PHY682 Special Topics in Solid-State Physics: Quantum Information Science

Lecture time: 2:40-4:00PM Monday \& Wednesday

Today 10/28:

1. Brief review of entanglement properties: concurrence, negativity, entanglement entropy, entanglement distillation/dilution
2. Continue Week 10---‘Quantum entangles’

Brief review of entanglement properties: concurrence, negativity, entanglement entropy, entanglement distillation/dilution

- Loncurrence :oll for two qubits

$$
\begin{aligned}
& |\tilde{\psi}\rangle=-i \sigma_{y} \theta-i C_{y}\left|\psi^{*}\right\rangle \sim
\end{aligned} \begin{aligned}
& |\tilde{\psi}\rangle\langle\tilde{\psi}|=\sigma_{y} \sigma_{y}\left|\psi^{k}\right\rangle\left\langle\psi^{*}\right| \sigma_{y}, \sigma_{y} \\
& C=\mid\langle\tilde{\psi} \mid \psi\rangle
\end{aligned}
$$

mired state ρ
[因a formda]
$\tilde{\rho} \equiv \sigma_{y} \otimes \sigma_{y} \rho^{x} \sigma_{y} \oplus \sigma_{y} ; \quad " \rho \tilde{\rho}^{\prime \prime} \rightarrow$ tind eigenvalues $\lambda_{1} \geq \lambda_{2}$

$$
\stackrel{1}{2}_{3} ? \lambda_{4}
$$

- hegatwity (helated "Positre Partial Transposp") $\mid \bar{\Phi})=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$

$$
C=\operatorname{mar}\left\{\sqrt{\lambda_{1}}-\sqrt{\lambda_{2}}-\sqrt{\lambda_{3}}-\sqrt{\lambda_{4}}, 0\right\}
$$

- entanglement entrop. fr $|\Psi\rangle(\Psi|\quad \Rightarrow| \Phi\rangle\langle\bar{\Psi}|=\frac{1}{2}$

$$
\begin{aligned}
& |\underline{\Psi}\rangle=\sum_{k} \sigma_{k}|\tilde{k}\rangle_{A} \otimes|\tilde{k}\rangle_{B}
\end{aligned}
$$

$$
\begin{align*}
& \rho_{A}=\operatorname{Tr}_{B}\left(|\bar{\Psi}\rangle(\bar{\Psi} \mid) \quad S_{V}\left(\rho_{A}\right)=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right)=-\sum_{k}^{2} \delta_{k}^{2} \log \sigma_{k}^{2} \rightarrow \frac{1}{2}, \frac{1}{2}, \frac{1}{2},\left(-\frac{1}{2}\right) \rightarrow e_{n}^{\tan g \operatorname{lod}}\right. \\
& \Rightarrow \text { Negatrit } \equiv 2\left|-\frac{1}{2}\right| \tag{}
\end{align*}
$$

Entanglement of formation

- Bennett et al. ['96] constructed an average quantity for mixed states called entanglement of formation

$\begin{aligned} E_{-}(\rho) & \text { is fen of } C(p) \text { vs. } \left.\frac{1}{\left|x^{+} \times \Phi^{+}\right|}+\frac{1}{2} \right\rvert\, \Phi^{-} \times \bar{\psi}^{-} \\ & >\text {Applying it to our two-3pinpolem: }\end{aligned}$

$$
\begin{aligned}
H & =J \vec{\sigma}^{1} \cdot \vec{\sigma}^{2} \\
\rho & =\frac{1}{Z} \sum_{n} e^{-\beta E_{n}}|n\rangle\langle n|= \\
& =\frac{1-r}{4} I_{4 \times 4}+r\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right| \\
r & =\left(e^{3 \beta J}-e^{-\beta}\right) /\left(e^{3 \beta J}+3 e^{-\beta}\right)
\end{aligned}
$$

Wootters' formula*

convex hill cortimection

- Entanglement of formation for mixed states is defined via

$$
E_{k}(|\psi\rangle)=-S_{V}\left(\rho_{A}\right)=-\operatorname{Tr} \rho_{A} \log \rho_{A}, \quad \text { where } \rho_{A}=\operatorname{Tr}_{\mathrm{B}}|\psi\rangle\langle\psi|
$$

- For two-qubit mixed states, Wootters has found a closed form
$E_{F}(\rho)=H\left(\frac{1+\sqrt{1-C^{2}(\rho)}}{2}\right), \quad$ where $H(x)$
$=-x \log x-(1-x) \log (1-x)$,

$C(\rho)=\min \left\{0, \sqrt{\lambda_{1}}-\sqrt{\lambda_{2}}-\right.$ $\left.\sqrt{\lambda_{3}}-\sqrt{\lambda_{4}}\right\}$ is the concurrence where λ_{i} 's, in nonincreasing order, are eigenvalues of

$$
\rho\left(\sigma_{y} \otimes \sigma_{y}\right) \rho^{*}\left(\sigma_{y} \otimes \sigma_{y}\right)
$$

Criteria for good entanglement measures* E
[Vedral et al. '97, Vidal '00, Horodecki et al. '00]

1. (a) $E(\rho) \geq 0$; (b) $E(\rho)=0$, if ρ is not entangled
2. Local unitary transformations should not change the lock amount of entanglement $\rho \rightarrow u_{A} \oplus u_{B} \rho u_{A} \cdot u_{B}$
3. Local operations and classical communication should not increase entanglement

$$
(\rho) \xrightarrow{\text { Loci }}\left\{\underline{\left.p_{k}, \rho_{k}\right\}}\right.
$$

> Strong monotone: $\quad\left(\sum_{k} \widetilde{p_{k} E\left(\rho_{k}\right)}\right) \leq E(\rho)$

$$
\begin{aligned}
& E\left(\sum_{k} p_{k} \rho_{k}\right) \leq E(\rho) \\
& \bar{\rho} \equiv \overline{\text { over diffent outuro } \leq}
\end{aligned}
$$

> Weak monotone:
4. Entanglement cannot increase under discarding information

$$
\sum_{i} p_{i} E\left(\rho_{i}\right) \geq E\left(\sum_{i} p_{i} \rho_{i}\right)
$$

Entanglement transformation for single copy

We have seen using copies for entanglement distillation and cost. In the limit of infinite copies of bipartite pure states, these two processes are reversible!

What if Alice and Bob shares a single copy of ψ; can this be converted to another state φ (using only local operation and classical communication)?

A

A

B
is this possible?
B

$$
\left(\frac{1}{2}, \frac{1}{2}\right) \text { is }\left(\cos ^{2} \theta^{\frac{2}{2}}, \operatorname{sn}^{2} \theta\right)
$$

$$
\frac{1}{2} \leq \cos ^{2} \theta
$$

$$
\frac{1}{2}+\frac{1}{2} \leq \cos ^{2} \theta+\operatorname{s}^{2} \theta
$$

Nielsen's majorization criterion*

\square Majorization: for two sets of numbers $\boldsymbol{x} \& \boldsymbol{y}$ (e.g. square of Schmidt coefficients in decreasing order), x is majorized by $\boldsymbol{y}(\underline{(x<y})$ if

$$
\sum_{j=1}^{k} \widehat{x_{j}} \leq \sum_{j=1}^{k} \overparen{y_{j}} \text {, for } k=1, \ldots, d \quad x \prec y
$$

\square Nielsen showed that the transform $\psi \rightarrow \varphi$ is possible with probability 1 if and only if the square of their Schmidt coefficients (denoted by $\lambda_{\psi}, \lambda_{\varphi}$) satisfy the majorization relation

$$
|\psi\rangle \rightarrow|\phi\rangle \quad \text { iff } \lambda_{\psi} \prec \lambda_{\phi}
$$

Example:

$$
\text { Note: } p_{\max }(\psi \rightarrow \phi)=\min _{1 \leq m \leq n} \frac{1-\sum_{j=1}^{m-1} \lambda_{j}(\psi)}{1-\sum_{j=1}^{m-1} \lambda_{j}(\phi)}{ }^{*}
$$

$$
\begin{aligned}
& |\psi\rangle \equiv \sqrt{\frac{1}{2}}|11\rangle+\sqrt{\frac{2}{5}}|22\rangle+\sqrt{\frac{1}{10}}|33\rangle \\
& |\phi\rangle \equiv \sqrt{\frac{3}{5}}|11\rangle+\sqrt{\frac{1}{5}}|22\rangle+\sqrt{\frac{1}{5}}|33\rangle
\end{aligned}
$$

$$
|\psi\rangle \nrightarrow|\phi\rangle, \&|\phi\rangle \nrightarrow|\psi\rangle
$$

$$
\left(\frac{1}{2}, \frac{2}{5}, \frac{1}{10}\right)\left(\frac{3}{5}, \frac{1}{5}, \frac{1}{5}\right)
$$

Another example: Bell state \rightarrow two-qubit pure state

[Nielsen, PRL 83, 436 (1999)]
\square Bell state $\left|\Phi^{+}\right\rangle=\underbrace{\sqrt{1 / 2}(|00\rangle+|11\rangle)}$

$$
|\Psi\rangle=\sqrt{\sqrt{p}|00\rangle+\sqrt{1-p}|11\rangle},\left(p \geq 1 / 2 \quad\left[\frac{\left|\Phi^{+}\right\rangle \rightarrow|\Psi\rangle, \text { as } \frac{\lambda_{\Phi^{+}} \prec \lambda_{\Psi}}{\frac{1}{2} \leqslant p}}{}\right.\right.
$$

noise channel
\rightarrow How to achieve this conversion deterministically?
$\frac{1}{2}+\frac{1}{2} \leqslant p+1-p$ $\rho \rightarrow M_{1} \rho M_{1}^{+}+M_{2} \rho M_{2}^{+}$

* Consider: $\quad M_{1}=\left(\begin{array}{cc}\sqrt{p} & 0 \\ 0 & \sqrt{1-p}\end{array}\right) \quad M_{2}=\left(\begin{array}{cc}\sqrt{1-p} & 0 \\ 0 & \sqrt{p}\end{array}\right) \quad \underbrace{M_{1}^{\dagger} M_{1}+M_{2}^{\dagger} M_{2}=I}$
\square Alice applies probabilistically either quantum operation M_{1} or M_{2} :

$$
\begin{aligned}
& \langle | \underline{U}|\psi\rangle|0\rangle_{\text {once }}=M_{1}|\psi\rangle \\
& \langle\mathcal{\text { cia: }}| \underline{U}|\psi\rangle|0\rangle_{\text {arc }}=M_{2}|\psi\rangle
\end{aligned}
$$

Case 1: $\quad\left|\Phi^{+}\right\rangle=\sqrt{1 / 2}(|00\rangle+|11\rangle) \xrightarrow{\mathrm{M}_{1}} \sqrt{1 / 2}(\sqrt{p}|00\rangle+\sqrt{1-p}|11\rangle)$: occurs with prob. $=1 / 2$
Case 2: $\quad\left|\Phi^{+}\right\rangle=\sqrt{1 / 2}(|00\rangle+|11\rangle) \xrightarrow{\mathrm{M}_{2}} \sqrt{1 / 2}(\sqrt{1-p}|00\rangle+\sqrt{p}|11\rangle) \xrightarrow{\text { apply } \mathrm{X}_{1} \mathrm{X}_{2}} \xrightarrow{1 / 2}(\sqrt{1-p}|11\rangle+\sqrt{p}|00\rangle)$

Entanglement catalysis

[Jonathan \& Plenio, PRL83, 3566 (1999)
Some transformations not allowed (ie. not with probability 1) by Nielsen's majorization can be achieved if one can borrow some specific "catalytic" entangled state

Example: $\left|\psi_{1}\right\rangle=\sqrt{0.4}|00\rangle+\sqrt{0.4}|11\rangle+\sqrt{0.1}|22\rangle+\sqrt{0.1}|33\rangle$

$$
\begin{aligned}
& \left|\psi_{2}\right\rangle=\sqrt{0.5}|00\rangle+\sqrt{0.25}|11\rangle+\sqrt{0.25}|22\rangle \\
& \left|\psi_{1}\right\rangle \nrightarrow\left|\psi_{2}\right\rangle, \text { as } \lambda_{\psi_{1}} \nprec \lambda_{\psi_{2}}
\end{aligned}
$$

However, if they have access to another state:

$$
|\phi\rangle=\sqrt{0.6}|44\rangle+\sqrt{0.4}|55\rangle
$$

\rightarrow The combined systems have the square of Schmidt coefficients:

Bipartite vs. Multipartite

- Concurrence and entropy approaches are essentially bipartite

concurrence

> Vedral '04: relative entropy of entanglement
> Wei \& Goldbart '03: geometric measure of entanglement

Multipartite entangled states

Examples: 3-qubit states--- GHZ and W states

$$
\begin{aligned}
& |G H Z\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle) \quad \text { Saw this in our discussion of violation of a } \\
& \text { classical realistic theory using a single shot } \\
& X \otimes X \otimes X|\mathrm{GHZ}\rangle=(+1)|\mathrm{GHZ}\rangle \quad>\text { For classical local theory, } \\
& Y \otimes Y \otimes X|\mathrm{GHZ}\rangle=(-1)|\mathrm{GHZ}\rangle \\
& Y \otimes X \otimes Y|\mathrm{GHZ}\rangle=(-1)|\mathrm{GHZ}\rangle \\
& X \otimes Y \otimes Y|\mathrm{GHZ}\rangle=(-1)|\mathrm{GHZ}\rangle \\
& \text { one attributes this to local properties: } \\
& x_{1} x_{2} x_{3}=+1, y_{1} y_{2} x_{3}=-1, y_{1} x_{2} y_{3}=-1, x_{1} y_{2} y_{3}=-1 \\
& \text { (where } x, y= \pm 1 \text {) } \rightarrow 1=-1 \text { ! (contradiction) } \\
& \text { But QM: -1 =-1 (consistent) } \\
& \text { * A state that is not equivalent to } \mathrm{GHZ} \text { state: } \\
& \begin{array}{r}
\text { not even probablstin } \\
\text { ally }
\end{array} \\
& |W\rangle=\frac{1}{\sqrt{3}}(|001\rangle+|010\rangle+|100\rangle) \leftrightarrow|G H Z\rangle \quad \text { for a style copy } \\
& |w\rangle \xrightarrow{\longrightarrow}\left|G, H_{Z}\right\rangle \\
& \rightarrow \text { How do we quantify their entanglement? }
\end{aligned}
$$

Relative entropy of entanglement*

$$
\begin{aligned}
& \text { how to paratrice the grad unenglend space? } \\
& \text { [Vedral et al.'97] }
\end{aligned}
$$

-Define entanglement via relative entropy:

$$
\begin{gathered}
E_{R}(\rho) \equiv \min _{\sigma \in D_{s}} D(\rho \| \sigma) \\
D(\rho \| \sigma) \equiv \operatorname{Tr}\left[\rho \log _{2}(\rho)-\rho \log _{2}(\sigma)\right] \\
\text { VS. }-\operatorname{Tr} \rho \log \rho \quad \| \operatorname{Tr}\left(\rho \log _{2} \frac{\rho}{\sigma}\right) \\
\rightarrow \text { Hard to compute, even for pure } \\
\text { states (egg. W state)! } E_{R}(G H z)=1 \\
\frac{1}{\sqrt{3}}(|001\rangle+|010\rangle+|100\rangle)
\end{gathered}
$$

$$
\frac{1}{2}\left|000 x_{000}\right|+\frac{1}{2}|111 \times 111|
$$

Quantifying entanglement

$>$ We will be discussing a several other ways to quantify entanglement:
A. Entanglement of distillation [Bennett et al. '96]
B. Entanglement of dilution or Entanglement cost and Entanglement of formation [Bennett et al. '97]
C. A geometric measure for multipartite entanglement
[Shimony '95, Barnum \& Linden '01
Wei \& Goldbart '03]

Picture for the geometric measure

Geometric measure of entanglement

Pure states
[Shimony '95, Barnum \& Linden '01]

- A n-partite pure state described by

$$
|\psi\rangle=\sum_{p_{1} p_{2} \cdots p_{n}} \xlongequal{\left(\chi_{p_{1} p_{2} \cdots p_{n}}\right]}\left|e_{p_{1}}^{(1)}\right\rangle \otimes\left|e_{p_{2}}^{(2)}\right\rangle \otimes \cdots \otimes\left|e_{p_{n}}^{(n)}\right\rangle
$$

- Find the closest separable (product) pure state

$$
\begin{gathered}
\left|\varphi_{s}\right\rangle=\bigotimes_{i=1}^{n}\left|\varphi^{(i)}\right\rangle=\underline{\left|\varphi^{(1)}\right\rangle \otimes \cdots\left|\varphi^{(n)}\right\rangle} \\
\Lambda_{\max }(\psi)=\max _{\varphi_{s}}\left|\left\langle\varphi_{s} \mid \psi\right\rangle\right|
\end{gathered}
$$

> The larger $\Lambda_{\max }(\psi)$ is, the less entangled $|\psi\rangle$ is

Entanglement among partitions

- To study entanglement between two groups:
$\{1,2,3,4\}$ and $\{5,6,7,8\}$, take separable state to be

$$
\left|\varphi_{s}\right\rangle=\left|\varphi^{(1,2,3,4)}\right\rangle \otimes\left|\varphi^{(5,6,7,8)}\right\rangle
$$

and evaluate $\quad \Lambda_{\max }(\psi)=\max _{\varphi_{s}}\left|\left\langle\varphi_{s} \mid \psi\right\rangle\right|$

- To study entanglement among $\{1,2,3\},\{4,5,6\}$, and $\{7,8\}$, take separable state to be

$$
\left|\varphi_{s}\right\rangle=\left|\varphi^{(1,2,3)}\right\rangle \otimes\left|\varphi^{(4,5,6)}\right\rangle \otimes\left|\varphi^{(7,8)}\right\rangle
$$

Global entanglement

- Making the finest partition in the separable state

$$
\left|\varphi_{s}\right\rangle=\left|\varphi^{(1)}\right\rangle \otimes\left|\varphi^{(2)}\right\rangle \otimes \cdots \otimes\left|\varphi^{(8)}\right\rangle
$$

we are studying global entanglement of the system

Geometric Measure: Two specific forms
[Wei \& Goldbart '03]

1. $E_{1}(\psi) \equiv 1-\Lambda_{\max }^{2}(\psi)$

Bounded by unity; suitable for finite number of parties
2. $E_{g}(\psi) \equiv-2 \log _{2} \Lambda(\psi)_{\max }<$ this def gives a lower bound

No upper limit; suitable for arbitrary number of parties, useful for large N

$$
\begin{aligned}
& \text { Uutglut } \mathrm{E}(\psi) \equiv \lim _{N \rightarrow \infty} \frac{1}{N} E_{g}(\psi) \\
& \text { per particle }
\end{aligned}
$$

$$
E_{R}(\psi)=E_{g}(\psi)
$$

Examples of bipartite and tripartite pure states

Note C is the concurrence of Wootters

$$
\theta=\frac{\pi}{4}
$$

Closest product
$\max _{0 \leq c_{\text {duatidp }}}\left|\left\langle\phi_{s} \mid \psi\right\rangle\right|=\operatorname{Fn}(\sqrt{p} c+\sqrt{1-p}(1-c))$

Ex. 2 Tripartite pure states

$$
\left.|W\rangle=\frac{1}{\sqrt{3}}(|001\rangle+|\underline{\sim} \sim| 10\rangle+|100\rangle\right), \quad \lambda_{\max }=\frac{2}{3}
$$

$$
|G H Z\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|1 \underline{11}\rangle), \lambda_{\max }=\frac{1}{\sqrt{2}}=c-\theta
$$

$$
|\phi\rangle=\left(\underline{\sqrt{c}|0\rangle+\sqrt{\mid-c}|1\rangle)^{\infty 3}} \longrightarrow(\sqrt{c})_{3}^{2}(\sqrt{1-c})(|001\rangle+|010\rangle+|00\rangle)\right.
$$

$$
\langle\phi \mid \psi\rangle=\frac{3}{\sqrt{3}} c \sqrt{1-c} \quad \operatorname{mox}_{c} \Rightarrow \frac{2}{3}
$$

$$
\begin{aligned}
& \text { Ex. } 1, \sqrt{\psi\rangle}\rangle=\sqrt{\sqrt{p}|00\rangle+\sqrt{1-p}|(1)\rangle} \\
& \lambda_{\text {max }}={ }^{1} \cdot \max (\sqrt{p}, \sqrt{1-p}) \\
& C=\left.2 \sqrt{p} \sqrt{1-p}\right|_{\text {|00> }} ^{\text {l }} \text { |11 }
\end{aligned}
$$

GME: examples multi-partite pure states

\square N-qubit pure states (e.g. 3-qubit) $\quad|W\rangle=\frac{1}{\sqrt{3}}(|001\rangle+|010\rangle+|100\rangle)$ belongs to permutation invariant states:

$$
|S(n, k)\rangle \equiv \sqrt{\frac{k!(n-k)!}{n!}} \sum_{\text {permutations }}|\frac{0 \cdots 0}{k} \underbrace{1 \cdots 1}_{n-k}\rangle \quad \Lambda_{\max }(n, k)=\sqrt{\frac{n!}{k!(n-k)!}}\left(\frac{k}{n}\right)^{k / 2}\left(\frac{n-k}{n}\right)^{(n-k) / 2}
$$

Eg. $\frac{1}{2}(|0001\rangle+|0010\rangle+|0100\rangle+|1000\rangle)$
\square Interestingly, for these states, we can easily calculate their
$92: 3$
relative entropy of entanglement
[Wei et al. QIC4, 252 (2004)] h.ghee ext.
$\left(E_{R}=-2 \log _{2} \Lambda_{\max }\right.$
$\underbrace{E_{R}(W)}=-2 \log _{2}(2 / 3) \approx \underline{1.16833},\rangle E_{R}(\mathrm{GHZ})=\underline{1}$
in other measures it may happen $E(G, H Z)>E(W)$

Geometric measure of entanglement and one-way QC

Too much entanglement is useless

(Too little entorgent is also useless)
$>$ Gross, Flammia, and Eisert (David Gross et al., 2009) found that random states generically have a high amount of entanglement and if the entanglement of a quantum state is too high, then using it for MBQC cannot offer any speedup for computation and is no better than random coin tossing.

$$
\text { Too high: } E_{g}(\psi) \equiv-2 \log _{2} \Lambda(\psi)_{\max }>n-\delta
$$

\Rightarrow A similar conclusion that random states drawn uniformly from the state space (or in a more technical term, from the Haar measure) are useless for MBQC was reached by Bremner, Mora, and Winter (Bremner et al., 2009).
> Both results suggest that quantum states that are a universal resource for QC are actually rare and that as commented by Bacon, "entanglement, like most good things in life, must be consumed in moderation" (Bacon, 2009).

Geometric Measure: Mixed states via convex hull*

$$
E_{\text {mixed }}(\rho) \equiv \min _{\left\{p_{i} \psi_{i}\right\}} \sum_{i} p_{i} E_{\text {pure }}\left(\psi_{i}\right), \quad \text { with } \rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

- The construction is called convex hull; Recall E_{F} uses the same construction
a Convex-hull construction ensures that any unentangled state has $E=0$
- It complicates the calculation for mixed-state entanglement

