PHY682 Special Topics in Solid-State Physics: Quantum Information Science

Lecture time: 2:40-4:00PM Monday \& Wednesday
Today 11/11:

QIS syllabus

\checkmark (week 1) The history of Q: Overview and review of linear algebra, basics of quantum mechanics, quantum bits and mixed states.
\checkmark (week 2) From foundation to science-fiction teleportation: Bell inequality, teleportation of states and gates, entanglement swapping, remote state preparation, superdense coding, and superdense teleportation.
\checkmark (week 3) Information is physical---Physical systems for quantum information processing: Superconducting qubits, solid-state spin qubits, photons, trapped ions, and topological qubits
\checkmark (week 4) Grinding gates in quantum computers: Quantum gates and circuit model of quantum computation, introduction to IBM's Qiskit, Grover's quantum search algorithm, amplitude amplification.
\checkmark (week 5) Programming through quantum clouds: Computational complexity, Quantum programming on IBM's superconducting quantum computers, including VQE on quantum chemistry of molecules, QAOA for optimization, hybrid classical-quantum neural network.
\checkmark (week 6) Dealing with errors: Error models, Quantum error correction, topological stabilizer codes and topological phases (including fractons), error mitigations
\checkmark (week 7) Quantum computing by braiding: Kitaev's chain, Majorana fermions, anyons and topological quantum computation
\checkmark (week 8) More topological please: Topological quantum computation continued, surface code and magic state distillation
\checkmark (week 9) Quantum computing by evolution and by measurement: Other frameworks of quantum computation: adiabatic and measurement-based; D-Wave's quantum annealers
\checkmark (week 10) Quantum entangles: Entanglement of quantum states, entanglement of formation and distillation, entanglement entropy, Schmidt decomposition, majorization, quantum Shannon theory
\checkmark (week 11) No clones in quantum: No cloning of quantum states, non-orthogonal state discrimination, quantum tomographic tools, quantum cryptography: quantum key distribution from transmitting qubits and from shared entanglement (week 12) Show me your 'phase', Mr. Unitary: Quantum Fourier Transform, quantum phase estimation, Shor's factoring algorithm, and quantum linear system (such as the HHL algorithm) and programming with IBM Qiskit
(week 13) The quantum 'Matrix': Quantum simulations and quantum sensing and metrology

Do poll

Which of recent topics are your favorite? (multi choices)

Single Choice

- Multiple Choice

Dealing with errors (i.e. quantum error correction)

Quantum computing by braiding

Quantum computing by evolution and by measurement

Quantum entangles (i.e. entanglement theory)

No clones in quantum (including QKD, state discriminatiom 177
-
\square

Sharing Poll Results

Attendees are now viewing the poll results

1. Which of recent topics are your favorite? (multi choices) (Multiple choice)

Dealing with errors (i.e. quantum error correction)
(8/14) 57\%

Quantum computing by braiding
(7/14) 50\%

Quantum computing by evolution and by measurement

Quantum entangles (i.e. entanglement theory)
(2/14) 14\%

No clones in quantum (including QKD, state discrimination \& tomographic tools)
(3/14) 21\%

PHY682 Special Topics in Solid-State Physics: Quantum Information Science

Lecture time: 2:40-4:00PM Monday \& Wednesday

Today 11/11:

1. Final presentation selection and presentation outline
2. Review Quantum Fourier Transform and Quantum Phase Estimation
3. Finish Week 12 's topics (quantum phase estimation and applications)

Prof. Steven M. Girvin on "Progress and Prospects for the Second Quantum Revolution"
(Physics and Astronomy Colloquium yesterday)
http://www.physics.sunysb.edu/Physics/colloquium/2020/
Network stream: rtsp://www.physics.sunysb.edu:5554/girvin-111020

Quantum Fourier Transform and Bloch spheres

QFT and phase estimation

Today: Application of QPE

> Approximate projection to eigenstates
$>$ Order and period finding
> Shor's factoring algorithm
$>$ Discrete logarithm

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)=a^{s x_{1}+x_{2}} \bmod N \quad b=a^{s} \Longrightarrow s=? \\
& f\left(x_{1}+q, x_{2}-q s\right)=f\left(x_{1}, x_{2}\right)
\end{aligned}
$$

> Hidden subgroup problem
$U|g\rangle|h\rangle=|g\rangle|h \oplus f(g)\rangle$
f is constant on the cosets of a subgroup $K \rightarrow$ find K
$>$ Harrow-Hassidim-Lloyd (HHL) quantum linear system and related algorithms
>Quantum SVD

Projection to eigenstates

- Quantum Phase Estimation [Kitaev; Lloyd and ..]

$$
\begin{gathered}
U|u\rangle=e^{-i H t}|u\rangle=e^{i 2 \pi \phi}|u\rangle \\
\phi=0 . \phi_{1} \phi_{2} \ldots \phi_{t} \cdots
\end{gathered}
$$

> For eigenstate $\mid u>$ of a unitary operator U, can extract eigenvalue via the phase φ

- But for a superposition can approximately project the system to some eigenstate |u>

$$
|\psi\rangle=\sum_{n} a_{n}\left|u_{n}\right\rangle \longrightarrow \text { Obtain approximate } \varphi_{n} \text { with } P_{n} \approx \left\lvert\, \begin{aligned}
& \left|a_{n}\right|^{2} \\
& \mid 2
\end{aligned}\right.
$$

Recall: Adiabatic vs. "Zeno" approach

\square Adiabatic:

$$
H(t)=\left(1-\frac{t}{T}\right) H_{\text {initialal }}+\frac{t}{T} H_{\text {fraal }}
$$

- It is also possible to use measurement, i.e. Zeno effect

- "Quantum simulations of classical annealing processes" by Somma, Boixo, Barnum and Knill [PRL101,130504 (2008)]

QPE is useful here
> Measurement needs to project to eigenstates of $\mathbf{H}(\mathrm{t})$ [see e.g. Chen \&Wei, PRA 101, 032339 (2020)]
> Ground state at $\mathrm{t}=\mathrm{T}$ can be arrived by such Zeno measurement on $\mathrm{H}(\mathrm{t})$ for a sequence of $t=0, \Delta t, 2 \Delta t, \ldots, T$

Order finding

Given positive integers x and $N(x<N)$ with no common factors, find the least integer r such that $x^{r}=1(\bmod N)$> Apply phase estimation to the unitary operator:

$$
\begin{aligned}
U|y\rangle & \equiv|x y(\bmod N)\rangle \quad y \in\{0,1\}^{L}, y<N \\
U|y\rangle & \equiv|y\rangle, \quad \text { for } N \leq y<2^{L}
\end{aligned}
$$

$>$ We need to input an eigenstate? What are the eigenstates?
Eigenstates are (s in $[0, r-1]):\left|u_{s}\right\rangle \equiv \frac{1}{\sqrt{r}} \sum_{k=0}^{r-1} e e^{\frac{-2 \pi i s k}{r}}\left|x_{-}^{k} \bmod N\right\rangle$

$$
\hat{U}\left|u_{s}\right\rangle=\underbrace{e^{\frac{2 \pi i s}{r}}}_{\Downarrow}\left|u_{s}\right\rangle_{[\text {check }]}
$$

Their superposition gives $\mid{ }^{\prime} 1^{\prime}=0$... Or $\left.^{\circ}\right\rangle$:

$$
\left.\frac{1}{\sqrt{r}} \sum_{s=0}^{r-1}\left|u_{s}\right\rangle=\left.\right|^{\prime} 1^{\prime}\right\rangle
$$

$$
\begin{aligned}
& \text { d the } \quad N=5 \\
& x=2 .
\end{aligned}
$$

$$
2^{\prime}=2(\operatorname{mon} 5)
$$

$$
2^{2}=4(\bmod 5)
$$

$$
2^{3}=\delta=3(\bmod s)
$$

$$
2^{c}=16=1(\operatorname{mos} 5)
$$

$$
\begin{aligned}
& \text { repeat } \left.\geqslant\left.\right|^{\prime} 1^{\prime}\right\rangle \\
& \left(\frac{\varsigma_{1}}{r}\right)\left(\frac{\varsigma_{2}}{r}\right) \cdots{ }_{\text {Second register }}\{L<
\end{aligned}
$$

Order finding (cont'd)

Given positive integers x and $N(x<N)$ with no common factors, find the least integer r such that $x^{r}=1(\bmod N)$

$$
U\left|u_{s}\right\rangle=e^{\frac{2 \pi i s}{r}}\left|u_{s}\right\rangle \quad \frac{1}{\sqrt{r}} \sum_{s=0}^{r-1}\left|u_{s}\right\rangle=\left|{ }^{\prime} 1^{\prime}\right\rangle
$$

Perform phase estimation with t qubits $\quad t=\underline{2 L+1}+\log _{2}\left(2+\frac{1}{2 \epsilon}\right)$ will randomly give estimated $s / r \quad$ accuracy: $2^{-2 L-1}<1 /\left(2 r^{2}\right)$

\checkmark With above accuracy \rightarrow can deduce a ' r ' and check whether it's a correct answer (repeat if necessary)

Order finding for Shor's factoring

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { Or der } \\
\text { funding }
\end{array} \quad \begin{array}{l}
\square \text { Given positive integers } x \text { and } N(x<N) \text { with no common factors, } \\
\text { find the least integer } r \text { such that } x^{r}=1(\bmod N)
\end{array}\right) \\
& \text { - Note that: If } \operatorname{gcd}(x, N)=1 \text {, and period } r \text { of } F_{x, N}(a) \text { is even, } \\
& F_{x, N}(a):=x^{a} \bmod N \\
& \begin{array}{l}
\text { Then (assume } r \text { is given } \quad \text { if } r \text { is odd } \\
\Rightarrow x^{r / 2+1}\left(x^{r / 2}-1\right)=\left(x^{r}\right)-1=0(\bmod N) \quad x^{r / 2}+1
\end{array} \\
& \mathrm{~N} \text { divides above expression } \rightarrow \text { obtain nontrivial factors of } \mathrm{N} \quad x^{\frac{r}{2}}-1 \text { may be } \text { nontrivial } \\
& \operatorname{gcd}\left(x^{r / 2} \pm 1, N\right) \text { factro of } N
\end{aligned}
$$

\rightarrow Use quantum order finding as a subroutine of Shor's factoring algorithm

Factoring N

1. Randomly select $x<N$ such that $\operatorname{gcd}(x, N)=1$
$>X=\{2,4,7,8,11,13,14\}$ are coprime to 15
2. Find period r of $F_{x, N}(a)=x^{a} \bmod N$
$>R=\{4,2,4,4,2,4,2\}$ are corresponding periods r
3. If $r=$ even and $z=x^{r / 2}(\bmod N)$ is not trivial

Else start from step 1
4. Then $\operatorname{gcd}(z \pm 1, N)$ are factors of N

\rightarrow Shor's quantum algorithm uses phase estimation for order/period finding on $U|y\rangle \equiv|x y(\bmod N)\rangle$

Quantum task: Shor factoring
 \rightarrow exponential speedup

18070820886874048059516561644059055662781025167 69401349170127021450056662540244048387341127590 812303371781887966563182013214880557
=(?????) \times (????...?)
=(396859994595974542901611261628837 86067576449112810064832555157243)
x
(4553449864673597218840368689727440 8864356301263205069600999044599)

```
\sum(\mp@subsup{u}{s}{});(t)|+\rangle(t)
```

superposition + unitary evolution + measurement
\rightarrow Can break RSA (Rivest-Shamir-Aldeman) encryption exponentially faster than classical computers

RSA public key cryptography

1. Choose two different large prime numbers \boldsymbol{p} and $\boldsymbol{q} ; \boldsymbol{N}=\boldsymbol{p} \boldsymbol{q}$
2. $\Phi=(\boldsymbol{p}-\mathbf{1})(\boldsymbol{q}-\mathbf{1})$ a number coprime with \boldsymbol{N} and less than N.
$d=3$
3. Choose \boldsymbol{e} coprime with Φ and compute $\boldsymbol{d}=\boldsymbol{e}^{-\mathbf{1}}(\bmod \Phi)$ or $\boldsymbol{e d}=1(\bmod \boldsymbol{\Phi})$
4. Broadcast public key \boldsymbol{e} and number \boldsymbol{N}
5. Other party encodes message \boldsymbol{a} (assume coprime to \boldsymbol{N}) to be $\boldsymbol{b}=\boldsymbol{a}^{\boldsymbol{e}}(\bmod \boldsymbol{N})$ and we can decode it by $\boldsymbol{b}^{\wedge} \boldsymbol{d}=\boldsymbol{a}^{\wedge}(\boldsymbol{e} \boldsymbol{d})=\boldsymbol{a}^{d}$ $\boldsymbol{a}^{\wedge}(\boldsymbol{n} \Phi)=\boldsymbol{a}(\bmod N)$, note $\boldsymbol{a}^{\wedge} \Phi=\mathbf{1}(\bmod N) \quad=8^{3}=2$
6. We can identify ourselves by encoding our signature \boldsymbol{s} to be $\boldsymbol{t}=\boldsymbol{s}^{\wedge} \boldsymbol{d}(\bmod \boldsymbol{N})$, everyone can verify by decoding $\boldsymbol{t}^{\wedge} \boldsymbol{e}=$ $\boldsymbol{s}(\bmod \mathrm{N})$

$4^{3}=4$

Performance: classical vs quantum

Assume to it takes 1 sec to a factor 30-digit number for both classical and quantum*

	Classical	Quantum
30-digit	1 sec	1 sec
50-digit	816 sec	4.6 sec
100-digit	$9.4 \times 10^{7} \mathrm{sec}$	37 sec
200-digit	$4.6 \times 10^{14} \mathrm{sec}$	296 sec
250-digit	$1.8 \times 10^{17} \mathrm{sec}$	578 sec
ual number	A ye Age	$\begin{aligned} & 1536000 \mathrm{sec} \\ & \begin{aligned} & 2 \times 10^{7} \\ & \text { verse }=13.7 \mathrm{~b} \\ &= 432 \mathrm{q} \\ & \quad=4.3 \end{aligned} \end{aligned}$

Polynomial vs. Exponential

- What are tractable and intractable?
> Tractable problems: can be solved in time polynomial of input size
> Intractable problems: cannot be solved in time polynomial of input size

\checkmark Classical factoring: (almost) "exponential" time
\checkmark Shor's factoring: Polynomial time

Summary of Shor's factoring algorithm

Procedure:

Quantum 4. Use the order-finding subroutine to find the order r of x modulo N.

Classical
5. If r is even and $x^{r / 2} \neq-1(\bmod N)$ then compute $\operatorname{gcd}\left(x^{r / 2}-1, N\right)$ and $\operatorname{gcd}\left(x^{r / 2}+1, N\right)$, and test to see if one of these is a non-trivial factor, returning that factor if so. Otherwise, the algorithm fails.

Quantum Linear System Algorithm

- Harrow-Hassidim-Lloyd (HHL) 2008
\checkmark A: N $\times \mathrm{N}$ matrix \rightarrow solve for vector x (encoded in quantum state)
 $\theta\left(N^{3}\right)$
$\checkmark \mathrm{HHL}$ complexity $\mathrm{O}(\mathrm{k}^{2} \mathrm{~s}^{2} \log \mathrm{~N} / \underbrace{\ell \in)}$
(k. condition number = largest eigval/smallest, s: sparsity, ϵ : error
\checkmark Classical algorithm complexity $\mathrm{O}\left(\mathrm{N}^{3}\right)$
- Potentially useful for some machine learning tasks

Quantum Linear System Algorithm: HHL

$$
A \vec{x}=b
$$

For simplicity, assume $\mathbf{A}: \quad A\left|u_{j}\right\rangle=\lambda_{j}\left|u_{j}\right\rangle$

$$
\left.|b\rangle=\sum_{i=1}^{N} b_{i}|i\rangle=\sum_{j=1}^{N} \beta_{j} u_{j}\right\rangle
$$

$$
A=\sum \lambda_{j}\left|u_{j}\right\rangle\left(u_{j} \mid>\text { Prepare an initial state }\left|\Psi_{0}\right\rangle=\left(\frac{1}{\sqrt{T}} \sum_{\tau=0}^{T}|\tau\rangle\right\rangle|b\rangle=\mid \text { all } \tau\right\rangle \otimes \sum_{j=1}^{N} \beta_{j} \backslash\left(u_{j}\right\rangle
$$

$$
\begin{aligned}
& \left.>\text { Define the "phase encoding" operator: } \quad c^{-}-\mathrm{A} \equiv \sum_{\tau}^{1}|\tau\rangle\langle\tau| \otimes e^{i A t_{0} \tau}\right) \\
& \text { Apply it to } \Psi_{0}:
\end{aligned}
$$

$$
\left|\Psi_{0}\right\rangle \rightarrow\left|\Psi_{1}\right\rangle=\frac{1}{\sqrt{T}} \sum_{\tau=0}^{T}|\tau\rangle \otimes \sum_{j=1}^{N} \beta_{j} e^{i \lambda_{1} \lambda_{j} t_{0} \tau}\left|u_{j}\right\rangle
$$

$$
f^{-1} \cdot \sum_{j} B_{j} \cdot\left(u_{j}\right)^{x}
$$

$\vec{x}=A^{-1} A A_{p p l}^{-1}$ inverse QFT to first register for phase estivhationick phase

$$
y=e^{i A t_{0}}
$$

- How to apply inverse of A? divide above each term by λ_{j} ? vestment" collapse
$\vec{b} \tilde{\tau}_{j}$

HHL Algorithm (contd)

$$
A \vec{x}=b
$$

$>$ After phase estimation: $\left|\Psi_{2}\right\rangle=\frac{1}{\sqrt{T}} \sum_{j} \beta_{j}\left|\tilde{\lambda}_{j}\right\rangle \otimes\left|u_{j}\right\rangle$

* Apply inverse of A ? divide above each term by λ_{j} ?

$$
\left.\left.\sum_{j} \beta_{j}\left|\lambda_{j}\right| \tilde{\lambda}_{j}\right\rangle \otimes\left|u_{j}\right\rangle \xrightarrow{\text { undo QPE }} \quad \mid \text { all } \tau\right\rangle \otimes \sum_{j} \beta_{j} / \lambda_{j}\left|u_{j}\right\rangle ?
$$

> Application of inverse cannot be done with unit probability

Attach an ancillary qubit in $|0\rangle$, then apply a U gate controlled by first register:

$$
\begin{aligned}
& \text { Attach an ancillary qubit in }|0\rangle \text {, then apply a } U \text { gate controlled by first register: } \\
& \sum_{j} \beta_{j}\left|\tilde{\lambda_{j}}\right\rangle \otimes\left|u_{j}\right\rangle \otimes|0\rangle \rightarrow \sum_{j} \beta_{j}\left|\tilde{\lambda_{j}}\right\rangle \otimes\left|u_{j}\right\rangle \otimes\left(\sqrt{1-\frac{C^{2}}{\lambda_{j}^{2}}}|0\rangle+\frac{C}{\lambda_{j}}|1\rangle\right) \text { buck to sta }
\end{aligned}
$$

$$
\xrightarrow{\text { undo QPE }} \xrightarrow{\mid \text { all } \tau\rangle} \otimes \sum_{j} \beta_{j}\left|u_{j}\right\rangle \otimes\left(\sqrt{1-\frac{C^{2}}{\lambda_{j}^{2}}}|0\rangle+\frac{C}{\lambda_{i}}|1\rangle\right) \text { T what we want buck to stat }
$$

$>$ Inversion successful only when ancilla measurement gives 1

$$
\text { all } \left.\left.\tau\rangle \otimes \sum_{j}\left\langle\left.\beta_{j} \frac{C}{\lambda_{j}} \right\rvert\, \alpha_{j}\right\rangle \otimes|1\rangle=\mid \text { all } \tau\right\rangle \otimes A^{-1}|b\rangle\right\rangle \otimes|1\rangle
$$

Qiskit implementation

1. Quantum Fourier Transform
2. Quantum Phase Estimation
3. HHL algorithm
