
Today 10/26:

1. Brief review of MBQC; discuss Blind QC
2. Week 10: ‘Quantum entangles’

PHY682 Special Topics in Solid-State Physics: 
Quantum Information Science

Lecture time: 2:40-4:00PM Monday & Wednesday



QC by Local Measurement---an overview picture
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 There is a highly entangled state on a 2D array 
of qubits. First carve out entanglement structure on 
cluster state by local Pauli Z measurement
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(1) Measurement along each wire simulates one-qubit evolution (gates)

(2) Measurement near & on each bridge simulates two-qubit gate (CNOT)

2D or higher dimensions are needed for universal QC

 Then:

[Raussendorf & Brigel ‘01]



One application of measurement-based QC

Suppose we have a cloud quantum computer server. 

Q: Is it possible to run on this cloud quantum computer 
without the server figuring out what the client is 
actually running?

A: Blind quantum 
computation 

Fitzsimons, npj Quantum Information (2017) 23



Universal blind quantum computation*

 Using the following cluster state (called brickwork state)
[Broadbent, Fitzsimons & Kashefi ’09]

 Alice prepares

x

y

with random 

 Bob entangles all qubits 
according to the brickwork 
graph via CZ gates

 Alice tells Bob what measurement basis for Bob 
to perform and he returns the outcome 
(compute like one-way computer)

 Alice can achieve her quantum 
computation without Bob knowing what 
she computed!!

 Realized in an experiment
Barz et al. 2012



Brickwork cluster state is universal

x

y

 Single-qubit gates:

 CNOT gate:



Composing gates for a quantum circuit

Fitzsimons, npj Quantum Information (2017) 23



Week 10: Quantum entangles: 
Entanglement of quantum 

states, entanglement of 
formation and distillation, 

entanglement 
entropy, Schmidt 

decomposition, majorization, 
quantum Shannon theory



Entangled states

 We have seen the four Bell states (which allows several quantum 
information processing tasks, e.g. dense coding, teleportation, etc):

 In contrast, examples such as 00  , 0 +  are factorizable in product form
(we will call “separable”)

They cannot be factorized: 

 Question: which of the following is entangled? Separable? (ignore normalization)

𝜓 ≠ 𝜙 ⊗ 𝜙

↑↑ + ↑↓ + ↓↑ + ↓↓

↑↑ + ↑↓ + ↓↑ − ↓↓

= ↑ + ↓ ↑ + ↓ [separable]

= ↑ ↑ + ↓ + ↓ ↑ − ↓ [entangled]



Two-qubit pure states
 How am I sure that this state is really inseparable?

Thus we must have

Let’s consider a general two-qubit pure state:

 a necessary consequence (for being separable):

↑↑ + ↑↓ + ↓↑ − ↓↓ = ↑ ↑ + ↓ + ↓ ↑ − ↓

 If it is separable, we can write it as

 Could define an entanglement quantity (concurrence)



Concurrence

Physical meaning: time reversal operation for a spin-1/2 (qubit)

 Time reversal for ψ:

 Example: concurrence for the following state

 C=1 for Bell states (at θ = π/4)



Schmidt decomposition
For any bipartite state (bipartite could arise by grouping subsystems into two parts)

The coefficients is an NAxNB matrix and can be “singular value” decomposed

 U and V define local unitary transformation so |𝑘⟩’s form an orthonormal basis

(Schmidt 
decomposition)

 The Schmidt coefficients σ (from singular values) quantify the entanglement of the system



Example of Schmidt decomposition

 Entangled if there are more than one nonzero Schmidt coefficients

ψ=
0

= 𝑈 𝑤 𝑉
† U, 𝑤, 𝑉 = SingularValueDecomposition[ψ]

w =
1

6
 3 + 5 , 0 , 0,

1

6
 3 − 5

U= 0.8507 0.5257
0.5257 −0.8507

V= 0.8507 −0.5257
0.5257 0.8507

 Entanglement entropy from Schmidt coefficients

≈ 0.55 (for above example)



Comments: partial trace and Sv

 Partial trace over second party:

 Von Neumann entropy

 Also known as the entanglement entropy of ψ

 Unentangled pure state remains pure after partial tracing



Unentangled (separable) states can be prepared locally

𝜓 = 𝜙 ⊗ 𝜙

 A pure state is called separable if it can be written as 
a product state

 A mixed state is called separable if it can be written as 
a mixture of separable pure states

𝜌 = 𝑝 𝜙 𝜙 ⊗ 𝜙 𝜙

𝐻𝑉 ≡ 𝐻 ⊗ 𝑉E.g.

E.g. 1

2
𝐻𝐻 𝐻𝐻 +

1

2
𝑉𝑉 𝑉𝑉

 Separable states can be created locally by local operations 
and classical communication

↑↑ + ↑↓ + ↓↑ + ↓↓ = ↑ + ↓ ↑ + ↓



2. Quantify how entangled?
𝜌

𝜌
1. How to determine a state is entangled or not?

Entangled or not

 Generally, these are difficult problems. For special cases we can solve them. 

 Example-- two interacting qubits :

𝐻 = 𝐽�⃗� ⋅ �⃗� ,   with 𝐽 > 0

 Eigenstates: ↑↑ , ↓↓ , ↑↓ + ↓↑ / 2, ↑↓ − ↓↑ / 2

 Eigenvalues: 𝐽, 𝐽, 𝐽, −3𝐽

 𝜌 =
1

𝑍
𝑒 𝑛 𝑛 =

1 − 𝑟

4
𝐼 × + 𝑟 Ψ Ψ

𝑟 = (𝑒 − 𝑒 )/(𝑒 + 3𝑒 )

When is this entangled?



How do we actually check if a state is entangled or not?
One useful tool the is Peres-Horodecki criterion for separability. 
(PPT) [Peres ’96, Horodecki et al. ’96]

This is called positive partial transpose criterion (PPT)

𝜌 = 𝑝 𝜌 ⊗ 𝜌

𝜌 = 𝑝 𝜌 ⊗ 𝜌

Still a valid density matrix 
 eigenvalues non-negative 

A separability criterion

If partial transpose of a density matrix is NOT positive must be entangled! )



 PPT turns out to be sufficient for qubit-qubit and qubit-qutrit systems; 
for these PPT  separable (both necessary and sufficient)

 ρ separable  PPT

𝜌 = Φ Φ =

1

2
0 0

1

2
0 0 0 0
0 0 0 0
1

2
0 0

1

2

  

1

2
0 0 0

0 0
1

2
0

0
1

2
0 0

0 0 0
1

2

       eigenvalues:
1

2
,
1

2
,
1

2
, −

1

2

Ex. Bell state Φ =
1

2
00 + 11

 Entangled  Negativity= 2 x |sum of negative eigenvalues| = 1 (above e.g.)

Positive Partial Transpose



=

1 + 𝛾

4
0 0

𝛾

2

0
1 − 𝛾

4
0 0

0 0
1 − 𝛾

4
0

𝛾

2
0 0

1 + 𝛾

4

 
  

 

1 + 𝛾

4
0 0 0

0
1 − 𝛾

4

𝛾

2
0

0
𝛾

2

1 − 𝛾

4
0

0 0 0
1 + 𝛾

4

 eigenvalues  
1 + 𝛾

4
,
1 + 𝛾

4
,
1 + 𝛾

4
,
1 − 3𝛾

4
certainly entangled when 𝛾 >

1

3

𝜌 (𝛾) ≡ 𝛾 Φ Φ + (1 − 𝛾)𝐼/4



Ex. Werner state

PPT criterion: another example



A. Entanglement of distillation [Bennett et al. ’96]

B. Entanglement of dilution or Entanglement cost
and Entanglement of formation [Bennett et al. ’97]

C. A geometric measure for multipartite entanglement
[Shimony ’95, Barnum & Linden ’01
Wei & Goldbart ’03]

Quantifying entanglement

We will be discussing a several other ways to quantify entanglement:



Entanglement of distillation/concentration
[Bennett et al. ’96]

k halves of 
Bell states

k halves of 
Bell states

𝑛 pairs of 𝜓

𝐸 𝜓 ≡ lim
→

𝑘/𝑛

𝜓 ⊗ Bell ⊗

𝐸

(idea also applies to mixed states)

For pure state 𝜓, 𝐸 𝜓 = 𝑆 𝑇𝑟 𝜓 𝜓



where SV is the von Neumann entropy

𝑆 𝜌 ≡ −𝑇𝑟𝜌 log 𝜌

[ Only local operations and classical communication are allowed ]



Comments: partial trace and Sv
𝜓 = cos 𝜃 00 + sin 𝜃 11

 Partial trace over second party (blue):

 Von Neumann entropy

 Also known as the entanglement entropy of ψ



Entanglement of distillation: example

 Can Alice and Bob distill a Bell state from
two pairs of                                              ?

𝜓 𝜓 = cos 𝜃 0 0 0 0 + 2 sin 𝜃 cos 𝜃
1

2
0 0 1 1 + 1 1 0 0 + sin 𝜃 1 1 1 1

Alice Bob𝜓 = cos 𝜃 0 0 + sin 𝜃 1 1
𝜓 = cos 𝜃 0 0 + sin 𝜃 1 1

1. Alice measures k (total number of 1’s on her side)

2. If k=0 or 2, repeat step 1

If k=1, state collapses to

with probability 2 sin 𝜃 cos 𝜃

(Can obtain a Bell state from this?)

𝜓 =
1

2
0 0 1 1 + 1 1 0 0

𝜓 = cos 𝜃 00 + sin 𝜃 11



Entanglement of distillation

3. Alice and Bob each perform a local unitary U

𝑈
( )

= 𝑈
( )

=

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

,

𝑈
( )

⊗ 𝑈
( )

𝜓 =
1

2
0 0 + 1 1 0 0

The state is now                                                               , the goal is to get:                         𝜓 =
1

2
0 0 1 1 + 1 1 0 0

1

2
00 + 11

4. Throw away particles 3 and 4, we get 1

2
0 0 + 1 1

𝑈 01 = 00 ,  𝑈 10 = 10 ,  𝑒𝑡𝑐.

𝐸 𝜓 ≡ lim
→

𝑘/𝑛 = 𝑆 𝑇𝑟 𝜓 𝜓

 Can show that given sufficient many copies 





Entanglement cost and 
entanglement of formation

n halves 
of 

𝑘 pairsof Φ

𝜓
n halves 
of 𝜓

𝐸 𝜓 ≡ lim
→

( 𝑘/𝑛) (idea also applies to mixed states)

𝜓 ⊗ Bell ⊗

𝐸 𝐸 = 𝐸 = 𝑆 𝑇𝑟 𝜓 𝜓  



For pure states, 

[Bennett et al. ’97]



Entanglement cost and formation

 Ans. ‘Quantum data compression’ (explained later)+ quantum teleportation

 How can we achieve the optimal “dilution” process?

𝜓  =  cos 𝜃 0 0  +  sin 𝜃 1 1

𝜓  =  cos 𝜃 0 0  +  sin 𝜃 1 1

   ⋮

𝜓 ,

= cos 𝜃 0 0 + sin 𝜃 1 1

1. Alice prepares n copies of the states locally, and 
compresses the part that will be shared by Bob

Compressed
into k qubits

𝑘 ≈ 𝑛 𝑆 𝑇𝑟 𝜓 𝜓

Teleport
Bob
Decompresses

Using k
Bell pairs

2. Alice and Bob share n copies of  ψ
by  consuming k = n Ec copies of Bell states

[Schumacher ’96] [Bennett et al. ’92]



Entanglement of formation

𝐸 (𝜌) ≡ min
{ , }

𝑝 𝐸 𝜓 ,  with 𝜌 = 𝑝 𝜓 𝜓

 Bennett et al. [‘96] constructed an average quantity
for mixed states called entanglement of formation

𝐻 = 𝐽�⃗� ⋅ �⃗�

𝜌 =
1

𝑍
𝑒 𝑛 𝑛 =

 =
1 − 𝑟

4
𝐼 × + 𝑟 Ψ Ψ

𝑟 = (𝑒 − 𝑒 )/(𝑒 + 3𝑒 )

 Wootters [’98] has provided an analytic formula of EF

for two qubit states (exact form discussed later)

 Applying it to our two-spin problem:



𝐸 𝜓 = −𝑆 (𝜌 ) = −Tr𝜌 log 𝜌 ,  where 𝜌 = Tr 𝜓 𝜓

𝐸 (𝜌) = 𝐻
1 + 1 − 𝐶 (𝜌)

2
,    where 𝐻(𝑥)

= −𝑥 log 𝑥 − (1 − 𝑥) log( 1 − 𝑥),

𝐸 (𝜌) ≡ min
{ , }

𝑝 𝐸 𝜓 ,  with 𝜌 = 𝑝 𝜓 𝜓

𝐶 𝜌 = min{ 0, 𝜆 − 𝜆 −

𝜆 − 𝜆 } is the concurrence

𝜌(𝜎 ⊗ 𝜎 )𝜌∗(𝜎 ⊗ 𝜎 )

where 𝜆 ′s, in nonincreasing order, 
are eigenvalues of 

 Entanglement of formation for mixed states is defined via

 For two-qubit mixed states, Wootters has found a closed form

Wootters’ formula*

𝜌 =
1 − 𝑟

4
𝐼 × + 𝑟 Ψ Ψ

𝑟 = (𝑒 − 𝑒 )/(𝑒 + 3𝑒 )


