PHY682 Special Topics in Solid-State Physics: Quantum Information Science

Lecture time: 2:40-4:00PM Monday \& Wednesday

Today 10/7:

1. Reminder: Midterm report due Sunday 11:59pm 10/11
2. Today: Topological Quantum Computation (will review some aspects of Toric Code)

Week 7: Quantum computing by braiding: Anyons and topological quantum computation, Majorana fermions, Kitaev's chain

Topological Quantum Computation

[Kitaev, Freedman et al.]

- Use "topology" to passively protect against errors
- Braiding of anyons gives rise to certain set of quantum gates

\square Fusing anyons to read out results

Review: Toric code [[2N, 2, N]]

- Hamiltonian: $\hat{H}=-\sum_{s} A_{s}-\sum_{p} B_{p}$

- Anyons: vacuum 1, charge e, flux m, and fermion f(=ex m)
- e: self-boson, m : self-boson, full rotation of e around $m \rightarrow-1$ (mutual semion) f: fermion

Review: Ground state: explicit construction

- Configuration $00 \ldots 0$ satisfies $\quad\left(B_{p}=\prod_{j \in \partial(p)} \sigma_{z}^{[j]} \quad \sigma_{z}|0 / 1\rangle= \pm|0 / 1\rangle\right.$
- Action of A_{s} : locally flipping $\underbrace{0000}$ to $\underbrace{1111} \quad \prod_{s \in s} \sigma_{x}^{[i]}$
\rightarrow apply all possible flipping $0110 \rightarrow 10$
- Consider group G_{s} generating by all A_{s}

$$
\left|G_{0,0}\right\rangle \equiv \frac{1}{\sqrt{\left|G_{s}\right|}} \sum_{g \in G_{s}} g|00 \ldots 0\rangle
$$

[Ssp, Sátisfies all A_{s} and B_{p} fum oven fips
\rightarrow Ground state G_{00} is a equal superposition of all possible (contractible) loop configurations [of 1...1]

Review: Pictorial understanding

$$
\begin{aligned}
\left|G_{0,0}\right\rangle & \equiv \frac{1}{\sqrt{\left|G_{s}\right|}} \sum_{g \in G_{s}} g|00 \ldots 0\rangle \\
& \begin{aligned}
& \text { e.g. } \\
& g=A_{1} A_{2} A_{3} A_{4} A_{5} I \cdots I
\end{aligned}
\end{aligned}
$$

\rightarrow Ground state G_{00} is a equal superposition of all Possible (contractible) loop configurations [of 1...1]

Review: Other ground states [4 degenerate states]

$$
\begin{array}{ll}
\left|G_{0,0}\right\rangle \equiv \frac{1}{\sqrt{\left|G_{s}\right|}} \sum_{g \in G_{s}} g|00 \ldots 0\rangle & \left|G_{s}\right|=2^{n_{s}-1} \\
\text { space: effective two cubits } & \hat{\rho}\left|G_{00}\right\rangle=\left|G_{00}\right\rangle \\
& \stackrel{\imath}{l}
\end{array}
$$

- Ground space: effective two quits

$$
\begin{aligned}
& \rightarrow \text { Use logical Pauli } X \text { operators to flip } \\
& \text { to get other ground states: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (as } X \text { strings can be deformed) }
\end{aligned}
$$

Review: Pictorial understanding

$$
\left|G_{0,0}\right\rangle \equiv \frac{1}{\sqrt{\left|G_{s}\right|}} \sum_{g \in G_{s}} g|00 \ldots 0\rangle
$$

- Equal superposition of all possible (contractible) loop configurations

Another ground state:

- Non-contractible loops with winding number=1 (odd) in horizontal direction

$$
x_{2} \equiv x_{2} \pi\left(A_{s} B_{p}\right)
$$

you can deform
the loop

Review--Anyons: I, e, m and f (fermions)

- We have now seen three anyons: vacuum (I) charge (e): $A_{s}=-1$, and flux (m) $B_{p}=-1$
- One more type of anyons is the usual "fermion" which is a "bound state" of e and m
- Fusion: e and m fuse to $f(e) \times(m)=f$; $e \times f=(m) m \times f=e$
- Vacuum I is identity: $I \times e=e, \underline{I \times m=m}$, $\underline{\| f=f}$
- Same anyone fuse to vacuum:
$\rightarrow 0 \times e=1=m \times m=f x f$

Note: rotation of (em) around (em) gives +1
 product anyous

* If some $\mathrm{N}>1 \rightarrow$ non-Abelian; Toric code hosts only Abelian anyons

Exchange (braiding) and full rotation

Refs: Kitaev \& Laumann, arXiv:0904.2771, Lahtinen \& Pachos, arxiv:1705.04103, Nayak et al. Rev. Mod. Phys. 80, 1083 (2008)

Anyon model: Pictorial representation

differing

Consistency of Fusion*

> Pentagon equation

Consistency of fusion and braiding*

> hexagon equations

Example: Fibonacci anyonsOnly one nontrivial any \varnothing n: τFusion: $\tau \times \tau=1+\tau \quad(\bullet, \bullet)_{0} \quad(\bullet, \bullet)_{1} \quad \mid t \underbrace{\tau+\tau}$ $1,1,2,3,5 \cdots$

$$
\begin{aligned}
& (\tau \times \tau) \times \tau=(1+\tau) \times \tau=\tau \times \tau \\
& \tau \times \tau \times \tau \times \tau=\underline{2} \cdot(1)+3 \tau \\
& \frac{\tau \times \tau \times \tau \times \tau \times \tau=3 \cdot 1+5 \tau}{\tau \times \tau \times \tau \times \tau \times \tau \times \tau=5} 1+8 \tau
\end{aligned}
$$

\rightarrow Dimensions for a
Fibonacci series: not a tensor-product structure
\square A quit? E.g. fix product of 3τ 's fuse τ " of ways to fuse into this canyon " 1 "
\rightarrow two ways to do that
fix taal fusion outcome
$|(\tau \tau) \tau ; \underset{\sim}{1} \tau ; \tau\rangle,|(\tau \tau) \tau ; \tau \tau ; \tau\rangle \quad$ form basis states for a quit
this may be R in other convention

Gates from Fibonacci anyons

$$
|(\tau \tau) \tau ; 1 \tau ; \tau\rangle,|(\tau \tau) \tau ; \tau \tau ; \tau\rangle
$$Exchange:

form basis states for a quit

$$
R=\frac{\left(\begin{array}{cc}
R_{\tau \tau}^{1} & 0 \\
0 & R_{\frac{\tau}{\tau \tau}}^{0}
\end{array}\right)=\left(\begin{array}{cc}
e^{\frac{4 \pi i}{5}} & 0 \\
0 & e^{\frac{-3 \pi i}{5}}
\end{array}\right)}{1 R^{10}} \text { 1. } \begin{aligned}
& \text { diagonal } \\
& \text { gater }
\end{aligned}
$$

Basis change:

$F=F_{\tau \tau \tau}^{\tau}=\left(\begin{array}{cc}\phi^{-1} & \phi^{-1 / 2} \\ \phi^{-1 / 2} & -\phi^{-1}\end{array}\right) \quad \begin{array}{l}\text { weald } \\ \phi=(1+\sqrt{5}) / 2\end{array}$
+

Exchange (of b \& c):
$\mathrm{F}^{-1} \mathrm{RF}$ forms a group dense in $\mathrm{SU}(2)$

Two qubits from Fibonacci anyons?

$\square 6$ anyons fuse to vacuum: 5 different ways (slightly morethan two-qubit dimension)
\square Where do we get Fibonacci anyons?
Fractional Quantum Hall state
with $v=12 / 5$ $\tau \times \tau=1+\tau$

Braiding for gates

Two-qubit:

Ref: Bonesteel, Hormozi, Zikos \& Simon, PRL95, 140503 (2005); Hormozi, Zikos, Bonesteel \& Simon, PRB 75, 165310 (2007)

Example: Ising anyons

$\begin{aligned} & \square \text { Anyons: } \underline{1}, \underline{\Psi}, \underline{\sigma} \not{ }^{\prime} \text { is } \\ & \square \text { Fusion: } 1 \times 1=1,1 \times \psi=\psi, 1 \times \sigma=\sigma \\ & \psi \times \psi=1, \psi \times \sigma=\sigma, \sigma \times \sigma=1+\psi\end{aligned}$
\square Physical picture: 1 is condensate of Cooper pairs, ψ Bogoliubov fermion, σ Majorana zero mode bound to a vortex
\square Quits?

$$
\begin{aligned}
& \sigma \times \sigma \times \sigma=(1+\psi) \times \sigma=2 \cdot \sigma \\
& \sigma \times \sigma \times \sigma \times \sigma=2 \cdot 1+2 \cdot \psi \\
& \sigma \times \sigma \times \sigma \times \sigma \times \sigma=4 \cdot \sigma
\end{aligned}
$$

$\Rightarrow 2 \mathrm{n} \sigma$ can encode $\mathrm{n}-1$ quits (assume fused to vacuum)

