PHY682 Special Topics in Solid-State Physics: Quantum Information Science

Lecture time: 2:40-4:00PM Monday \& Wednesday

Today 10/26:

1. Brief review of MBQC; discuss Blind QC
2. Week 10: ‘Quantum entangles'

QC by Local Measurement---an overview picture

[Raussendorf \& Brigel '01]

- There is a highly entangled state on a 2D array of qubits. First carve out entanglement structure on cluster state by local Pauli Z measurement

One-way q. computor
Entanglement is the resoure

- Then:
(1) Measurement along each wire simulates one-qubit evolution (gates)
(2) Measurement near \& on each bridge simulates two-qubit gate (CNOT)
$\longrightarrow 2 \mathrm{D}$ or higher dimensions are needed for universal QC

One application of measurement-based QC

Suppose we have a cloud quantum computer server.
Q: Is it possible to run on this cloud quantum computer without the server figuring out what the client is actually running?

A: Blind quantum computation

Fitzsimons, npj Quantum Information (2017) 23

Universal blind quantum computation*

[Broadbent, Fitzsimons \& Kashefi '09]
\square Using the following cluster state (called brickwork state)
> Alice prepares
$|\Psi\rangle=\underset{x, y}{\otimes}\left(|0\rangle_{x, y}+e^{i \theta_{x, y}}|1\rangle_{x, y}\right)$
with random $\Rightarrow \infty n$ averge

$$
\theta_{x, y}=0, \pi / 4, \ldots 7 \pi / 4 \quad \text { Gub.ts }
$$

$>$ Bob entangles all qubits according to the brickwork arl in a pletel, graph via CZ gates
mised
state

> Alice tells Bob what measurement basis for Bob to perform and he returns the outcome (compute like one-way computer)
\rightarrow Alice can achieve her quantum computation without Bob knowing what she computed!!

1 Alice computes $\phi_{x, y}^{\prime}$ where $s_{0, y}^{X}=s_{0, y}^{Z}=0$. $\quad \phi_{x, y}^{\prime}=(-1)^{s_{x, y}^{X}} \phi_{x, y}+s_{x, y}^{Z} \pi$
2 Alice chooses $r_{x, y} \in_{R}\{0,1\}$ and computes $\delta_{x, y}=\phi_{x, y}^{\prime}+\theta_{x, y}+\pi r_{x, y} \rightarrow$
3 Alice transmits $\delta_{x, y}$ to Bob. Bob measures in the basis $\left\{\left|+\delta_{x, y}\right\rangle,\left|-\delta_{x, y}\right\rangle\right\}$.
4 Bob transmits the result $s_{x, y} \in\{0,1\}$ to Alice.
5 If $r_{x, y}=1$ above, Alice flips $s_{x, y}$; otherwise she does nothing.

Brickwork cluster state is universal

> CNOT gate:

Composing gates for a quantum circuit

Fitzsimons, npj Quantum Information (2017) 23

Week 10: Quantum entangles:
Entanglement of quantum states, entanglement of formation and distillation, entanglement entropy, Schmidt decomposition, majorization, quantum Shannon theory

Entangled states

- We have seen the four Bell states (which allows several quantum information processing tasks, e.g. dense coding, teleportation, etc):

$$
\left|\Phi^{ \pm}\right\rangle \equiv \frac{1}{\sqrt{2}}\left(|00\rangle_{A B} \pm|11\rangle\right),\left|\Psi^{ \pm}\right\rangle \equiv \frac{1}{\sqrt{2}}(|01\rangle \pm|10\rangle)
$$

They cannot be factorized: $\quad|\psi\rangle \neq\left|\phi^{A}\right\rangle \otimes\left|\phi^{B}\right\rangle$

- In contrast, examples such as $|00\rangle,|0+\rangle$ are factorizable in product form (we will call "separable")
- Question: which of the following is entangled? Separable? (ignore normalization)

$$
\begin{aligned}
& |\uparrow \uparrow\rangle+|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle+|\downarrow \downarrow\rangle=(|\uparrow\rangle+|\downarrow\rangle)(|\uparrow\rangle+|\downarrow\rangle) \quad \text { [separable] } \\
& |\uparrow \uparrow\rangle+|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle-|\downarrow \downarrow\rangle=|\uparrow\rangle(|\uparrow\rangle+|\downarrow\rangle)+|\downarrow\rangle(|\uparrow\rangle-|\downarrow\rangle) \text { [entangled] }
\end{aligned}
$$

Two-qubit pure states

- How am I sure that this state is really inseparable?

$$
|\uparrow \uparrow\rangle+|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle-|\downarrow \downarrow\rangle=|\uparrow\rangle\left(|\uparrow\rangle \frac{1}{4}|\downarrow\rangle\right)+|\downarrow\rangle(|\uparrow\rangle-|\downarrow\rangle)
$$

Let's consider a general two-qubit pure state:

$$
|\psi\rangle=a|00\rangle+b|01\rangle+c|10\rangle+d|11\rangle
$$

If it is separable, we can write it as

$$
(\alpha|0\rangle+\beta|1\rangle) \otimes(\delta|0\rangle+\gamma|1\rangle)=\alpha \delta|00\rangle+\alpha \gamma|01\rangle+\beta \delta|10\rangle+\beta \gamma|11\rangle
$$

Thus we must have

$$
a=e^{i \theta} \alpha \delta, b=e^{i \theta} \alpha \gamma, c=e^{i \theta} \beta \delta, d=e^{i \theta} \beta \gamma
$$

\rightarrow a necessary consequence (for being separable):

$$
a d-b c=e^{2 i \theta}(\alpha \delta \beta \gamma-\alpha \gamma \beta \delta)=0
$$

\checkmark Could define an entanglement quantity (concurrence)

$$
C=2|a d-b c| \quad \begin{gathered}
\quad \operatorname{ses}(|(|0\rangle\langle \rangle+|1\rangle|-\rangle) \\
{ }^{2} \left\lvert\, v=2 \cdot \frac{1}{2}=1\right.
\end{gathered}
$$

Concurrence

$$
C=2|a d-b c| \quad|\psi\rangle=a|00\rangle+b|01\rangle+c|10\rangle+d|11\rangle \quad(\mathrm{spm} \text { degrees of freedom })
$$

Physical meaning: time reversal operation for a spin $-1 / 2$ (quit) $-i \sigma_{y} K(K$: complex conjugation)
\rightarrow Time reversal for ψ :

$$
\begin{aligned}
& C=|\langle\tilde{\psi} \mid \psi\rangle|=2|a d-b c|
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{y} \text { acts on } \\
& K: \text { acts on eremywherl } \\
& -\sigma_{y}, \sigma_{y}=\binom{-1}{-1}
\end{aligned}
$$

Example: concurrence for the following state

$$
\begin{aligned}
& |\psi\rangle=\cos \theta|00\rangle+\sin \theta|11\rangle \\
& C=2\left|\underline{\sin \theta \cos \theta \mid=}{ }^{6}\right| \underline{\sin (2 \theta) \mid}
\end{aligned}
$$

$\rightarrow \mathrm{C}=1$ for Bell states (at $\theta=\pi / 4$)

Schmidt decomposition

For any bipartite state (bipartite could arise by grouping subsystems into two parts)

$$
|\psi\rangle=\sum_{i=1}^{N_{A}} \sum_{j=1}^{N_{B}} \psi_{i j}|i, j\rangle
$$

The coefficients is an $N_{A} x N_{B}$ matrix and can be "singular value" decomposed
$>\mathrm{U}$ and V define local unitary transformation so $|k\rangle$'s form an orthonormal basis
$>$ The Schmidt coefficients σ_{k} (from singular values) quantify the entanglement of the system

$$
\text { they satisfy } \sum_{k} \sigma_{k}^{2}=1
$$

$$
\begin{array}{r}
\text { if surly one }\left(\sigma_{k}=1\right) \\
|\tilde{k}\rangle_{A} \bullet|\tilde{k}\rangle_{B}^{2}
\end{array}
$$

Example of Schmidt decomposition

$$
w=\frac{\left\{\left\{\left(\sqrt{\frac{1}{6}(3+\sqrt{5}), 0}\right\}^{\mid 11},\left\{\begin{array}{c}
\left.\sigma_{1}, \sqrt{\frac{1}{6}(3-\sqrt{5})}\right) \\
\sigma_{2}
\end{array}\right\}\right.\right.}{}
$$

$$
\mathrm{V}=\left(\begin{array}{cc}
0.8507 & -0.5257 \\
0.5257 & 0.8507
\end{array}\right)
$$

\rightarrow Entangled if there are more than one nonzero Schmidt coefficients

$$
C=2 \sigma_{1} \sigma_{2}=2 / 3
$$

Entanglement entropy from Schmidt coefficients

$$
\rho_{A}=\operatorname{Tr}_{B}(|\psi\rangle\langle\psi|)
$$

$$
\begin{aligned}
& \text { efficient } \sum_{K} G_{K}^{2}=1 \rightarrow \begin{array}{c}
\text { defoe a probability } \\
\text { distribution } \\
\text { U }
\end{array} \\
& \text { defoe an entropy }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Con Newman } \\
& \text { entropy }
\end{aligned} S_{V}\left(\rho_{A}\right)=-\sum_{k} \sigma_{k}^{2} \log _{2}\left(\sigma_{k}^{2}\right) \approx 0.0 \text { (for above example) } \quad \text { de free an entropy }
$$

$$
\begin{aligned}
& \begin{array}{r}
|\psi\rangle=\frac{1}{\sqrt{3}}(|00\rangle+|01\rangle+|10\rangle)^{0} C=2 / 3 \\
0 \\
0
\end{array} \quad \Rightarrow \quad\left(\begin{array}{r}
\left.\sigma_{0}|\tilde{D}\rangle|\tilde{O}\rangle+\sigma_{p}|\tilde{n}\rangle|\tilde{p}\rangle\right) \\
\| C=2 \sigma_{0} \sigma_{1}
\end{array}\right. \\
& \psi=\left(\begin{array}{cc}
\left(\frac{1}{\sqrt{3}}\right. & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} & 0
\end{array}\right)=U w V^{+} \\
& \{\mathrm{U},(w, V\}=\text { SingularValueDecomposition }[\psi]
\end{aligned}
$$

Comments: partial trace and Cv

$$
|\psi\rangle=\sum_{k} \sigma_{k}|\tilde{k}\rangle_{A} \otimes|\tilde{k}\rangle_{B}
$$

\square Partial trace over second party:

$$
\rho_{A}=\operatorname{Tr}_{B}(|\psi\rangle\langle\psi|)=\sum_{k} \frac{\left\langle\left.\tilde{k}\right|_{B} \cdot \mid \psi\right\rangle\langle\psi|}{\langle\tau \mid \tilde{k}\rangle_{B}}=\sum_{k} \sigma_{B}^{2}\left|\tilde{k_{Q}}\right\rangle_{A}\left\langle\left.\tilde{k}\right|_{A} \prod_{\pi}^{\top}=\right.
$$

Yon Newman entropy

$$
S_{V}\left(\rho_{A}\right)=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right)=-\sum_{k} \sigma_{k}^{2} \log \left(\sigma_{k}^{2}\right)
$$

\rightarrow Also known as the entanglement entropy of ψ
\qquad

> Unentangled pure state remains pure after partial tracing

Unentangled (separable) states can be prepared locally

- A pure state is called separable if it can be written as a product state

$$
|\psi\rangle=\left|\phi^{A}\right\rangle \otimes\left|\phi^{B}\right\rangle
$$

E.g. $\quad|H V\rangle \equiv{\underset{A}{|H\rangle} \otimes \underbrace{|V\rangle_{B}}_{B} \quad|t\rangle \quad|+\rangle}^{|c|}$

$$
|\uparrow \uparrow\rangle+|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle+|\downarrow \downarrow\rangle=(|\uparrow\rangle+|\downarrow\rangle)(|\uparrow\rangle+|\downarrow\rangle)
$$

- A mixed state is called separable if it can be written as a mixture of separable pure states

$$
\left.\left.\rho=\sum_{i} \widetilde{p_{i}}\right\rangle \phi_{i}^{A}\right\rangle\left\langle\phi_{i}^{A}\right| \otimes\left|\phi_{i}^{B}\right\rangle\left\langle\phi_{i}^{B}\right|
$$

E.g. $\frac{1}{2}|H H\rangle\langle H H|+\frac{1}{2}|V V\rangle\langle V V|$ (an be created locally \& communicate $A: d: c=\frac{1}{2}$ prepares H \& B prepares H (communication)

- Separable states can be create \ddagger locally by legal operations and classical communication $\xrightarrow[2]{2}$

Entangled or not

1. How to determine a state is entangled or not?
2. Quantify how entangled?

\rightarrow Generally, these are difficult problems. For special cases we can solve them.

- Example-- two interacting qubits :

$$
\left(\text { Heisenneg intenctict } H=J \vec{\sigma}^{1} \cdot \vec{\sigma}^{2} \text {, with } J>0\right.
$$

antiferomagnetic couplong
> Eigenstates: $\quad|\uparrow \uparrow\rangle, \quad|\downarrow \downarrow\rangle, \quad(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle) / \sqrt{2}, \quad(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle) / \sqrt{2}$

A separability criterion

How do we actually check if a state is entangled or not?
One useful tool the is Peres-Horodecki criterion for separability. (PPT) [Pares '96, Horodecki et al. '96]

$$
\begin{aligned}
& \text { This is called positive partial transpose criterion (PPT) } \\
& \text { not entangled } \Rightarrow \text { posit.ue } \\
& \text { If partial transpose of a density matrix is NOT positive } \rightarrow \text { must be entangled!) }
\end{aligned}
$$

Positive Partial Transpose

- ρ separable \rightarrow PPT
- PPT turns out to be sufficient for qubit-qubit and qubit-qutrit systems; for these PPT \rightarrow separable (both $\overline{\text { necessary }}$ and sufficient)

$$
\begin{aligned}
& \left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)\left(\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{llll}
\frac{1}{\sqrt{2}} & \ddots & & \frac{1}{\sqrt{2}}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { eigenvalues: } \frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2} \\
& \rightarrow \underbrace{\text { Entangled }} \rightarrow \underbrace{\text { Negativity }=2 x \mid \text { sum of negative eigenvalues } \mid=1 \text { (above e.g.) }}
\end{aligned}
$$

PPT criterion: another example

Ex. Werner state

$$
\begin{aligned}
& \rho_{\text {Werner }}(\gamma) \equiv \gamma\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|+(1-\gamma) I / 4 \\
& =\left(\begin{array}{cc|cc}
\frac{1+\gamma}{4} & 0 & 0 & \frac{\gamma}{2} \\
0 & \frac{1-\gamma}{4} & 0 & 0 \\
0 & 0 & \frac{1-\gamma}{4} & 0 \\
\frac{\gamma}{2} & 0 & 0 & \frac{1+\gamma}{4}
\end{array}\right) \xrightarrow{T_{B}}\left(\begin{array}{cccc}
\frac{1+\gamma}{4} & 0 & 0 & 0 \\
0 & \left(\begin{array}{cc}
\frac{1-\gamma}{4} & \frac{\gamma}{2} \\
0 & \frac{\gamma}{2} \\
0 & \frac{1-\gamma}{4}
\end{array}\right. & 0 \\
0 \\
0 & 0 & 0 & \frac{1+\gamma}{4}
\end{array}\right) \\
& \text { eigenvalues } \frac{1+\gamma}{4}, \frac{1+\gamma}{4}, \frac{1+\gamma}{4}, \frac{1-3 \gamma}{4} \quad \rightarrow \quad \text { certainly entangled when } \gamma>\frac{1}{3}
\end{aligned}
$$

Quantifying entanglement

$>$ We will be discussing a several other ways to quantify entanglement:
A. Entanglement of distillation [Bennett et al. '96]
B. Entanglement of dilution or Entanglement cost and Entanglement of formation [Bennett et al. '97]
C. A geometric measure for multipartite entanglement
[Shimony '95, Barnum \& Linden '01
Wei \& Goldbart '03]

Entanglement of distillation/concentration

[Bennett et al. '96]

Comments: partial trace and Sv

$$
|\psi\rangle=\cos \theta|00\rangle+\sin \theta|11\rangle
$$

\square Partial trace over second party (blue):

$$
\rho_{A}=\operatorname{Tr}_{B}(|\psi\rangle\langle\psi|)=\sum_{k=0}^{1}\left\langle\left. k\right|_{B} \cdot \mid \psi\right\rangle\langle\psi| \cdot|k\rangle_{B}=\cos ^{2}(\theta)|0\rangle\langle 0|+\sin ^{2}(\theta)|1\rangle\langle 1|
$$

\square Von Neumann entropy

$$
\begin{aligned}
& S_{V}\left(\rho_{A}\right)=-\sum_{k} \lambda_{k} \log \left(\lambda_{k}\right) \\
= & -\left(\cos ^{2} \theta\right) \log \left(\cos ^{2} \theta\right)-\left(\sin ^{2} \theta\right) \log \left(\sin ^{2} \theta\right)
\end{aligned}
$$

\rightarrow Also known as the entanglement entropy of ψ

Entanglement of distillation: example

- Can Alice and Bob distill a Bell state from
two pairs of $|\psi\rangle=\cos \theta|00\rangle+\sin \theta|11\rangle ?$

1. Alice measures k (total number of 1 's on her side)
2. If $k=\underline{0}$ or 2 , repeat step 1 voد0 1111 not usefal

If $k=1$, state collapses to $\left|\psi^{\prime}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|0_{1} 0_{2} 1_{3} 1_{4}\right\rangle+\left|1_{1} 1_{2} 0_{3} 0_{4}\right\rangle\right)$
with probability $2 \sin ^{2} \theta \cos ^{2} \theta$
(Can obtain a Bell state from this?)

Entanglement of distillation

The state is now $\left|\psi^{\prime}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|0_{1} 0_{2} 1_{3} 1_{4}\right\rangle+\left|1_{1} 1_{2} 0_{3} 0_{4}\right\rangle\right)$, the goal is to get: $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$
3. Alice and Bob each perform a local unitary U

$$
U_{A}^{(13)}=U_{B}^{(24)}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad U|01\rangle=|00\rangle, \quad U|10\rangle=|10\rangle, \text { etc. }
$$

$\Rightarrow \quad U_{A}^{(13)} \otimes U_{B}^{(24)}\left|\psi^{\prime}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|0_{1} 0_{2}\right\rangle+\left|1_{1} 1_{2}\right\rangle\right)\left|0_{3} 0_{4}\right\rangle$
4. Throw away particles 3 and 4 , we get $\frac{1}{\sqrt{2}}\left(\left|0_{1} 0_{2}\right\rangle+\left|1_{1} 1_{2}\right\rangle\right)$
$>$ Can show that given sufficient many copies

$$
E_{D}(\psi) \equiv \lim _{n \rightarrow \infty}(k / n)=S_{V}\left(\operatorname{Tr}_{B}|\psi\rangle\langle\psi|\right)
$$

Entanglement cost and entanglement of formation

- $\quad E_{C}(|\psi\rangle) \equiv \lim _{k \rightarrow \infty}(k / n)$
(idea also applies to mixed states)
$|\psi\rangle^{\otimes n} \quad \mid$ Bell $\rangle^{\otimes k}$

For pure states,
$E_{C}=E_{D}=S_{V}\left(T r_{B}|\psi\rangle\langle\psi|\right)$

Entanglement cost and formation

- How can we achieve the optimal "dilution" process?

- Ans. 'Quantum data compression' (explained later)+ quantum teleportation
[Bennett et al. '92]

1. Alice prepares \boldsymbol{n} copies of the states locally, and compresses the part that will be shared by Bob
2. Alice and Bob share n copies of ψ by consuming $\boldsymbol{k}=\boldsymbol{n} \boldsymbol{E}_{\boldsymbol{c}}$ copies of Bell states
k ell pars to teleport

Teleport

Using k
Bell pairs

Entanglement of formation

- Bennett et al. ['96] constructed an average quantity for mixed states called entanglement of formation

$$
E_{F}(\rho) \equiv \min _{\left\{p_{i}, \psi_{i}\right\}} \sum_{i} p_{i} E_{\mathrm{C}}\left(\left|\psi_{i}\right\rangle\right), \quad \text { with } \rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

- Wootters ['98] has provided an analytic formula of E_{F} for two qubit states (exact form discussed later)
> Applying it to our two-spin problem:

$$
\begin{aligned}
H & =J \vec{\sigma}^{1} \cdot \vec{\sigma}^{2} \\
\rho & =\frac{1}{Z} \sum_{n} e^{-\beta E_{n}}|n\rangle\langle n|= \\
& =\frac{1-r}{4} I_{4 \times 4}+r\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right| \\
r & =\left(e^{3 \beta J}-e^{-\beta J}\right) /\left(e^{3 \beta J}+3 e^{-\beta J}\right)
\end{aligned}
$$

Wootters' formula*

- Entanglement of formation for mixed states is defined via

$$
\begin{aligned}
& E_{F}(\rho) \equiv \min _{\left\{p_{i}, \psi_{i}\right\}} \sum_{i} p_{i} E_{\mathrm{F}}\left(\left|\psi_{i}\right\rangle\right), \quad \text { with } \rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| \\
& E_{F}(|\psi\rangle)=-S_{V}\left(\rho_{A}\right)=-\operatorname{Tr} \rho_{A} \log \rho_{A}, \quad \text { where } \rho_{A}=\operatorname{Tr}_{\mathrm{B}}|\psi\rangle\langle\psi|
\end{aligned}
$$

- For two-qubit mixed states, Wootters has found a closed form
$E_{F}(\rho)=H\left(\frac{1+\sqrt{1-C^{2}(\rho)}}{2}\right), \quad$ where $H(x)$ $=-x \log x-(1-x) \log (1-x)$,

