
Review: Q Parallelism & Simon’s algorithm

 Massive “question-answer” entanglement 
 But measurement creates some problem; need to be smart! 

 Simon’s algorithm clearly illustrates this
 Promised that a “hidden” string s=s1s2..sn such that

f(x)=f(y) if and only if x=y or x=y⊕s (bitwise XOR)
 Find string s



Week 2: From foundation to 
science-fiction teleportation: 
Bell inequality, teleportation 
of states and gates, 
entanglement swapping, 
remote state preparation, 
superdense coding, and 
superdense teleportation



Quantum entangled states have correlations 
stronger than classical states



A simple equality and an inequality
We have seen measurement of observables X, Y, Z or any one-qubit operator 

gives an eigenvalue randomly, which is ±1 in this case.

 It is interesting that for four variables a, a’, b, b’ which can be ±1, we have:

 Thus, for any probability distribution p(a,a’,b,b’) we have [using E to denote expectation]

In the context of measuring two choices of observables at two locations A: a & a’, 
B: b & b’, we have the so-called Clauser-Horne-Shimony-Holt (CHSH) inequality:



CHSH-Bell inequality (I2222)
CHSH generalized John Bell’s idea (his original Bell inequality). The assumption is 
that a source emits e.g. a pair of photons

SourceA B

The choice of measurement axis (a or a’) at A or (b or b’) at B cannot affect the 
outcome of the other side. Nevertheless, outcomes can be correlated and described 
by some unknown-to-us distribution (depending on some hidden variable λ). This is 
also called the “Local hidden variable” theory

where A(a,λ)= ±1 and B(b,λ)= ±1 are predetermined results for the measurement 
settings a for A and b for B depending on the local hidden variable λ; ρ(λ) is its 
distribution. Locality requires that the outcome A(a,λ) does not depend on setting b 
and that of B(b, λ) does not depend on setting a. 

(a or a’) (b or b’) 



Violation of CHSH-Bell inequality
SourceA B

By averaging over the local hidden variable, we still have

axis (a or a’) (b or b’) 



Violation of Bell inequality
 Measurement along axes 1 and 2 of A & B are used to

check violation of Bell inequality

 The bound 2√2 is the Tsirelson bound. Deriving maximal violation and measurement 
settings for an arbitrary state is a math problem; see Horodecki et al.  
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Phys. Lett. A 200, 340 (1995) and Phys. Lett. A 210, 223 (1996).



Exercise

Verify that for the choices of measurement axes described earlier, we have



Related inequality and a game between two players

(1) Referee gives separately bits x and y
to Alice and Bob. 

(2) Alice and Bob have to produce a bit 
respectively (a and b) without communication.
They win if  “x AND y = a⊕b”

x y

a b

Alice Bob

Referee

The probability P(a,b|x,y) is referred to as a “Box”. The question we are interested in
is how to maximize the probability of winning, depending on the models for P.

1. For classical no-signaling theory: the max winning probability is <= 3/4
2. For quantum mechanics: the max winning probability is (2+sqrt(2))/4 ~ 0.8535



Popescu-Rohrlich (PR) box
Regard x and y ϵ{0,1} as representing 
two different measurement settings and 
a and b ϵ{0,1}  as representing two 
different outcomes (i.e +1 and -1).  

x y

a b

Alice Bob

Referee

This box obeys no-signaling conditions: P(0,0|0,0)+P(0,1|0,0)=P(0,0|0,1)+P(0,1|0,1), 
etc., but it enables violation of Bell-CHSH inequality and gives B=4.
[PR box has correlation stronger than quantum mechanics]

Popescu and Rohrlich propose a box that always achieves “x AND y = a⊕b” :

P(0,0|0,0)=P(1,1|0,0)=P(0,0|0,1)=P(1,1|0,1)
=P(0,0|1,0)=P(1,1|1,0)=P(0,1|1,1)=P(1,0|1,1)=1/2 

(all other combinations are zero)



Do poll 8/31-(2)



GHZ state: violation at a single shot

 Consider four commuting observables: (i) X ⊗ X ⊗ X, (ii) Y ⊗ Y ⊗ X, (iii) Y ⊗ X ⊗ Y, (iii) X ⊗ Y ⊗ Y 

 For classical local theory, one attributes this to local properties:
x1x2x3=+1, y1y2x3=-1, y1x2y3=-1, x1y2y3=-1 (where x,y= ±1)

 But this gives contradiction when we multiply all four equalities together:
1= -1 !  (experiments show QM is correct)

We can generalize the Bell state Ф+ to three particles and arrive at the Greenberger-
Horne-Zeilinger state



Quantum entangled states are useful



Quantum Teleportation
One of the most incredible tasks that an entangled pair allows is quantum 
teleportation. For illustration, we use the state Ф+ to explain this. Suppose we have 
an arbitrary state  ψ of particle 1 at A, who share the entanglement with B via Ф+
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We derive it with equations.
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Quantum Teleportation (analysis)

The unknown information a & b is preserved in the third particle, but depending on 
the outcome of the ‘Bell-state’ measurement in the basis of  Ф ± & Ψ ±

Four possible outcomes, Alice informs Bob: (1) Ф+ apply identity (nothing); (2) Ф-
apply Z to particle 3; (3) Ψ- apply X to particle 3; (4) Ψ- apply –iY to particle 3
 Recover ψ at particle 3



Teleportation experiment

[Pan et al. ’03, Bouwmeester et al. ’97]



Exercise: Teleportation for qudits

Suppose Alice performs measurement on particles 1&2 in the basis defined by Ψnm

If she obtains the outcome nm, what action needs Bob to perform to recover ψ?

For two d-level qudits, there are dxd basis states and also dxd entangled basis states:

For an arbitrary qudit state

The shared entanglement that we will use is 



FYI: A variant---gate teleportation*
Controlled-Z gate and single-qubit measurement induces rotation
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The measurement basis ξ is defined via or the observable:
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Derivation*



Entanglement swapping (via teleportation)
Imagine that Alice and Bob share an entangled pair and Bob and Charlie share 
another entangled pair. By performing the Bell-state measurement on Bob’s two 
particles, Bob ‘teleports’ his entanglement with Charlie to Alice (or equivalently, Bob 
‘teleports’ his entanglement with Alice to Charlie). This results in shared 
entanglement between Alice and Charlie.

Source Source

Alice Charlie

Bob

Bell 
measurement

 Entanglement swapping is the basic protocol to establish entanglement between distant 
nodes (such as the Duan-Luken-Cirac-Zoller with atomic ensemble quantum memory)



Remote state preparation
It uses shared entanglement, e.g. the singlet state (which is antisymmetric):

From the antisymmetry, one sees that for any single qubit state ψ and its orthogonal ψ⟂:

If Alice performs measurement on her particle in the basis {ψ,ψ⟂}, with probability 1/2, 
she obtains ψ⟂ and thus prepares Bob’s state in ψ, and similarly with probability 1/2 
prepares Bob’s state in ψ⟂

In the latter case, it is in general impossible for Bob to transform from in ψ⟂ to ψ, 
except for ‘equatorial states’




