
Week 3: Lectures 5, 6

Renormalization: introduction by φ3
4

The φ3 Lagrangian in D dimensions is taken as

LD =
1

2

(
(∂µφ)2 −m2φ2

)
− g µε

3!
φ3 , (41)

where for applications to D = 4 we choose ε = 2−D/2, which gives g units of
mass for D = 4. For L6−2ε we take ε = 3−D/2, which makes g dimensionless
for D = 6.

The mass counterterm, scheme and scale

In the self energy, Eq. (32), we see an additive, momentum-independent
ultraviolet divergence, represented by a simple pole in ε = (1/2)(4 − D).
Now the Fourier transform of a constant is a delta function, so in coordinate
space the divergence is local. As a result, it can be cancelled by a new
vertex. Such a vertex can cancel the p2-independent pole, but will not affect
the momentum dependence otherwise. This is the procedure we’re after –
to modify the theory in such a way as to make its ill-defined predictions for
constant terms finite, while preserving its sensible predictions for momentum
dependence.

We implement this procedure by introducing a new vertex in the theory,
modifying the Lagrange density. Specifically, we add a new term (and also
change the notation for the mass and coupling slightly, attaching a subscript
‘R’, for “renormalized”),

Lren =
1

2

(
(∂µφ)2 −m2

Rφ2
)
− gRµε

3!
φ3 − 1

2
δm2φ2Lclass + Lctr

(42)

where Lctr is a mass counterterm,

Lctr = −1

2
δm2φ2 , (43)

with

δm2 = − g2

2(4π)2

(
−1

ε
+ cm

)
m2

R . (44)

At this point, the constant cm and the renormalization mass µ are still arbi-
trary.
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• In (44), the constant cm expresses the fact that the theory makes no
prediction on the Σ at any value of p2, only on differences. A choice
of cm, then simply corresponds to the baseline value we are going to
choose for the self-energy. The choice of cm is called a renormalization
scheme.

• δm2 is called the mass shift.

• mR is the renormalized mass. It is not necessarily the same as the
physical mass, at which Γ2 = 0.

• gR is the renormalized coupling, which in this case is just a way of
denoting the coupling with integer units of mass, independent of D.

The renormalized two-point function, is now found from the full one-loop
pertubation expansion, as the sum of the original self-energy diagram, Eq.
(33) plus the counterterm, which gives

Σren =
g2

2(4π)2




cm − γE + 2 + ln

(
4πµ2

m2
R

)

−
√

1− 4m2

p2
ln





√
1− 4m2

p2 − 1
√

1− 4m2

p2 + 1










+ O(ε) . (45)

Schemes
Perhaps the most common choice is the MS or ‘modified minimal sub-

traction’ scheme, specified by,

cMS = − ln 4π + γE ,

which cancels terms, which result from the Gamma function and the one-
loop momentum integrals. If cm = 0, the scheme is called ‘MS’ or simply
‘minimal subtraction’. These ‘minimal’ schemes specify the value of Σ only
indirectly. Such terms are, in fact, ubiquitous in one-loop calculations using
dimensional regularization, so this is a very natural choice to make.

Other conventional choices are called ‘momentum subtraction’ schemes,
where we specify the value of Σ(p2, m2

R) directly, for example, we can specify
that Σ(p2

0, m
2
R) = 0, so that Γ2(p2

0−m2
R) = p2

0−m2
R. If we choose in addition

p2
0 = m2

P with mP the physical mass, then the renormalized mass is fixed to
be the physical mass and we have what is known as an ‘on-shell’ momentum
subtraction scheme.
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The tadpole diagram in φ3

There are only three diagrams in φ3
4 with superficial degree of divergence

≥ 0, the self energy, and the tadpole diagrams at order g and g3. For the
latter we have (with a conventional −i for the 1PI function),

γ1 =
g

2(4π)2

(
4πµ2

m2

)ε

Γ(ε− 1)m2

≡ τ .

which is again p2-independent. The integral, proportional to
∫

dDk (k2−m2+
iε)−1, is finite only for ε > 1, that is D < 2, but as usual can be extended to
all D by using the expression we get in dimensional continuation. Note that
the delta function continues to give only a simple pole for D = 4, and that
the continued integral is actually finite for D = 3.

All order-g tadpole diagrams are automatically cancelled by a countert-
erm −τφ(x), with τ chosen as above. The g3 tadpole can be cancelled in
the same way. Note that τ is real. Of course, this is a specific choice of
renormalization scheme, which we make for simplicity.

Summary for φ3
D

Lren = LKG −
gµε

3!
φ3 − δm2(cm) φ2 − τφ .

With the choices for δm2 and τ given above, perturbation theory generated
from this Lagrange density is completely finite, order by order in g. Every
divergent subdiagram will be matched with a counterterm, and the result
will be free of poles in ε, although of course if it will still depend on our
choices of µ and the scheme (that is, cm).

The key to renormalization: bare and renormalized Lagrangians

What are we to do with this finite perturbation theory? The method for
φ3

4 illustrates the general procedure.

• We begin by choosing a scheme (cm) and a renormalization mass (µ).
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• From the explicit expression for Σ, Eq. (33), we find the position of the
physical mass for this cm and µ, by solving

Γ2(p
2 = m2

P ) = m2
P −m2

R − Σ(m2
P , m2

R, gR) = 0 , (46)

which ensures that to this order in perturbation theory, G2(p2) =
i/Γ2(p2) has a pole at p2 = m2

P .

• We then “measure” (more realistically choose) a physical value of mP ,
something like 1 GeV or 1 MeV.

• We then solve Eq. (46) for mR(µ) as a function of gR (which in this
superrenormalizable case we can also just specify).

• With this value of mR(µ) and gR we can now go ahead and compute
every other physical quantity and correlation function in the theory
to the same order in gR. In this example, one calculation and one
“measurement” is all we need to get a completely finite perturbative
expansion.

We can further interpret the procedure by the following reorganization of
the Lagrange density,

Lren(mR, gRµε, cm) =
1

2

(
(∂µφ)2 −m2

Rφ2
)
− gRµε

3!
φ3 − δm2(cm) φ2

=
1

2

(
(∂µφ)2 − (m2

R + δm2(cm))φ2
)
− gRµε

3!
φ3

=
1

2

(
(∂µφ)2 −m2

0φ
2
)
− g0

3!
φ3

= Lclass(m0, g0) , (47)

where in the third line we define the bare mass, m2
0 = m2

R + δm2 and the bare
coupline, g0 = gRµε. The final line is once again the classical Lagrangian, now
in terms of m0 and g0, which we refer to as the bare Langranian (density).
We summarize this result as:

The renormalized Lagrangian = The bare Lagrangian .

We can summarize all of our calculations above as: From the renormalized
Lagrangian, we can generate a finite perturbation series; its equality to the
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bare Lagrangian ensures that this series depends upon only two parame-
ters, and therefore only requires two inputs. In this case, the inputs are a
“measurement” of the physical mass and a specification of the coupling.

Renormalization for φ3
6

The classical Lagrange density for φ3
6 is the same as for φ3

4, except that
we let gR be dimensionless, so that it now appears as gRµε, with ε = 3−D/2.

Renormalization will follow the same pattern, but now, because [g] = 0,
the superficial degree of divergence of each ΓE depends only on E, not on the
order, V (ee Eq. (40)). Only for E = 2 and E = 3 will we need counterterms;
the tadpoles, E = 1, are treated as in four dimensions.

The self energy (E = 2) is now

Σ(p2, m2) = − g2

2(4π)3

{ (

−p2

6

1

ε
+ m2 1

ε

)

+

(

−p2

6
+ m2

R

) (

1 + ln
4πµ2e−γE

m2
R

)

−m2
R

∫ 1

0
dx F (x) ln F (x) +O)(ε)

}

(48)

where

F (x) = 1− x(1− x)p2/m2
R .

The poles appear only times p2 and m2
R.

For the vertex correction (triangle diagram, with E = 3), the finite, ε0 are
more complex because they depend on two independent external momenta,
but here we need only the pole terms, given by

Γ3 = (gRµε)
g2

2(4π)3

(
1

ε
+ ln

(
4πe−γE

))
+O(ε0) , (49)

which is independent of the external momenta.
The UV poles (divergences for D = 6) in Eqs. (48) and (49) are cancelled

by three new counterterms, which we add to the classical Lagrange density
in the following rather unintuitive notation as

Lren(mR, gRµε) =
1

2

(
(∂µφR)2 −m2

Rφ2
R

)
− gRµε

3!
φ3

R

+
1

2
(Zφ − 1) (∂µφR)2 − δm2 φ2

R −
δg

3!
µεφ3

R

(50)
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The δm2 and Zφ − 1 counterterms automatically cancel the p2/ε and m2/ε
poles of the self energy, respectively. The δg counterterm cancels the pole in
the vertex function. One-loop calculations in the theory are then all finite,
although still functions of cm and µ. Notice that now the field as well as the
mass and coupling has subscript ‘R’, denoting renormalization. Unlike φ3

4,
two- and higher-loop renormalization is now necessary, beginning with all
the two-loop diagrams that we get from the classical Lagrange density plus
counterterms computed to one loop. Although the calculations are more
elaborate, the steps in the method are the same. Only the renormalization
constants Zφ,g,m are necessary, and are themselves expansions in the (square
of) the coupling,

Zi = 1 +
∑

j≥1

z(j)
i (ε)g2j

R (51)

where the coefficients z(j)
i are constructed to cancel poles that appear in

j-loop diagrams (i.e., at order g2j
R ).

Reprise of the method

We summarize the renormalization of φ3
6 following what we did for φ3

4.

• Pick a scheme.

• Calculate two (at least) physical quantities, σ(calc)
i (mR, gR). One of

these could be the position of the physical mass, mP , as we did for φ3
4,

but this is not the only choice (both here and for φ3
4.)

• Measure the σ(exp)
i (or postulate values).

• Set σ(exp)
i = σ(calc)

i .

• Solve for mR and gR as functions of µ in this scheme.

• Can now calculate all other quantities in the theory to the accuracy in
which mR and gR have been determined (that is, the original order of

σ(calc)
i .
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Multiplicative renormalization

We get further insight by relating bare to renormalized quantities, includ-
ing now the field and coupling, as well as the mass.

φRZ1/2
φ = φ0

m2
RZm = m2

0

gRµεZg = g0

δm2 = m2
R (ZmZφ − 1)

δg = gRµε
(
ZgZ

3/2
φ − 1

)
(52)

Lren(mR, gRµε) =
1

2

(
(∂µφR)2 −m2

Rφ2
R

)
− gRµε

3!
φ3

R

+
1

2
(Zφ − 1) (∂µφR)2 − (ZmZφ − 1) m2

Rφ2
R −

(
ZgZ

3/2
φ − 1

) gR

3!
µεφ3

R

≡ 1

2

(
(∂µφ0)

2 −m2
0φ

2
0

)
− g0

3!
φ3

R (53)

And once again, we summarize this as

Lren(gR, MR, ci, µ) = Lclass(g0, m0) (54)

where the left hand side generates a finite perturbation expansion in gR and
mR (which depends on cm, cφ, cg and µ), while from the right hand side we
learn that this expansion still depends on only two independent parameters.

Summary of one-loop counterterms

Defining a ≡ g2
R

2(2π)3 , we have from the one-loop results quoted above in

Eqs. (48) and (49),

δm2 = −a

2

(
1

ε
+ cδm

)

Zφ − 1 = − a

12

(
1

ε
+ cφ

)

δg = gµε
[
−a

2

(
1

ε
+ cδg

)]
(55)
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from which we derive

Zm − 1 = −5a

12

(
1

ε
+ cm

)

Zg − 1 = −3a

8

(
1

ε
+ cg

)
(56)

where we can readily determine cδm and cδg from cm,g,φ that appear in the
Zi.
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