PHY682 Special Topics in Solid-State Physics:
Quantum Information Science

Lecture time: 2:40-4:00PM Monday & Wednesday

Today 11/2:

1. Homework 6 and Final presentation
2. Today: quantum data compression
3. Week 10’s topics: No clones in quantum



Student presentation

There will be seven groups each having 3 student members. Each presentation will be
20mins (presentation) + 5 mins (Q&A).

[11/30] Group 1: Bak, Gokhale & Nghiem Vu; Group 2: Bashir, Gordon & Yu; Group 7:
Wallace, Wu & Zhao;

[12/1] Group 4: Gregory, Lee & Xu; Group 5: Chheta, Sukeno & Zou; Group 6:
Thotakura, Zhang, Zhu

[12/7 (last day of class)] (Student presentation) Group 3: Farno, Guo & Singletary



Next, we turn to Quantum Data Compression (a.k.a.
Noiseless Quantum Shannon Channel Coding Theorem )



Shannon entropy  ( cles:d )

0 We have seen the von Neumann entropy of a density matrix (log is base-2):
Sy(p) = —Trplogp = — Z)\k log(\x) A’s are eigenvalues of p and ), A\ =1
k

O Shannon entropy (already used above) for a probability distribution:

H(X)=H({p}) Z Pz log(ps)
)
2 Average number of bits needed to represent a symbol x (selected from a set with distribution {p,} - .
“u
O Example: four symbols a,b,c,d with {p.,=1/2, p,=1/4, p.=p,=1/8} 2 b;‘
T fncodp WS - 9 ' %
an A U N (2 :
¢ Use the encoding: a0, b>10,c>110,d—>111 . 2 b o 'J -
- L. ~ A— \

2 ()

< Aﬂ_@g@ 1x1/2+2x%+3x1/8x2%7/4 2H(X) [cannot be less than Sh n(%)n ntropy]

7daabab Ca
" Queonn@)OlOOlOl_@QO encodes what message? Ans: daababca

‘\/"



Shannon’s noiseless channel coding theorem
)

Sow s an-el has 0o noSP

¢ Consider a source consists of a sequence of random variabl@@ , whose values (x,,

X,, ... are drawn from alphabet of e.g. {a,b, C ,d}) represent output of the source
>< = \"J+ bo(\rQ.,\m‘\ ?-L
- ab (8h)

¢ Assume different uses of the source are independent and identically distributed (iid)

s Example: binary alphabet--- source emitting each X witl@mth probab|I|ty p; @NIth probablllty 1-p

b b —
.. ) \7 \ J \ VLo ©
> I?lVlde the sequenct(? tm.. )
(| those that occur with high probability ----- [for Iarg@ aw and a fraction of 1-p is 1]
(ii[atypical:\those that rarely occur
—— JFI’“FO) :H—"'%\j Shanpyg = enwf’/
p(T1, 22, ..., 2n) = p(x1)p(22) . - . p(2n) 7 r / lj(x>_ “FQ -

for typical squence, each appears with prob. ~ @ @@ @ \I- pi)) ﬂ,(j('
>

uence, can com@%mnghgﬁw

- For atypical sequence: do nothing (cannot compress); for typ|c2I S



Shannon’s noiseless channel coding theorem

Suppose {X;}is ani.i.d. information source with entropy rate H(X). [See N&C
If R > H(X), then there exists a reliable compression scheme of rate R for the source. Thm 12.4]
if R < H(X), then any compression scheme will not be reliable.

Von /V@br\a..,
gl/\ﬁ‘”m entrop / enbep
+* How to generalize to quantum regime? ) H (&) — /
(1) Alphabet is drawn from a set of quantum states {|,.)} S\/((’)
(2) {X;} = an ensemble p = X, @y |dx ) (x| T
(3) Typical sequence = typical subspace; atypical sequence = atypical subspace
;B
eEXpeCt: $C\A\*y./\.o\ C\/vQ/\- S / '-\u"‘u co»g’pe/fs'-b*/‘ oL 6 SL@.«\.J\.\ na.:je/(’fl CL\Hhael
o
Suppose {p} is ani.i.d. quantum information source with entropy rate S(p). é

If@ > S(p), then there exists a reliable compression scheme of rate R for the source.
if R < S(p), then any compression scheme will not be reliable.




Schumacher’s quantum data compression
°7 \%717:\9

= Quantum Shannon noiseless channel coding 2.9 | 2= \

+* How to generalize to quantum regime?
(1) Alphabet is drawn from.z juantum states {|¢,)} V7

9]
Diagonalize p = Y. M| \;)(A;|  For a qubit: p = p|'0"){'0'| + (1 — p)['1"){"1’| \ /@
pPr=p2--@p

N

U Source isi.i.d. so (on average) is emitting a message of length n:

n p’s

» We focus on qubit case. Typical subspace A is spanned by those ‘sequences’
that have a fraction of p is ‘0’, and a fraction of 1-pis ‘1’

- can represented by a projector: (about 2 5(P) = 2 H(®) sych sequences)

Lo dimomcon of AW qbgpoce

(@: Z |21) (21| ® |22){22| ® - - - ® |2n) (2n]

typical z’s



Quantum Data Compression (and Transmission)

» There exists a unitary transformation U which takes any n-qubit state [$,) in A to

U‘QbA) = ’¢compressed>|orest> [Expect decompression is via U™1]

) is n(S(p) + §)-qubit, and |Orest) is [0) ® - - @ |0)
& n-  nSC)

where |¢compressed

[ 4)? “ }
Alice ) Bob
|#), apply U on 1), and measure the state of

For an input state |¢) = |¢q) - - -
the last (n — n(S + §)) qubits.

If result is |Orest ), Alice successfully compresses |1)) onto Wcompressedﬂores't)r and

1.
sends |wcompressed> to Bob, who can decompress it. J\ #} ~

If result other than |Oyest), she fails to compress her message. The best she can do
is send a state |0compressed> where Ul\, 1) = |Ocompressed>|0re5t>

[with [A,, 1) having the largest probability in A]



| v € |
Example s - 7 o

Suppose the ensemble consists of {(|H),py = 3),(|D),pp = 35)}, where |H) is
the state of horizontal polarization while | D) is 45°

= (). 1D = {H )l + 1DyD| = (4 )

» Diagonalize p:

B o\ _ [COS g 2
@) = 1225 = (o § ) d = oo

Sm _ —— S(p) = —Aglogy Ag — Mg logy Ag = 0.60088
Q) = [112.5°) = 8 ), Ag=sin*Z 3
@) = [112.57) (cos%? Q=™ ¥ ? |G&&7 has e Pq
-7 = 1< ¥ 0 Q)0 j\
» 3 xS(p)=1.8 =» can useiwo qubil::)s to encodeaw ’QQQ >/ [QQ'Q?)Q;Q,O /



The typical subspace A is spanned by {|1),2),3),]4)}, and its dual subspace A~

by {15),16).17),18)} -

-

@/:4@@44@@@% — 109Q), 14) = @@ =co’ &, ha = X = s :W}
QRQ), | ) QQQ), |8) =|QQQ)  As =A¢ = A7 =cos” gsin” g, Ag =sin

5) =1QQQ), [6) =
o IRE
Probabilities: py = tr(p®3Pp) = 315, A = !é.9419 )vs. par = tr(p®3(1 — Py)) ~(0.0581.)
'}\/).'Lum 0/ \

00I oo|

» Alice and Bob both agree on the unitary transformation U to compress é VvV
communicate using first two qubits dweys 1 AP R g .
g /\M\ w; =~ /gw\ko /WLX)’W\K yhl,g‘,k J A
1) |[HHH 5) [HHV))
2) |[HV]H) 6) HVV
Y1 vEE) | U | 7| vay
) VVH 8) Vv

4



Alice’s message |¢) can be expanded as [¢)) = 30 | a;]i) (We know Zj M» Z§:5 la;|?)

v HOMN? o —
| | — o $CS)
Alice applies U on |1)) followed by measurement on the third qubit Y oo "
= W S0

If the result is |H), she sucessfully projects |¢) into A: a1|HHH) + a2|HVH) + d‘)‘ff‘&"( fourt
as|VHH) + a4|VV H) |H)

— |77Dcom pressed> — She sends Wcompressed> to Bob for uncompressing.

Bob applies U™ ') = U_l(wcompressed)‘H)) = Z?:l a;|1), which has high

resemblance to the initial [}, F} = [{(¢)|¢)")|* = pa ~ 0.9419 | "'Jl
— &amil 1>

[If result is VV, she sends HH to Bob, which will be decomposed to |1) and has fidelity=(.0581)(.6219)=0.036]

U How good is this? Let us compare it to the case Alice sends the first two
and asks Bob to guess the third letter H

0, !

o
The best guess he can make is |Q). The fidelity is F = 1 |(H|Q)|* + :|(D|Q)|* =
0.8535 < 0.9419



Recall: Entanglement cost and forma%on ;

N (s
o How can we{achieve the optimal “dilution” process? v =L "i‘z k/i
Z{ Z J/' J"‘\") It/
p 0 Ans. Quantum data compression’ (just explained)+ quantum teleportation - 7,1y,
. > @ —I5chumacher '96] [Bennettetal.’92] /),
|
K 0 <[,/1 Alice prepares n copi tes locally, and
= comptesses the part that will be shared ob
) = 0 @ N
¢ aboAl — 5
[¥12) + sin6|1;1,) Compressed Teleport
[Ys.) = + sin6|131,) into'k qubits Bob
: Decompresses
[¥2n—12n) k~n Sy Trsl¥)Yl) Using k
=050 |02, 03p) +sin6 |12, 115p) Be

H-pairs
y;q/—tr — 6"19 !‘)X\bl "“S:Hlxl! ’ J

1

2. Alice and Bob share n copies of y
by consuming k = n E_ copies of Bell states

_J




Noisy channel coding™®: classical vs. qguantum

[From Nielsen & Chuang]

Theorem 12.7: (Shannon’s noisy channel coding theorem) For a noisy channel A/
the capacity is given by

CW) = m(agi H(X:Y), (12.67)
plx

where the maximum is taken over all input distributions p(z) for X, for one use
of the channel, and Y is the corresponding induced random variable at the
output of the channel.

Theorem 12.8: (Holevo—Schumacher—Westmoreland (HSW) theorem) ILet £ be a
trace-preserving quantum operation. Define

()= max [5 (8 (Zm)) - ZpgS(é’(pj))] .z

PjiPj

where the maximum is over all ensembles {p;, p;} of possible input states p; to

the channel. Then (&) is the product state capacity for the channel £, that is,
X(€) = CV(E).

H(X:Y)=H®Y)- HY|X)
=H(Y) =Y p@)HY|X =)



