
Today 10/5:

1. Brief review error correction for Shor’s code
2. More of Week 6’s topic on quantum error correction

PHY682 Special Topics in Solid-State Physics: 
Quantum Information Science

Lecture time: 2:40-4:00PM Monday & Wednesday



Review: Shor’s 9-qubit Error Correction Code [[n,k,d]]=[[9,1,3]]

 To fight against flip error: 

 To fight against phase error:

 Shor’s suggestion to fight against both (and thus more):

 Can verify the capability of correcting one-qubit errors



Review: Shor’s code protects all 1-qubit errors!
Nielsen & Chuang: “the apparent continuum of errors that may occur on a single 
qubit can all be corrected by correcting only a discrete subset of those errors”

 Consider Ek to be a general combination

Its action on a qubit ψ gives rise to superposition (of no error and three types of errors):

 Measuring “syndromes” collapses to either of the four components and
correction can be applied to recover ψ



Review: Correctable errors---Shor’s code
 Correctable condition:

Exercise 10.10 (N&C): Explicitly verify the quantum error-correction 
conditions for the Shor code, for the error set containing I and the error 
operators Xj ,Yj ,Zj for j = 1 through 9.



Review: Error-correction conditions for S*
 Theorem 10.8 (Nielsen & Chuang): (Error-correction conditions for 

stabilizer codes) Let S be the stabilizer for a stabilizer code C(S). 
Suppose {Ej } is a set of operators in Gn such that E†

j Ek not in N(S)−S 
for all j and k. Then {Ej } is a correctable set of errors for the code C(S).

Note: N(S) is normalizer group of S: contains elements E of Gn that 
preserve S, i.e. ∀ g ∈ S  E g E† ∈ S  [In this case, N(S) is equal to the 
centralizer Z(S), the group that commutes with all elements in S]

 For Shor’s code: N(S) is generated by ① X1X2X3X4X5X6, ② X4X5X6X7X8X9

(from phase flip) ③ Z1Z2, ④ Z2Z3, ⑤ Z4Z5, ⑥ Z5Z6, ⑦ Z7Z8, ⑧ Z8Z9 and the 
two logical operators: Z = X1X2X3X4X5X6X7X8X9 and logical X = 
Z1Z2Z3Z4Z5Z6Z7Z8Z9

 N(S)-S [set of elements in N(S) but not in S] contains operators of 
weight at least three: X1X2X3 , X4X5X6 , X7X8X9 , Z1Z4Z7 , Z2Z5Z8 , 
etc. E†

j Ek from single-qubit errors are not in this set! 



Summary: Quantum error correction

inspirations from classical coding theory;
now also used in many fields, e.g. condensed matter physics 
and AdS/CFT holographic entanglement

 Also due to quantum superposition, being able to correct 
flip and phase errors  correct all one-qubit errors

 In quantum computer: there are more errors than
just bit flip and phase 

 Quantum error correction has been well developed, 
drawing

 Quantum computers spend more effort in preventing
and actively correcting errors than classical ones

 need measurement to find errors and apply correcting operations 



Fault-tolerant and threshold
If the error probability p of a gate is less than some threshold 
pth , then arbitrarily long quantum computations are possible, 
using noisy gates, with a reasonable overhead cost

 pth and overhead depend on error model and fault-tolerant scheme

[Shor, Aharonov, Ben-Or, Kitaev,…]

 Uses concatenation (many layer)

each layer error prob. p  cp2

 k layers:

 Want error probability
≤ gate error rate/poly(number) of 
gates

 needs



Topological codes

Toric code, color codes, Bacon-Shor codes, subsystem codes, 
fracton codes, Levin-Wen string-net models, etc.

 Closely related to topological phases

 Do not need “concatenation” (i.e. multiple layers)



Kitaev’s toric code

 Geometry: torus

 Hamiltonian:

 One qubit on each edge
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 Star operators:

 Plaquette operators:

[Kitaev ’03, Wen ‘03]

This 
defines the 
stabilizer 
group



Ground-State degeneracy

 Counting stabilizer operators

 Effective two qubits, i.e. 4-fold degeneracy

1 2 N 1

2

N

N+1≡1

1

 How many independent
equations (stabilizer generators)?

 For surface with genus g: 4g-fold degeneracy



Recall: Stabilizer group & logical code space 

Proposition 10.5 (Nielsen & Chuang): Let S = <g1 ...,gn−k> be generated by 
n − k independent and commuting elements from Gn , and such that −I not 
in ∈ S. Then VS is a 2^k -dimensional vector space (effectively k qubits): 

 VS is a k-qubit code space C(S) defined by the stabilizer group S

 Can choose two sets of k operators (logical Z’s and X’s) 

Such that

Independent, commuting(i)

(ii)

X’s are logical X operators

 Can apply to Toric code: what are the logical operators?  



 Operators on non-contractible
cycles form effective qubit
operators

 Action of X’s and Z’s on GS remains in ground space [C’s can be deformed]

Cz;1

Cz;2

Two qubits: effective Pauli’s
Cx;1

Cx;2

Commute with star and
plaquette operators



 A pair of excitations has energy E0+4

Excitations of toric code model

 Excitations break some of them
(e.g. Bp1= -1),
but come in pairs due to

 Ground states “satisfy” all terms 
As=Bp=1 in the Hamiltonian
 E0 = - 2N2 -1
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“charge” e 
excitations

“flux” m 
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Correcting local errors 
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“charge” c 
excitations

“flux” m 
excitations

 Error syndromes are from 
measuring As=Bp (see if -1)

 Identify pairs of (e,e) and of (m,m)

 Then apply string of Z..Z or 
X..X to correct them



Check error correction condition

For toric code: P is projector to ground space.

 Correctable condition:

 Can be easily checked that local operators cannot distinguish different ground states 

(the combined E†
i Ej needs to wrap around the torus, otherwise αi≠j=0

E†
j Ek not in N(S)−S for all j and k.

 Correctable condition from stabilizer formalism:

 N(S)-S is generated by logical operators (product of Pauli wrapping around)

 Errors can be corrected as long as E†
j Ek do not wrap around the torus) 



Ground state: explicit construction

 Action of As: locally flipping 0000 to 1111

 Satisfies all As and Bp

Cz;1

Cz;2

Cx;1

Cx;2

 Configuration 00…0 satisfies 

 apply all possible flipping 

 Consider group Gs generating
by all As



Pictorial understanding

 Ground state G00 is a equal superposition of all possible
(contractible) loop configurations [of 1…1]
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e.g.  



Other ground states [4 degenerate states]

Cz;1

Cz;2

Cx;1

Cx;2

 Ground space: effective two qubits

 Use logical Pauli X operators to flip 
to get other ground states:

 Degenerate ground states cannot
be distinguished locally
(as X strings can be deformed)



Pictorial understanding

 Equal superposition of all possible
(contractible) loop configurations

 Non-contractible loops with
winding number=1 (odd) in horizontal
direction

Another ground state:

x x x x x x x



Anyons: excitations of toric code model

 We have seen ground-state vacuum (I)
and charge (e): As =-1, flux (m) Bp= -1
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“charge” e 
excitations

“flux” m 
excitations

 Exchange between e & e (or m & m) gives +1

 Braiding of e around m  gives -1 sign

 -1 sign due to 
anticommutation of X and 
Z operators (crossed by 
red and green lines)



Anyons: I, e, m and f (fermions)
 We have now seen three anyons: vacuum (I)

charge (e): As =-1, and flux (m) Bp= -1

 One more type of anyons is the usual 
“fermion” which is a “bound state” of e and m e

m

m

e

Note: Braiding of (e,m) around (e,m)  gives +1 

 Question: how do we reveal -1 of its fermion exchange?

 Fusion: e and m fuse to f  (e x m = f); 
e x f = m, m x f = e

 Vacuum I is identity: I x e = e, I x m = m,
I x f = f 

 Same anyons fuse to vacuum: 
e x e = I = m x m = f x f



“Topological charge” basis

Cz;1

Cz;2

Cx;1

Cx;2

 Four basis states in ground space 
(convenient basis but there is a better one)

 Topological charge basis
w.r.t. (e.g.) horizontal loops:

Old logical:



Rotate by 90◦ and modular S matrix
 Rotation by 90◦ of (e.g.) horizontal loops:

Modular S matrix mutual statistics

 Using topological charge basis:



 Dehn twist:

 Using topological charge basis:

Dehn twist and modular T matrix

Modular T matrix  self exchange statistics 

Fermion exchange sign -1



Modular transformation and statistics

SL(2,Z)
 SL(2,Z) generated by s & t

[90◦ rotation on square] [Dehn twist]

 Modular transformation on degenerate ground states in topological basis
 modular matrices S (mutual statistics) & T (self-statistics)



Check error correction condition

For toric code: P is projector to ground space.

 Correctable condition:

 From the property of topological phase that local operators cannot
distinguish different ground states (the combined E†

i Ej needs to wrap
around the torus)

E†
j Ek not in N(S)−S for all j and k.

 Correctable condition from stabilizer formalism:

 Errors can be corrected as long as E†
j Ek do not wrap

around the torus)



Other topological error codes

Surface code: “Toric code” on a plane with boundary

Color code: can be regarded as multiple copies of toric codes
[qubits are on vertices]

Fracton code: 
logical operators have fractal structure

Bacon-Shor code:



Error mitigation (not active correction)
[Temme, Bravyi & Gambetta, PRL 119, 180509 
(2017); Li & Benjamin, PRX7, 021050(2017)] Basic idea: 

 Same area  same ideal gate

 A gate is achieved by some evolution operator 
via external field or coupling strength J(t) ideal case:

same area 
-> same gate

 Reality: longer pulse experience “larger” noise
(effective larger λ)

 If we use different pulses to mimic different noise strengths: cj λ
can extract ideal E* up to small correction 



Measurement Error mitigation

 Basic idea: prepare computational states n and 
measure in computational basis. Gather enough 
statistics  matrix M

 Mitigate readout errors [M from detector tomography or above 
procedure]

 Invert to find P with constraint P ≥ 0:

[e.g Chen, Farahzad, Yoo & Wei, PRA 100, 
052135 (2019); also standard in Qiskit]


