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Open-string operator products

For later calculations, we’ll need a short list of operator products. But first we

need to emphasize some differences and similarities for open and closed strings. For

the closed string we have left- and right-handed modes X̂L and X̂R, while for the

open string X̂L = X̂R:

X(z, z̄) =


√

α′

2
[X̂L(z) + X̂R(z̄)] for closed√

α′

2
[X̂(z) + X̂(z̄)] for open

All these X̂’s have conveniently normalized propagators

〈X̂(z) X̂(z′)〉 = 〈X̂L(z) X̂L(z′)〉 = 〈X̂R(z) X̂R(z′)〉 = −ln(z − z′)

from which follows directly those for X itself:

2

α′
〈X(z, z̄) X(z′, z̄′)〉 =

{
−ln(|z − z′|2) for closed

−ln(|z − z′|2)− ln(|z − z̄′|2) for open

where the open string has extra contributions from crossterms, now involving the

same X̂.

For open-string amplitudes involving only open-string external states, all the ver-

tex operators will be on the boundary,

z = z̄ ⇒ X(z, z̄) =
√

2α′X̂(z)

Therefore, when Fourier transforming wave functions we use the exponentials

eik·X(z,z̄) =

{
eik̂·X̂(z) for open

eik̂·X̂L(z)eik̂·X̂R(z̄) for closed
⇒ k̂ = k ×

{√
2α′ for open√
α′

2
for closed

Closed-string vertex operators are the product of left- and right-handed ones, which

are functions of z and z̄, respectively, and thus take the form of the product of 2

independent open-string vertex operators.

Working directly in terms of X̂, we then have the “operator products”

(i∂X̂)(z′) eik̂·X̂(z) ≈ k̂
1

z′ − z
eik̂·X̂(z)

or (∂X̂)(z′) f(X(z, z̄)) ≈ − 1

z′ − z
(∂f)(X(z, z̄))×

{√
2α′ for open√
α′

2
for closed



2

(i∂X̂)(z′) (i∂X̂)(z) ≈ 1

(z′ − z)2

(Note the context: ∂X̂ is a z derivative, ∂f is an x derivative. The “i” associated

with ∂X̂ is from Wick rotation.)

For example, we can use these results to determine the proper normalization of

massless vertex operators, by comparison with that of tachyons: For the tachyon,

Wk̂(z) = eik̂·X̂(z), k̂2 = 2 ⇒ Wk̂(z
′) W−k̂(z) ≈ 1

(z′ − z)2
eik̂·[X̂(z′)−X̂(z)]

(For the closed string, we have the product of left and right versions of the above.

Note this correctly gives k2 = 1/α′ for the open string tachyon and 4/α′ for the

closed, where α′ is the slope of the open-string Regge trajectory, and the parameter

that appears in the action that describes both open- and closed-string states.) The z

factors are canceled in string field theory by considering the gauge-fixed kinetic term

〈0|V (c0 )V |0〉, where V = cW .

Gauge-independent vertex operators

When ghosts are included, vertex operators can be generalized to arbitrary gauges

for the external gauge fields. (This result follows from the same method applied

to relate integrated and unintegrated vertices in subsection XIIB8 of Fields . We’ll

do a better job of that here.) The main point is the existence of integrated and

unintegrated vertex operators: Integrated ones are natural from adding backgrounds

to the gauge-invariant action; unintegrated ones from adding backgrounds to the

BRST operator. We’ll relate the two by going in both directions. The following

discussion will be for general quantum mechanics (except in the relativistic case we

use τ in place of t), but we’ll add some special comments for open strings at the end.

The action can be written as

S ∼
∫
dτ HI

plus the usual terms for converting Hamiltonian to (first-order) Lagrangian, where

the interacting Hamiltonian consists of the free part plus linearized vertex

HI = H0 +W

BRST invariance with respect to the free BRST operator then implies

[Q0, S] ≈ 0

⇒ [Q0,
∫
dτ W ] ≈ 0

⇒ [Q0,W ] ≈ ∂τV

⇒ {Q0, V } ≈ 0
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for some V , where “≈” means “at the linearized level”. The BRST invariants
∫
W

and V are thus our integrated and unintegrated vertex operators, respectively.

Going in the other direction, we start with interacting BRST

QI = Q0 + V

where fully interacting BRST invariance implies at the linearized level

Q2
I = 0 ⇒ {Q0, V } ≈ 0

The full gauge-fixed action is then defined (in relativistic quantum mechanics, or

otherwise in the ZJBV formalism) by

HI = {QI , b} ≈ H0 +W

It then follows that

0 = [QI , HI ] ≈ [Q0, H0] + ([Q0,W ] + [V,H0])

which agrees with the above, since H0 gives the (free) time development:

[H0, V ] = ∂τV

The only modifications for the open string are eliminating σ dependence:

Q0 =

∫
dσ

2π
J, H0 =

∫
dσ

2π
T, b→

∫
dσ

2π
b (0−mode)

V → V |σ=0, W → W |σ=0

After combining the left and right-handed modes into functions of just z over the

whole plane, as usual, we can then replace σ and τ with z in our definitions in an

appropriate way.

Vector vertex

The simplest case is the massless vector. The choice for integrated vertex was

obvious from the gauge transformation of the external field:

W =
.
X · A(X), δA(x) = −∂λ(x)

⇒
∫
dτ W =

∫
dX · A(X), δ

∫
dτ W = −

∫
dλ(X) = 0

As usual, the τ integral gets converted into a z integral over the boundary (real axis).
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Besides this “background” gauge invariance, we also need the “quantum” BRST

invariance. The unintegrated vertex V and the BRST invariance of
∫
W then follow

from the same calculation:

[Q,W ] = ∂V ⇒ Q

∫
W = QV = 0

We use the BRST operator

Q =

∫
dz

2πi
J, J = cT + c(∂c)b, T = 1

2(i∂X̂)2, [Q,W (z)] =

∮
z

dz′

2πi
J(z′) W (z)

(For the open string, this is all of Q; the closed string has Q = QL + QR, with QL

and QR given by the above, with “L” or “R” subscripts on everything. For now, we

stick to the open string. There is a sign convention change from Fields for Q and T .)

For T (z′)W (z), we get “single-contraction” (tree/classical) terms from the singu-

lar part of either ∂X with W (one propagator), and nonsingular (ordinary) product

of the other ∂X (no propagator). So we evaluate

(∂X̂a)(z′) [(∂X̂) ·A(X)](z) ≈ − 1

(z′ − z)2
Aa(X(z))−

√
2α′

1

z′ − z
[(∂X̂)b∂aAb(X)](z)

We also get “double-contraction” (1-loop) terms from the singular part of the product

of the second ∂X with the above:

(∂X̂)(z′) · (right-hand side of above) ≈

2
√

2α′
1

(z′ − z)3
∂ · A(X(z)) + 2α′

1

(z′ − z)2
(∂X̂ · A)(z)

We then need to integrate, using∮
z

dz′

2πi

1

(z′ − z)n+1
f(z′) =

1

n!
∂nf(z)

Putting it all together,

W = (i∂X̂) · A ⇒ [Q,W ] = ∂V − α′(i∂c)(∂X̂a)∂bFba

V = c(i∂X̂) · A−
√
α′

2
(i∂c)∂ · A

(We have repeatedly used the identity ∂zf(X) = (∂X) · ∂f =
√

2α′(∂X̂) · ∂f .)

Thus BRST invariance of
∫
W and V requires the background satisfy only the

(free) gauge-covariant field equations ∂bFba = 0. This was to be expected, since

quantum BRST invariance of Yang-Mills in a Yang-Mills background requires the

same in field theory. We also find an order α′ correction to the vertex operator V :

This can be explained by noting that, while c∂X creates a Yang-Mills state from

the vacuum, ∂c creates its Nakanishi-Lautrup field plus ∂ · A, in a combination that

vanishes by that field’s equation of motion.
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