
Today 10/26:

1. Brief review of MBQC; discuss Blind QC
2. Week 10: ‘Quantum entangles’

PHY682 Special Topics in Solid-State Physics: 
Quantum Information Science

Lecture time: 2:40-4:00PM Monday & Wednesday



QC by Local Measurement---an overview picture
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 There is a highly entangled state on a 2D array 
of qubits. First carve out entanglement structure on 
cluster state by local Pauli Z measurement
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(1) Measurement along each wire simulates one-qubit evolution (gates)

(2) Measurement near & on each bridge simulates two-qubit gate (CNOT)

2D or higher dimensions are needed for universal QC

 Then:

[Raussendorf & Brigel ‘01]



One application of measurement-based QC

Suppose we have a cloud quantum computer server. 

Q: Is it possible to run on this cloud quantum computer 
without the server figuring out what the client is 
actually running?

A: Blind quantum 
computation 

Fitzsimons, npj Quantum Information (2017) 23



Universal blind quantum computation*

 Using the following cluster state (called brickwork state)
[Broadbent, Fitzsimons & Kashefi ’09]

 Alice prepares

x

y

with random 

 Bob entangles all qubits 
according to the brickwork 
graph via CZ gates

 Alice tells Bob what measurement basis for Bob 
to perform and he returns the outcome 
(compute like one-way computer)

 Alice can achieve her quantum 
computation without Bob knowing what 
she computed!!

 Realized in an experiment
Barz et al. 2012



Brickwork cluster state is universal

x

y

 Single-qubit gates:

 CNOT gate:



Composing gates for a quantum circuit

Fitzsimons, npj Quantum Information (2017) 23



Week 10: Quantum entangles: 
Entanglement of quantum 

states, entanglement of 
formation and distillation, 

entanglement 
entropy, Schmidt 

decomposition, majorization, 
quantum Shannon theory



Entangled states

 We have seen the four Bell states (which allows several quantum 
information processing tasks, e.g. dense coding, teleportation, etc):

 In contrast, examples such as 00  , 0 +  are factorizable in product form
(we will call “separable”)

They cannot be factorized: 

 Question: which of the following is entangled? Separable? (ignore normalization)

𝜓 ≠ 𝜙஺ ⊗ 𝜙஻

↑↑ + ↑↓ + ↓↑ + ↓↓

↑↑ + ↑↓ + ↓↑ − ↓↓

= ↑ + ↓ ↑ + ↓ [separable]

= ↑ ↑ + ↓ + ↓ ↑ − ↓ [entangled]



Two-qubit pure states
 How am I sure that this state is really inseparable?

Thus we must have

Let’s consider a general two-qubit pure state:

 a necessary consequence (for being separable):

↑↑ + ↑↓ + ↓↑ − ↓↓ = ↑ ↑ + ↓ + ↓ ↑ − ↓

 If it is separable, we can write it as

 Could define an entanglement quantity (concurrence)



Concurrence

Physical meaning: time reversal operation for a spin-1/2 (qubit)

 Time reversal for ψ:

 Example: concurrence for the following state

 C=1 for Bell states (at θ = π/4)



Schmidt decomposition
For any bipartite state (bipartite could arise by grouping subsystems into two parts)

The coefficients is an NAxNB matrix and can be “singular value” decomposed

 U and V define local unitary transformation so |𝑘⟩’s form an orthonormal basis

(Schmidt 
decomposition)

 The Schmidt coefficients σ௞ (from singular values) quantify the entanglement of the system



Example of Schmidt decomposition

 Entangled if there are more than one nonzero Schmidt coefficients

ψ=

ଵ

ଷ

ଵ

ଷ
ଵ

ଷ
0

= 𝑈 𝑤 𝑉
† U, 𝑤, 𝑉 = SingularValueDecomposition[ψ]

w =
1

6
 3 + 5 , 0 , 0,

1

6
 3 − 5

U= 0.8507 0.5257
0.5257 −0.8507

V= 0.8507 −0.5257
0.5257 0.8507

 Entanglement entropy from Schmidt coefficients

≈ 0.55 (for above example)



Comments: partial trace and Sv

 Partial trace over second party:

 Von Neumann entropy

 Also known as the entanglement entropy of ψ

 Unentangled pure state remains pure after partial tracing



Unentangled (separable) states can be prepared locally

𝜓 = 𝜙஺ ⊗ 𝜙஻

 A pure state is called separable if it can be written as 
a product state

 A mixed state is called separable if it can be written as 
a mixture of separable pure states

𝜌 = ෍ 𝑝௜

௜

𝜙௜
஺ 𝜙௜

஺ ⊗ 𝜙௜
஻ 𝜙௜

஻

𝐻𝑉 ≡ 𝐻 ⊗ 𝑉E.g.

E.g. 1

2
𝐻𝐻 𝐻𝐻 +

1

2
𝑉𝑉 𝑉𝑉

 Separable states can be created locally by local operations 
and classical communication

↑↑ + ↑↓ + ↓↑ + ↓↓ = ↑ + ↓ ↑ + ↓



2. Quantify how entangled?
𝜌ଵ

𝜌ଶ
1. How to determine a state is entangled or not?

Entangled or not

 Generally, these are difficult problems. For special cases we can solve them. 

 Example-- two interacting qubits :

𝐻 = 𝐽𝜎⃗ଵ ⋅ 𝜎⃗ଶ,   with 𝐽 > 0

 Eigenstates: ↑↑ , ↓↓ , ↑↓ + ↓↑ / 2, ↑↓ − ↓↑ / 2

 Eigenvalues: 𝐽, 𝐽, 𝐽, −3𝐽

 𝜌 =
1

𝑍
෍ 𝑒ିఉா೙ 𝑛 𝑛 =

௡

1 − 𝑟

4
𝐼ସ×ସ + 𝑟 Ψି Ψି

𝑟 = (𝑒ଷఉ௃ − 𝑒ିఉ௃)/(𝑒ଷఉ௃ + 3𝑒ିఉ௃)

When is this entangled?



How do we actually check if a state is entangled or not?
One useful tool the is Peres-Horodecki criterion for separability. 
(PPT) [Peres ’96, Horodecki et al. ’96]

This is called positive partial transpose criterion (PPT)

𝜌்ಳ = ෍ 𝑝௜

௜

𝜌௜
஺ ⊗ 𝜌௜

஻ ்

𝜌 = ෍ 𝑝௜

௜

𝜌௜
஺ ⊗ 𝜌௜

஻

Still a valid density matrix 
 eigenvalues non-negative 

A separability criterion

If partial transpose of a density matrix is NOT positive must be entangled! )



 PPT turns out to be sufficient for qubit-qubit and qubit-qutrit systems; 
for these PPT  separable (both necessary and sufficient)

 ρ separable  PPT

𝜌஍శ = Φା Φା =

1

2
0 0

1

2
0 0 0 0
0 0 0 0
1

2
0 0

1

2

 ்ಳ 

1

2
0 0 0

0 0
1

2
0

0
1

2
0 0

0 0 0
1

2

       eigenvalues:
1

2
,
1

2
,
1

2
, −

1

2

Ex. Bell state Φା =
1

2
00 + 11

 Entangled  Negativity= 2 x |sum of negative eigenvalues| = 1 (above e.g.)

Positive Partial Transpose



=

1 + 𝛾

4
0 0

𝛾

2

0
1 − 𝛾

4
0 0

0 0
1 − 𝛾

4
0

𝛾

2
0 0

1 + 𝛾

4

 
 ்ಳ 

 

1 + 𝛾

4
0 0 0

0
1 − 𝛾

4

𝛾

2
0

0
𝛾

2

1 − 𝛾

4
0

0 0 0
1 + 𝛾

4

 eigenvalues  
1 + 𝛾

4
,
1 + 𝛾

4
,
1 + 𝛾

4
,
1 − 3𝛾

4
certainly entangled when 𝛾 >

1

3

𝜌ௐ௘௥௡௘௥(𝛾) ≡ 𝛾 Φା Φା + (1 − 𝛾)𝐼/4



Ex. Werner state

PPT criterion: another example



A. Entanglement of distillation [Bennett et al. ’96]

B. Entanglement of dilution or Entanglement cost
and Entanglement of formation [Bennett et al. ’97]

C. A geometric measure for multipartite entanglement
[Shimony ’95, Barnum & Linden ’01
Wei & Goldbart ’03]

Quantifying entanglement

We will be discussing a several other ways to quantify entanglement:



Entanglement of distillation/concentration
[Bennett et al. ’96]

k halves of 
Bell states

k halves of 
Bell states

𝑛 pairs of 𝜓

𝐸஽ 𝜓 ≡ lim
௡→ஶ

𝑘/𝑛

𝜓 ⊗௡ Bell ⊗௞

𝐸஽

(idea also applies to mixed states)

For pure state 𝜓, 𝐸஽ 𝜓 = 𝑆௏ 𝑇𝑟஻ 𝜓 𝜓



where SV is the von Neumann entropy

𝑆௏ 𝜌 ≡ −𝑇𝑟𝜌 log 𝜌

[ Only local operations and classical communication are allowed ]



Comments: partial trace and Sv
𝜓 = cos 𝜃 00 + sin 𝜃 11

 Partial trace over second party (blue):

 Von Neumann entropy

 Also known as the entanglement entropy of ψ



Entanglement of distillation: example

 Can Alice and Bob distill a Bell state from
two pairs of                                              ?

𝜓ଵଶ 𝜓ଷସ = cosଶ 𝜃 0ଵ0ଶ0ଷ0ସ + 2 sin 𝜃 cos 𝜃
1

2
0ଵ0ଶ1ଷ1ସ + 1ଵ1ଶ0ଷ0ସ + sinଶ 𝜃 1ଵ1ଶ1ଷ1ସ

Alice Bob𝜓ଵଶ = cos 𝜃 0ଵ0ଶ + sin 𝜃 1ଵ1ଶ

𝜓ଷସ = cos 𝜃 0ଷ0ସ + sin 𝜃 1ଷ1ସ

1. Alice measures k (total number of 1’s on her side)

2. If k=0 or 2, repeat step 1

If k=1, state collapses to

with probability 2 sinଶ 𝜃 cosଶ 𝜃

(Can obtain a Bell state from this?)

𝜓ᇱ =
1

2
0ଵ0ଶ1ଷ1ସ + 1ଵ1ଶ0ଷ0ସ

𝜓 = cos 𝜃 00 + sin 𝜃 11



Entanglement of distillation

3. Alice and Bob each perform a local unitary U

𝑈஺
(ଵଷ)

= 𝑈஻
(ଶସ)

=

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

,

𝑈஺
(ଵଷ)

⊗ 𝑈஻
(ଶସ)

𝜓ᇱ =
1

2
0ଵ0ଶ + 1ଵ1ଶ 0ଷ0ସ

The state is now                                                               , the goal is to get:                         𝜓ᇱ =
1

2
0ଵ0ଶ1ଷ1ସ + 1ଵ1ଶ0ଷ0ସ

1

2
00 + 11

4. Throw away particles 3 and 4, we get 1

2
0ଵ0ଶ + 1ଵ1ଶ

𝑈 01 = 00 ,  𝑈 10 = 10 ,  𝑒𝑡𝑐.

𝐸஽ 𝜓 ≡ lim
௡→ஶ

𝑘/𝑛 = 𝑆௏ 𝑇𝑟஻ 𝜓 𝜓

 Can show that given sufficient many copies 





Entanglement cost and 
entanglement of formation

n halves 
of 

𝑘 pairsof Φା

𝜓
n halves 
of 𝜓

𝐸஼ 𝜓 ≡ lim
௞→ஶ

( 𝑘/𝑛) (idea also applies to mixed states)

𝜓 ⊗௡ Bell ⊗௞

𝐸஼
𝐸஼ = 𝐸஽ = 𝑆௏ 𝑇𝑟஻ 𝜓 𝜓  



For pure states, 

[Bennett et al. ’97]



Entanglement cost and formation

 Ans. ‘Quantum data compression’ (explained later)+ quantum teleportation

 How can we achieve the optimal “dilution” process?

𝜓ଵଶ  =  cos 𝜃 0ଵ0ଶ  +  sin 𝜃 1ଵ1ଶ

𝜓ଷସ  =  cos 𝜃 0ଷ0ସ  +  sin 𝜃 1ଷ1ସ

   ⋮

𝜓ଶ௡ିଵ,ଶ௡

= cos 𝜃 0ଶ௡ିଵ0ଶ௡ + sin 𝜃 1ଶ௡ିଵ1ଶ௡

1. Alice prepares n copies of the states locally, and 
compresses the part that will be shared by Bob

Compressed
into k qubits

𝑘 ≈ 𝑛 𝑆௏ 𝑇𝑟஻ 𝜓 𝜓

Teleport
Bob
Decompresses

Using k
Bell pairs

2. Alice and Bob share n copies of  ψ
by  consuming k = n Ec copies of Bell states

[Schumacher ’96] [Bennett et al. ’92]



Entanglement of formation

𝐸ி(𝜌) ≡ min
{௣೔,ట೔}

෍ 𝑝௜𝐸େ 𝜓௜

௜

,  with 𝜌 = ෍ 𝑝௜
௜

𝜓௜ 𝜓௜

 Bennett et al. [‘96] constructed an average quantity
for mixed states called entanglement of formation

𝐻 = 𝐽𝜎⃗ଵ ⋅ 𝜎⃗ଶ

𝜌 =
1

𝑍
෍ 𝑒ିఉா೙ 𝑛 𝑛 =

௡

 =
1 − 𝑟

4
𝐼ସ×ସ + 𝑟 Ψି Ψି

𝑟 = (𝑒ଷఉ௃ − 𝑒ିఉ௃)/(𝑒ଷఉ௃ + 3𝑒ିఉ௃)

 Wootters [’98] has provided an analytic formula of EF

for two qubit states (exact form discussed later)

 Applying it to our two-spin problem:



𝐸ி 𝜓 = −𝑆௏(𝜌஺) = −Tr𝜌஺ log 𝜌஺ ,  where 𝜌஺ = Tr୆ 𝜓 𝜓

𝐸ி(𝜌) = 𝐻
1 + 1 − 𝐶ଶ(𝜌)

2
,    where 𝐻(𝑥)

= −𝑥 log 𝑥 − (1 − 𝑥) log( 1 − 𝑥),

𝐸ி(𝜌) ≡ min
{௣೔,ట೔}

෍ 𝑝௜𝐸୊ 𝜓௜

௜

,  with 𝜌 = ෍ 𝑝௜
௜

𝜓௜ 𝜓௜

𝐶 𝜌 = min{ 0, 𝜆ଵ − 𝜆ଶ −

𝜆ଷ − 𝜆ସ} is the concurrence

𝜌(𝜎௬ ⊗ 𝜎௬)𝜌∗(𝜎௬ ⊗ 𝜎௬)

where 𝜆௜′s, in nonincreasing order, 
are eigenvalues of 

 Entanglement of formation for mixed states is defined via

 For two-qubit mixed states, Wootters has found a closed form

Wootters’ formula*

𝜌 =
1 − 𝑟

4
𝐼ସ×ସ + 𝑟 Ψି Ψି

𝑟 = (𝑒ଷఉ௃ − 𝑒ିఉ௃)/(𝑒ଷఉ௃ + 3𝑒ିఉ௃)


