PHY682 Special Topics in Solid-State Physics: Quantum Information Science

Lecture time: 2:40-4:00PM Monday & Wednesday

Today 9/23:

More on Week 5's topics: VQE, QAOA, Hybrid Q-Classical Neural Network, Application to Molecules

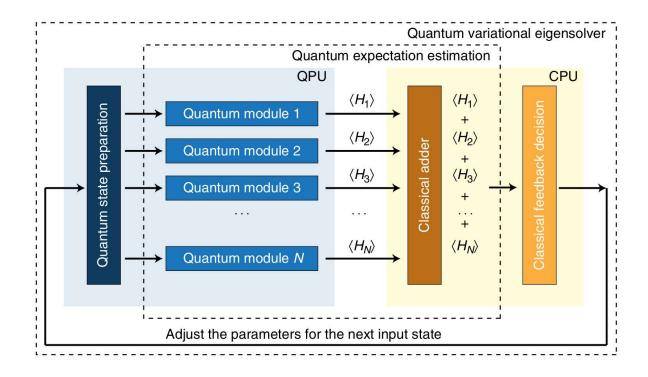
Attendees are now viewing the poll re	esults
1. Do you now feel comfortable with running th Ipython/Jupyter Notebook?	e
Yes	(10) 77
I may need to more time; but I am optimistic about it	(3) 23
No	(0) 0
2. Which do you prefer when you need to run Q	
	iskit notebooks?

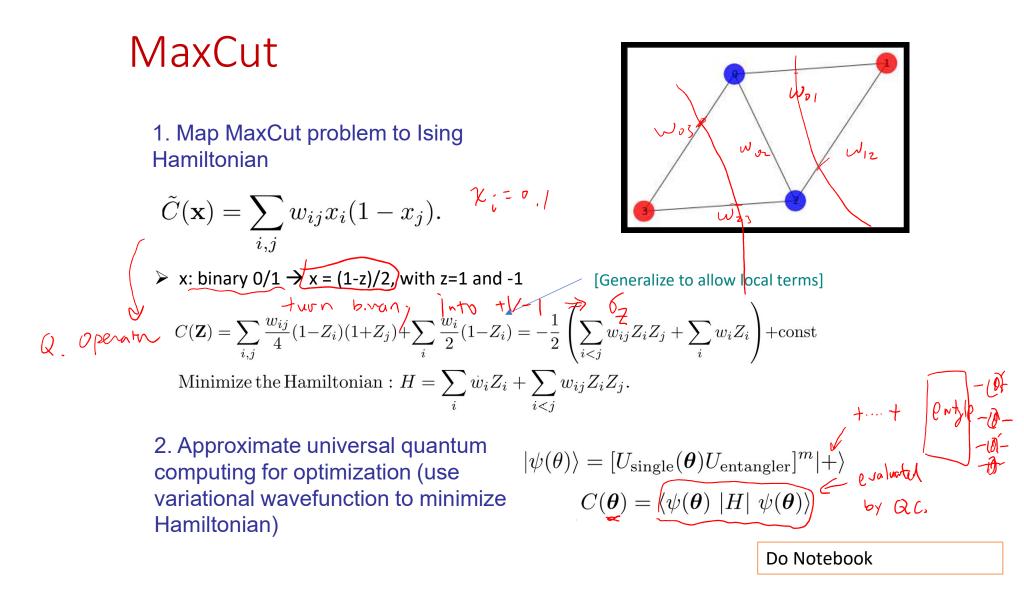
Summary of VQE

[Peruzzo et al. Nat. Comm. 5, 4213 (2014)]

$$H = \sum_{i=1}^{N} c_i H_i$$

e.g.
$$H = -B_x \sigma_x - B_z \sigma_z$$

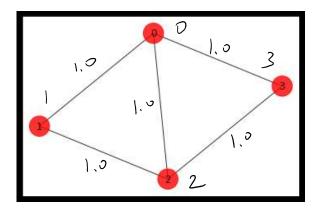




The Graph (used in the notebook demo)

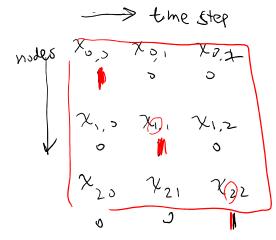
Generating a graph of 4 nodes

n=4 # Number of nodes in graph G=nx.Graph() G.add_nodes_from(np.arange(0,n,1)) elist=[(0,1,1.0),(0,2,1.0),(0,3,1.0),(1,2,1.0),(2,3,1.0)] # tuple is (i,j,weight) where (i,j) is the edge G.add_weighted_edges_from(elist)

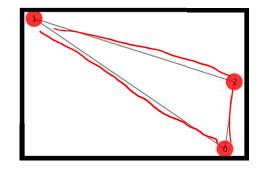


Traveling Salesman Problem

Find the shortest Hamiltonian cycle in a graph G = (V, E) with n = |V|nodes and distances, w_{ij} (distance from vertex *i* to vertex *j*). A Hamiltonian cycle is described by n^2 variables $x_{i,p}$, where *i* represents the node and *p* represents its order in a prospective cycle. The decision variable takes the value 1 if the solution occurs at node *i* at time order *p*. We require that every node can only appear once in the cycle, and for each time a node has to occur. This amounts to the two constraints (here and in the following, whenever not specified, the summands run over 0,1,...,n-1)



$$\sum_{i} x_{i,p} = 1 \quad \forall p$$
$$\sum_{p} x_{i,p} = 1 \quad \forall i.$$



Do Notebook

Traveling Salesman Problem

For nodes in our prospective ordering, if $x_{i,p}$ and $x_{j,p+1}$ are both 1, then there should be an energy penalty if $(i,j) \notin E$ (not connected in the graph). $\downarrow \quad \cup, \mathbb{Z}$ The form of this penalty is

w_o>

 \mathcal{D}

$$\sum_{i,j\notin E}\sum_{p}x_{i,p}x_{j,p+1}>0,$$

where it is assumed the boundary condition of the Hamiltonian cycles $(p = n) \equiv (p = 0)$. However, here it will be assumed a fully connected graph and not include this term. The distance that needs to be minimized is

$$C(\mathbf{x}) = \sum_{i,j} w_{ij} \sum_{p} x_{i,p} x_{j,p+1}$$

Putting everything in a single objective function to be minimized, we have

$$C(\mathbf{x}) = \sum_{i,j} w_{ij} \sum_{p} x_{i,p} x_{j,p+1} + A \sum_{p} \left(1 - \sum_{i} x_{i,p} \right)^2 + A \sum_{i} \left(1 - \sum_{p} x_{i,p} \right)^2 \cdots \left(1 - \sum_{p} x_{i$$

Qiskit implementation

https://quantum-computing.ibm.com/jupyter/tutorial/

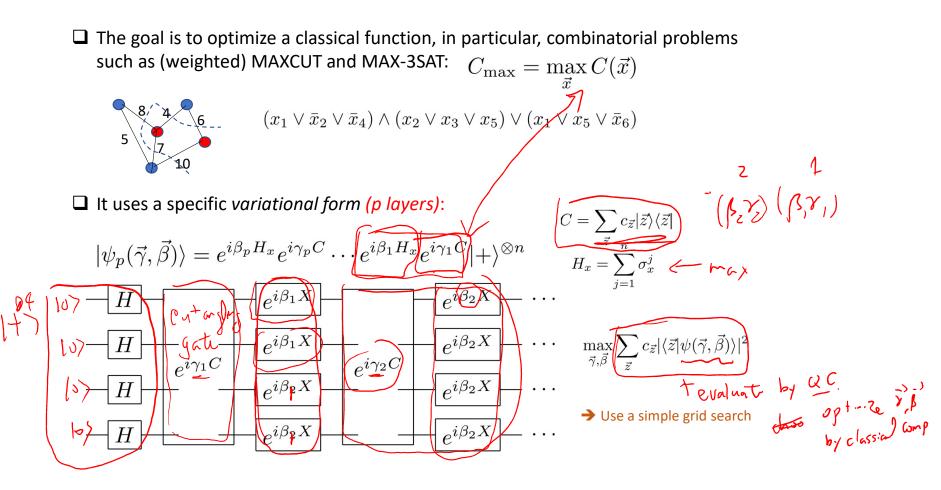
(1) MaxCut and (2) Traveling Salesman Problem (TSP)

https://quantumcomputing.ibm.com/jupyter/tutorial/advanced/aq ua/optimization/max_cut_and_tsp.ipynb

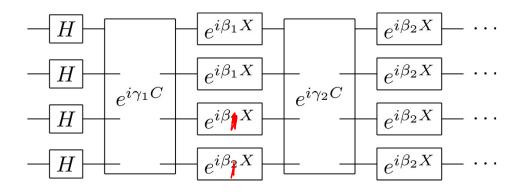
Note the newest notebook works on qiskit 0.20.x but NOT on qiskit 0.19.x → I had to modify codes for them to work on the latter

Do Notebook

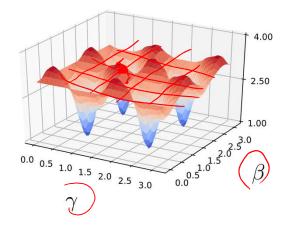
Quantum approximate optimization algorithm (QAOA) [Farhi et al. arXiv:1411.4028]



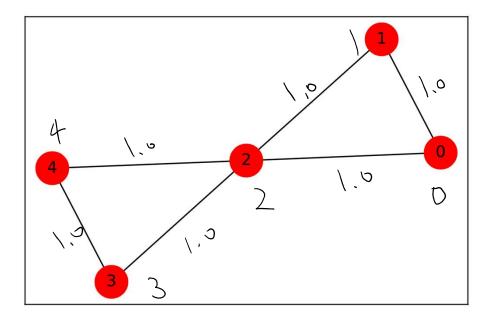
QAOA: parameter optimization



- **Ο**ptimal parameters β's and γ's are sometimes found using grid search (evaluating all grid points and identify the optimal ones)
- **Ο**ptimal parameters β's and γ's can also be found iteratively using classical optimization (such as gradient descent, Nelder-Mead, etc.)



Qiskit implementation



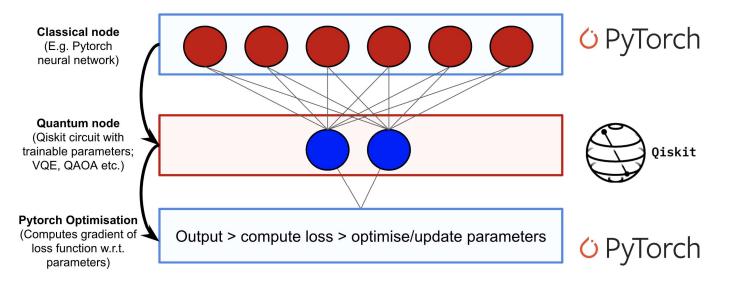
Do Notebook

Hybrid classical-quantum neural network*

□ Classical Machine Learning has become an important tool

Quantum Machine Learning has been a recent research hot topic

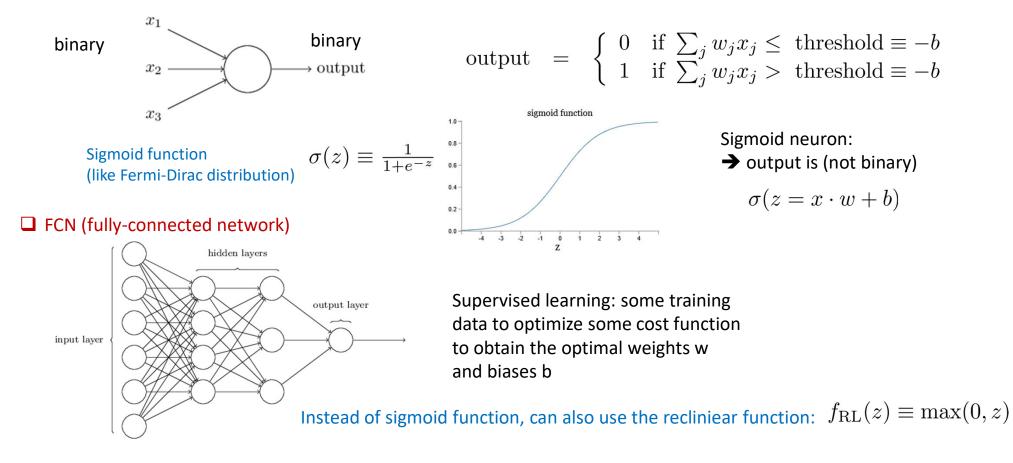
➔ Hybrid classical-quantum approach is already implementable Use 'Pytorch' (useful machine learning package) and 'Qiskit'



https://qiskit.org/textbook/ch-machine-learning/machine-learning-qiskit-pytorch.html

Quick review of classical neural network

Perceptron:



□ Use gradient descent for optimization

$$\Delta C(v) = \nabla C \cdot \Delta v, \text{ choose } \Delta v = -\eta \nabla C \text{ to update } v : v \to v' = v - \eta \nabla C.$$

C is cost function, eta is the "learning rate", v can be weights w or biases b

$$w_k \rightarrow w'_k = w_k - \eta \frac{\partial C}{\partial w_k}$$

 $b_l \rightarrow b'_l = b_l - \eta \frac{\partial C}{\partial b_l}.$

□ *Stochastic* gradient descent

Ideas: a training epoch uses n training sets of data too large

→ break down to smaller mini-batches, each with m sets

$$w_k \rightarrow w'_k = w_k - \frac{\eta}{m} \sum_{j}^{m} \frac{\partial C_{X_j}}{\partial w_k}$$
$$b_l \rightarrow b'_l = b_l - \frac{\eta}{m} \sum_{j}^{m} \frac{\partial C_{X_j}}{\partial b_l},$$

Learning rate eta η cannot be too small nor to big!

→ Re-use same training data but randomly re-shuffle it for the next training epoch

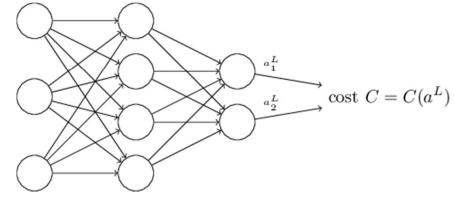
□ Cost functions (assuming input x & y)

 $C = \frac{1}{2n} \sum_{x} \|y(x) - a^{L}(x)\|^{2}, \ a^{L}(x) \text{ is the vector of activation output after } L \text{ layers}$

Using cross-entropy as cost function

$$C = -\frac{1}{n} \sum_{x} \sum_{j} \left[y_{j} \ln a_{j}^{L} + (1 - y_{j}) \ln(1 - a_{j}^{L}) \right]$$

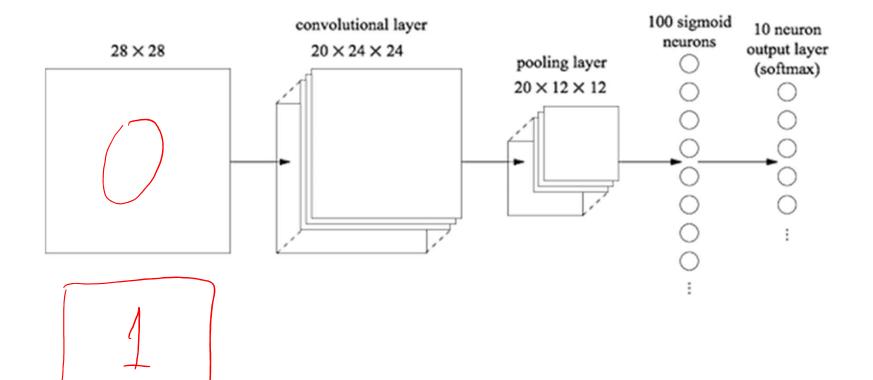
(i) The greater the error, the faster the neurons learn(ii) Prevent learning slowdown



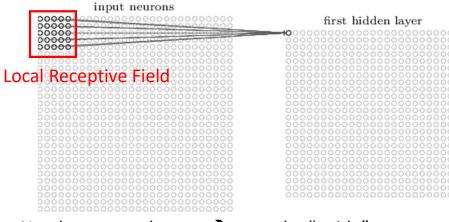
□ Softmax layer of neurons (cf Boltzmann weights)

$$a_j^L = \frac{e^{z_j^L}}{\sum_k e^{z_k^L}}, \quad z_j^L \equiv \sum_k w_{jk}^L a_k^{L-1} + b_j^L,$$

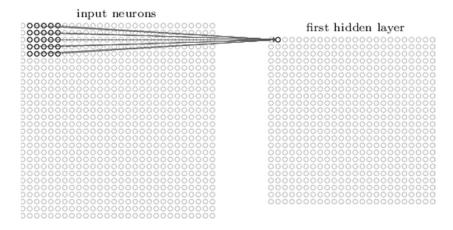
Convolutional Neural Network (CNN)



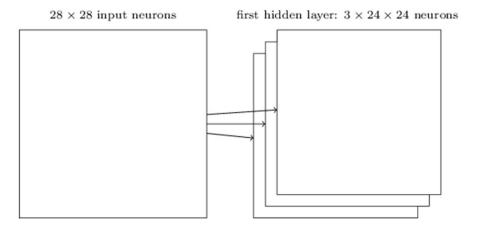
Convolutional Neural Network (CNN)



Need not move by one \rightarrow move by "stride"

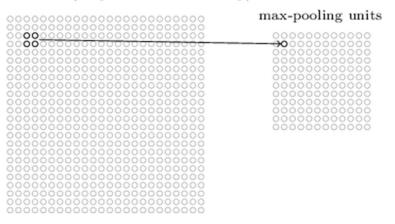


Using 3 different Local Receptive Fields → 3 feature maps/3 kernels

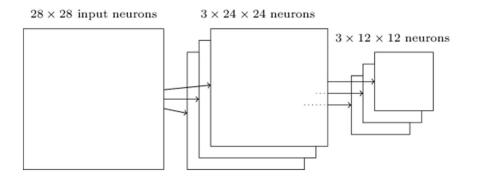


Pooling layer

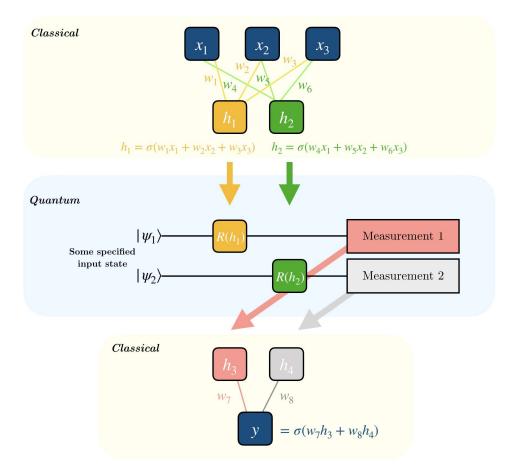
hidden neurons (output from feature map)



Alternative to max-pooling: L2 pooling



Hybrid classical-quantum neural network*

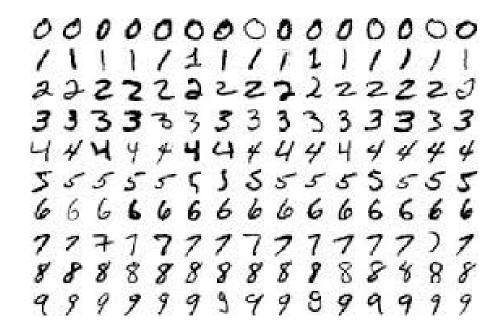


https://qiskit.org/textbook/ch-machine-learning/machine-learning-qiskit-pytorch.html

Hybrid classical-quantum neural network*

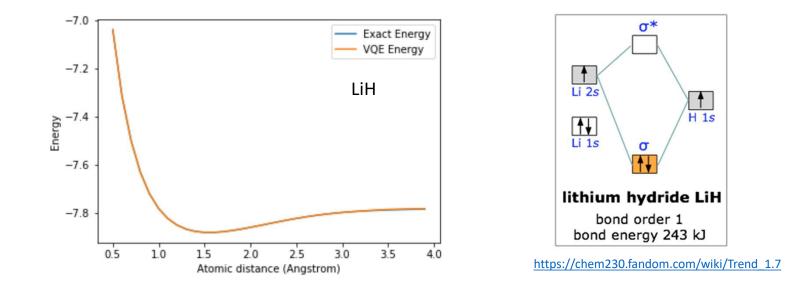
Do Notebook

→ Will use MNIST data set and try to distinguish 0 from 1



Other applications*

□ Simulating molecular energy with VQE



Background: orbitals, Coulomb interaction, Hamiltonian in second quantized form