Review: Q Parallelism & Simon’s algorithm
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> Massive “guestion-answer” entanglement

> But measurement credtes some problem; need to be smart! &7 ~m2asee Znd

Kq> £, = (st regst

o Simon’s algorithm clearly jllustrates this
o llopses o Swprpesanm

Algorithm for Simon’s Problem % Promised that a “hidden” strmgi/ﬁ_s_z,gn,such that
L. Set acomter i = |f and only |b|tW|se XOR) \[
2./Prepare Exe{o 1}n |x)]0) =» Find string S
3. AE)'RE,%{W prodiice The state a‘}[ X
Cinch )
> W) fx) 1,
x€{0,1}n A —_—
4. (optional?) Measure the second rcglbter on f IST Gw QA5 TOA
5. Apply( H®" fo-the. ister: PN~
6. Measure T tecord_the value?wi. ) H )
7. If the dimension of the span of cquals n ~ 1, then go to Step 8, \>
otherwise increment i and 43S N z ' 2>
8. Solve the linear equation [Ws” = 07 (and let s be the unique non-zero 218 -~
solution. - mLasure

\
9. Output s. \d =z LS



Week 2: From foundation to
science-fiction teleportation:
Bell inequality, teleportation
of states and gates,
entanglement swapping,
remote state preparation,
superdense coding, and
superdense teleportation




Quantum entangled states have correlations
stronger than classical states — |, MW@»
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A simple equality and an inequality

We have seen measurement of observables X, Y, Z or any one-qubit operator
7-d, whered = (X,Y,Z), |r]=1

gives an eigenvalue randomly, which is £1 in this case.

» ltis interesting that for four variable@hich can bg 1) we have:
ab+ab' + a'b—a't La(b+ V) +d'(b —¥) &)

[ M L,/ » Thus, for any probability distribution p(a,a’,b,b’) we have [using E to denote expectation]

oo Al
~ - —N< E(ab+ ab' +a'b—d'b) = Z pla,a’,0,b")(ab+ ab’ + a’b — a't’) S@
N7 aabb T dich b
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In the context of measuring two choices of observables at two locations A: a & a’,
B: b & b’, we have the so-called Clauser-Horne-Shimony-Holt (CHSH) inequality: K/ >\l?/

~2 < E(a,b) + E(a, ) + E(, )~ E(a, V') < 2
- N



CHSH-Bell inequality (I5,,-)

CHSH generalized John Bell’s idea (his original Bell inequality). The assumption is
that a source emits e.g. a pair of photons

S p— T

The choice of measurement axis (a or a’) at A or (b or b’) at B cannot affect the
outcome of the other side. Nevertheless, outcomes can be correlated and described
by some unknown-to-us distribution (depending on some hidden variable A). This is
also called the “Local hidden variable” theory

where A(a,A)= %1 and B(b,A)= +1 are predetermined results for the measurement
settings a for A and b for B depending on the local hidden variable A; p(A) is its
distribution. Locality requires that t Q%W
and that of B(b, A) does not depend on setting a.




/

| Violation of CHSH-Bell inequality

o
DA o
axis (a or a’)

(b or b’)

By averaging over the local hidden variable, we still have

1o poal
Ep(a,b) + Ep(a,b) + EL(d,b) — Ep(a,b)| < 2.) (1) apcnrent
Quantum mechanics can violate this inequality. To be specificyythe, operatio / Phoa’gg

to be measured are the Pauli operators &. Let@gﬁl—z@@- a) (7 - Ylv) ety freo
denote expectation of repeated measurement along axes of unit-veétors a

5, respectively., Define / —_ /]
e X(«qcﬁo\ b v oak’ T alb a’b clan | ) £2
.

— 2B=3-i®3-b+7-dR3-V+3-d QG- b—3-d @G-V,

For a singlet state(|v) = (| 1)) — | 11))/v2,

argabxb,|<wr23w>|=@ 32828 7 2

which can be achieved for the settings (0, = n/2, 8, =0} 0, = 7/4, and 0, =
mwhere the angles are measured from the z-axis in the z — x plane.




Violation of Bell inequality

O Measurement along axes 1 and 2 of A & B are used to
check violation of Bell inequality

X2 0 @ W= -0

axis (a or a’)

(b or b’)

» The bound 2V2 is the Tsirelson bound. Deriving maximal violation and measurement
settings for an arbitrary state is a math problem; see Horodecki et al.

Phys. Lett. A 200, 340 (1995) and Phys. Lett. A 210, 223 (1996).



Exercise

) = (| 1) — | 1)) /v2 = (|01) — |10))/v/2

(|G- TG blyy) =—ad-b

Verify that for the choices of measurement axes described earlier, we have

[(Y|2B|)| = 2v/2



Related inequality and a game between two players

@
respectively (a and b) without communication.

They win if X AND y¥ a@b”

y

|
!/ Q\ £ )Oz 0»"\””/3 ,,U,},,A,fa:a,l): ° >
| "% ey

The probability P(a,b|x,y) is referred to as a “Box”. The question we are interested in ( 271 & /

(1) Referee gives separately bits x and y
to Alice and Bob.

Bob (2)Alice and Bob have to produce a bit

is how to maximize the probability of winning, depending on the models for P. a®b=
01>
W
1. For classical@o—signaling the@ the max winning probability is <=(3/4> Y =0 | dicedf 5\'/&\1
2. For quantum mechanics: the max winning probability is (2+sqrt(2))/4 ~ 0.8535 Yol = byl

+1=70, (=4



Popescu-Rohrlich (PR) box
- -

Regard x and y €{0,1} as representing
two different measurement settings and
a and b €{0,1} as representing two
different outcomes (i.e +1 and -1).

| f
_ Q'\ b Jistelowr ~/ 5"*“*‘2/

Popescu and Rohrlich propos@that always achieves “x AND y = a@b” :
-~ - e G

P(0,0]0,0)=P(1,1]0,0)=P(0,0/0,1)=P(1,1]0,1) A=0. =3
=P(0,0]1,0)=P(1,1]1,0=P(0,1]1,1)=P(1,011,1)=1/2 = w-n 190 % o
(all other combinations are zero) a$s” fred o

T~ Ow}&f‘-e PNA
This box obeys na-signaling conditions; P(0/00,0)+P (0{10,0)= o 1), s oty
etc., but it enables violation of Bell-CHSH inéquality and gives =4

[=»PR box has correlation stronger than quantum mechanics] PRBox > M 2 luss i/ ”?Z

5 ik



Do poll 8/31-(2)

Polling is closed

1. What is correct about the CHSH-Bell inequality?

Classical (Hidden-Variable) Theory can achieve a value of 2

Quantum Mechanics can violate it and achieve a value of 2 sqrt(2)

Popescu-Rohrlich (PR) box can violate it and achieve a value of 4

All of above

Share Results Re-launch Polling

19 voted

(0) 0%

(3) 16%

(0) 0%

(16) 84%



GHZ state: violation at a single shot

We can generalize the Bell state ®* to three particles and arrive at the Greenberger-
Horne-Zeilinger state 1 @

GHZ) = —(|000) +

(GHZ) = —=(000) +{{11])

U Consider four commuting observables: (i)@@—\, (I YRXKY, (|||) X ® YRY

X ® X ® X|GHZ) = (+1)IGHZ) [.y4 0oy (77)

Fo ¥k xjoH2) ~(DicH2) ¥~ (f*/;) 10>~ m]

-
Y ® X ® Y|GHZ) = (—1)|GHZ) »lm>»‘oo{; "l
X ®Y @ Y|GHZ) = (—1)|GHZ)

» For classical local theory, one attributes this to local properties:
(@@jl Y1YoXa=-1, YiXaY3= -1, x1y2y3 W(wherexy— +1)
A = Lty x@)x(=1y = ~ L
» But this gives contradiction when we multlply all four equalities together:
1=-1! (experiments show QM is correct)



Quantum entangled states are useful



Quantum Teleportation

One of the most incredible tasks that an entangled pair allows is guantum
teleportation. For illustration, we use the state ®* to explain this. Suppose we have
an arbitrary state { of particle 1 at A, who share the entanglement with B via ®*,,

o) o= alo)+ 1)

1¥)1 = al0)
)23 = —=(100) + 1)
. ] 4 », Y 2
) @ | BT ) o3 = E(a,yO) +b[1)) @ (|00) + |11))

( &
vl b D
We derive it with equations. % 3 |T >_L(|o1>—|10>)
02 D Gl

. unknown of m/ Ot\w/\/ 3 &Q“ gn)(@

~—— —




Quantum Teleportation (analysis

> - \—THVQ/

\w>1®|<1>+>23:%(a|0 Fo e oo+ ©2 7 %(’
* ~— - \21-13)

= @) + a0+ 1) + D) ‘27—;

S~ N o1
——{a( @ +|‘1> >)®\0>+G(I\I’+>+I‘I’ ) @[1) +b(|TT) — [T7)) @ [0) + b(|2 K~
W ,

t y{qﬁf ® (al0) + b|1)) @( |0)—b|1))+|@+>®(@)+|\1r ) ® (al1)=)bl0) }
S @ & W O Xy 9O awm @ /
YRl ment—

e The unknown information a & b is preserved in the third particle, but depending on
boer 0¥ N the outcome of the ‘Bell-state’ measurement in the basisof ®*& W *

puch ?:(i\ 12, X'z,?- \<2_ - iL’/ ‘

Four possible outcomes, Alice informs Bob: (1) ®* = apply identity (nothing); (2) & >
apply Z to particle 3; (3) klﬁ'é apply X to particle 3; (4) W-—> apply —iY to particle 3
=>» Recover | at particle 3



Teleportation experiment

[Pan et al. ’03, Bouwmeester et al. '97]

Classical
information

Bob

o\ —9 OA ¢ laggi o)
7\ o n Dakg = ol Gma
0/ D—0O s b

p —— O



Exercise: Teleportation for qudits

For two d-level qudits, there are dxd basis states and also dxd entangled basis states:

d—1
(Unm) = Y €2™/4)j) @ |(j + m)mod d)
7=0
For an arbitrary qudit state [P)1 = Z ck|k)

k
The shared entanglement that we will use is “1100>23

Suppose Alice performs measurement on particles 1&2 in the basis defined by W,

If she obtains the outcome nm, what action needs Bob to perform to recover {?

o, = Z 2™k /4 1Y (k4 m)mod d|
k



FYl: A variant---gate teleportation™®

Controlled-Z gate and single-qubit measurement induces rotation 0D > M

D1 T
Meagarmant 1000 Y12 o
D) sor-  CZi=100®I+1] . \I-SQ)
Jin) /= (a|0) —|—b\1>)1 I /«i— o @: (8 : @
CZ ot atd » X
+) lin)2)

(309 rale QM)

The measurement basis € is defined via

[ £) = ( ZE/Z\O iezE/Q‘l —j cos(f)if_f_sm(g)alﬁz

4

or the observable




Derivation™

The measurement basis € is defined via

in) = (al0) + bJ1)), I D—O £ 6) = (20) + 62|1)) V2
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Entanglement swapping (via teleportation)

Imagine that Alice and Bob share an entangled pair and Bob and Charlie share
another entangled pair. By performing the Bell-state measurement on Bob’s two
particles, Bob ‘teleports’ his entanglement with Charlie to Alice (or equivalently, Bob
‘teleports’ his entanglement with Alice to Charlie). This results in shared
entanglement between Alice and Charlie.

¢ fusera X

Entanglement creation
7 > QMF ..... .4 QM QMF ..... N QM| - |QM QM| |QME-)--H QM
Bell

i i A D .. W X zZ
Alice CEEIET Charlie -

b) First entanglement swapping
Bob QM aIQM - |QMe: ’\”:E
A D .. W Z
\_/

c) Last entanglement swapping

C QM F.....:.........................................................................................) QM
A Z

> Entanglement swapping is the basic protocol to establish entanglement between distant
nodes (such as the Duan-Luken-Cirac-Zoller with atomic ensemble quantum memory)



Remote state preparation ™)

It uses shared entanglement, e.g. the singlet state (which is antisymmetric):

From the antisymmetry, one sees that for any single qubit state { and its orthogonal {+:

o) =® W) — 1) @ )

If Alice performs measurement on her particle in the basis {{,{+}, with probability 1/2,
she obtains P+ and thus prepares Bob’s state in ), and similarly with probability 1/2

prepares Bob’s state in -+ C;Ii/ \PL)

In the latter case, it is in general impossible for Bob to transform from in ¢+ to Y,

except for ‘equatorial states’ A\_@ S )3 @ rotnts
o~ - 2
M): (10) +€*|1) NP
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Sharing Poll Results

Atten e now viewing the poll results

1. How was today's class? (Multiple choice)

Too fast and some topics are hard (3/22) 14%

Too slow and | know everything (1/22) 5%
(]

|
It was at the right pace for me (12/22) 55%

| learned something new (16/22) 73%

Stop Share Results Re-launch Polling



