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(10.9)

• Noninteracting H atoms in 2p state

• Magnetic field: B = 5.0 T

• Room temperature (kT = 1/40 eV)

• Neglect spin.

(a) Fractions of atoms in m` = +1, 0,−1

From Krane (7.22), the energy of the atoms is

E(m`) = EH(2p) +m`µBB

where EH(2p) is the energy of an H atom in the 2p state (which we won’t need).

The fraction of atoms with m` at temperature T is determined by the ratio of Boltzmann

factors.

f(m`) =
e−E(m`)/kT

e−E(1)/kT + e−E(0)/kT + e−E(−1)/kT

Now divide top and bottom by exp[EH(2p)/kT ] to get:

f(m`) =
e−m`µBB/kT

e−µBB/kT + 1 + e−µBB/kT

The rest of (a) is substitution.

(b) Ratios of intensities:

Here use the selection rule

∆m` = 0,±1

given in Krane (7.25). All three values of m` in the 2p state can make the transition to the 1s

state (with m` = 0), so we expect the ratios of the intensities to be the same as the ratios of atoms

in each level.
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(10.13)

(a) Number of photons of energy E, per unit energy and volume:

We get this from Krane (10.27) – (10.29).

n(E) =
p(E)

L3
= π

(
1

h̄cπ

)3

E2 1

eE/kT − 1

(b) Total number of photons:

Ntot =
∫ ∞

0
n(E)dE

= π
(

1

h̄cπ

)3 ∫ ∞
0

E2 1

eE/kT − 1
dE

Now let x = E/kT , so that E = (kT )x and dE = (kT )dx, and use πh̄ = h/2, to get the quoted

result:

Ntot = 8π

(
kT

hc

)3 ∫ ∞
0

x2

ex − 1
dx

(c) The number of photons per cubic centimeter, using that the integral is about 2.404. Take T

as 3 K and 300 K. Putting in the constants gives:

Ntot = 8π

(
8.617× 10−5eV K

1.240× 103eV × 10−7cm

)3

T 3 (2.404)

Then substitute for kT .
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(10.21)

A metal with Fermi energy EF = 3.00 eV, the probability to find an electron with energy between

5.00 and 5.10 eV, for (a) T=295 K and (b) T=2500 K.

Consulting section 10.7 of Krane, the number of electrons is given by integrating the number

density (number per unit energy) between 5 and 5.1 eV, which we’ll call N(∆E), and then dividing

by the total number, N . For the number density, we use p(E), equation (10.36), and for the total

number we use (10.38):

n(∆E)

N
=

∫ 5.10eV
5.00eV p(E)dE

N

=
3

2E
3/2
F

∫ 5.10eV

5.00eV

E1/2

e(E−EF )/kT + 1
dE

∼ 3

2E
3/2
F

(5.00eV )1/2
∫ 5.10eV

5.00eV
e−(E−EF )/kT dE (1)

In the last step, we’ve used two facts: (i) that E1/2 is almost constant for E between 5 and 5.1

eV, and (ii) that e(E−EF )/kT is much, much larger than 1 in this range. These approximations are

quite good. Now we have to do the E integral, which isn’t too hard,

n(∆E)

N
=

3

2E
3/2
F

(5.00eV )1/2 eEF /kT
∫ 5.10eV

5.00eV
e−E/kT dE

=
3kT

2E
3/2
F

(5.00eV )1/2 (−e−(E−EF )/kT ) |5.10eV
5.00eV

Finally, substitute for kT and EF .
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