PHY682 Special Topics in Solid-State Physics: Quantum Information Science

Lecture time: 2:40-4:00PM Monday \& Wednesday

Today 10/5:

1. Brief review error correction for Shor's code
2. More of Week 6's topic on quantum error correction

Review: Shor's 9-qubit Error Correction Code $[[n, k, d]]=[[9,1,3]]$

- To fight against flip error:

$$
\left|" 0^{"}\right\rangle=|000\rangle \quad|" 1 "\rangle=|111\rangle
$$

- To fight against phase error:

$$
\begin{aligned}
& |"+"\rangle=|+++\rangle=\frac{1}{\sqrt{8}}(|0\rangle+|1\rangle)(|0\rangle+|1\rangle)(|0\rangle+|1\rangle) \\
& |"-"\rangle=|---\rangle=\frac{1}{\sqrt{8}}(|0\rangle-|1\rangle)(|0\rangle-|1\rangle)(|0\rangle-|1\rangle)
\end{aligned}
$$

- Shor's suggestion to fight against both (and thus more):

$$
\begin{aligned}
|" 0 "\rangle & =\frac{1}{\sqrt{8}}(|000\rangle+|111\rangle)(|000\rangle+|111\rangle)(|000\rangle+|111\rangle) \\
|" 1 "\rangle & =\frac{1}{\sqrt{8}}(|000\rangle-|111\rangle)(|000\rangle-|111\rangle)(|000\rangle-|111\rangle)
\end{aligned}
$$

\rightarrow Can verify the capability of correcting one-qubit errors

Review: Shor's code protects all 1-qubit errors!

Nielsen \& Chuang: "the apparent continuum of errors that may occur on a single qubit can all be corrected by correcting only a discrete subset of those errors"

- Consider E_{k} to be a general combination

$$
E_{k}=e_{k 0} I+e_{k 1} X+e_{k 2} X Z+e_{k 3} Z
$$

Its action on a qubit ψ gives rise to superposition (of no error and three types of errors):

$$
E_{k}|\psi\rangle=e_{k 0}|\psi\rangle+e_{k 1} X|\psi\rangle+e_{k 2} X Z|\psi\rangle+e_{k 3} Z|\psi\rangle
$$

\rightarrow Measuring "syndromes" collapses to either of the four components and correction can be applied to recover ψ

Review: Correctable errors---Shor's code

- Correctable condition: $P E_{i}^{\dagger} E_{j} P=\alpha_{i j} P$

Exercise 10.10 ($\mathrm{N} \& \mathrm{C}$): Explicitly verify the quantum error-correction conditions for the Shor code, for the error set containing I and the error operators X_{j}, Y_{j}, Z_{j} for $\mathrm{j}=1$ through 9.

$$
\begin{aligned}
& |" 0 "\rangle=\frac{1}{\sqrt{8}}(|000\rangle+|111\rangle)(|000\rangle+|111\rangle)(|000\rangle+|111\rangle) \\
& |" 1 "\rangle=\frac{1}{\sqrt{8}}(|000\rangle-|111\rangle)(|000\rangle-|111\rangle)(|000\rangle-|111\rangle)
\end{aligned}
$$

Review: Error-correction conditions for S*

\square Theorem 10.8 (Nielsen \& Chuang): (Error-correction conditions for stabilizer codes) Let S be the stabilizer for a stabilizer code $C(S)$. Suppose $\left\{E_{j}\right\}$ is a set of operators in G_{n} such that $E_{j}^{\dagger} E_{k}$ not in $N(S)-S$ for all j and k. Then $\left\{E_{j}\right\}$ is a correctable set of errors for the code $C(S)$.

Note: $N(S)$ is normalizer group of S : contains elements E of G_{n} that preserve S, i.e. $\forall \mathrm{g} \in \mathrm{S} \rightarrow \mathrm{Eg} \mathrm{E}^{\dagger} \in S$ [In this case, $N(S)$ is equal to the centralizer $Z(S)$, the group that commutes with all elements in S]
\rightarrow For Shor's code: $N(S)$ is generated by (1) $X_{1} X_{2} X_{3} X_{4} X_{5} X_{6}$, (2) $X_{4} X_{5} X_{6} X_{7} X_{8} X_{9}$ (from phase flip) (3) $Z_{1} Z_{2}$, (4) $Z_{2} Z_{3}$, (5) $Z_{4} Z_{5}$, (6) $Z_{5} Z_{6}$, (7) $Z_{7} Z_{8}$, (8) $Z_{8} Z_{9}$ and the two logical operators: $Z=X_{1} X_{2} X_{3} X_{4} X_{5} X_{6} X_{7} X_{8} X_{9}$ and logical $X=$ $Z_{1} Z_{2} Z_{3} Z_{4} Z_{5} Z_{6} Z_{7} Z_{8} Z_{9}$
$\checkmark \mathrm{N}(\mathrm{S})$-S [set of elements in $\mathrm{N}(\mathrm{S})$ but not in S] contains operators of weight at least three: $X_{1} X_{2} X_{3}, X_{4} X_{5} X_{6}, X_{7} X_{8} X_{9}, Z_{1} Z_{4} Z_{7}, Z_{2} Z_{5} Z_{8}$, etc. $\mathrm{E}^{\dagger} \mathrm{E}_{\mathrm{k}}$ from single-qubit errors are not in this set!

Summary: Quantum error correction

- In quantum computer: there are more errors than just bit flip and phase
\checkmark Also due to quantum superposition, being able to correct flip and phase errors \rightarrow correct all one-qubit errors
- Quantum error correction has been well developed, drawing inspirations from classical coding theory; now also used in many fields, e.g. condensed matter physics and AdS/CFT holographic entanglement
- Quantum computers spend more effort in preventing and actively correcting errors than classical ones
\rightarrow need measurement to find errors and apply correcting operations

Fault-tolerant and threshold

[Shor, Aharonov, Ben-Or, Kitaev,...]
If the error probability p of a gate is less than some threshold $p_{\text {th }}$, then arbitrarily long quantum computations are possible, using noisy gates, with a reasonable overhead cost

$>$ Uses concatenation (many layer)
each layer error prob. $\mathrm{p} \rightarrow \mathrm{cp}^{2}$
$>$ k layers: $\quad p \rightarrow \frac{1}{c}(c p)^{2^{k}}$
> Want error probability
\leq gate error rate/poly(number) of gates
\rightarrow needs $\quad p<p_{\text {th }}=1 / c$

* p_{th} and overhead depend on error model and fault-tolerant scheme

Topological codes

Toric code, color codes, Bacon-Shor codes, subsystem codes, fraction codes, Levin-Wen string-net models, etc.
\rightarrow Closely related to topological phases

encode Q Info in degenerate ground space

Kitaev's toric code

[Kitaev ’03, Wen ‘03]

- Geometry: torus
- One qubit on each edge

$$
n_{\text {qubit }}=2 N^{2}
$$

- Hamiltonian: $\hat{H}=-\sum_{s} A_{s}=\sum_{p} B_{p}$

This
defines the stabilizer group

- Star operators:

$$
A_{s}=\prod_{j \in s} \sigma_{x}^{[j]} \frac{\left.\sigma_{x}\right)\left(\sigma_{x}\right)}{\left(\sigma_{x}\right)}\left(\sigma_{x}\right) \quad n_{s}=N^{2}
$$

> Plaquette operators:

$$
B_{p}=\prod_{j \in \partial(p)} \sigma_{z}^{[j]} \sigma_{\sigma_{z}}^{\sigma_{z}} \sigma_{z} \quad n_{\mathrm{p}}=N^{2}
$$

Ground-State degeneracy

- Counting stabilizer operators
$\left[A_{s}, B_{p}\right]=0$

$$
A_{s}|\mathrm{GS}\rangle=B_{p}|\mathrm{GS}\rangle=|\mathrm{GS}\rangle
$$

- How many/ndependent equations (stabilizer generators)?
$\prod_{p} B_{p}=\prod_{\gamma} A_{s}=I \rightarrow 2$

- Effective two quits, tee. 4 4 fitold degeneracy
\#of punts $=2 N^{2}-\left(2 N^{2}-2\right)=2$
- Fblrsisurface idownifficterus (g: 4^{9}-fold degeneracy

Recall: Stabilizer group \& logical code space

Proposition 10.5 (Nielsen \& Chuang): Let $S=\left\langle g_{1} \ldots, g_{n-k}\right\rangle$ be generated by $n-k$ independent and commuting elements from G_{n}, and such that $-I$ not in $\in S$. Then V_{S} is a $2^{\wedge} k$-dimensional vector space (effectively k qubits):
$\rightarrow V_{S}$ is a k-qubit code space $C(S)$ defined by the stabilizer group S
\rightarrow Can choose two sets of k operators (logical Z's and X's)

$$
\left\{\bar{Z}_{1}, \ldots \bar{Z}_{k}\right\},\left\{\bar{X}_{1}, \ldots \bar{X}_{k}\right\} \rightarrow \text { womete we stabilizen } S
$$

Such that
(i) $\left\{g_{1}, g_{2}, \ldots, g_{n-k}, \bar{Z}_{1}, \ldots \bar{Z}_{k}\right\}$ Independent, commuting

\rightarrow Can apply to Toric code: what are the logical operators?

Two qubits: effective Pauli's

- Operators on non-contractible cycles form effective qubit operators

$$
\begin{aligned}
& \left\{\begin{array}{l}
Z_{1 / 2} \equiv \prod_{j \in C_{x, 1 / 2}} \sigma_{z}^{[j]} \\
l_{\Omega 2} \\
X_{1 / 2} \equiv \prod_{j \in C_{x, 1 / 2}} \sigma_{x}^{[j]} \\
\quad \begin{array}{l}
\text { Commute with star and } \\
\text { plaquette operators }
\end{array} \\
\Rightarrow\left\{X_{1}, Z_{1}\right\}=\left\{X_{2}, Z_{2}\right\}=0
\end{array}\right.
\end{aligned}
$$

- Action of X's and Z's on GS remains in ground space [C's can be deformed]

Excitations of toric code model

$$
H=-\sum_{s} A_{夕}--\sum_{p} B_{p}
$$

- Ground states "satisfy" all terms $A_{s}=B_{p}=1$ in the Hamiltonian
$\rightarrow E_{0}=-2 N^{2}$

$$
+(\rightarrow-1)-4
$$

- Excitations break some of them (e.g. $B_{p 1}=-1$), $-1-1=-2$ but come in pairs due to

$$
\prod_{p} B_{p}=\prod_{s} A_{s}=I
$$

\rightarrow A pair of excitations has energy $E+4$

Correcting local errors

$$
H=-\sum_{s} A_{s}-\sum_{p} B_{p}
$$

- Error syndromes are from measuring $A_{s}=B_{p}$ (see if -1)
- Identify pairs of (e,e) and of (m,m)
- Then apply string of Z..Z or X..X to correct them

Check error correction condition

- Correctable condition: $P E_{i}^{\dagger} E_{j} P=\alpha_{i j} P$

\checkmark Can be easily checked that local operators cannot distinguish different ground states (the combined $\mathrm{E}^{\dagger} \mathrm{E}_{\mathrm{j}}$ needs to wrap around the torus, otherwise $\mathrm{a}_{\mathrm{i} f \mathrm{j}}=0$
bul

$$
\left\langle\psi_{\mathcal{L}}\right| E_{K}\left|\Psi_{k}\right\rangle
$$

- Correctable condition from stabilizer formalism: $E^{\dagger}{ }_{j} E_{k}$ not in $N(S)-S$ for all j and k.
$\checkmark \mathrm{N}(\mathrm{S})$-S is generated by logical operators (product of Pauli wrapping around)
\checkmark Errors can be corrected as long as $E_{j}^{\dagger} E_{k}$ do not wrap around the torus)

Ground state: explicit construction

$$
B_{p}|0 \ldots 0\rangle=|0 \ldots 0\rangle
$$

- Configuration $00 \ldots 0$ satisfies $\quad B_{p}=\prod_{j \in \partial(p)} \sigma_{z}^{[j]} \quad \sigma_{z}|0 / 1\rangle= \pm|0 / 1\rangle$
- Action of A_{s} : locally flipping 0000 to 1111
\rightarrow apply all possible fllipping

$$
A_{S}|G S\rangle=|\operatorname{GS}\rangle
$$

\square Consider group G_{s} generating by all A_{s}

$$
\left|G_{0,0}\right\rangle \equiv \frac{1}{\sqrt{\left|G_{s}\right|}} \sum_{b \in G_{s}} \underbrace{\downarrow}_{g}|00 \ldots 0\rangle \text { of } \underbrace{}_{s} \text { rodnot } \hat{A}_{s}
$$

\rightarrow Satisfies all $\left(A_{\mathrm{s}}\right)$ and B_{p}

$$
A_{s} \sum_{g} g(0 \sim 0)=\sum_{g}\left(A_{s} g\right)|0 \cdots 0\rangle
$$

$$
A_{s} \neq \prod_{j \in s} \sigma_{x}^{[j]}
$$

$\left|G_{s}\right|=2^{n_{s}-1}$

Pictorial understanding

Other ground states [4 degenerate states]

$$
\left|G_{0,0}\right\rangle \equiv \frac{1}{\sqrt{\left|G_{s}\right|}} \sum_{g \in G_{s}} g|00 \ldots 0\rangle \quad\left|G_{s}\right|=2^{n_{s}-1}
$$

- Ground space: effective two qubits
\rightarrow Use logical Pauli X operators to flip to get other ground states:

$$
\binom{\left|G_{\alpha, \beta}\right\rangle \equiv\left(X_{1}\right)^{\alpha}\left(X_{2}\right)^{\beta}\left|G_{0,0}\right\rangle}{ X_{1 / 2} \equiv \prod_{j \in C_{x, 1 / 2}} \sigma_{x}^{[j]}}
$$

- Degenerate ground states cannot be distinguished locally (as X strings can be deformed)
$z_{1} z_{2}$

Pictorial understanding

$$
\left|G_{0,0}\right\rangle \equiv \frac{1}{\sqrt{\left|G_{s}\right|}} \sum_{g \in G_{s}} g|00 \ldots 0\rangle
$$

- Equal superposition of all possible (contractible) loop configurations

Another ground state:

$$
\left|G_{0,1}\right\rangle=\left(X_{2} \equiv \prod_{j \in C_{x ; 2}} \sigma_{x}^{[j]}\right)\left|G_{0,0}\right\rangle
$$

- Non-contractible loops with winding number=1 (odd) in horizontal direction

Anyons: excitations of toric code model

- We have seen ground-state vacuum (I) and charge (e): $A_{s}=-1$, flux (m) $B_{p}=-1$
\rightarrow Exchange between e \& e (or m \& m) gives +1
\rightarrow Braiding of e around m gives -1 sign

$\rightarrow-1$ sign due to anticommutation of X and
excitations Zoperators (crossed by red and green lines)

Anyons: I, e, m and f (fermions)

- We have now seen three anyons: vacuum (I) charge (e): $A_{s}=-1$, and flux (m) $B_{p}=-1$
> One more type of anyons is the usual
f "fermion" which is a "bound state" of and m
- Fusion: e and m fuse $t \Phi f(e \times m=f) ; \quad f=e \times m$ $e x f=\bar{m}, m \times f=e$
Vacuum l is identity: $1 \times e=e, I \times m=m$, $l x f=f$
- Same anyons fuse to vacuum: $\quad e \vec{Z} e^{a-m i h i l n i n}$ exe=I=mxm=fxf
Note: Braiding of (em) around (em) gives +1

\rightarrow Question: how do we reveal -1 of its fermion exchange?

$$
f \text {-f exchge twice } \Psi
$$

に

＂Topological charge＂basis

$\underline{\text { Old logical：．}}\left|G_{0,0}\right\rangle \equiv \frac{1}{\sqrt{\left|G_{s}\right|}} \sum_{g \in G_{s}} g|00 \ldots 0\rangle$
－Four basis states in ground space （convenient basis but there is a better one）
$\log _{\text {giul }}$ ：$\left.\left|\underline{\left.G_{\alpha, \beta}\right\rangle} \equiv\left(X_{1}\right)^{\alpha}\left(X_{2}\right)^{\beta}\right| G_{0,0}\right\rangle$
－Topological charge basis w．r．t．（e．g．）horizontal loops：
路

$$
\begin{aligned}
& \left.Z_{1} \otimes X_{2} 0 / 1, \pm\right\rangle=(-1)^{0 / 1} \cdot(\pm 1)|0 / 1, \pm\rangle \\
& \left\{\begin{array}{l}
\left.\mid 0, \text { 走 }\rangle \equiv \frac{1}{\sqrt{2}}\left(\left|G_{0,0}\right\rangle \pm G_{0,1}\right\rangle\right) \\
\left.|1, \pm\rangle \equiv \frac{1}{\sqrt{2}}\left(\left|G_{1,0}\right\rangle \pm G_{1,1}\right\rangle\right)
\end{array}\right.
\end{aligned}
$$

Rotate by 90° and modular S matrix

- Rotation by 90° of (e.g.) horizontal loops:

$$
|G(\alpha), \beta| \longrightarrow|G(\beta), \alpha\rangle
$$

\rightarrow Using topological charge basis:

Dehn twist and modular T matrix

- Dehn twist: $\quad\left|G_{\alpha, \beta}\right\rangle \longrightarrow\left|G_{\alpha, \beta+\alpha}\right\rangle$

$$
\left\langle G^{\prime}\right| \hat{\mid}|G\rangle=\left(\begin{array}{cc|cc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\hline 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)_{C_{N O}}
$$

\rightarrow Using topological charge basis:

$$
\left(\begin{array}{l}
|0,+\rangle \\
|0,-\rangle \\
|1,+\rangle \\
|1,-\rangle
\end{array}\right) \xrightarrow{\hat{T}} \underbrace{\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0
\end{array}\right) \underbrace{\left(\begin{array}{l}
|0,+\rangle \\
|0,-\rangle \\
|1,+\rangle \\
1,-\rangle
\end{array}\right)}_{-1}}_{\text {self fermu }}
$$

Fermion exchange sign -1

Modular T matrix \rightarrow self exchange statistics

Modular transformation and statistics

$$
\begin{array}{ll}
S_{\beta \alpha}=\left\langle\Xi_{\beta}^{/ /}\right| \hat{R}\left(90^{\circ}\right)\left|\Xi_{\alpha}^{/ /}\right\rangle & \left\langle\Phi \mid \sum^{\alpha}\right\rangle|\Phi\rangle \\
T_{\beta \alpha}=\left\langle\Xi_{\beta}^{/ /}\right| \text {Dehn Twist }\left|\Xi_{\alpha}^{/ /}\right\rangle & \left.\langle\Phi| \sum_{\alpha}| | \Phi\right\rangle
\end{array}
$$

Check error correction condition

- Correctable condition: $P E_{i}^{\dagger} E_{j} P=\alpha_{i j} P$

For toric code: P is projector to ground space.
\checkmark From the property of topological phase that local operators cannot distinguish different ground states (the combined $\mathrm{E}_{\mathrm{i}}^{\dagger} \mathrm{E}_{\mathrm{j}}$ needs to wrap around the torus)

- Correctable condition from stabilizer formalism:
$\mathrm{E}^{\dagger} \mathrm{E}_{\mathrm{k}}$ not in $\mathrm{N}(\mathrm{S})-\mathrm{S}$ for all j and k .
\checkmark Errors can be corrected as long as $\mathrm{E}^{\dagger} \mathrm{E}_{\mathrm{k}}$ do not wrap around the torus)

Other topological error codes

Surface code: "Toric code" on a plane with boundary
Color code: can be regarded as multiple copies of toric codes [quits are on vertices]

Bacon-Shor code:

\geqslant punch holes \Rightarrow a purr of holes
multiple copies of doric codes

$$
\begin{array}{r}
\Rightarrow \text { rems. } \\
\text { q-pubit. }
\end{array}
$$

$\left(Q_{1}^{Z}\right)$
aiming to implement surface code for QC. implemener of Racon-Shor
trapped ions
\qquad
C. Monte
\rightarrow Fraction code:
logical operators have fractal structure

Error mitigation (not active correction)

\square Basic idea:
[Temme, Bravyi \& Gambetta, PRL 119, 180509 (2017); Li \& Benjamin, PRX7, 021050(2017)]
> A gate is achieved by some evolution operator via external field or coupling strength $\mathrm{J}(\mathrm{t})$
\Rightarrow Same area \rightarrow same ideal gate
> Reality: longer pulse experience "larger" noise (effective larger λ)

$\longrightarrow \operatorname{Tr}(A \rho(t=T))=E_{K}(\lambda)=E^{*}+\sum_{k=1}^{n} a_{k} \lambda^{k}+R_{n+1}(\lambda, \mathcal{L}, \mathcal{T})$
> If we use different pulses to mimic different noise strengths $c_{j} \lambda \Rightarrow$ can extract ideal E^{*} up to small correction

$$
E^{*} \approx \sum_{j=0}^{n} \gamma_{j} E_{K}\left(c_{j} \lambda\right)+\mathcal{O}\left(\lambda^{n+1}\right) \quad \sum_{j} \gamma_{j}=1, \sum_{j=0}^{n} \gamma_{j} c_{j}^{k}=0
$$

Measurement Error mitigation
[e.g Chen, Farahzad, Moo \& Wei, PRA 100, 052135 (2019); also standard in Qiskit]

Basic idea: prepare computational states n and measure in computational basis. Gather enough statistics \rightarrow matrix M

Mitigate readout errors [M from detector tomography or above) $\sim \%$ procedure]

Invert to find P with constraint $P \geq 0$:

$$
P_{\text {idle }}=M^{-1} \widetilde{P}_{\text {mere }}
$$

