
Today 10/5:

1. Brief review error correction for Shor’s code
2. More of Week 6’s topic on quantum error correction

PHY682 Special Topics in Solid-State Physics: 
Quantum Information Science

Lecture time: 2:40-4:00PM Monday & Wednesday



Review: Shor’s 9-qubit Error Correction Code [[n,k,d]]=[[9,1,3]]

 To fight against flip error: 

 To fight against phase error:

 Shor’s suggestion to fight against both (and thus more):

 Can verify the capability of correcting one-qubit errors



Review: Shor’s code protects all 1-qubit errors!
Nielsen & Chuang: “the apparent continuum of errors that may occur on a single 
qubit can all be corrected by correcting only a discrete subset of those errors”

 Consider Ek to be a general combination

Its action on a qubit ψ gives rise to superposition (of no error and three types of errors):

 Measuring “syndromes” collapses to either of the four components and
correction can be applied to recover ψ



Review: Correctable errors---Shor’s code
 Correctable condition:

Exercise 10.10 (N&C): Explicitly verify the quantum error-correction 
conditions for the Shor code, for the error set containing I and the error 
operators Xj ,Yj ,Zj for j = 1 through 9.



Review: Error-correction conditions for S*
 Theorem 10.8 (Nielsen & Chuang): (Error-correction conditions for 

stabilizer codes) Let S be the stabilizer for a stabilizer code C(S). 
Suppose {Ej } is a set of operators in Gn such that E†

j Ek not in N(S)−S 
for all j and k. Then {Ej } is a correctable set of errors for the code C(S).

Note: N(S) is normalizer group of S: contains elements E of Gn that 
preserve S, i.e. ∀ g ∈ S  E g E† ∈ S  [In this case, N(S) is equal to the 
centralizer Z(S), the group that commutes with all elements in S]

 For Shor’s code: N(S) is generated by ① X1X2X3X4X5X6, ② X4X5X6X7X8X9

(from phase flip) ③ Z1Z2, ④ Z2Z3, ⑤ Z4Z5, ⑥ Z5Z6, ⑦ Z7Z8, ⑧ Z8Z9 and the 
two logical operators: Z = X1X2X3X4X5X6X7X8X9 and logical X = 
Z1Z2Z3Z4Z5Z6Z7Z8Z9

 N(S)-S [set of elements in N(S) but not in S] contains operators of 
weight at least three: X1X2X3 , X4X5X6 , X7X8X9 , Z1Z4Z7 , Z2Z5Z8 , 
etc. E†

j Ek from single-qubit errors are not in this set! 



Summary: Quantum error correction

inspirations from classical coding theory;
now also used in many fields, e.g. condensed matter physics 
and AdS/CFT holographic entanglement

 Also due to quantum superposition, being able to correct 
flip and phase errors  correct all one-qubit errors

 In quantum computer: there are more errors than
just bit flip and phase 

 Quantum error correction has been well developed, 
drawing

 Quantum computers spend more effort in preventing
and actively correcting errors than classical ones

 need measurement to find errors and apply correcting operations 



Fault-tolerant and threshold
If the error probability p of a gate is less than some threshold 
pth , then arbitrarily long quantum computations are possible, 
using noisy gates, with a reasonable overhead cost

 pth and overhead depend on error model and fault-tolerant scheme

[Shor, Aharonov, Ben-Or, Kitaev,…]

 Uses concatenation (many layer)

each layer error prob. p  cp2

 k layers:

 Want error probability
≤ gate error rate/poly(number) of 
gates

 needs



Topological codes

Toric code, color codes, Bacon-Shor codes, subsystem codes, 
fracton codes, Levin-Wen string-net models, etc.

 Closely related to topological phases

 Do not need “concatenation” (i.e. multiple layers)



Kitaev’s toric code

 Geometry: torus

 Hamiltonian:

 One qubit on each edge
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 Star operators:

 Plaquette operators:

[Kitaev ’03, Wen ‘03]

This 
defines the 
stabilizer 
group



Ground-State degeneracy

 Counting stabilizer operators

 Effective two qubits, i.e. 4-fold degeneracy
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 How many independent
equations (stabilizer generators)?

 For surface with genus g: 4g-fold degeneracy



Recall: Stabilizer group & logical code space 

Proposition 10.5 (Nielsen & Chuang): Let S = <g1 ...,gn−k> be generated by 
n − k independent and commuting elements from Gn , and such that −I not 
in ∈ S. Then VS is a 2^k -dimensional vector space (effectively k qubits): 

 VS is a k-qubit code space C(S) defined by the stabilizer group S

 Can choose two sets of k operators (logical Z’s and X’s) 

Such that

Independent, commuting(i)

(ii)

X’s are logical X operators

 Can apply to Toric code: what are the logical operators?  



 Operators on non-contractible
cycles form effective qubit
operators

 Action of X’s and Z’s on GS remains in ground space [C’s can be deformed]

Cz;1

Cz;2

Two qubits: effective Pauli’s
Cx;1

Cx;2

Commute with star and
plaquette operators



 A pair of excitations has energy E0+4

Excitations of toric code model

 Excitations break some of them
(e.g. Bp1= -1),
but come in pairs due to

 Ground states “satisfy” all terms 
As=Bp=1 in the Hamiltonian
 E0 = - 2N2 -1
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Correcting local errors 
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-

-

Z

Z
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X

X X

“charge” c 
excitations

“flux” m 
excitations

 Error syndromes are from 
measuring As=Bp (see if -1)

 Identify pairs of (e,e) and of (m,m)

 Then apply string of Z..Z or 
X..X to correct them



Check error correction condition

For toric code: P is projector to ground space.

 Correctable condition:

 Can be easily checked that local operators cannot distinguish different ground states 

(the combined E†
i Ej needs to wrap around the torus, otherwise αi≠j=0

E†
j Ek not in N(S)−S for all j and k.

 Correctable condition from stabilizer formalism:

 N(S)-S is generated by logical operators (product of Pauli wrapping around)

 Errors can be corrected as long as E†
j Ek do not wrap around the torus) 



Ground state: explicit construction

 Action of As: locally flipping 0000 to 1111

 Satisfies all As and Bp

Cz;1

Cz;2

Cx;1

Cx;2

 Configuration 00…0 satisfies 

 apply all possible flipping 

 Consider group Gs generating
by all As



Pictorial understanding

 Ground state G00 is a equal superposition of all possible
(contractible) loop configurations [of 1…1]
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4

5

e.g.  



Other ground states [4 degenerate states]

Cz;1

Cz;2

Cx;1

Cx;2

 Ground space: effective two qubits

 Use logical Pauli X operators to flip 
to get other ground states:

 Degenerate ground states cannot
be distinguished locally
(as X strings can be deformed)



Pictorial understanding

 Equal superposition of all possible
(contractible) loop configurations

 Non-contractible loops with
winding number=1 (odd) in horizontal
direction

Another ground state:

x x x x x x x



Anyons: excitations of toric code model

 We have seen ground-state vacuum (I)
and charge (e): As =-1, flux (m) Bp= -1
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“charge” e 
excitations

“flux” m 
excitations

 Exchange between e & e (or m & m) gives +1

 Braiding of e around m  gives -1 sign

 -1 sign due to 
anticommutation of X and 
Z operators (crossed by 
red and green lines)



Anyons: I, e, m and f (fermions)
 We have now seen three anyons: vacuum (I)

charge (e): As =-1, and flux (m) Bp= -1

 One more type of anyons is the usual 
“fermion” which is a “bound state” of e and m e

m

m

e

Note: Braiding of (e,m) around (e,m)  gives +1 

 Question: how do we reveal -1 of its fermion exchange?

 Fusion: e and m fuse to f  (e x m = f); 
e x f = m, m x f = e

 Vacuum I is identity: I x e = e, I x m = m,
I x f = f 

 Same anyons fuse to vacuum: 
e x e = I = m x m = f x f



“Topological charge” basis

Cz;1

Cz;2

Cx;1

Cx;2

 Four basis states in ground space 
(convenient basis but there is a better one)

 Topological charge basis
w.r.t. (e.g.) horizontal loops:

Old logical:



Rotate by 90◦ and modular S matrix
 Rotation by 90◦ of (e.g.) horizontal loops:

Modular S matrix mutual statistics

 Using topological charge basis:



 Dehn twist:

 Using topological charge basis:

Dehn twist and modular T matrix

Modular T matrix  self exchange statistics 

Fermion exchange sign -1



Modular transformation and statistics

SL(2,Z)
 SL(2,Z) generated by s & t

[90◦ rotation on square] [Dehn twist]

 Modular transformation on degenerate ground states in topological basis
 modular matrices S (mutual statistics) & T (self-statistics)



Check error correction condition

For toric code: P is projector to ground space.

 Correctable condition:

 From the property of topological phase that local operators cannot
distinguish different ground states (the combined E†

i Ej needs to wrap
around the torus)

E†
j Ek not in N(S)−S for all j and k.

 Correctable condition from stabilizer formalism:

 Errors can be corrected as long as E†
j Ek do not wrap

around the torus)



Other topological error codes

Surface code: “Toric code” on a plane with boundary

Color code: can be regarded as multiple copies of toric codes
[qubits are on vertices]

Fracton code: 
logical operators have fractal structure

Bacon-Shor code:



Error mitigation (not active correction)
[Temme, Bravyi & Gambetta, PRL 119, 180509 
(2017); Li & Benjamin, PRX7, 021050(2017)] Basic idea: 

 Same area  same ideal gate

 A gate is achieved by some evolution operator 
via external field or coupling strength J(t) ideal case:

same area 
-> same gate

 Reality: longer pulse experience “larger” noise
(effective larger λ)

 If we use different pulses to mimic different noise strengths: cj λ
can extract ideal E* up to small correction 



Measurement Error mitigation

 Basic idea: prepare computational states n and 
measure in computational basis. Gather enough 
statistics  matrix M

 Mitigate readout errors [M from detector tomography or above 
procedure]

 Invert to find P with constraint P ≥ 0:

[e.g Chen, Farahzad, Yoo & Wei, PRA 100, 
052135 (2019); also standard in Qiskit]


