PHY682 Special Topics in Solid-State Physics:
Quantum Information Science

Lecture time: 2:40-4:00PM Monday & Wednesday
Today 9/16:

1. Reminder: Homework 2 due Sunday Sep. 20th
2. How to use Qiskit; Circuit model and Quantum gates



Quantum computation: circuit model
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Universal set of gates (and notations)
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Example gates and gate identity
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Multiqubit gates from standard set
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Toffoli gate with 6 CNOTs*

O Verifying how it works (exercise):
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O Note that there is a proof that there must be at least
5 two-qubit gates for Toffoli [Phys. Rev. A 88, 010304(R) (2013)]



CAn(U) n-qubit controlled unitary*
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Figure 4.10. Network implementing the C"(U) operation, for the case n = 5.



Qiskit gate set: single qubits

O ugates: cos(6/2) —esin(0/2)
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O Identity gate: iden = u0(d) = u3(0,0,0)
O Pauli gates: x, y, z; Hadamard: h; -+

phase gate: s and its inverse: sdg, < >

T gate: t and its inverse: tdg,
X,Y,Z rotations: rx(angle, qubit), ry and rz



Qiskit gate set: multiple qubits
g Ple g ,g . @/@%
Controlled-NOT gate: cx(control, target) ——Q( —

Controlled-Y and -Z gates: cy(control, target), cz(control,target) ! _ g/@/‘

Controlled-Hadamard gate: ch(control, target) ‘I>
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Controlled-Rotation gate: crz(angle,control, target), and crx, cry
Controlled-U1 gate: cul(angle,control, target)

Controlled-U3 gate: cu3(anglel,angle2,angle3,control, target)
Swap gate: swap(qubitl, qubit2)

Toffoli gate: cex(controll,control2, target)

Controlled swap gate (Fredkin Gate): cswap(control, qubit2,qubit3)



Other operations

Measurement: measure(qubit, classical outcome)
Reset qubit to O: reset(qubit)

Conditional operations (on classical outcome):

gc.measure(q,c)
gc.x(q[0]).c_if(c,0) “apply Xto g[0] ifcis O



Comment: Euler rotation and u3 gate
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Measurement

O In IBM, Google or Rigetti, the measurement is done in 0/1 basis, e.g. /A
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Principle of Deferred Measurement

U Measurement can be moved to t ircuit; if measurement results are

used to classically control some operation, it can be replaced by controlled operation
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Comments: Clifford gates and Gottesman-Knill
no go theorem*

U Clifford gates U. are those that transform a Pauli product o to another
Pauli product operator o’:

Uco‘Ug:O"

0 Theorem 10.7: (Gottesman—Knill theorem) Suppose a quantum
computation is performed which involves only the following elements:
state preparations in the computational basis, Hadamard gates, phase
gates, controlled-NOT gates, Pauli gates, and measurements of
observables in the Pauli group (which includes measurement in the
computational basis as a special case), together with the possibility of
classical control conditioned on the outcome of such measurements.

=» Such a computation may be efficiently simulated on a classical computer.



Qiskit tutorial: summary of Q operations

https://qiskit.org/documentation/tutorials/circuits/3_summary_of quantum_operations.html

Installing Qiskit

Getting Started with Qiskit
The Qiskit Elements
Development Strategy
Contributing to Qiskit
Release Notes

Frequently Asked Questions

@ » Circuit Tutorials » Summary of Quantum Operations

View page source

This page was generated from
tutorials/circuits/3_summary_of_quantum_operations.ipynb.

Summary of Quantum Operations

In this section we will go into the different operations that are available
in Qiskit Terra. These are: - Single-qubit quantum gates - Multi-qubit
quantum gates - Measurements - Reset - Conditionals - State
initialization

We will also show you how to use the three different simulators: -
unitary_simulator - gasm_simulator - statevector_simulator



Do Notebook on gates

Do Poll

Do you now feel comfortable with running the
Ipython/Jupyter Notebook?

(a) Yes
(b) I may need to more time; but | am optimistic
(c) No

Which do you prefer when you need to run Qiskit
notebooks?

(a) Install Python & Qiskit packages on my
laptop/desktop

(b) Use Cocalc.com

(c) I'am not yet sure

Sharing Poll Results

Attendees are now viewing the poll results

1. Do you now feel comfortable with running the
Ipython/Jupyter Notebook?

Yes (18) 78%

| may need to more time; but | am optimistic about it

(4) 17%
—
No (1) 4%
-

2. Which do you prefer when you need to run Qiskit notebooks?

Install Python & Qiskit packages on my laptop/desktop

(16) 70%
Use Cocalc.com (4) 17%
|
| am not yet sure (3) 13%
———4

Stop Share Results Re-launch Polling



