Is F-theory a theory?

W. Siegel

Geometrical Aspects of Supersymmetry October 22, 2018

in collaboration with:
W.D. Linch, III ('15-17)
M. Poláček ('14)
C.-Y. Ju ('16)
D. Wang ('18)

What the F is "F-theory"?

We still don't even know what the " M " in "M-theory" is.
String theory > just supergravity (low energy).
Supergravity > just compactifications (vacua).
"Stringy" theory with all symmetries (S,T,U,...) manifest?*

- String \& M theories \leftarrow "semi-unitary gauges" with spontaneous symmetry breaking by solving worldvolume constraints (cf. lightcone).
- More symmetry manifest \leftarrow "covariant gauges" with ghost worldvolume coordinates.
*Vafa

The story so far:

- consistently quantizable branes
- Spacetime coordinates $X(\sigma)=$ worldvolume gauge field with selfdual field strength.
- \Rightarrow Spacetime indices = worldvolume indices.
- Zeroth-quantization: σ also = gauge field?

Want to better understand...

- supersymmetry (super σ)
- worldvolume Lagrangian (worldvolume metric)
- (STU) covariant quantization (ghost σ)
- higher dimensions (E_{11} ?*)

Symmetries

	exceptional		tangent	$\mathrm{U}: \mathrm{d} \supset \mathrm{d}-1$	
\mathscr{L} (agrangian)	F	\supset	L	$\supset:$	maximal
	U		U		compact
\mathscr{H} (amiltonian)	G	\supset	H		subgroup

Some cases

D	\mathbf{d}	F	G	L	H
0	2	$\mathrm{GL}(2)$	$\mathrm{GL}(1)$	$\mathrm{GL}(1, \mathrm{C})$	I
1	3	$\mathrm{GL}(3)$	$\mathrm{GL}(2)$	$\mathrm{GL}(2)$	$\mathrm{SO}(1,1)$
2	4	$\mathrm{SL}(4) \mathrm{SL}(2)$	$\mathrm{SL}(3) \mathrm{SL}(2)$	$\mathrm{GL}(2)^{2}$	$\mathrm{GL}(2)$
3	6	$\mathrm{SL}(6)$	$\mathrm{SL}(5)$	$\mathrm{GL}(4)$	$\mathrm{Sp}(4)$
4	12	$\mathrm{SO}(6,6)$	$\mathrm{SO}(5,5)$	$\mathrm{GL}(4, \mathrm{C})$	$\mathrm{Sp}(4, \mathrm{C})$
5	56	$\mathrm{E}_{7(7)}$	$\mathrm{E}_{6(6)}$	$\mathrm{U}^{*}(8)$	$\mathrm{USp}(4,4)$
6	$\infty ?$	$\infty ?$	$\mathrm{E}_{7(7)}$	$\mathrm{U}^{*}(8)^{2}$	$\mathrm{SU}^{\star}(8)$
7	$\infty ?$	$\infty ?$	$\mathrm{E}_{8(8)}$	$\mathrm{U}^{*}(16)$	$\mathrm{SO}^{\star}(16)$

- $\mathrm{D}=$ spacetime, after reduction to usual string theory
- d = worldvolume, before reduction

H = Lorentz covering with double argument

For lower D, resemble gravity/"double field theory":
D
F
G
0-3 GL(d) GL(d-1)
L
H
$4 \quad \operatorname{SO}\left(\frac{d}{2}, \frac{d}{2}\right) \quad \operatorname{SO}\left(\frac{d}{2}-1, \frac{d}{2}-1\right)$
SO(d) SO(d-1)
$S O\left(\frac{d}{2}, C\right) \quad S O\left(\frac{d}{2}-1, C\right)$

F groups in D dimensions are Wick rotations of $N=D+2$ exceptional symmetries for 4D sugra:

D	F_{D}	E_{N}	N
0	$G L(2)$	$U(2)$	2
1	$G L(3)$	$U(3)$	3
2	$\operatorname{SL}(4) S L(2)$	$\operatorname{SU}(4) \operatorname{SU}(1,1)$	4
3	$\operatorname{SL}(6)$	$\operatorname{SU}(5,1)$	5
4	$\operatorname{SO}(6,6)$	$S O^{*}(12)$	6
5	$E_{7(7)}$	$E_{7(7)}$	$7(8)$

Worldvolume fields (Lagrangian)

$$
\delta X=\partial \zeta, \quad F=\partial X
$$

D	F	pattern	σ	ζ	\boldsymbol{X}	\boldsymbol{F}
$\mathbf{0}$	$\mathrm{GL}(\mathbf{2)}$	forms	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{1}$	$\mathrm{GL}(\mathbf{3})$	forms	$\mathbf{3}$	$\mathbf{0} \oplus \mathbf{1}$	$\mathbf{1} \oplus \mathbf{3}$	$\mathbf{3} \oplus \mathbf{3}^{\prime}$
$\mathbf{2}$	$\mathrm{SL}(4) \mathrm{SL}(2)$	forms	$\mathbf{(4 , 1)}$	$(\mathbf{1 , 2})$	$\mathbf{(4 , 2)}$	$(\mathbf{6 , 2})$
$\mathbf{3}$	$\mathrm{SL}(6)$	forms	$\mathbf{6}$	$\mathbf{6}$	$\mathbf{1 5}$	$\mathbf{2 0}$
$\mathbf{4}$	$\mathrm{SO}(6,6)$	spinors	$\mathbf{1 2}$	$\mathbf{3 2}$	$\mathbf{3 2}$	$\mathbf{3 2}$
$\mathbf{5}$	$\mathrm{E}_{7(7)}$	infinite	$\mathbf{5 6}$	$\mathbf{9 1 2}$	$\mathbf{1 3 3}$	$\mathbf{5 6}$

Imposing selfduality on \boldsymbol{F} breaks symmetry $\mathbf{F} \rightarrow \mathbf{L}$ (in absence of background).

Current algebra (Hamiltonian)

$\mathscr{L} \rightarrow \mathscr{H}: X \rightarrow X_{\tau} \oplus X_{\sigma}$

- $X_{\tau}=$ Lagrange multiplier for Gauss (cf. part of ζ)
- $X_{\sigma}=$ "physical" (cf. selfdual part \triangleright of F)

$$
i\left[\triangleright_{A}, \triangleright_{B}\right\}=\delta f_{A B}{ }^{c} \triangleright_{C}-2 \eta_{A B}{ }^{c} \mathscr{D}_{c} \delta
$$

$\mathscr{D}_{a}=g_{a}{ }^{m} \partial_{m}, \quad D_{A}=R_{A}{ }^{M} P_{M}+\left(\eta_{A B}{ }^{c}+B_{A B}{ }^{c}\right)\left(\mathscr{D}_{c} X^{M}\right) R_{M}{ }^{B}$

$$
\begin{cases}\text { Virasoro: } & \mathcal{S}_{a}=\eta_{a}^{B C} D_{B} D_{C} \\ \text { Gauss: } & \mathscr{U}_{\mathscr{A}}=\mathcal{f}_{\mathscr{A}^{b C}}^{\mathscr{D}_{b}} D_{C}\end{cases}
$$

Background: $\left(\mathscr{D}_{a}, \nabla_{A}, f_{A B}{ }^{C}\right) \rightarrow\left(E_{a}{ }^{m} \mathscr{D}_{m}, E_{A}{ }^{M} \nabla_{M}, T_{A B}{ }^{C}\right)$
Gauge transformations: $\int \Lambda^{M} D_{M} ;\left(E_{a}{ }^{m}, E_{A}{ }^{M}\right) \in \mathrm{G} / \mathrm{H}$

Reductions (\& extended gravities G/H)

* Coimbra, Strickland-Constable, \& Waldram; Berman, Cederwall, Kleinschmidt, \& Thompson ${ }^{\dagger}$ WS, but string has Duff/Tseytlin doubled X

Simple example: 3D bosonic (d=6)

F

$$
\sigma_{m}=5, X^{[m n]}=10
$$

SL(5)/O(3,2)

Defining-rep G-symmetry indices: $\mathrm{F}: m=-1,0,1,2,3$ time $=-1,0$; space $=1,2,3$
$\mathrm{M}: i=0,1,2,3$
$\mathrm{T}: i=-1,0,1,2$
S: \quad l $=0,1,2$

Sectioning, in \mathscr{H} formalism, uses $P \rightarrow p$:

Apply also to products of fields
\Rightarrow the $\mathbf{2}$ derivatives in constraint to $\mathbf{2}$ different fields.

- Virasoro: F \rightarrow M: $P_{i j}=p_{i j}=\mathbf{0}$,
leaves $\sigma_{m} \& X^{-1 i}$ (still 5-brane, but in $\mathrm{D}=4$)
- Gauss: $\mathrm{F} \rightarrow \mathrm{T}: P_{3 i}=p_{3 i}=\partial^{i}=0$, leaves $\sigma_{3} \& X^{i j}$ (string, but in $\mathrm{D}=3+3$, $\mathrm{SD} \& \overline{\mathrm{SD}} X^{i j}$)
- both: $\mathrm{F} \rightarrow \mathrm{S}$: leaves $\sigma_{3} \& X^{-1 t}$ (string in $\mathrm{D}=3$)

P.S. Martin Roček is a great guy!

