
Today 10/28:

1. Brief review of entanglement properties: concurrence, 
negativity, entanglement entropy, entanglement 
distillation/dilution

2. Continue Week 10---‘Quantum entangles’
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Brief review of entanglement properties: concurrence, negativity, entanglement entropy, 
entanglement distillation/dilution



Entanglement of formation

𝐸 (𝜌) ≡ min
{ , }

𝑝 𝐸 𝜓 ,  with 𝜌 = 𝑝 𝜓 𝜓

 Bennett et al. [‘96] constructed an average quantity
for mixed states called entanglement of formation
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𝑟 = (𝑒 − 𝑒 )/(𝑒 + 3𝑒 )

 Wootters [’98] has provided an analytic formula of EF

for two qubit states (exact form discussed later)

 Applying it to our two-spin problem:



𝐸 𝜓 = −𝑆 (𝜌 ) = −Tr𝜌 log 𝜌 ,  where 𝜌 = Tr 𝜓 𝜓

𝐸 (𝜌) = 𝐻
1 + 1 − 𝐶 (𝜌)

2
,    where 𝐻(𝑥)

= −𝑥 log 𝑥 − (1 − 𝑥) log( 1 − 𝑥),

𝐸 (𝜌) ≡ min
{ , }

𝑝 𝐸 𝜓 ,  with 𝜌 = 𝑝 𝜓 𝜓

𝐶 𝜌 = min{ 0, 𝜆 − 𝜆 −

𝜆 − 𝜆 } is the concurrence

𝜌(𝜎 ⊗ 𝜎 )𝜌∗(𝜎 ⊗ 𝜎 )

where 𝜆 ′s, in nonincreasing order, 
are eigenvalues of 

 Entanglement of formation for mixed states is defined via

 For two-qubit mixed states, Wootters has found a closed form

Wootters’ formula*

𝜌 =
1 − 𝑟

4
𝐼 × + 𝑟 Ψ Ψ

𝑟 = (𝑒 − 𝑒 )/(𝑒 + 3𝑒 )



Criteria for good entanglement measures*

1. (a) ; (b) ,  if ρ is not entangled

2. Local unitary transformations should not change the
amount of entanglement

4. Entanglement cannot increase under discarding information

𝑝  𝐸(𝜌 ) ≥ 𝐸 𝑝 𝜌

3. Local operations and classical communication should not
increase entanglement

[Vedral et al. ’97, Vidal ’00, Horodecki et al. ’00]

 Strong monotone:

 Weak monotone:

𝜌
  

{𝑝 , 𝜌 } 

𝑝 𝐸 𝜌 ≤ 𝐸(𝜌)

𝐸 𝑝 𝜌 ≤ 𝐸(𝜌)



Entanglement transformation for single copy

We have seen using copies for entanglement distillation and cost. In the limit of 
infinite copies of bipartite pure states, these two processes are reversible!

What if Alice and Bob shares a single copy of ψ ; can this be converted to another 
state φ (using only local operation and classical communication)?

A B

A B

ψ

φ



Nielsen’s majorization criterion*
Majorization: for two sets of numbers x & y (e.g. square of Schmidt 

coefficients in decreasing order), x is majorized by y (x ≺ y) if 

(x      ≺ y) 

 Nielsen showed that the transform ψ → φ is possible with probability 1 if and only if the 
square of their Schmidt coefficients (denoted by λψ, λφ) satisfy the majorization relation 

Example:

[Nielsen, PRL 83, 436 (1999)]

Note:



Another example: Bell state → two-qubit pure state
 Bell state

 How to achieve this conversion deterministically?

[Nielsen, PRL 83, 436 (1999)]

 Alice applies probabilistically either quantum operation  M1 or M2:

M1

M2
apply X1X2

Case 1:                                                                                                                      : occurs with prob. = 1/2 

Case 2:

 Consider:



Entanglement catalysis
 Some transformations not allowed (i.e. not with probability 1) by Nielsen’s 

majorization can be achieved if one can borrow some specific “catalytic” 
entangled state

Example:

[Jonathan & Plenio, PRL83, 3566 (1999)

However, if they have access to another state:

 The combined systems have the square of Schmidt coefficients:



 Concurrence and entropy approaches are 
essentially bipartite

Bipartite vs. Multipartite 

 Vedral ‘04: relative entropy of entanglement

 Wei & Goldbart ‘03: geometric measure of entanglement

entropyconcurrence

subsystem the rest

 Multipartite measures



Multipartite entangled states

𝐺𝐻𝑍 =
1

2
000 + 111

Examples: 3-qubit states--- GHZ and W states

𝑊 = 001 + 010 + 100 𝐺𝐻𝑍

Saw this in our discussion of violation of a 
classical realistic theory using a single shot

 For classical local theory, 
one attributes this to local properties:
x1x2x3=+1, y1y2x3=-1, y1x2y3=-1, x1y2y3=-1 
(where x,y= ±1)  1 = -1 ! (contradiction)
But QM: -1 = -1 (consistent)

 A state that is not equivalent to GHZ state:

 How do we quantify their entanglement? 



Relative entropy of entanglement*

Set of 
separable

states 𝐷
Set of 
entangled
states

𝜌

𝜎∗

∈

Define entanglement via 
relative entropy:

𝐷 = 𝑝 𝜙 𝜙 ⊗ 𝜙 𝜙 ⊗ ⋯

[ Vedral et al. ’97]

 Hard to compute, even for pure 
states (e.g. W state)!



A. Entanglement of distillation [Bennett et al. ’96]

B. Entanglement of dilution or Entanglement cost
and Entanglement of formation [Bennett et al. ’97]

C. A geometric measure for multipartite entanglement
[Shimony ’95, Barnum & Linden ’01
Wei & Goldbart ’03]

Quantifying entanglement

We will be discussing a several other ways to quantify entanglement:



Picture for the geometric measure

Pure states 𝑑

Entangled state𝜓

𝜃𝜑

Separable  states

𝜑 = ⊗ 𝜑( ) = 𝜑( ) ⊗ ⋯ 𝜑( )

Λ 𝜓 = max 𝜑 𝜓⟩

   = cos 𝜃



Geometric measure of entanglement

Pure states

𝜓 = 𝜒 ⋯

⋯

𝑒
( )

⊗ 𝑒
( )

⊗ ⋯ ⊗ 𝑒
( )

 A n-partite pure state described by

 Find the closest separable (product) pure state

𝜑 = ⊗ 𝜑( ) = 𝜑( ) ⊗ ⋯ 𝜑( )

 The larger Λ𝑚𝑎𝑥 𝜓 is, the less entangled 𝜓 is

Λ𝑚𝑎𝑥 𝜓 = max 𝜑 𝜓⟩

[Shimony ’95, Barnum & Linden ’01]



Entanglement among partitions

1 2 3 4 5 6 7 8

 To study entanglement between two groups:
{1,2,3,4} and {5,6,7,8}, take separable state to be

𝜑 = 𝜑( , , , ) ⊗ 𝜑( , , , )

and evaluate Λ𝑚𝑎𝑥 𝜓 = max 𝜑 𝜓⟩

 To study entanglement among {1,2,3}, {4,5,6}, 
and {7,8}, take separable state to be

𝜑 = 𝜑( , , ) ⊗ 𝜑( , , ) ⊗ 𝜑( , )



Global entanglement

1 2 3 4 5 6 7 8

 Making the finest partition in the separable state

𝜑 = 𝜑( ) ⊗ 𝜑( ) ⊗ ⋯ ⊗ 𝜑( )

we are studying global entanglement of the system



Geometric Measure: Two specific forms

𝐸 𝜓 ≡ 1 − Λ 𝜓

𝐸 𝜓 ≡ −2 log Λ 𝜓

1.

2.

Bounded by unity; suitable for finite number of parties

No upper limit; suitable for arbitrary number of parties,
useful for large N

E 𝜓 ≡ lim
→

1

𝑁
𝐸 𝜓

[Wei & Goldbart ’03]



Tripartite pure statesEx.2

Ex.1 𝜓 = 𝑝 00 + 1 − 𝑝 11

𝜆𝑚𝑎𝑥 =
1

2
∗ max( 𝑝, 1 − 𝑝) 

𝐺𝐻𝑍 =
1

2
000 + 111 ,  𝜆𝑚𝑎𝑥 =

1

2

𝑊 =
1

3
001 + 010 + 100 , 𝜆𝑚𝑎𝑥 =

2

3

𝐶 = 2 𝑝 1 − 𝑝

Note C is the concurrence of Wootters

Examples of bipartite and tripartite pure states



GME: examples multi-partite pure states

𝑆(𝑛, 𝑘) ≡
𝑘! (𝑛 − 𝑘)!

𝑛!
0 ⋯ 0 1 ⋯ 1

belongs to permutation invariant states:

 N-qubit pure states (e.g. 3-qubit)  1
001 010 100

3
W   

1

2
0001 + 0010 + 0100 + 1000

 Interestingly, for these states, we can easily calculate their
relative entropy of entanglement

Eg.

[Wei et al. QIC4, 252 (2004)]



Geometric measure of entanglement and one-way QC

Too much entanglement is useless 

 Gross, Flammia, and Eisert (David Gross et al., 2009) found that random states generically have a 
high amount of entanglement and if the entanglement of a quantum state is too high, then using 
it for MBQC cannot offer any speedup for computation and is no better than random coin tossing. 

 A similar conclusion that random states drawn uniformly from the state space (or in a more 
technical term, from the Haar measure) are useless for MBQC was reached by Bremner, Mora, 
and Winter (Bremner et al., 2009). 

 Both results suggest that quantum states that are a universal resource for QC are actually rare and 
that as commented by Bacon, “entanglement, like most good things in life, must be consumed in 
moderation” (Bacon, 2009). 

Too high: 𝐸 𝜓 ≡ −2 log Λ 𝜓 > 𝑛 − δ



Geometric Measure: Mixed states via convex hull*

𝐸 (𝜌) ≡ min
{ , }

𝑝 𝐸 𝜓 ,  with 𝜌 = 𝑝 𝜓 𝜓

 The construction is called convex hull;
Recall EF uses the same construction

 Convex-hull construction ensures that 
any unentangled state has E=0

 It complicates the calculation for mixed-state 
entanglement


