Review: Q Parallelism \& Simon's algorithm

$$
(|0\rangle+|1\rangle+|2\rangle+\ldots) \otimes|0\rangle \rightarrow(|0\rangle \otimes|f(0)\rangle+|1\rangle \otimes|f(1)\rangle+|2\rangle \otimes|f(2)\rangle+\ldots)
$$

, Massive "question-answer" entanglement
> Massive "question-answer" entanglement
> But measurement creates some problem; need to be smart!

- Simon's algorithm clearly illustrates this

Algorithm for Simon's Problem

$$
\left.\begin{array}{l}
\text { eg. measure and } \\
\Rightarrow \quad f_{0} \Rightarrow \text { lIst resistor } \\
\Rightarrow \text { collapses to superposition }
\end{array}\right)
$$

1. Set a cotter $i=1$.
2. Prepare $\frac{1}{\sqrt{2^{n}}} \sum_{\mathbf{x} \in\{0,1\}^{n}}|\mathbf{x}\rangle|\mathbf{0}\rangle$.
3. Apply U_{f}, to produce the state

$$
\sum_{\mathbf{x} \in\{0,1\}^{n}}|\mathbf{x}\rangle|f(\mathbf{x})\rangle
$$

4. $\left(\right.$ optional 2) Measure the second register. $\rightarrow \quad$ end
5. Apply $H^{\otimes n}$ to the first register.
6. Measure the first register and record the value \mathbf{w}_{i}.
7. If the dimension of the span of $\left\{\mathbf{w}_{i}\right\}$ equals $n-1$, then go to Step 8, otherwise increment i and go to Step 2. $\perp S$
8. Solve the linear equation $\mathbf{W s}^{T}=\mathbf{0}^{T}$ and let \mathbf{s} be the unique nonzero solution.
9. Output s.

* Promised that a "hidden" string $s=\mathrm{s}_{1} \mathrm{~s}_{2}$.. s_{n} such that
$f(x)=f(y)$ if and only i $x=y$ or $(x=y \oplus S($ bitwise XOR)
\rightarrow Find string s
eg. measure and

Week 2: From foundation to science-fiction teleportation: Bell inequality, teleportation of states and gates, entanglement swapping, remote state preparation, superdense coding, and superdense teleportation

Quantum entangled states have correlations stronger than classical states \rightarrow Bell inequality
are useful as well \rightarrow O.S. teleportation

A simple equality and an inequality

We have seen measurement of observables X, Y, Z or any one-qubit operator

$$
\vec{r} \cdot \vec{\sigma}, \quad \text { where } \vec{\sigma} \equiv(X, Y, Z), \quad|\vec{r}|=1
$$

gives an eigenvalue randomly, which is ± 1 in this case.
$>$ It is interesting that for four variables $a, a^{\prime}, \mathrm{b}, \mathrm{b}^{\prime}$ which can $\mathrm{be} \pm 1$, we have:

$$
\left.a b+a b^{\prime}+a^{\prime} b-a^{\prime} b^{\prime}=a\left(b+b^{\prime}\right)+a^{\prime}\left(b-b^{\prime}\right)= \pm 2\right)
$$

> Thus, for any probability distribution $\mathrm{p}\left(\mathrm{a}, \mathrm{a}^{\prime}, \mathrm{b}, \mathrm{b}^{\prime}\right)$ we have [using \mathbf{E} to denote expectation]

$$
\left(-2 \leq \frac{E\left(a b+a b^{\prime}+a^{\prime} b-a^{\prime} b^{\prime}\right)}{E\left(a b_{b}\right)} \equiv \sum_{a, a^{\prime}, b, b} \frac{\left.\rho\left(a, a^{\prime}, b, b^{\prime}\right)\left(a b+a b^{\prime}+a^{\prime} b-a^{\prime} b^{\prime}\right) \leq 2\right)}{\kappa_{\text {distr.bution }}}\right.
$$

In the context of measuring two choices of observables at two locations A: a \& a', B: b \& b', we have the so-called Clauser-Horne-Shimony-Holt (CHSH) inequality:

$$
-2 \leq \underbrace{\mathbf{E}(a, b)+\mathbf{E}\left(a, b^{\prime}\right)+\mathbf{E}\left(a^{\prime}, b\right)-\mathbf{E}\left(a^{\prime}\right.}, b^{\prime}) \leq 2
$$

CHSH-Bell inequality (${ }_{2222}$)

CHSH generalized John Bell's idea (his original Bell inequality). The assumption is that a source emits e.g. a pair of photons

The choice of measurement axis (a or a^{\prime}) at A or (b or b^{\prime}) at B cannot affect the outcome of the other side. Nevertheless, outcomes can be correlated and described by some unknown-to-us distribution (depending on some hidden variable λ). This is also called the "Local hidden variable" theory

where $A(a, \lambda)= \pm 1$ and $B(b, \lambda)= \pm 1$ are predetermined results for the measurement settings a for A and b for B depending on the local hidden variable $\lambda ; \rho(\lambda)$ is its distribution. Locality requires that the outcome $A(a, \lambda)$ does not depend on setting b and that of $B(b, \lambda)$ does not depend on setting a.

Violation of CHSH-Bell inequality

By averaging over the local hidden variable, we still have

$$
\begin{equation*}
E_{L}(a, b)+E_{L}\left(a, b^{\prime}\right)+E_{L}\left(a^{\prime}, b\right)-E_{L}\left(a^{\prime}, b^{\prime}\right) \mid \leq 2 \tag{1}
\end{equation*}
$$

repeat
Quantum mechanics can violate this inequality. To be specific, the operators denote expectation of repeated measurement along axes of unit vectors \vec{a} and \vec{b}, respectively. Define $\quad+a b^{\prime}+a^{\prime} b-a^{\prime} b^{\prime}$

$$
\rightarrow 2 B \equiv \vec{\sigma} \cdot \vec{a} \otimes \vec{\sigma} \cdot \vec{b}+\vec{\sigma} \cdot \vec{a} \otimes \vec{\sigma} \cdot \overrightarrow{b^{\prime}}+\vec{\sigma} \cdot \overrightarrow{a^{\prime}} \otimes \vec{\sigma} \cdot \vec{b}-\vec{\sigma} \cdot \overrightarrow{a^{\prime}} \otimes \vec{\sigma} \cdot \overrightarrow{b^{\prime}} .
$$

For a singlet state $|\psi\rangle=(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle) / \sqrt{2}$,

$$
\left.\max _{a, a^{\prime}, b, b^{\prime}}|\langle\psi| 2 B| \psi\right\rangle \mid=2 \sqrt{2}, \geqslant 2.828^{\circ}>2
$$

which can be achieved for the settings $\theta_{a}=\pi / 2, \theta_{a}^{\prime}=0$
$3 \pi / 4$, where the angles are measured from the z-axis in the $z-\theta_{b}=\pi / 4$, and $\theta_{b}^{\prime}=$
plane.

Violation of Bell inequality

Measurement along axes 1 and 2 of $A \& B$ are used to check violation of Bell inequality

$$
\text { note: }\langle\psi| \vec{\sigma} \cdot \vec{a} \otimes \vec{\sigma} \cdot \vec{b}|\psi\rangle=-\vec{a} \cdot \vec{b}
$$

$>$ The bound $2 \sqrt{ } 2$ is the Tsirelson bound. Deriving maximal violation and measurement settings for an arbitrary state is a math problem; see Horodecki et al.

Phys. Lett. A 200, 340 (1995) and Phys. Lett. A 210, 223 (1996).

Exercise

$$
\begin{aligned}
& |\psi\rangle=(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle) / \sqrt{2}=(|01\rangle-|10\rangle) / \sqrt{2} \\
& \langle\psi| \vec{\sigma} \cdot \vec{a} \otimes \vec{\sigma} \cdot \vec{b}|\psi\rangle=-\vec{a} \cdot \vec{b}
\end{aligned}
$$

Verify that for the choices of measurement axes described earlier, we have

$$
|\langle\psi| 2 B| \psi\rangle \mid=2 \sqrt{2}
$$

Related inequality and a game between two players

(1) Referee gives separately bits x and y to Alice and Bob.
(2) Alice and Bob have to produce a bit respectively (a and b) without communication. They win if " x AND y = $a \oplus b$ "

The probability $P(a, b \mid x, y)$ is referred to as a "Box". The question we are interested in is how to maximize the probability of winning, depending on the models for P.

1. For classical no-signaling theorys the max winning probability is $<=3 / 4$
2. For quantum mechanics: the max winning probability is $(2+\operatorname{sqrt}(2)) / 4 \sim 0.8535$

$$
\begin{aligned}
& x=0,1 \text { choice of } a / a^{\prime} \\
& y=0,1=b / b^{\prime} \\
& +1 \Rightarrow 70,-1 \Rightarrow 1
\end{aligned}
$$

Popescu-Rohrlich (PR) box *

Regard x and $y \in\{0,1\}$ as representing two different measurement settings and a and $b \in\{0,1\}$ as representing two different outcomes (i.e +1 and -1).

Popescu and Rohrlich propose a box that always achieves "x AND y =abb":

$$
\begin{aligned}
& P(0,0 \mid 0,0)=P(1,1 \mid 0,0)=P(0,0 \mid 0,1)=P(1,1 \mid 0,1) \quad x=0, y=0 \\
& =P(0,0 \mid 1,0)=P(1,1 \mid 1,0)=P(0,1 \mid 1,1)=P(1,0 \mid 1,1)=1 / 2 \quad \Rightarrow \text { win } 100 \%
\end{aligned}
$$

(all other combinations are zero)
This box obeys,no-signaling conditions: $P(0,0) 0,0)+P(0,0,0,0)=P(0,0,0,1)+P(0,1) 0,1)$, clops riot chge etc., but it enables violation of Bell-CHSH inequality and gives $\mathrm{B}=4$.
$[\rightarrow$ PR box has correlation stronger than quantum mechanics]
$\begin{aligned} & P R B O x>Q M \\ &>\text { classical era } \\ & \text { iffy } \\ & \text { is difficult }\end{aligned}$

Do poll 8/31-(2)

GHZ state: violation at a single shot

We can generalize the Bell state Φ^{+}to three particles and arrive at the Greenberger-
Horne-Zeilinger state

$$
|\mathrm{GHZ}\rangle=\frac{1}{\sqrt{2}}(\underbrace{|000\rangle+\sqrt[111]{ }\rangle})
$$Consider four commuting observables: (i) $X \otimes X \otimes X$, (ii) $Y \otimes Y \otimes X$, (iii) $Y \otimes X \otimes Y$, (iii) $X \otimes Y \otimes Y$

$$
\begin{align*}
& X \otimes \underline{X} \otimes \underset{-}{X}|\mathrm{GHZ}\rangle=(+1)|\mathrm{GHZ}\rangle \quad\left(|\cdots\rangle+\left(\begin{array}{ll}
0 & 0
\end{array}\right)\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)\binom{1}{0}=\binom{0}{i}\right. \\
& Y \otimes Y \otimes X|\mathrm{GHZ}\rangle=(-1)|\mathrm{GHZ}\rangle \quad Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad|0\rangle \rightarrow\langle i \mid 1\rangle \\
& (Y \otimes X \otimes \overline{Y \mid} \mathrm{GHZ}\rangle=(-1)|\mathrm{GHZ}\rangle \quad-|111\rangle-|00 \nu\rangle-1 / 2\rangle \\
& X \otimes Y \otimes Y|\mathrm{GHZ}\rangle=(-1)|\mathrm{GHZ}\rangle
\end{align*}
$$

\Rightarrow For classical local theory, one attributes this to local properties:

$>$ But this gives contradiction when we multiply all four equalities together:
$1=-1$! (experiments show QM is correct)

Quantum entangled states are useful

Quantum Teleportation

One of the most incredible tasks that an entangled pair allows is quantum teleportation. For illustration, we use the state Φ^{+}to explain this. Suppose we have an arbitrary state ψ of particle 1 at A, who share the entanglement with B via $\Phi^{+}{ }_{23}$

Quantum Teleportation (analysis)

Four possible outcomes, Alice informs Bob: (1) $\Phi^{+} \rightarrow$ apply identity (nothing); (2) $\Phi^{-} \rightarrow$ apply Z to particle 3 ; (3) $\Psi^{*} \rightarrow$ apply X to particle 3 ; (4) $\Psi^{-} \rightarrow$ apply -iY to particle 3
\rightarrow Recover ψ at particle 3

Teleportation experiment

[Pan et al. '03, Bouwmeester et al. '97]

Exercise: Teleportation for qudits

For two d-level qudits, there are dxd basis states and also dxd entangled basis states:

$$
\left|\Psi_{n m}\right\rangle=\sum_{j=0}^{d-1} e^{i 2 \pi j n / d}|j\rangle \otimes|(j+m) \bmod d\rangle
$$

For an arbitrary qudit state $\quad|\psi\rangle_{1}=\sum_{k} c_{k}|k\rangle$
The shared entanglement that we will use is $\left|\Psi_{00}\right\rangle_{23}$

Suppose Alice performs measurement on particles $1 \& 2$ in the basis defined by Ψ_{nm}
If she obtains the outcome $n m$, what action needs Bob to perform to recover ψ ?

$$
U_{n m}=\sum_{k} e^{i 2 \pi k n / d}|k\rangle\langle(k+m) \bmod d|
$$

FYI: A variant---gate teleportation*

Controlled-Z gate and single-qubit measurement induces rotation
(3rd rule QM)
The measurement basis ξ is defined via

$$
| \pm \xi\rangle=\left(e^{-i \xi / 2}|0\rangle \pm e^{i \xi / 2}|1\rangle\right) / \sqrt{2}
$$

$$
\begin{aligned}
& \text { or the observable: }
\end{aligned}
$$

Derivation*

The measurement basis ξ is defined via

$$
| \pm \xi\rangle=\left(e^{-i \xi / 2}|0\rangle \pm e^{i \xi / 2}|1\rangle\right) / \sqrt{2}
$$

$$
\mathrm{CZ}_{12}=|0\rangle\langle 0| \otimes I+|1\rangle\langle 1| \otimes Z=\left(\begin{array}{ll|ll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 \\
0 & 0 & \left.\begin{array}{ll}
1 & -1
\end{array}\right)
\end{array}\right)
$$

$$
a|0\rangle+b|1\rangle)\left(\frac{10\rangle+|1\rangle)}{\sqrt{2}} \longrightarrow a|0\rangle(|0\rangle+|1\rangle)+b|1\rangle(|0\rangle \Theta|1\rangle)\right.
$$

$$
=a|0\rangle\left(P|+\rangle+b|1\rangle|-\rangle \Rightarrow\left|\Psi_{12}\right\rangle\right.
$$

(2) Ineasurement : prod to eighstates $1 \pm \xi\rangle=\frac{1}{\sqrt{2}}\left(e^{-i \xi / 2}|0\rangle+e^{i \xi / 2}|1\rangle\right)$

Entanglement swapping (via teleportation)

Imagine that Alice and Bob share an entangled pair and Bob and Charlie share another entangled pair. By performing the Bell-state measurement on Bob's two particles, Bob 'teleports' his entanglement with Charlie to Alice (or equivalently, Bob 'teleports' his entanglement with Alice to Charlie). This results in shared entanglement between Alice and Charlie.

$>$ Entanglement swapping is the basic protocol to establish entanglement between distant nodes (such as the Duan-Luken-Cirac-Zoller with atomic ensemble quantum memory)

Remote state preparation **)

It uses shared entanglement, e.g. the singlet state (which is antisymmetric):

$$
\left|\Psi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-\underset{\leftrightarrow \rightarrow}{|10\rangle})
$$

From the antisymmetry, one sees that for any single quit state ψ and its orthogonal ψ^{\perp} :

$$
\left.\left.\left.\left|\Psi^{-}\right\rangle=e^{i \theta} \frac{1}{\sqrt{2}} \underset{\sim}{(|\psi\rangle}\right\rangle \otimes \underset{\sim}{\left|\psi^{\perp}\right\rangle}-\underset{\sim}{\mid \psi^{\perp}}\right\rangle \otimes|\psi\rangle\right)
$$

If Alice performs measurement on her particle in the basis $\left\{\psi, \psi^{\perp}\right\}$, with probability $1 / 2$, she obtains ψ^{\perp} and thus prepares Bob's state in ψ, and similarly with probability $1 / 2$ prepares Bob's state in ψ^{\perp}

In the latter case, it is in general impossible for Bob to transform from in ψ^{\perp} to ψ, except for 'equatorial states'

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle+e^{i \phi}|1\rangle\right.
$$

\square

1. How was today's class? (Multiple choice)

Too fast and some topics are hard	$(3 / 22) 14 \%$
Too slow and I know everything	$(1 / 22) 5 \%$
It was at the right pace for me	$(12 / 22) 55 \%$
I learned something new	$(16 / 22) 73 \%$

