
Today 9/21:

1. Will discuss Grover’s algorithm
2. Next Week 5’s topics: VQE, QAOA, Hybrid Q-Classical Neural

Network, Application to Molecules

PHY682 Special Topics in Solid-State Physics:
Quantum Information Science

Lecture time: 2:40-4:00PM Monday & Wednesday

Comments: Clifford gates and Gottesman-Knill
no go theorem*

 Theorem 10.7: (Gottesman–Knill theorem) Suppose a quantum
computation is performed which involves only the following elements:
state preparations in the computational basis, Hadamard gates, phase
gates, controlled-NOT gates, Pauli gates, and measurements of
observables in the Pauli group (which includes measurement in the
computational basis as a special case), together with the possibility of
classical control conditioned on the outcome of such measurements.

 Such a computation may be efficiently simulated on a classical computer.

 Clifford gates UC are those that transform a Pauli product σ to another
Pauli product operator σ’:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-1

-0.5

0.5

1

1 2 3 4 5 6 7 8 9 10 11 1213 1415 16

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-2.5

-2

-1.5

-1

-0.5

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-2.5

-2

-1.5

-1

-0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-0.5

0.5

1

1.5

Quick overview of Grover searching

Perform iteration:
(i) Sign on marked targets
(ii) Reflection w.r.t mean

(0) (1) (2) (3)

(4) (5) (6)

Suppose: items 2 and 7 marked

One-step Grover
4 items (use 2 qubits) with marked item 00

1.initialize
2. Multiply
00 by (-1)

3. Reflect
about mean

q = QuantumRegister(2)
c = ClassicalRegister(2)
qc = QuantumCircuit(q, c)

initialize
qc.h(q[0])
qc.h(q[1])

mark item 0 (or $|00\rangle$)
qc.s(q[0])
qc.s(q[1])
qc.h(q[1])
qc.cx(q[0], q[1])
qc.h(q[1])
qc.s(q[0])
qc.s(q[1])

apply reflection around average
qc.h(q[0])
qc.h(q[1])
qc.x(q[0])
qc.x(q[1])

qc.h(q[1])
qc.cx(q[0], q[1])
qc.h(q[1])

qc.x(q[0])
qc.x(q[1])
qc.h(q[0])
qc.h(q[1])

measure
qc.measure(q,c)

• Web-based interface:

• Can use python codes (on right) and draw circuit:

https://nbviewer.jupyter.org/url/insti.physics.sunysb.edu/~twei/
Notebook/GroverExample.ipynb

See IBM Q userguide or my IPython Notebook:

[Note this is a very old notebook]

Analysis of one Grover step
(i) Sign on marked targets
[equivalent to reflection w.r.t.
the unmarked “plane”]

(ii) Reflection w.r.t mean

 One Grover iteration is a unitary operation that is equivalent to a rotation:

with the angle satisfying

Time complexity of Grover Algorithm
 One Grover iteration is a unitary operation that is equivalent to a rotation:

with the angle satisfying

 Assume number of marked items smaller than N/2, and approximate

 Number of iterations to reach an angle π/2:

 For N=4, only one marked item: θ=π/3, one iteration reaches the target
with probability 1

What if number of marked items is unknown?

 One Grover iteration is a unitary operation that is equivalent to a rotation:

with the angle satisfying

 Need to estimate θ first, using the quantum phase estimation (later lecture)

 Grover operator has two eigenvalues

Generalization: Amplitude amplification*
 Recall one Grover:

 Generalize above form to

With initial state:

With initial state:

|0…0> can contain extra work qubits

 Action of GA is a rotation of
angle θ in the 2D space spanned by

Or equivalently

