = DABDAB −DMNDMN = 0

which generalize to arbitrary AdSm×Sn, where only for this equation A and M are

vector indices for SO(m−1,2) and SO(n+1). If we plug in the usual representations

of these symmetry groups on these spaces, then the former 2 equations say that

the corresponding spins vanish, while the last is the massless Klein-Gordon equation

in m+n dimensions. In our supersymmetric case of AdS5×S5, these equations are

unmodified on the chiral field strength, since the ∂/∂θ̄ in the ∂/∂θ ∂/∂θ̄ term vanishes.

If we had set O to vanish, decoupling the 2 spaces, we would instead have the

massless m-dimensional Klein-Gordon equation on AdS, while on the sphere we would

leave only a constant solution. In the supersymmetric case, this describes maximally

supersymmetric 5D supergravity on AdS:

linearized 5D maximal supergravity on AdS5: DA
CDC

B = 0 (including δ terms)

Superlimit

We have already found the projective superspace that best describes 4D N = 4

super Yang-Mills on the CFT side of the correspondence: It has 8 bosonic coordinates

and 8 fermionic, and the field strength lives in this superspace, at least on shell. (To

be more precise, Yang-Mills traces of functions of it live there when the interacting

field equations are satisfied. This is sufficient to describe BPS states.) On the AdS

side, IIB supergravity (which also describes BPS states) has a field strength that lives

in 10 bosonic dimensions and 16 fermionic (chiral superspace). This mismatch is fixed

by the fact that we’re actually interested only in asymptotic supergravity states. As

in flat space, these are best represented (for massless fields) by lightcone superspace,

which has only 9 bosonic dimensions (after solving for dependence on “time” x0) and

8 fermionic (the usual reduction of spinors on the lightcone). As in the flat lightcone,

the ninth bosonic coordinate has a distinctive role: Here its Taylor expansion gives

the different 4D BPS multiplets.
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Here we’ll apply a slightly different procedure: In lightcone quantization the wave

equation is solved for dependence on a lightlike coordinate. Furthermore, for applying

twistor techniques to Feynman diagrams it’s convenient to Wick rotate this idea to

“spacecone” quantization, using a complex, null, spatial coordinate. We’ll find it

convenient to use a similar procedure here, to find the correspondence between the

superspaces of AdS and CFT.

To see why such a treatment naturally arises, we work in Poincaré coordinates

for S5, after an appropriate Wick rotation. (This is the same as we did for S2 when

discussing SU(2).) Combining the two spaces (with the signs that follow from the

grading),

ds2 =
dy2 +R2dy2

0

y2
0

− dx2 +R2dx2
0

x2
0

=
dy2

y2
0

− dx2

x2
0

−R2 d ln(x0y0)d ln(x0/y0)

We can then identify x0y0 and x0/y0 (or some functions of just one or just the other)

as two null, spatial coordinates, to be used to define our spacecone quantization.

We then modify the usual boundary limit of AdS to

x+ ≡ x0y0 → 0 , x− ≡ x0/y0 fixed

or (as already implemented above)

x0 → Rx0 , y0 → Ry0 followed by R → 0

in line with interpretation of x0y0 as the spacecone “time”. (Of course, x and y are

also fixed.) This leaves us with 9 bosonic coordinates on the boundary, 8 of which

have translation invariance, and are to be identified with the 4 x’s and 4 y’s of 4D

N = 4 projective superspace. (There is a symmetry under translation of the ninth

coordinate, but it requires also scaling of the other 8, as well as the fermions. It is

associated with a combination of a dilatation with an R-symmetry U(1).) Thus the

bosonic gauge group SO(4,1)2 (after our Wick rotation) has contracted to ISO(3,1)2.

(The associated geometry is a bit funny: There is something like 8-dimensional branes

corresponding to this 9D boundary. In terms of the string action, which we won’t

discuss here, it results from a kind of T-duality transformation on the 4 y’s and some

of the θ’s.)

To generalize this limit to superspace, we require that this limit preserves the

symmetry group PSU(4|2,2), which is a symmetry on both the AdS and CFT sides

(hence the correspondence). This means that on the group coordinates ZM
A (or

inverse ZA
M) it should affect only the flat index A, and not the curved index M .
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Thus, although the symmetry group is untouched, the gauge group is contracted,

just as we saw in the pure, bosonic AdS case.

We return to the 4D parametrization of a group element of PSU(2,2|4), but keep

all elements so as to include those in AdS superspace:

ZM
A =

(
I w

0 I

)(
u 0

0 ū−1

)(
I 0

−v I

)
In particular, it’s easy to pick out x0 and y0 as the pieces of u and ū invariant under

the manifest SO(3,1) Lorentz and SO(4) internal symmetries, after killing the “PS”

pieces of PSU(4|2,2):

u =

(√
y0 I 0

0
√
x0 I

)
u0, ū =

(√
y0 I 0

0
√
x0 I

)
ū0

sdet u0 = sdet ū0 = det u0 = det ū0 = 1

This can be seen, e.g., by considering the N = 0 case, and noting that there det(zdz̄) =

dx2/x2
0 is the metric of the projective lightcone. We then have

sdet u = sdet ū ≡ 1

x−
=
y0

x0

Then the limit on just x0 and y0, acting on just the flat indices, must be the R → 0

limit after the rescaling

zM
A →

(√
RzMA,

1√
R
zM

A′
)
, zA

M →
(

1√
R
zA

M ,
√
RzA′

M

)
or in terms of the above variables

w → w , u→
√
Ru , ū→

√
Rū , v → Rv

(w carries only curved indices, v has 2 flat ones.) The metric takes the form

ds2 =
x−dy2 − (x−)−1dx2 − (x−)−1dx+dx−

x+

Then the R rescaling can be interpreted as defining the x+ dependence as

v ∼
√
x+ ; u, ū ∼ (x+)1/4 ; w ∼ 1

followed by scaling just x+ → R2x+ (or just taking x+ → 0 directly).
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Spacecone gauge

The limit defined above matches up the bosonic coordinates for AdS and CFT

(except for x−), but at this point there is a mismatch between the fermions because:

(1) Those for the IIB supergravity field strength are chiral, whereas the 4D N = 4

Yang-Mills superfield strength is twisted chiral; and (2) the AdS chiral superspace has

16 fermions, while the 4D projective one has 8. These problems will be fixed by first

introducing a lightcone (really spacecone) superspace for AdS, and then expressing

the field strength in terms of a real prepotential in a twisted chiral superspace, as

suggested by the reality condition satisfied by the field strength. (In principle, there

should be a 10D “supertwistor” solution to this problem that eliminates the 8 extra

fermions covariantly.)

Decomposing the 10D field equations into 4D projective blocks,

IO ∼
(
Du −Dv

Dw −Dū

)2

=

(
D2
u −DvDw −DuDv +DvDū

DwDu −DūDw −DwDv +D2
ū

)
The covariant x− derivative p+ appears as

Du , Dū = p+I + ...

(for identity matrix “I”), which in turn defines how constraints are solved. For

example, for the fermionic (“κ symmetry”) constraints, in the lightcone formalism we

pick the half that have p+ and not p−, and divide by p+. Here we see that p+ cancels

when multiplying dw or dv, but not du nor dū: Therefore the latter d’s are taken as

“auxiliary”, and we eliminate θu and θū as a gauge choice. (For abbreviation we now

use “x” for all bosons and “θ” for all fermions, and “p” and “d” for the corresponding

covariant derivatives, with subscripts indicating from where they come.)

In such a lightcone-like gauge, expansion in lightcone θ’s picks out field strengths

which have a trivial relation to gauge fields. For example, for p-forms (including

nonabelian Yang-Mills) and gravity we see only (in vector notation)

F+i1...ip = p+Ai1...ip , R+i+j = (p+)2hij

where i are the transverse indices (excluding ±), as follows from the gauge choice

A+... = h+... = 0. In our case, 10D vector indices reduce to transverse 8D vector

indices that are just the 4+4 of x and y. (Remember from our coset discussion that

spin is generally treated by indices from the gauge group, the bosonic part of which

is SO(3,1) on x and SO(4) on y, up to some U(1)’s.) Furthermore, p+ = ∂/∂(ln x−)

is just an integer (at least near the boundary), so we can essentially identify the field
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strengths with their gauge fields (at least for counting purposes). So we now have

(distinguishing SL(2,C) dotted (barred) spinors θ̄v and undotted θw),

χ(θw, θ̄v) = φ+ θλ+ 1
2θ

2p+B + 1
6
θ3p+ψ + 1

24
θ4p+2(h+ A) + ...

and the counting for spinor notation vs. mixed vector-spinor is, from 2 different kinds

of Young tableaux for SO(8) (really SO(7,1)) that are related by triality,

φ : 1 , λ : 8 , B : 8 · 7/2 = 28 , ψ : 8 · 7 · 6/6 = 56 = (8− 1) · 8 ,

h+ A : 8 · 7 · 6 · 5/24 = 70 = 35 + 35 = (8 · 9/2− 1) + 1
28 · 7 · 6 · 5/24

(But remember all but h and A are complex.) This should be compared to our

previous expansion for the covariant superfield in terms of field strengths.

The solution to the reality condition on the chiral field strength χ(θw, θ̄v) is then

given in terms of the prepotential V (θw, θ̄w) by

d4
wχ = d̄4

wχ̄ ⇒ χ = d̄4
wV , χ̄ = d4

wV ; V = V

where the d4’s are now scalars from the product of all 4 components of the corre-

sponding d’s. (There are also redundant reality conditions, d̄4
vχ = d4

vχ̄ and others

from switching various numbers of dw with d̄v.) This is essentially a Fourier trans-

form in the fermions (up to powers of p+), replacing θ̄w’s in V with θ̄v’s in χ. We also

have

dvV = d̄vV = 0; dvχ = d̄wχ = 0, d̄vχ̄ = dwχ̄ = 0

using

{dv, dw} ∼ {d̄v, d̄w} ∼ p+, {dv, d̄w} = {d̄v, dw} = 0

{dv, dv} = {dv, d̄v} = {dw, dw} = {dw, d̄w} = 0

So we need only look at how the covariant spinor derivatives d̄w ≈ ∂/∂θ̄ + θ̄p+

rearrange components in going from χ(θw, θ̄v) = d̄4
wV to V (θw, θ̄w) (but only with

respect to θ̄, not θ), or d̄v for V = (p+)−4d̄4
vχ.

Then, writing the field strengths in terms of the gauge fields as above, we have

(dropping the p+’s)

V = (h+ A) + (θψ̄ + θ̄ψ) + (θ2B̄ + θ̄2B) + θθ̄(h+ A) + (θ3λ̄+ θ̄3λ) + (θ2θ̄ψ̄ + θ̄2θψ)

+ (θ4φ+ θ̄4φ̄) + (θ3θ̄B̄ + θ̄3θB) + θ2θ̄2(h+ A) + (θ4θ̄λ̄+ θ̄4θλ) + (θ3θ̄2ψ̄ + θ̄3θ2ψ)

+ (θ4θ̄2B̄ + θ̄4θ2B) + θ3θ̄3(h+ A) + (θ4θ̄3ψ̄ + θ̄4θ3ψ) + θ4θ̄4(h+ A)
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where unbarred fields are those that appear at lower orders in χ. But all these fields

can easily be guessed just by matching U(1) weights. The different SO(4)⊗SO(3,1)

components of these SO(7,1) fields are distinguished by their SO(3,1) and SO(4)

spinor indices: In terms of θa
′α and θ̄a

.
α, θ4 and θ̄4 are SO(4) and SO(3,1) singlets, so

we have also (θ3)a
′α and (θ̄3)a

.
α; the other powers are (θ2)(a′b′), (θ2)(αβ), (θ̄2)(ab), and

(θ2)(
.
α
.
β) (from symmetrizing in one type of indices and antisymmetrizing = contracting

in the other, for total antisymmetry). The only components that are ambiguous are

the “h+ A”: The θ2θ̄2 break up nicely into separate h and A pieces, but the θθ̄ and

θ3θ̄3, and the 1 and θ4θ̄4, are different linear combinations of h and A that can be

fixed by comparing to χ.

Correspondence

In general in the AdS/CFT correspondence, it’s the AdS gauge field that couples

to the CFT composite-field “source” at the boundary. So now we have a spacecone

gauge prepotential V coupling to a 4D N = 4 Yang-Mills source, both of which live

in 4D N = 4 projective superspace (which is integrated over in the source term), plus

the extra coordinate x− (the x+ in V being eliminated at the boundary). Unlike the

case of bosonic AdS, the measure
∫
d4x d4y d4θ d4θ̄, the 10D supergravity prepotential

V , and the 4D N = 4 YM BPS operators (before extracting x− dependence) are all

dimensionless, so no powers of x+ need be canceled.

We now investigate the significance of this ninth coordinate x0/y0 to the CFT.

Consider expansion of the 10D theory over S5 in terms of spherical harmonics. These

can all be expressed in terms of those for the vector harmonic, which are given by a

unit 6-vector; in the coordinates we’ve been using, these are (after scaling in an R to

make the limit obvious)

Y A = (Y +, Y a, Y −) =
(1, ya, 1

2(y2 +R2y2
0))

y0

, Y 2 = −R2

(Y is thus a position vector in the embedding space of the Wick rotated sphere of

radiusR. Spinors can also be described by the method given above for the superspace

of IIB supergravity on the AdS5×S5 background, using the matrix square root y of

Y as the spinor spherical harmonic.) In the boundary limit, this becomes a null

6-vector,

Y A →
(1, yi, 1

2y
2)

y0

, Y 2 → 0

homogeneous in y0. (Similarly, the spinor spherical harmonic becomes a projection

operator in this limit. We saw the same behavior for arbitrary spin in the case of
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SU(2), where we looked at the R → 0 limit of Wick-rotated S2.) This y dependence

can clearly be associated with that of the scalars of 4D N = 4 Yang-Mills, i.e., the

field strength Φ at θ = 0. A similar analysis can be made for the x0 dependence of

the scalars, as discussed above. (In general, interactions modify this result; but for

the fundamental fields of 4D N = 4 Yang-Mills, and the BPS composite operators

considered here, ultraviolet finiteness preserves conformal weights.)

Generalizing to the rest of that superfield, we note from our previous discussion

of spin in projective superspace, for the case of scalar superfields, we have

O(w, u, ū) = (x−)r+r̄O(w)

Our 10D supergravity prepotential is not required to be an eigenstate of r + r̄. But

we identified r + r̄ = 1 for the 4D N = 4 Yang-Mills superfield strength Φ.

We can easily supersymmetrize this result to identify the other fields of the su-

permultiplet, and see how they appear in color singlets. Returning to our analysis of

general spin, noting that Φ is a scalar with r + r̄ = 1, we have

Φ(w, u, ū) = x−Φ(w)

reproducing the x0 and y0 dependence found above for the scalars. x0 dependence

is determined by the superscale weight of the multiplet, and y0 by the super-U(1)

weight. The corresponding symmetry generators also have θ∂θ terms, giving different

component scale and U(1) weights to the higher spins. Thus, if we want powers of x0

and y0 associated with the usual component weights, we should redefine θ → √x0y0θ

in the θ expansion of Φ. This is automatic if we define the component expansion in

a coordinate independent way by use of covariant derivatives: In these coordinates,

dw = ū∂wu ∼
√
x+.

It then follows that the supergravity superfield source on the boundary must take

the form

O(w, x−) = tr{f [Φ(w, x−)]}

for some (Taylor expandable) function f , and thus contains terms of the form

tr{[x−Φ(w)]n}

Thus, the ninth bosonic coordinate on the boundary just counts the number of su-

pergluons. Note that, unlike the usual x0 → 0 limit, in this limit the supergravity

fields are nonvanishing, having no dependence on x0y0 (but string excitations will

have positive powers of x0y0, corresponding to anomalous dimensions in the 4D field
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theory). Also for these supergravity fields on the boundary, the “momentum” p+

conjugate to the coordinate ln(x−) is quantized.

Note that, e.g., the SU(4) representations coming from tr(Φn) at θ = 0 will always

be traceless, symmetric tensors of SO(6). This comes from the fact that the 6 scalars

are contracted with the null-vector Y A. So for example,

(Y AφA)2 = Y AY BφAφB

will contain only the symmetric (obviously), traceless part of φ⊗ φ because

Y AY BηAB = 0

(This would not be the case without the y0 → 0 limit. Thus an expansion over null

vectors in R-space is more convenient than one over unit vectors.)

The 10D supergravity superfield is real. So the source superfield is also real. Thus

Φ is forced to satisfy its (interacting) field equations.

Explictly, we can now match the component fields of the prepotential V of 10D

IIB supergravity to those of the BPS CFT operators O (i.e., tr(Φn)) directly (at least

as V approaches the boundary), since they have the same θ coordinates, and we have

identified the 10D IIB supergravity fields in V with the usual components in the chiral

field strength χ. We can also associate the masses of the 10D supergravity states with

the different conformal weights of the YM composites because of their x0 dependence.

But the x0 dependence of the superfields is tied to the y0 dependence (the masses

come from Kaluza-Klein reduction over S5), which defines the SU(4) representation.

Furthermore, p+ = ∂/∂(ln x−) is just an integer, counting the power of Φ on the CFT

side.

For example, consider the 10D scalars, which satisfy the 10D massless Klein-

Gordon equation, in the boundary limit (by a similar analysis to our previous for just

AdS),

<(< − 4)−<y(<y + 4) = 0 ⇒ < = <y + 4

where the former term comes from the x part of the d’Alembertian, and the latter

from the y. (The other solution, < = −<y, can describe only the unit CFT operator,

< = <y = 0. Note that <y(<y +D) is the quadratic Casimir for traceless, symmetric

tensors of SO(D+2).) We have used the previous definition of <, but introduced the

definition of <y, which is always nonnegative: Acting on the CFT operator,

CFT component: < ≡ x0∂x0 , <y ≡ −y0∂y0
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This is the component defined by covariant expansion of the BPS operators tr[(x−Φ)n]:

Since these scalars appear at order θ4, which gets an extra (x0y0)2, we find:

< = n+ 2 , <y = n− 2 ; n ≥ 2

which agrees with the above result on the AdS side, where the condition n ≥ 2 follows

from the component expansion of Φ (or the field equations).

A similar analysis can be made for the other components: For SU(4) represen-

tations, one needs to take into account that the global SU(4) generators have both

y and θ pieces: In the language of Young tableaux, one finds representations of the

form (a,b,c), labeling the number of columns of depth (1,2,3), where “b” comes from

expansion in y (symmetric, traceless tensors of SO(6)), “a” comes from θ’s with sym-

metrized R-indices, and “c” the same for θ̄. (Thus b is arbitrary, while a and c =

0,1,2.) There are some components missing for powers n < 4 of Φ because of the Φ

field equations, as is clear from the explicit expansion we found for Φ.

So we have an expansion in x− on both sides of the correspondence: On the CFT

side, it is the expansion in powers n of the super Yang-Mills field strength Φ; on the

AdS side it’s the Kaluza-Klein expansion of massless 10D maximal supergravity in

5D AdS mass levels. n = 0 is trivial. n = 1 on the CFT side is just the Abelian

part of the U(N) gauge group appearing in tr(Φ), which is free, decoupling from the

interacting SU(N) part; on the AdS side we can take it as pure gauge. n = 2 is the

supersymmetric generalization of the energy-momentum tensor (“supercurrent”) on

the CFT side; on the AdS side it’s 5D maximal supergravity (with a cosmological

constant), which can be considered a massless theory. n > 2 couples higher powers

of Φ to massive analogs of supergravity, coming from the compactification of spin 2

and lower spins. (The spins are limited by the θ expansion of V or tr(Φn), which for

all n is a scalar superfield living on the same projective superspace.)
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