PHY682 Special Topics in Solid-State Physics:
Quantum Information Science

Lecture time: 2:40-4:00PM Monday & Wednesday
Today 10/5:

1. Brief review error correction for Shor’s code
2. More of Week 6’s topic on quantum error correction



Review: Shor’s 9-qubit Error Correction Code [[n,k,d]]=[[9,1,3]]
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0 Shor’s suggestion to fight against both (and thus more):
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=» Can verify the capability of correcting one-qubit errors



Review: Shor’s code protects all 1-qubit errors!

Nielsen & Chuang: “the apparent continuum of errors that may occur on a single
qubit can all be corrected by correcting only a discrete subset of those errors”

a Consider E, to be a general combination

Fr.=epol +e.1 X +e0 X7 +ep32

Its action on a qubit Y gives rise to superposition (of no error and three types of errors):

Er|v) = eroly)) + ex1 X|W) + exa X Z|9) + exs Z|1)

= Measuring “syndromes” collapses to either of the four components and
correction can be applied to recover g



Review: Correctable errors---Shor’s code
o Correctable condition: PETE, P = o, P

Exercise 10.10 (N&C): Explicitly verify the quantum error-correction
conditions for the Shor code, for the error set containing | and the error \i
operators X; Y; ,Z; for j = 1 through 9.
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Review: Error-correction conditions for S*

0 Theorem 10.8 (Nielsen & Chuang): (Error-correction conditions for
stabilizer codes) Let S be the stabilizer for a stabilizer code C(S).
Suppose {E;} is a set of operators in G, such that ET, E, not in N(S)-S
for all jand k. Then {E; } is a correctable set of errors for the code C(S).

Note: N(S) is normalizer group of S: contains elements E of G, that
preserve S,i.e. Vg€ S = EgE' €S [Inthis case, N(S) is equal to the
centralizer Z(S), the group that commutes with all elements in S]

> For Shor’s code: N(S) is generated by (1) X, X,X3X,XsXg, (2) X, XXsX;XgXg
(from phase flip) 3) Z,Z,, 4) Z,Z5, (5) Z,Z5, (6) Z:Zs, (7) Z,Zg, (8) ZgZ, and the
two logical operators: Z = X, X,X;X,X5XsX;XgXq and logical X =
Z2,2,2:2,2:2:7,7:7,
v N(S)-S [set of elements in N(S) but not in S] contains operators of
weight at least three: X, X, X5, X, XsXg, X, XgXg , 21242, , 2,252,
etc. ET, E, from single-qubit errors are not in this set!



Summary: Quantum error correction

o In quantum computer: there are more errors than
just bit flip and phase

v Also due to quantum superposition, being able to correct
flip and phase errors = correct all one-qubit errors

o Quantum error correction has been well developed,

drawing inspirations from classical coding theory;

now also used in many fields, e.g. condensed matter physics
and AdS/CFT holographic entanglement

o Quantum computers spend more effort in preventing
and actively correcting errors than classical ones

= need measurement to find errors and apply correcting operations



Fault-tolerant and threshold

[Shor, Aharonov, Ben-Or, Kitaey,...]

If the error probability p of a gate is less than some threshold
p: , then arbitrarily long quantum computations are possible,
using noisy gates, with a reasonable overhead cost

» Uses concatenation (many layer)
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% py, and overhead depend on error model and fault-tolerant scheme



Topological codes

Toric code, color codes, Bacon-Shor codes, subsystem codes,
fracton codes, Levin-Wen string-net models, etc.
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Kitaev’s toric code

o Geometry: torus

a One qubit on each edge

o Hamiltonian: H=~) A,=) B,
s p

(> Star operators:
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[Kitaev '03, Wen ‘03]
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Recall: Stabilizer group & logical code space

Proposition 10.5 (Nielsen & Chuang): Let S = <g; ...,g,-> be generated by
n — k independent and commuting elements from G, , and such that —I not
in € S. Then Vg is a 2*k -dimensional vector space (effectively k qubits):

=» Vg is a k-qubit code space C(S) defined by the stabilizer group S

=» Can choose two sets of k operators (logical Z’s and X's)

(Z1,... 21}, { X1, Xk} —> wmacte w ghblen (€
Such that \)

0 {91,92,---,9n—k,7Z1,...2Z;}+ Independent, commuting

X’s are logical X operators A 7%€ }‘5"’

=>» Can apply to Toric code: what are the logical operators?



Two qubits: effective Pauli’ s W,\,awf X5 om edylo
c~T by Cx,lp.
/ /e
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Excitations of toric code model
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o Ground states “satisfy” all terms
A.=B_=1jin the Hamiltonian
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(e.9.By=-1), -~ :@
but come in pairs due to

Lz

"'m

eXC|tat|ons

7

L)vuf G V\‘]-\LDMM QA

W."LL\ +\AD Pl"‘D

1B =][4.=1
o] s

an
U8

=>» A pair of excitations has energy E
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Correcting local errors
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Check error correction condition
Qo d op~

o Correctable condition: (
<+\ Ec %

For toric code: P is projector to ground space. (g

v Can be easily checked that local operators cannot distinguish different ground\s ates
(the combined ET; E;needs to wrap around the torus, otherwise O =0

burd_
atg,‘ (7K Hk)

o Correctable condition from stabilizer formalism:

@ot in N(S)-S for all j and k. @

v N(S}-S is generated by logical operators (product of Pauli wrapping around)
(Vg Vo s _ T ~—

v Errors can be corrected as long as ET, E, do not wrap around the torus) = ——}
gk



Ground state: explicit construction
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Pictorial understanding
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=>» Ground state G, is a equal superposition of all possible
(contractible) loop configurations [of 1...1]



Other ground states [4 degenerate states]

1
Go,o) = Z ¢/00...0) G| = oneL

V |G3| gegs

o Ground space: effective two qubits

=>» Use logical Pauli X operators to flip
to get other ground states: C

1 B[)

g\:\w\\o( chode

o Degenerate ground states cannot ‘Zv 2,
be distinguished locally
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Pictorial understanding

1Go.0 ¢/00...0)
P>

o Equal superposition of all possible
(contractible) loop configurations

Another ground state:
Go,1) = ]I o¥)IGoo)
jECm 2

o Non-contractible loops with
winding number=1 (odd) in horizontal
direction
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Anyons: excitations of toric code model

o We have seen ground-state vacuum (1) @
and charge (e): A;=-1, flux (m) B,= -1 /
[T

= Exchange betweengﬁe (orm & m) glves@

=» Braiding of e around m gives -1 sign

. “charge” e
=>» -1 sign due to @
anticommutation of X and

Z operators (crossed by
red and green lines)




Anyons: |, e, m and f (fermions)

o We have now seen three anyons: vacuum (l)
charge (e): A;=-1, and flux (m) B,= -1

> One more type of anyons is the usual

£ “fermion” which is a “bound state” of

o Fusion: e and m fuse t@(e xm=1), 76;@

exf=mmxf=e

exes|, mAm:

| _
o Vacuum lisidentity: Ixe=e, I xm=m, ...
Ixf=f

. ) & o\_v.,"n.'aut/\.
o Same anyons fuse to vacuum: £ " o
exe=l=mxm=fxf

Note: Braiding of (e,m) around (e,m) gives +1

Ef erdg e ()
=> Question: how do we reveal -1 of its fermion exchange? = -7
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Rotate by 90°and modular S matrix

a Rotation by 90° of (e.g.) horizontal loops: E

Y ’ N A o bedy GRIITICS R/ﬂ
Modular S matrix -)fm o



Dehn twist and modular T matrix

=» Using topological charge basis:

\é Vo Gon
0, +) N 1 0N 0 0,+)
0,-) i 1 0y 0 0,—)
1,+) 0 0 1,+)
1, _) \ 00 0 @ ‘7 " L, _> Fermion exchange sign -1
Y STor fum

Modular T matrix =» self exchange statistics



Modular transformation and statistics

Z=2+w =2z +ws
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o Modular transformation on degenerate ground states in topological basis {|EC/X/)}
= modular matrices S (mutual statistics) & T (self-statistics)

Spa = (EYIRO)EL) (2 |e)
Tse = (27 |Dehn Twist|=//) (o X ®)




Check error correction condition

a Correctable condition: PEJE;P = o, P
For toric code: P is projector to ground space.
v From the property of topological phase that local operators cannot

distinguish different ground states (the combined ET, E;needs to wrap
around the torus)

o Correctable condition from stabilizer formalism:
ET, E, notin N(S)-S for all j and k.

v Errors can be corrected as long as E'; E, do not wrap
around the torus)



Other topological error codes

Surface code: “Toric code” on a plane with boundary 2
T~ \?MO\A ‘h\g\-ed 7> a \')V,\fO’PL‘QM
Color code: can be regarded as multiple copies of toric codes
[qubits are on vertices]

Bacon-Shor code:
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Error mitigation (not active correction)

[Temme, Bravyi & Gambetta, PRL 119, 180509

O Basic idea: (2017); Li & Benjamin, PRX7, 021050(2017)]
» Agate is achieved by some evolution operator S ¢
via external field or coupling strength J(t) J® ideal case:
) same area
» Same area =» same ideal gate -> same gate

pore €77
» Reality: longer pulse experience “larger” noise \Z%_, /

(effective larger A)

‘—% Tr(Ap(t=T)) = Ex(A\) = E* + zn: ak)\k + Rny1(A L, T)

k=1

n~ dwnk m-{/\
\ of 4N~

» If we use different pulses to mimic different noise strengths@)\ =

can extract ideal E* up to small correction
n o zevo
5 =1, k= O

E* Y i Ex(ch) + O™ 2=k 2 <

7=0



Measurement Error mitigation

[e.g Chen, Farahzad, Yoo & Wei, PRA 100,
052135 (2019); also standard in Qiskit]

U Basic idea: prepare computational states n and
measure in computational basis. Gather enough D \/"/,
statistics = matrix M D 2

O Mitigate readout error@rom detector tomography or abOV@ ~— 3/\
procedure]

~ Ygho bt ek e
Plrgny,...ny_,)[measured] = ZMﬁ;,ﬁ 7 [1deal]
> Invert to find@with constraint P = O:
o
PiM = P
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