
Today 10/12:

1. Reminder: Homework 4 due Sunday 11:59pm 10/18
2. Today: Ising anyons and quantum computation; Kitaev chain and 

Majorana zero modes
3. Week 8: Magic state distillation and surface code

PHY682 Special Topics in Solid-State Physics: 
Quantum Information Science

Lecture time: 2:40-4:00PM Monday & Wednesday



Simple review question

Which model has anyons 1, e, m and f? e.g e and m fuse to f

Which anyon model has anyons 1 and τ ?

Which anyon model has anyons 1, ψ, σ?



Review: Ising anyons
 Anyons: 1, ψ, σ

 Fusion:

 Qubits?

 Physical picture: 1 is condensate of Cooper pairs, ψ Bogoliubov
fermion, σ Majorana zero mode bound to a vortex

 one qubit (not so practical, as final 
fusion product is σ )

 2n σ can encode n-1 qubits (assume fused to vacuum)



Basis change, exchange and gates

Basis:

~ phase gate S

~ NOT gate X

 It turns out that Ising anyons can implement only Clifford gates! 
Other non-topologically protected methods for non-Clifford gates

σ σ σ

σ

(1 or ψ)



Possible realizations

Karzig et al.,PRB (2017)

 TQC using Majorana zero modes

Topological superconductors

Alicea et al.,Nat Phys (2011)



Two qubits using six Ising anyons
2n σ can encode 
n-1 qubits (assume fused to 1)

 Basis
states:

 Two-qubit CZ gate: Single-qubit gates:



Equivalent representations

 Basis
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Equivalently:

 Useful for understanding gate operations



Gates in pictures

 Basis
states:

Two-qubit CZ gate:

Single-qubit gates:
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Topologically protected gates from Ising anyons
are Clifford gates

 Theorem 10.7: (Gottesman–Knill theorem) Suppose a quantum 
computation is performed which involves only the following elements: 
state preparations in the computational basis, Hadamard gates, phase 
gates, controlled-NOT gates, Pauli gates, and measurements of 
observables in the Pauli group (which includes measurement in the 
computational basis as a special case), together with the possibility of 
classical control conditioned on the outcome of such measurements.

 Such a computation may be efficiently simulated on a classical computer.

Recall:

 One naïve solution (non-topological): bring two anyons closer
to induce interaction and energy shift;
 Some physical-system dependent improvements

 Magic state distillation for non-Clifford gates (later)



Initialization and Readout in Ising-anyon qubits

 X-basis measurement of qubit 1: detecting the fusion outcome of anyons 2 and 3. 
X-basis measurement of qubit 2: detecting the fusion outcome of anyons 4 and 5.
(or one can apply appropriate Hadamard gate before Z measurement)

 Initialization/Preparation of e.g. |00> state: Assume 
that σ anyons are created pairwise from the vacuum with no 
other anyons present

 Readout

 Z-basis measurement of the first qubit: detecting the fusion outcome of 
anyons 1 and 2. If no change in energy is detected, then  0 state;
if observe change in energy, then  1 state

 Z-basis measurement of the 2nd qubit: detecting the fusion 
outcome of anyons 5 and 6



Kitaev chain
HW3 Problem 3. 

show this

 Unpaired zero modes at ends (effectively one non-local Dirac fermion)

 Example of trivial phase:

 By Jordan-Wigner transformation, it is mapped to a ferromagnetic chain:



Kitaev chain: general Hamiltonian

 when (|2t|>|μ|)  topological [localized modes decay exponentially]

Parameters--- t: hopping, Δ: p-wave pairing, μ: chemical potential (e.g. gate voltage)

Two phases:

 when (|2t|<|μ|)  topologically trivial

[representative]

[representative]



Fermion parity and qubit encoding

 Of different parity, thus not useful for qubit encoding 

 Can use four σ’s
with total parity +1: 



Segments of Kitaev chains for qubits

 Use position-dependent chemical potential μ to tune the systems into segments

(|2t|>|μ|) (|2t|>|μ|) (|2t|<|μ|) (|2t|<|μ|) 



Braiding Majorana “fermions” using T-junctions
Alicea et al.,Nat Phys (2011)

Lahtinen & Pachos, arxiv:1705.04103



Challenges using Majorana zero modes for QC

 Presence of unwanted anyons (or Majorana modes) 
 use Josephson-charging energy switching braiding protocol

 Leakage to an external reservoir: For closed system, Majorana qubits protected by fermion parity 
But contact with S-wave superconductor  can lead to tunneling of Cooper pair and Bogoliubov particles

 heterostructures for topological nanowires 
exhibit long “contaminating” times

 Finite-temperature issue  use engineered p-wave wire (rather the intrinsic 
topological one): energy gap protects the localized states on the domain walls from 
extended states

 Note that there is strong evidence for Majorana modes, but braiding has not been realized


