PHY682 Special Topics in Solid-State Physics: Quantum Information Science

Lecture time: 2:40-4:00PM Monday & Wednesday

Today 10/12:

- 1. Reminder: Homework 4 due Sunday 11:59pm 10/18
- 2. Today: Ising anyons and quantum computation; Kitaev chain and Majorana zero modes
- 3. Week 8: Magic state distillation and surface code

Simple review question

Which model has anyons 1, e, m and f? e.g *e and m fuse to f*

Which anyon model has anyons 1 and au ? au imes au = 1 + au

Which anyon model has anyons 1, ψ , σ ? $\psi \times \psi = 1, \ \psi \times \sigma = \sigma, \ \sigma \times \sigma = 1 + \psi$

Review: Ising anyons

Δ Anyons: 1, ψ, σ **G** Fusion: $1 \times 1 = 1, \ 1 \times \psi = \psi, \ 1 \times \sigma = \sigma$ $\psi \times \psi = 1, \ \psi \times \sigma = \sigma, \ \sigma \times \sigma = 1 + \psi$ Goopen pair 4-4 4 excitation Gost energy to break Loopen por \Box Physical picture: 1 is condensate of Cooper pairs, ψ Bogoliubov fermion, σ Majorana zero mode bound to a vortex zero mode ts? $(\sigma \times \sigma) \times \sigma = (1 + \psi) \times \sigma = 2 + \sigma$ \rightarrow one qubit (not so fusion product is σ) **Qubits**? → one qubit (not so practical, as final $\sigma \times \sigma \times \sigma \times \sigma = 2 \cdot 1 + 2 \psi$ $\{ |(\sigma\sigma)\sigma; 1\sigma; \sigma\rangle, |(\sigma\sigma)\sigma; \psi\sigma; \sigma\rangle \}$ $\sigma \times \sigma \times \sigma \times \sigma \times \sigma = (4) \cdot \sigma$ $(7 \cdot C \times c \times c \times c) \times c = 4 \cdot c \times \sigma = (4) + 4 \cdot 4$ $\Rightarrow 2n \circ can encode n-1 qubits (assume fused to vacuum)$

Basis change, exchange and gates

Possible realizations

Topological superconductors

TQC using Majorana zero modes

Alicea et al., Nat Phys (2011)

Two qubits using six Ising anyons

Equivalent representations

Equivalent representations

Topologically protected gates from Ising anyons are Clifford gates

Recall:

Magic state distillation for non-Clifford gates (later)

Initialization and Readout in Ising-anyon qubits

X-basis measurement of qubit 1: detecting the fusion outcome of anyons 2 and 3.
X-basis measurement of qubit 2: detecting the fusion outcome of anyons 4 and 5.
(or one can apply appropriate Hadamard gate before Z-measurement)

Kitaev chain

Parameters--- t: hopping, Δ : p-wave pairing, μ : chemical potential (e.g. gate voltage)

Two phases:

Fermion parity and qubit encoding

 $\label{eq:started_constraint} \begin{array}{ll} \Box & \mbox{Can use four σ's} \\ & \mbox{with total parity +1:} \end{array} & \sigma \times \sigma \times \sigma \times \sigma = 2 \cdot 1 + 2 \cdot \psi \end{array}$

 $|0\rangle \equiv |\sigma\sigma;1\rangle |\sigma\sigma;1\rangle, \qquad |1\rangle \equiv |\sigma\sigma;\psi\rangle |\sigma\sigma;\psi\rangle$

Segments of Kitaev chains for qubits

$$H = \sum_{x=1}^{N-1} -t(\hat{c}_x^{\dagger}\hat{c}_{x+1} + \hat{c}_{x+1}^{\dagger}\hat{c}_x) + \Delta(\hat{c}_x\hat{c}_{x+1} + \hat{c}_{x+1}^{\dagger}\hat{c}_x^{\dagger}) - \mu c_x^{\dagger}c_x$$

 \succ Use position-dependent chemical potential μ to tune the systems into segments

Braiding Majorana "fermions" using T-junctions

Challenges using Majorana zero modes for QC

□ Finite-temperature issue → use engineered p-wave wire (rather the intrinsic topological one): energy gap protects the localized states on the domain walls from extended states

e 1

□ Note that there is strong evidence for Majorana modes, but braiding has not been realized