PHY682 Special Topics in Solid-State Physics: Quantum Information Science

Lecture time: 2:40-4:00PM Monday & Wednesday

Today 10/26:

- 1. Brief review of MBQC; discuss Blind QC
- 2. Week 10: 'Quantum entangles'

QC by Local Measurement---an overview picture

[Raussendorf & Brigel '01]

 □ There is a highly entangled state on a 2D array of qubits. First carve out entanglement structure on cluster state by local Pauli Z measurement

One-way q. con puton

Entanglement is the resource

- □ Then:
 - (1) Measurement along each wire simulates one-qubit evolution (gates)
 - (2) Measurement near & on each bridge simulates two-qubit gate (CNOT)

2D or higher dimensions are needed for universal QC

One application of measurement-based QC

Suppose we have a cloud quantum computer server.

Q: Is it possible to run on this cloud quantum computer without the server figuring out what the client is

actually running?

A: Blind quantum computation

Fitzsimons, npj Quantum Information (2017) 23

Universal blind quantum computation*

[Broadbent, Fitzsimons & Kashefi '09]

☐ Using the following cluster state (called brickwork state)

- Alice tells Bob what measurement basis for Bob to perform and he returns the outcome (compute like one-way computer)
- → Alice can achieve her quantum computation without Bob knowing what she computed!!

1 Alice computes
$$\phi'_{x,y}$$
 where $s^X_{0,y} = s^Z_{0,y} = 0$. $\phi'_{x,y} = (-1)^{s^X_{x,y}} \phi_{x,y} + s^Z_{x,y} \pi$
2 Alice chooses $r_{x,y} \in \{0,1\}$ and computes $\delta_{x,y} = \phi'_{x,y} + \theta_{x,y} + \pi r_{x,y}$

- 3 Alice transmits $\delta_{x,y}$ to Bob. Bob measures in the basis $\{|+_{\delta_{x,y}}\rangle, |-_{\delta_{x,y}}\rangle\}$.
- 4 Bob transmits the result $s_{x,y} \in \{0,1\}$ to Alice.
- 5 If $r_{x,y} = 1$ above, Alice flips $s_{x,y}$; otherwise she does nothing.

→ Realized in an experiment Barz et al. 2012

Brickwork cluster state is universal

➤ Single-qubit gates:

➤ CNOT gate:

Composing gates for a quantum circuit

Fitzsimons, npj Quantum Information (2017) 23

Week 10: Quantum entangles: Entanglement of quantum states, entanglement of formation and distillation, entanglement entropy, Schmidt decomposition, majorization, quantum Shannon theory

Entangled states

□ We have seen the four Bell states (which allows several quantum information processing tasks, e.g. dense coding, teleportation, etc):

$$|\Phi^{\pm}\rangle \equiv \frac{1}{\sqrt{2}}(|00\rangle \pm |11\rangle), \ |\Psi^{\pm}\rangle \equiv \frac{1}{\sqrt{2}}(|01\rangle \pm |10\rangle)$$
 They cannot be factorized:
$$|\psi\rangle \neq |\phi^A\rangle \otimes |\phi^B\rangle$$

- □ In contrast, examples such as $|00\rangle$, $|0+\rangle$ are factorizable in product form (we will call "separable")
- Question: which of the following is entangled? Separable? (ignore normalization)

$$|\uparrow\uparrow\rangle + |\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle + |\downarrow\downarrow\rangle = (|\uparrow\rangle + |\downarrow\rangle)(|\uparrow\rangle + |\downarrow\rangle)$$
 [separable]

$$|\uparrow\uparrow\rangle + |\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle - |\downarrow\downarrow\rangle = |\uparrow\rangle(|\uparrow\rangle + |\downarrow\rangle) + |\downarrow\rangle(|\uparrow\rangle - |\downarrow\rangle)$$
 [entangled]

Two-qubit pure states

How am I sure that this state is really inseparable?

$$|\uparrow\uparrow\rangle + |\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle - |\downarrow\downarrow\rangle = |\uparrow\rangle(|\uparrow\rangle + |\downarrow\rangle) + |\downarrow\rangle(|\uparrow\rangle - |\downarrow\rangle)$$

Let's consider a general two-qubit pure state:

$$|\psi\rangle = a|00\rangle + b|01\rangle + c|10\rangle + d|11\rangle$$

☐ If it is separable, we can write it as

$$(\alpha|0\rangle + \beta|1\rangle) \otimes (\delta|0\rangle + \gamma|1\rangle) = \alpha\delta|00\rangle + \alpha\gamma|01\rangle + \beta\delta|10\rangle + \beta\gamma|11\rangle$$

Thus we must have

$$a = e^{i\theta}\alpha\delta, \ b = e^{i\theta}\alpha\gamma, \ c = e^{i\theta}\beta\delta, \ d = e^{i\theta}\beta\gamma$$

$$ad - bc = e^{2i\theta}(\alpha\delta\beta\gamma - \alpha\gamma\beta\delta) = 0$$

⇒ a necessary consequence (for being separable): $ad - bc = e^{2i\theta}(\alpha\delta\beta\gamma - \alpha\gamma\beta\delta) = 0$ ✓ Could define an entanglement quantity (concurrence) C = 2|ad - bc| C = 2|ad - bc| C = 2|ad - bc|

Concurrence

$$C=2|ad-bc| \qquad |\psi\rangle=a|00\rangle+b|01\rangle+c|10\rangle+d|11\rangle$$

Physical meaning: time reversal operation for a spin-1/2 (qubit)

$$-i\sigma_y K$$
 (K : complex conjugation)

→ Time reversal for ψ:

$$|\tilde{\psi}\rangle \equiv (-\sigma_y \otimes \sigma_y) K \psi\rangle = d^* |00\rangle - e^* |01\rangle - b^* |10\rangle + a^* |11\rangle$$

$$C = |\langle \tilde{\psi} | \psi \rangle| = 2|ad - bc|$$

☐ Example: concurrence for the following state

$$|\psi\rangle = \cos\theta |00\rangle + \sin\theta |11\rangle$$

$$C = 2|\sin\theta\cos\theta| = |\sin(2\theta)|$$

 \rightarrow C=1 for Bell states (at $\theta = \pi/4$)

(spor degrees of freedom)

Ty acts on everywhere

K: acts on everywhere

- Cy o Cy = (-1)

Schmidt decomposition

For any bipartite state (bipartite could arise by grouping subsystems into two parts)

$$|\psi
angle = \sum_{i=1}^{N_A} \sum_{j=1}^{N_B} \widehat{\psi_{ij}} |i,j
angle$$

The coefficients is an N_AxN_B matrix and can be singular value" decomposed

$$|\psi\rangle = \sum_{k=1}^{\max(N_A,N_B)} U_{ik} \sigma_k V_{jk}^* \qquad \max_{k \neq 1} (N_A,N_B) \qquad |i\rangle_A \rightarrow |k\rangle_A$$

$$|\psi\rangle = \sum_{k} (\sigma_k) \sum_{i} U_{ik} |i\rangle) \otimes (\sum_{j} V_{jk}^* |j\rangle) = \sum_{k=1}^{\infty} (Schmidt decomposition)$$

$$|\psi\rangle = \sum_{k} (\sigma_k) \sum_{i} U_{ik} |i\rangle \otimes (\sum_{j} V_{jk}^* |j\rangle) = \sum_{k=1}^{\infty} (Schmidt decomposition)$$

- \succ U and V define local unitary transformation so $|k\rangle$'s form an orthonormal basis
- \succ The Schmidt coefficients σ_k (from singular values) quantify the entanglement of the system

they satisfy
$$\sum_{k} \sigma_k^2 = 1$$

not enture

Example of Schmidt decomposition

$$|\psi\rangle = \frac{1}{\sqrt{3}} (|00\rangle + |01\rangle + |10\rangle) \quad C = 2/3 \qquad \Rightarrow \qquad \qquad = \begin{cases} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} & 0 \end{cases} = U \, w \, V^{\dagger} \qquad \{U, w, V\} = \text{SingularValueDecomposition}[\psi] \\ w = \left\{ \left\{ \frac{1}{6} \left(3 + \sqrt{5} \right), 0 \right\}, \begin{cases} 0, \sqrt{\frac{1}{6}} \left(3 - \sqrt{5} \right) \right\} \end{cases} \quad \forall w = \begin{cases} \frac{1}{6} \left(3 + \sqrt{5} \right), 0 \right\}, \begin{cases} 0, \sqrt{\frac{1}{6}} \left(3 - \sqrt{5} \right) \right\} \end{cases} \quad \forall w = \begin{cases} 0.8507 & 0.5257 \\ 0.5257 & 0.8507 \end{cases}$$

→ Entangled if there are more than one nonzero Schmidt coefficients

$$C = 2\sigma_1\sigma_2 = 2/3$$

Entanglement entropy from Schmidt coefficients

$$C = 2\sigma_1\sigma_2 = 2/3$$
 Entanglement entropy from Schmidt coefficients
$$\sum_{k} C_k = 1$$
 define a probability distribution
$$S_V(\rho_A) = -\sum_{k} \sigma_k^2 \log_2(\sigma_k^2) \approx 0.55 \text{ (for above example)}$$
 define an entropy
$$\rho_A = \text{Tr}_B(|\psi\rangle\langle\psi|)$$

$$A \text{ (b)} \Rightarrow \beta_A \Rightarrow S_V(\rho_A) = -\text{trplage}$$

$$S_V(
ho_A) = -\sum_k \sigma_k^2 \log_2(\sigma_k^2) \approx 0.55$$
 (for above example

$$\rho_A = \operatorname{Tr}_B(|\psi\rangle\langle\psi|)$$

Comments: partial trace and Sv

$$|\psi\rangle = \sum_{k} \sigma_{k} |\tilde{k}\rangle_{A} \otimes |\tilde{k}\rangle_{B}$$

$$|\psi\rangle = \sum_{k} \sigma_{k} |\tilde{k}\rangle_{A} \otimes |\tilde{k}\rangle_{B}$$

$$\square \text{ Partial trace over second party:}$$

$$\rho_{A} = \text{Tr}_{B}(|\psi\rangle\langle\psi|) = \sum_{k} \langle \tilde{k}|_{B} \cdot |\psi\rangle\langle\psi| \cdot |\tilde{k}\rangle_{B} = \sum_{k} \sigma_{k}^{2} |\tilde{k}\rangle_{A} \langle \tilde{k}|_{A} \text{ fr} \text{ fr}$$

☐ Von Neumann entropy

$$S_V(\rho_A) = -\text{Tr}(\rho_A \log \rho_A) = -\sum_k \sigma_k^2 \log(\sigma_k^2)$$

 \Rightarrow Also known as the entanglement entropy of ψ \longrightarrow ~ 1 ~ 1 ~ 1

Unentangled pure state remains pure after partial tracing

Unentangled (separable) states can be prepared locally

□ A pure state is called <u>separable</u> if it can be written as a product state

E.g.
$$|HV\rangle \equiv |H\rangle \otimes |V\rangle$$
 $|\uparrow\uparrow\rangle + |\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle + |\downarrow\downarrow\rangle = (|\uparrow\rangle + |\downarrow\rangle)(|\uparrow\rangle + |\downarrow\rangle)$

□ A mixed state is called <u>separable</u> if it can be written as a mixture of separable pure states

$$\rho = \sum_{i} p_{i} |\phi_{i}^{A}\rangle\langle\phi_{i}^{A}| \otimes |\phi_{i}^{B}\rangle\langle\phi_{i}^{B}|$$
E.g.
$$\frac{1}{2}|HH\rangle\langle HH| + \frac{1}{2}|VV\rangle\langle VV| \qquad \text{(an be created boally & Communication}}$$

$$\square \text{ Separable states can be created locally by local operations}$$

$$\square \text{ and classical communication}$$

Entangled or not

- 1. How to determine a state is entangled or not?
- 2. Quantify how entangled?

- → Generally, these are difficult problems. For special cases we can solve them.
- □ Example-- two interacting qubits :

Eigenstates.
$$|11\rangle$$
, $|11\rangle$, $(|11\rangle + |11\rangle)/\sqrt{2}$, $(|11\rangle - |11\rangle)/\sqrt{2}$

Figure 1. Eigenvalues: $J,J,J,-3J$

$$\rho = \frac{1}{Z} \sum_{n} e^{-\beta E_n} |n\rangle \langle n| = \frac{1-r}{4} I_{4\times 4} + r |\Psi^-\rangle \langle \Psi^-|$$

When is this entangled?

$$r = (e^{3\beta J} - e^{-\beta J})/(e^{3\beta J} + 3e^{-\beta J})$$

A separability criterion

How do we actually check if a state is entangled or not? One useful tool the is Peres-Horodecki criterion for separability. (PPT) [Peres '96, Horodecki et al. '96]

$$\rho = \sum_{i} p_{i} \rho_{i}^{A} \otimes \rho_{i}^{B}$$

$$\rho^{T_{B}} = \sum_{i} p_{i} \rho_{i}^{A} \otimes \left(\rho_{i}^{B}\right)^{T}$$

$$\Rightarrow \text{ eigenvalues non-negative}$$

This is called positive partial transpose criterion (PPT)
$$\frac{\text{dencity of Hertzen}}{\text{watrx}}$$

$$\text{watrx}$$

$$\text{there}$$

$$\text{watrx}$$

$$\text{there}$$

$$\text{watrx}$$

$$\text{there}$$

$$\text{watrx}$$

$$\text{there}$$

$$\text{watrx}$$

$$\text{there}$$

$$\text{watrx}$$

$$\text{there}$$

$$\text{th$$

If partial transpose of a density matrix is NOT positive
must be entangled!)

Positive Partial Transpose

- ρ separable → PPT
- PPT turns out to be sufficient for qubit-qubit and qubit-qutrit systems;
 for these PPT → separable (both necessary and sufficient)

Ex. Bell state
$$|\Phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$
 $(\frac{1}{2})$ $($

→ Entangled → Negativity= 2 x | sum of negative eigenvalues | = (1) above e.g.)

PPT criterion: another example

Ex. Werner state

$$\rho_{Werner}(\gamma) \equiv \gamma |\Phi^{+}\rangle \langle \Phi^{+}| + (1 - \gamma)I/4$$

$$= \begin{pmatrix} \frac{1+\gamma}{4} & 0 & 0 & \frac{\gamma}{2} \\ 0 & \frac{1-\gamma}{4} & 0 & 0 \\ 0 & 0 & \frac{1-\gamma}{4} & 0 \\ \frac{\gamma}{2} & 0 & 0 & \frac{1+\gamma}{4} \end{pmatrix} \xrightarrow{T_B} \begin{pmatrix} \frac{1+\gamma}{4} & 0 & 0 & 0 \\ 0 & \frac{1-\gamma}{4} & \frac{\gamma}{2} & 0 \\ 0 & \frac{\gamma}{2} & \frac{1-\gamma}{4} & 0 \\ 0 & 0 & 0 & \frac{1+\gamma}{4} \end{pmatrix}$$

eigenvalues
$$\frac{1+\gamma}{4}$$
, $\frac{1+\gamma}{4}$, $\frac{1+\gamma}{4}$, $\frac{1-3\gamma}{4}$ \Rightarrow certainly entangled when $\gamma > \frac{1}{3}$

Quantifying entanglement

- ➤ We will be discussing a several other ways to quantify entanglement:
 - A. Entanglement of distillation [Bennett et al. '96]

- B. Entanglement of dilution or Entanglement cost and Entanglement of formation [Bennett et al. '97]
- C. A geometric measure for multipartite entanglement

[Shimony '95, Barnum & Linden '01 Wei & Goldbart '03]

Entanglement of distillation/concentration

[Bennett et al. '96]

[Only local operations and classical communication are allowed]

$$\Box E_D(\psi) \equiv \lim_{n \to \infty} (k/n)$$

(idea also applies to mixed states)

$$|\psi\rangle^{\otimes n}$$
 |Bell $\rangle^{\otimes k}$

For pure state ψ , $E_D(\psi) = S_V(Tr_B|\psi\rangle\langle\psi|)$

where S_V is the von Neumann entropy

$$S_V(\rho) \equiv -Tr\rho\log\rho = -\sum_k \lambda_k\log(\lambda_k)$$

Comments: partial trace and Sv

$$|\psi\rangle = \cos\theta \, |00\rangle + \sin\theta \, |11\rangle$$

☐ Partial trace over second party (blue):

$$\rho_A = \text{Tr}_B(|\psi\rangle\langle\psi|) = \sum_{k=0}^1 \langle k|_B \cdot |\psi\rangle\langle\psi| \cdot |k\rangle_B = \cos^2(\theta) |\mathbf{0}\rangle\langle\mathbf{0}| + \sin^2(\theta) |\mathbf{1}\rangle\langle\mathbf{1}|$$

☐ Von Neumann entropy

$$S_V(\rho_A) = -\sum_k \lambda_k \log(\lambda_k)$$
$$= -(\cos^2 \theta) \log(\cos^2 \theta) - (\sin^2 \theta) \log(\sin^2 \theta)$$

 \rightarrow Also known as the **entanglement entropy** of ψ

Entanglement of distillation: example

□ Can Alice and Bob distill a Bell state from **two** pairs of $|\psi\rangle = \cos\theta |00\rangle + \sin\theta |11\rangle$?

Alice
$$|\psi_{12}\rangle = \cos\theta \ |0_10_2\rangle + \sin\theta \ |1_11_2\rangle$$

$$|\psi_{34}\rangle = \cos\theta \ |0_30_4\rangle + \sin\theta \ |1_31_4\rangle$$

$$|\psi_{12}\rangle|\psi_{34}\rangle = \cos^2\theta \ |0_10_20_30_4\rangle + \sqrt{2}\sin\theta \cos\theta \frac{1}{\sqrt{2}}(|0_10_21_31_4\rangle + |1_11_20_30_4\rangle) + \sin^2\theta \ |1_11_21_31_4\rangle$$
1. Alice measures k (total number of 1's on her side)

2. If $k=0$ or $k=$

(Can obtain a Bell state from this?)

Entanglement of distillation

The state is now $|\psi'\rangle = \frac{1}{\sqrt{2}}(|0_10_21_31_4\rangle + |1_11_20_30_4\rangle)$, the goal is to get: $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

3. Alice and Bob each perform a local unitary *U*

$$U_A^{(13)} = U_B^{(24)} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad U|01\rangle = |00\rangle, \quad U|10\rangle = |10\rangle, \ etc.$$

- 4. Throw away particles 3 and 4, we get $\frac{1}{\sqrt{2}}(|0_10_2\rangle + |1_11_2\rangle)$
- Can show that given sufficient many copies

$$E_D(\psi) \equiv \lim_{n \to \infty} (k/n) = S_V(Tr_B|\psi\rangle\langle\psi|)$$

Entanglement cost and entanglement of formation

$$\Box \quad E_{\mathcal{C}}(|\psi\rangle) \equiv \lim_{k \to \infty} (k/n)$$

(idea also applies to mixed states)

For pure states,

$$E_C = E_D = S_V(Tr_B|\psi\rangle\langle\psi|)$$

Entanglement cost and formation

□ How can we achieve the optimal "dilution" process?

- □ Ans. 'Quantum data compression' (explained later)+ quantum teleportation [Schumacher '96] [Bennett et al. '92]
 - 1. Alice prepares *n* copies of the states locally, and compresses the part that will be shared by Bob k Rell Parts to telepart

2. Alice and Bob share n copies of ψ by consuming $\mathbf{k} = \mathbf{n} \mathbf{E}_c$ copies of Bell states

Entanglement of formation

 Bennett et al. ['96] constructed an average quantity for mixed states called entanglement of formation

$$E_F(\rho) \equiv \min_{\{p_i, \psi_i\}} \sum_i p_i E_C(|\psi_i\rangle)$$
, with $\rho = \sum_i p_i |\psi_i\rangle\langle\psi_i|$

- □ Wootters ['98] has provided an analytic formula of E_F for two qubit states (exact form discussed later)
 - > Applying it to our two-spin problem:

$$H = J\vec{\sigma}^{1} \cdot \vec{\sigma}^{2}$$

$$\rho = \frac{1}{Z} \sum_{n} e^{-\beta E_{n}} |n\rangle\langle n| =$$

$$= \frac{1-r}{4} I_{4\times 4} + r|\Psi^{-}\rangle\langle\Psi^{-}|$$

$$r = (e^{3\beta J} - e^{-\beta J})/(e^{3\beta J} + 3e^{-\beta J})$$

Wootters' formula*

Entanglement of formation for mixed states is defined via

$$\begin{split} E_F(\rho) &\equiv \min_{\{p_i,\psi_i\}} \sum_i p_i E_F(|\psi_i\rangle), \quad \text{with } \rho = \sum_i p_i \, |\psi_i\rangle \langle \psi_i| \\ E_F(|\psi\rangle) &= -S_V(\rho_A) = -\text{Tr}\rho_A \log \rho_A, \quad \text{where } \rho_A = \text{Tr}_B |\psi\rangle \langle \psi| \end{split}$$

For two-qubit mixed states, Wootters has found a closed form

$$E_F(\rho) = H\left(\frac{1+\sqrt{1-C^2(\rho)}}{2}\right), \text{ where } H(x)$$

$$= -x \log x - (1-x)\log(1-x),$$
Concurrence

 $C(\rho) = \min\{0, \sqrt{\lambda_1} - \sqrt{\lambda_2} - \sqrt{\lambda_3} - \sqrt{\lambda_4}\}$ is the **concurrence** where λ_i 's, in nonincreasing order, are eigenvalues of

$$\rho(\sigma_y \otimes \sigma_y) \rho^*(\sigma_y \otimes \sigma_y)$$

