
Today 11/18:

1. Final lecture: finishing Week 13’s topics (quantum simulations 
and metrology)

PHY682 Special Topics in Solid-State Physics: 
Quantum Information Science

Lecture time: 2:40-4:00PM Monday & Wednesday



Heisenberg’s uncertainty principle
 For observables A & B that do not commute

e.g. position x and momentum p: 

 Correct interpretation: (intrinsic uncertainty) if we prepare a large number 
of quantum systems in identical states, 𝜓, and then perform measurements 
of 𝐴 on some of those, and of 𝐵 in others, the statistical uncertainties 
satisfy above inequality

• Heisenberg initially regarded this as a relationship between the precision of a 
measurement and the disturbance it creates

 Rozema et al. performed an experiment that refuted the 
original interpretation [Phys. Rev. Lett. 109, 100404 (2012)]



Heisenberg’s uncertainty principle
 For observables A & B that do not commute

 In contrast, classical mechanics assumes measurement of position 
and momentum (or speed) can be made separately and arbitrarily 
precise (i.e. no fundamental limit)

 In quantum mechanics, the act of measurement changes the system 
[quantum back action], and thus repeated measurement cannot 
obtain initial properties (e.g. observing the location of a particle 
‘localizes’ the particle).

 It is possible to formulate some uncertainty relation between 
measurement precision and disturbance  need to carefully define 
measurement noise & disturbance and/or introduce new inequality
[e.g. Ozawa, Ann of Phys. 2003, Hofmann, PRA 2013]



Deriving the Uncertainty Principle
 Consider two Hermitian operators A and B:

real pure imaginary

 Replace  A by A - <A> and B by B-<B>:



Consequence: standard quantum limit

 Position-momentum uncertainty

 Heisenberg limit: the uncertainty in measuring a phase is limited by the 
total number of photons used

 Phase-number uncertainty

 As time evolves, the particle wavepacket expands 

 If we minimize this with respect to Δx, we find the standard quantum limit: 



Dealing with uncertainty

Monitors only one out of a set of incompatible observables

 Employ a quantum state in which the uncertainty in the to-be-
monitored observable is small (at the cost of a very large 
uncertainty in complementary observables)

 Environment-induced noise from vacuum fluctuations (the so-
called shot noise)

 Typical source of errors:

 Dynamically induced noise in e.g. the position measurement of a free mass 
(the so-called standard quantum limit)

 Not fundamental limit though

[See e.g. Giovannetti, Lloyd & Maccone,  Science 06, 1330 (2004)]



Mach-Zehnder interferometer

[from Wikipedia]

 Can understand using interference of classical waves:

Reflection from rear surface of beam-splitter and from mirror gives a π 
phase shift. Going through the beam splitter once accumulates a path phase  
n 2πd/λ (n is the refraction index)

 Waves from two paths arriving at detector 1 add constructively, and 
those arriving at detector 2 add destructively in absence of a sample

 Assume sample gives a phase shift φ, this modifies output intensities at 1 & 2



Recall: Homework 1 problem

We add a phase shifter and assume that the path gains additional 
factor exp(iθ) relative to the other path. Repeat the calculation in 
class but to take account of this phase factor and calculate the 
probability is PA (θ) of the quantum pinball appearing at port A.

Special rule: ”pinball going through
acquires amplitude            ;
being deflected acquires



Mach-Zehnder interferometer

[from Wikipedia]

In terms of photon counting, to 
establish intensities at 1 and 2: 

one counts the clicks from photo-
detectors, if photons are independent 
then, the uncertainty in the normalized 
intensity is

 Can the shot-noise limit be overcome?

 The uncertainty in the phase induced by the sample is limited by the number of 
photons used (i.e. the shot-noise limit)

Yes, by using e.g. squeezed vacuum in the original vacuum (no-input) port 

 Can be further improved using entangled states to 
the Heisenberg limit 

[Caves, PRD 1981; Barnett, Fabre, Maitre, Eur. Phys. J. D (2003)]



N00N state for interferometry

 Can reach the Heisenberg limit 

Phase shift φ

If one can interfere the two paths, e.g. after beam splitting only measure 𝑁 photon 
detection  𝑁 times faster oscillation

vs

[see e.g. Dowling, arXiv:0904.0163]

[Generation by Afek, Ambar& Silberberg, Science 2010]



Next, we will introduce a mathematical formalism 
based on Fisher information and Cramer-Rao bound



Fisher information and Cramer-Rao bound

Goal: to estimate an unknown parameter and to estimate the 
uncertainty

 Setting: Given a 𝜃, the measurement that gives some value x is assumed 
to follow a probability distribution 𝑓(𝑥|𝜃). From a given reading 𝑥1, then 
we estimate the value of 𝜃 to be 𝑡(𝑥1)

with sufficient statistics, we get the
exact value of 𝜃

 Fisher information: how the log likelihood function varies with the unknown parameter

 Cramer-Rao bound for 𝑛 independent samples or experiments:

[You might have learned this in AMS 571 Mathematical statistics]



Proving Cramer-Rao bound

 First, consider 𝑛௦௔௠௣௟௘ = 1 and introduce covariance between two functions 𝑔(𝑥) and ℎ(𝑥):

Specializing this to (i) 𝑡(𝑥) whose average is 𝑡 = θ and (ii) డ

డఏ
𝐿 𝑥|𝜃  [with 𝐿 𝑥|𝜃  ≡ log 𝑓(𝑥|𝜃)] 

whose average is 0:

 Next, use Cauchy-Schwarz inequality:

Note: Generalize to 𝑛 independent samples:



Quantum Fisher information—Intuitive picture
 Using a quantum state ρ that is under some quantum operation Φθ :

 Quantum Fisher information is thus 

 Want to estimate parameter 𝜃. How do we generalize డ

డఏ
𝐿 𝑥|𝜃 ? Where 𝐿 𝑥|𝜃  ≡ log 𝑓(𝑥|𝜃)? 

Intuitively 𝑓(𝑥|θ) ∼ 𝜌஘ (more precisely measured w.r.t. an operator Π௫), then  
డ

డఏ
log 𝑓 𝑥 𝜃 ∼

డ

డఏ
𝜌஘ /𝜌஘ ∼ 𝐷஘ If డ

డఏ
𝜌஘ = 𝐷஘ 𝜌஘

Thus

 It turns out 𝐷஘ is defined more precisely via

 Quantum Cramer-Rao bound 



Quantum Fisher information (cont’d)
 Using a quantum state ρ that is under some quantum operation Φθ :

𝐷𝜃: An important operator related to how 𝜌𝜃 changes w.r.t. 𝜃

 The corresponding quantum Cramer-Rao bound implies that [proof omitted, but uses 𝑓(𝑥|θ)=Tr (𝜌𝜃 Π௫)] 



Quantum Fisher information: unitary channel

 Quantum Fisher information in this case is independent of θ:

 The corresponding quantum Cramer-Rao bound implies that 

 For pure state [exercise]:



Some derivation

 Quantum Fisher information in this case is independent of θ:



Examples---Single Mode

 Coherence state:

 Fock state:

 Superposition:

~ average number of photons   shot-noise limit 

 Heisenberg limit 



When input is pure and there are multiple parameters

 Quantum Fisher information for a pure state (expression much simpler):

 Can generalize to multiple parameters (Quantum Fisher matrix):

 Is it related to Berry curvature? 



Examples---Interferometry

[e.g. see Tan & Jeong, arXiv: 1909.00942]
 There are two modes, and                                            

introduces a phase difference 

 Coherence state:

 N00N state:

 Heisenberg limit 



Congratulations! 
You have completed 13 weeks of [25] lectures in QIS

In the remaining 3 classes, it’s all your show! 
[student presentation]

In Spring 2021: PHY680 Quantum computing course is offered 
by Prof. Vladimir Korepin [contains more advanced topics]



(week 1) The history of Q: Overview and review of linear algebra, basics of quantum mechanics, quantum bits and mixed states.
(week 2) From foundation to science-fiction teleportation: Bell inequality, teleportation of states and gates, entanglement 
swapping, remote state preparation, superdense coding, and superdense teleportation.
(week 3) Information is physical---Physical systems for quantum information processing: Superconducting qubits, solid-state spin 
qubits, photons, trapped ions, and topological qubits
(week 4) Grinding gates in quantum computers: Quantum gates and circuit model of quantum computation, introduction to IBM's 
Qiskit, Grover's quantum search algorithm, amplitude amplification.
(week 5) Programming through quantum clouds: Computational complexity, Quantum programming on IBM's superconducting 
quantum computers, including VQE on quantum chemistry of molecules, QAOA for optimization, hybrid classical-quantum neural network.
(week 6) Dealing with errors: Error models, Quantum error correction, topological stabilizer codes and topological phases (including 
fractons), error mitigations
(week 7) Quantum computing by braiding: Kitaev's chain, Majorana fermions, anyons and topological quantum computation
(week 8) More topological please: Topological quantum computation continued, surface code and magic state distillation
(week 9) Quantum computing by evolution and by measurement: Other frameworks of quantum computation: adiabatic and 
measurement-based; D-Wave’s quantum annealers
(week 10) Quantum entangles: Entanglement of quantum states, entanglement of formation and distillation, entanglement entropy, 
Schmidt decomposition, majorization, quantum Shannon theory
(week 11) No clones in quantum: No cloning of quantum states, non-orthogonal state discrimination, quantum tomographic tools, 
quantum cryptography: quantum key distribution from transmitting qubits and from shared entanglement
(week 12) Show me your 'phase', Mr. Unitary: Quantum Fourier Transform, quantum phase estimation, Shor’s factoring algorithm, 
and quantum linear system (such as the HHL algorithm) and programming with IBM Qiskit
(week 13) The quantum 'Matrix': Quantum simulations and quantum sensing and metrology

QIS syllabus http://insti.physics.sunysb.edu/~twei/Courses/Fall2020/PHY682/
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Group 1: “Entanglement-Based Machine Learning on a Quantum Computer”, 
PhysRevLett.114.110504 (2019)

Group 2: “Universal Blind Quantum Computation” (3 related references)

Group 4: “Unpaired Majorana fermions in quantum wires”
Ref: A Yu Kitaev “Unpaired Majorana fermions in quantum wires”, 2001 Phys.-Usp. 
44 131

Group 5: Google’s paper on Quantum Supremacy?

Group 3: “Can the ‘WaveFunctionCollapse’ algorithm run on an actual quantum computer?” 
Ref: paper by Karth and Smith, In Proceedings of FDG’17

Group 6:  “Hybrid Quantum algorithm to classify Hermitian matrix definiteness”
Ref.: Gómez, Andrés, and Javier Mas. "Hybrid Quantum algorithm to classify 
Hermitian matrix definiteness." arXiv preprint arXiv:2009.04117 (2020).

Group 7: “Quantum Internet” 
Ref: The quantum internet by H. J. Kimble, Nature 453, 1023-1030 (2010)
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