PHY682 Special Topics in Solid-State Physics: Quantum Information Science

Lecture time: 2:40-4:00PM Monday & Wednesday

Today 10/7:

- 1. Reminder: Midterm report due Sunday 11:59pm 10/11
- 2. Today: Topological Quantum Computation (will review some aspects of Toric Code)

Week 7: Quantum computing by braiding: Anyons and topological quantum computation, Majorana fermions, Kitaev's chain

Topological Quantum Computation

[Kitaev, Freedman et al.]

- □ Use "topology" to passively protect against errors
- Braiding of anyons gives rise to certain set of quantum gates

□ Fusing anyons to read out results

Review: Toric code [[2N², 2, N]]

Review: Ground state: explicit construction

(contractible) loop configurations [of 1...1]

Review: Pictorial understanding

$$|G_{0,0}\rangle \equiv \frac{1}{\sqrt{|G_s|}} \sum_{g \in G_s} g|00...0\rangle$$

e.g. $g = A_1 A_2 A_3 A_4 A_5 I \cdots I$

→ Ground state G_{00} is a equal superposition of all Possible (contractible) loop configurations [of 1...1]

5	1				
<u> </u>			, ,	۔ د	5
	. [7	2	<u> </u>	, ,	2
	4				<u> </u>
				/ 5	
				<u> </u>	

Review: Other ground states

[4 degenerate states]

$$|G_{0,0}\rangle \equiv \frac{1}{\sqrt{|G_s|}} \sum_{g \in G_s} g|00...0\rangle \qquad |G_s| = 2^{n_s - 1} \qquad \begin{array}{c} g & (G_{0,0}) = (G_{0,0}) \\ & & & & \\ \end{array}$$

2

Ground space: effective two qubits

Review: Pictorial understanding

Review--Anyons: I, e, m and f (fermions)

- We have now seen three anyons: vacuum (I) charge (e): A_s =-1, and flux (m) B_p = -1
- One more type of anyons is the usual "fermion" which is a "bound state" of e and m

Exchange (braiding) and full rotation

Refs: Kitaev & Laumann, arXiv:0904.2771, Lahtinen & Pachos, arxiv:1705.04103, Nayak et al. Rev. Mod. Phys. 80, 1083 (2008)

CS.

Anyon model: Pictorial representation

Consistency of Fusion*

Pentagon equation

Consistency of fusion and braiding*

Example: Fibonacci anyons

Two qubits from Fibonacci anyons?

 $\tau \times \tau \times \tau = (1 + \tau) \times \tau = \tau \times \tau + \tau = 1 + 2\tau$ $\tau \times \tau \times \tau \times \tau = 2 \cdot 1 + 3\tau$

 $\tau \times \tau \times \tau \times \tau \times \tau = 3 \cdot 1 + 5\tau$ $\tau \times \tau \times \tau \times \tau \times \tau \times \tau = 5 \cdot 1 + 8\tau$ $+2\tau$

□ Naively, use two group of three anyons \rightarrow 6 anyons!

G anyons fuse to vacuum: 5 different ways (slightly more than two-qubit dimension)

Ref: Bonesteel, Hormozi, Zikos & Simon, PRL95, 140503 (2005); Hormozi, Zikos, Bonesteel & Simon, PRB 75, 165310 (2007)

 \rightarrow 2n σ can encode n-1 qubits (assume fused to vacuum)