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2. Week 10’s topics: No clones in quantum
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Shannon vs. Schumacher noiseless channel 
coding theorem

Suppose {𝑋 } is an i.i.d. information source with entropy rate 𝐻(𝑋). 
If 𝑅 > 𝐻(𝑋), then there exists a reliable compression scheme of rate R for the source. 
if 𝑅 < 𝐻(𝑋), then any compression scheme will not be reliable.

[See N&C 
Thm 12.4]

 How to generalize to quantum regime? 
(1) Alphabet is drawn from a set of quantum states {|ϕ ⟩}
(2) {𝑋 }  an ensemble  ρ = ∑ 𝑞 |ϕ ⟩⟨ϕ |
(3) Typical sequence  typical subspace; atypical sequence  atypical subspace
(4) 𝐻(𝑋) 𝑆(ρ)

Suppose {ρ} is an i.i.d. quantum information source with entropy rate 𝑆(ρ). 
If 𝑅 > 𝑆(ρ), then there exists a reliable compression scheme of rate R for the source. 
if 𝑅 < 𝑆(ρ), then any compression scheme will not be reliable.



Noisy channel coding*: classical vs. quantum
[From Nielsen & Chuang]



Week 11: No clones in quantum: 
No cloning of quantum states, 

non-orthogonal state 
discrimination, quantum 

tomographic tools, quantum 
cryptography: quantum key 

distribution from transmitting 
qubits and from shared 

entanglement



Strange quantum features 
 No cloning: cannot xerox in quantum world

Proof: by contradiction, assume possible:

X

But overlap preserved 
by unitary operation:

 Cloning would allow to distinguish non-orthogonal states

 By making enough copy, they could be made almost orthogonal, and
be distinguishable

[Dieks 82’; Wootters & Zurek ‘82]



State discrimination

 Non-orthogonal states cannot be 
deterministically distinguished!

 Deterministic discrimination of non-orthogonal states could 
be used to perform cloning of non-orthogonal states!

ψ1

ψ2

 Suppose classical description of two states is known, but don’t which
one is given. If one could uniquely determine which, one could then produce as
many copies (given its description is known)



State discrimination: case (i)
 Imagine there are two one-qubit states which may not be orthogonal: ψ1

& ψ2 (equally probable). For simplicity, one can take

 Question: what is the best strategy to distinguish the two states?

This question needs to be clarified. We will consider (i) to maximum overall success 
probability [minimum-error] (ii) to maximize the unambiguous discrimination

Case (i): we will design an orthogonal basis for such a measurement

and if the outcome is v1 then we declare it’s ψ1 ; we declare it’s ψ2 if outcome is  v2

(But this is not un-ambiguous.) So we want to maximize:

ψ1

ψ2

θ



case (i): physical picture

Case (i): an orthogonal measurement basis

and if the outcome is v1 then we declare it’s ψ1 ; we declare it’s ψ2 if outcome is  v2

So maximize:

ψ1

ψ2

ψ1

ψ2
 Helstrom bound:



State discrimination: case (ii)

 Case (ii) to maximize the unambiguous discrimination
This means that there are three non-negative operators M1, M2 and M3 that 
correspond to must-be state 1, must-be state 2, and don’t know, respectively

 Since there are only two states, if we choose an operator proportional to 
projector orthogonal to ψ2, then if the corresponding detector clicks, we 
know it must come from the state ψ1 , etc. Thus

where we allows a constant c (the weight in the unambiguous discrimination), 
but we want it to be as large as possible, and it is constrained by

ψ1

ψ2

ψ1

ψ2



case (ii): derivation

ψ1

ψ2

ψ1

ψ2

 M3 in matrix form:

 Success probability:



General state discrimination

 Can consider unequal probability 𝑝 ≠ 𝑝
ψ1

ψ2

More than 2 pure states

Mixed states

 Barnett & Croke, Quantum state discrimination, arXiv:0810.1970

 Bae & Kwek, Quantum state discrimination and its applications, arxiv: 1707.02571

Refs:



No cloning and no perfect discrimination of non-orthogonal states  
 useful for secure communication



Secure communication?
 “One-time pad” is secure if length as long 

as message and used only once

 RSA can be broken by Shor’s factoring algorithm 

 Public-key cryptography: e.g. RSA (Rivest, Shamir, and Adleman, 1978)
[Security relies on difficulty of factoring large integers]

 a public key and a private key
Bob will publish the public key so that anyone can encrypt a message with the public key and 

send the encrypted message to Bob, who can decrypt the cipher text with the private key to 
recover the plain text efficiently. 

[Vernam 1926]

Message:  0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0

Shared secret key (1-time pad):  1 1 0 0 1 0 1 0 1 1 1 0 0 1 1 0

 Encrypt by XOR:           1 0 0 1 0 0 1 1 1 0 1 1 1 1 1 0    send this publicly

 Receiver decrypt by XOR:           1 1 0 0 1 0 1 0 1 1 1 0 0 1 1 0
With secret key               0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0



RSA public key cryptography
1. Choose two different large prime numbers and ; 

a number coprime with and less than 
.

3. Choose coprime with and compute 𝟏 (mod ) or 
(mod Φ)

4. Broadcast public key and number 
5. Other party encodes message (assume coprime to ) to be 

𝒆 (mod ) and we can decode it by a 
(mod ), note (mod )

6. We can identify ourselves by encoding our signature to be 
(mod ), everyone can verify by decoding 

(mod N)



Factoring breaks RSA 

 Measurement disturbs quantum states

Alice

Eavesdropper

Bob

 Quantum states cannot be cloned

 Entanglement also helps

But quantum communication is secure 

Bennett EkertBrassard



Quantum key distribution (QKD):BB84 

H/V basis: H=0, V=1  |0> and |1> D/A basis: D=0, A=1  |+> and |->

Goal: to establish a random sequence between Alice and Bob

1. Alice randomly selects a random sequence, e.g. 0101011…
For each bit (0 or 1) she randomly selects H/V or D/A basis, e.g.

HVDVDAV….

2. For each bit Bob randomly selects a basis H/V or D/A to measure, 
e.g. ….

Results:  H D     V      V D H     D

3. Openly compare bases (not results), keep results when measured
in same basis, e.g., H V D … = 0 1 0 ….

4. Can compare a subset of results to make sure the security



Attack QKD?

* once a QKD session is over, no classical “transcript” for Eve to keep since 
the communication is quantum.
* vs. public key: Eve can copy encrypted messages and wait until private key 
is broken to decrypt messages

 Intercept-and-resend attack

 Eve performs measurement on the intercepted photon (from Alice) in 
a randomly chosen basis H/V or D/A and resends a new photon to Bob 
according to her measurement result. 

 When Alice and Bob happen to use the same basis: 
 If Eve uses correct basis (50%), then both she and Bob will decode Alice’s bit
value correctly. No error is introduced by Eve. 
 If Eve uses the wrong basis (50%), then both she and Bob will have random 

measurement results.

 Alice and Bob have 50% of using same basis 
 Overall quantum bit error rate (QBER) is 25% 

 An important advantage of QKD: 



Actual applications of QKD

 Bank transaction and government communication

 QKD was used to encrypt security communications in the 2007 Swiss election 
and the 2010 World Cup.



Making keys more secure*

 Alice and Bob can further perform two classical steps to increase 
correlation between their key strings and reduce mutual information 
with Eve

(a)  information reconciliation: error-correction conducted over a
public channel (e.g. using parity check)

(b) privacy amplification:  a procedure for Alice and Bob to
distill a common private key from a raw key about which Eve
might have partial information.

 Employ local randomness by using universal hash functions G, which
map the set of n-bit strings A to the set of m-bit strings B, such that for 
any distinct a1 ,a2 ∈ A, when g is chosen uniformly at random from G, 
then the probability that g(a1 ) = g(a2 ) is at most 1/|B|



No cloning and no perfect discrimination of non-orthogonal states  
 useful for secure communication

 Entanglement is also useful!



Violation of Bell inequality and QKD

 Measurement along axes 1 and 2 of A & B are used to
check violation of Bell inequality

 A third axis is added so that measurement using (A3,B1) 
and (A2,B3) gives anticorrelation  establish secret keys

[Ekert, PRL 67,661 (1991)]

z

x

z

x

 Use a Bell state:



Switch topic: tomographic tools for quantum computations



 State preparation

Tomographic tools

 Gate operations

 Measurement (i.e. detectors)

 Crucial to ensure proper functioning of QC and
correctness of results

 Note: detector tomography is often ignored, but important to
extract correct computational outcomes 

 State tomography

 Process tomography

 Detector tomography



Quantum state tomography

 If one can measure the qubit in all three bases, can extract Bloch vector 𝑟

𝜌 =
1

4
𝑟 𝜎 ⊗ 𝜎 , 𝑟 = 𝑡𝑟 𝜌  𝜎 ⊗ 𝜎

Measure in product of bases (i.e. coincidence)

𝜌 =
1

2
𝐼 + 𝑟 𝜎 + 𝑟 𝜎 + 𝑟 𝜎

𝑟 = 𝑡𝑟(𝜌𝜎 ) = 𝑡𝑟 𝜌 + + − 𝑡𝑟 𝜌 − −
𝑟 = 𝑡𝑟(𝜌𝜎 ) = 𝑡𝑟 𝜌 +𝑖 +𝑖 − 𝑡𝑟 𝜌 −𝑖 −𝑖

𝑟 = 𝑡𝑟(𝜌𝜎 ) = 𝑡𝑟 𝜌 0 0 − 𝑡𝑟 𝜌 1 1

 One qubit

 Multi-qubits:

Bloch sphere

 Estimate unknown state (given multiple copies) 



Quantum process tomography

 Estimate unknow process (Black box)

Ε: 𝜌 → 𝐸 𝜌𝐸

Q: From measuring a limited number of different input states 
(but unlimited supply of each), is it possible to predict 
the result for a general input state?

 
(quantum operations)

 Possible application: “debugging” quantum gates

quantum
circuit:



Three different ways of implementing 
quantum process tomography (PT)



(I) Standard Quantum PT (SQPT)

0 0

0 1 = + + + 𝑖 +𝑖 +𝑖 −
1 + 𝑖

2
0 0 −

1 + 𝑖

2
1 1

1 0 = + + − 𝑖 +𝑖 +𝑖 −
1 − 𝑖

2
0 0 −

1 − 𝑖

2
1 1

1 1

j k for single qubit are 

We only need four different inputs 0 , 1 , + , +𝑖

𝜌 ∈ 0 , 1 , + , +𝑖

 Idea: look at how each element gets transformed

𝐸: 𝑗 𝑘 → 𝐸 𝑗 𝑘 𝐸

to figure out the unknown action


