PHY682 Special Topics in Solid-State Physics:
Quantum Information Science

Lecture time: 2:40-4:00PM Monday & Wednesday

Today 11/18:

1. Final lecture: finishing Week 13’s topics (quantum simulations
and metrology)



Heisenberg’s uncertainty principle
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* Heisenberginitially regarded this as a relationship between the precision of a
measurement and the disturbance it creates

» Correct interpretation: (intrinsic uncertainty) if we prepare a large number
of quantum systems in identical states, 1, and then perform measurements
of A on some of those, and of B in others, the statistical uncertainties
satisfy above inequality

» Rozema et al. performed an experiment that refuted the
original interpretation [Phys. Rev. Lett. 109, 100404 (2012)]



Heisenberg’s uncertainty principle

o For observables A & B that do not commute

ANANB)> |(y|[A, B¢

- In contrast, classical mechanics assumes measurement of position
and momentum (or speed) can be made sepakjtely and arbitrarily
precise (i.e. no fundamental limit) —= (| cs-

- In quantum mechanics, the act of measurement changes the system
[quantum back action], and thus repeated measurement cannot
obtain initial properties (e.g. observing the location of a particle
‘localizes’ the particle).

» It is possible to formulate some uncertainty relation between
measurement precision and disturbance - need to carefully define

measurement noise & disturbance and/or introduce new inequality
[e.g. Ozawa, Ann of Phys. 2003, Hofmann, PRA 2013]



Deriving the Uncertainty Principle
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Consequence: standard quantum limit

O Position-momentum uncertainty

=>» As time evolves, the partlcle waﬂ;packet expands
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O Phase-number uncertainty [¢p, N] =i — A¢ > 1/(2AN) > 1/Nyoy

=>» Heisenberg limit: the uncertainty in measuring a phase is limited by the
total number of photons used



Dealing with uncertainty

[See e.g. Giovannetti, Lioyd & Maccone, Science 06, 1330 (2004)]

L Monitors only one out of a set of incompatible observables

O Employ a quantum state in which the uncertainty in the to-be- . Cohopo-1
monitored observable is small (at the cost of a very large sX 0P 2 Y P

uncertainty in complementary observables) :
L1eo )

A Typical source of errors: U %

) sposld
» Environment-induced noise from vacuum fluctuations (the so- 5 fol3s A

called shot noise)
— X

» Dynamically induced noise in e.g. the position measurement of a free mass
(the so-called standard quantum limit)

=>» Not fundamental limit though K ‘ﬁs
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Mach-Zehnder interferometer
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[from Wikipedia]

» Can understand using interference of classical waves:

Reflection from rear surface of beam-splitter and from mirror gives a
phase shift. Going through the beam splitter once accumulates a path phase
n 2ntd/A (n is the refraction index)

v" Waves from two paths arriving at detector 1 add constructively, and
those arriving at detector 2 add destructively in absence of a sample

v Assume sample gives a phase shift ¢, this modifies output intensities at 1 & 2



Recall: Homework 1 problem

Special rule: ”pinball going through
OB acquires amplitude 1/v2 ;
being deflected acquires i/v2

factor exp(iB) relative to the other path. Repeat the calculation in
class but to take account of this phase factor and calculate the
probability is P, (8) of the quantum pinball appearing at port A.

/
q i\ D We add a phase shifter and assume that the path gains additional
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Mach-Zehnder interferometer
* detector 2 In terms of photon counting, to
~ establish intensities at 1 and 2:

v&,' I = Iycos®(¢/2), Iy = Iysin®(¢/2)
« f /" one counts the clicks from photo-
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detectors, if photons are;rlggggm

then, the uncertainty in the normalized
intensity is _ "{) ,_g, = &,}f

[from Wikipedia] A(Il o 12)/10 = sin ¢A¢ X 1/\/7
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photons used (i.e. the shot-noise limit) (Aqb) ot s T 1/ /
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L Can the shot-noise limit be overcome?
Yes, by using e.g. squeezed vacuum in the original vacuum (no-input) port

A¢ X 1/N3/4 [Caves, PRD 1981; Barnett, Fabre, Maitre, Eur. Phys. J. D (2003)]

O Can be further improved using entangled states to Aqﬁ X 1/N
the Heisenberg limit




NOON state for interferometry

[see e.g. Dowling, arXiv:0904.0163]

Phase shift ¢

NOON) = ((WVh.05)+ 104, N5))/V2 oy~ (€™ ?IN4,08) + 104, Np)) /V2
oN

If one can interfere the two paths, e.g. after beam splitting only measure N photon
detection =» N times faster oscillation

11+ eiN‘?b\z vs |1+ ei‘l5|2 > Can reach the Heisenberg limit A¢ oc 1/N

[Generation by Afek, Ambar& Silberberg, Science 2010]
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Next, we will introduce a mathematical formalism
based on Fisher information and Cramer-Rao bound



Fisher information and Cramer-Rao bound
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to follow a probability distribution f(x|8). From a given rea%g x4, then
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v’ Fisher information: how the log likelihood function varies with the unknown parameter
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Proving Cramer-Rao bound f(@):<(310gf<w!9))2>
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Quantum Fisher information—Intuitive picture

[ Using a quantum state p that is under some quantum operation ®y: pg = Pg(p)

L Want to estimate parameter 8. How do we generalize %L(xl@)? Where L(x|0) = logf(x|6)?
o) tr ()

0 Intuitively f(x|0) ~ pg (more precisely measured w.r.t. an operato ), then
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Quantum Fisher information (cont’d)

0 Using a quantum state p that is under some quantum operation ®g: pg = Py(p)

D,: An important operator related to how p, changes w.r.t. g
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Quantum Fisher information: unitary channel
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Some derivation po =U(0)pU'(6), U0)=e
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When input is pure and there are multiple parameters

0

Vo) =U(O)[Y)  190t) = 55lv0)

» Quantum Fisher information for a pure state (expression much simpler):

Io([), 0) = 4({Bgtbe|Ogvpa) — |(16|Detbe)|?)

» Can generalize to multiple parameters (Quantum Fisher matrix):

(1q)i,; = 4Re((0o,%9|0p,%0) — (100|0a,v0) (Do, vo|1e))

- Is it related to Berry curvature?




Examples---Interferometry T
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Congratulations!
You have completed 13 weeks of [25] lectures in QIS

L“‘> 2’0',0 M--"-‘EA

In Spring 2021: PHY680 Quantum computing course is offered
by Prof. Vladimir Korepin [contains more advanced topics]

In the remaining 3 classes, it’s all your show!
[student presentation]



QlS Syl labus http://insti.physics.sunysb.edu/~twei/Courses/Fall2020/PHY682/

v (week 1) The history of Q:
V' (week 2) From foundation to science-fiction teleportation: Bell inequality, teleportation of states and gates

V' (week 3) Information is physical---Physical systems Superconducting qubits
topological qubits
v (week 4) Grinding gates in quantum computers: Quantum gates and circuit model of quantum computation

v (week 5) Programming through quantum clouds: Quantum programming on IBM's
VQE QAOA neural network
v (week 6) Dealing with errors: topological stabilizer codes and topological phases

v (week 7) Quantum computing by braiding: Kitaev's chain, Majorana fermions, anyons and topological quantum computation
V' (week 8) More topological please: surface code and magic state distillation
v (week 9) Quantum computing by evolution and by measurement: adiabatic and
measurement-based
V' (week 10) Quantum entangles: Entanglement of quantum states
guantum Shannon theory

v (week 11) No clones in quantum: non-orthogonal state discrimination
guantum cryptography: quantum key distribution
V' (week 12) Show me your 'phase’, Mr. Unitary: quantum phase estimation, Shor’s factoring algorithm

v (week 13) The quantum 'Matrix': Quantum simulations and quantum sensing and metrology



Presentation topics & Schedule

—

Group 1: “Entanglement-Based Machine Learning on a Quantum Computer”,
PhysRevlett.114.110504 (2019)

11/30 -
Group 2: “Universal Blind Quantum Computation” (3 related references)

Group 7: “Quantum Internet”
— Ref: The quantum internet by H. J. Kimble, Nature 453, 1023-1030 (2010)

Group 4: “Unpaired Majorana fermions in quantum wires”
Ref: A Yu Kitaev “Unpaired Majorana fermions in quantum wires”, 2001 Phys.-Usp.
44 131

12/2 4 Group 5: Google’s paper on Quantum Supremacy?

Group 6: “Hybrid Quantum algorithm to classify Hermitian matrix definiteness”
Ref.: Gdmez, Andrés, and Javier Mas. "Hybrid Quantum algorithm to classify
Hermitian matrix definiteness." arXiv preprint arXiv:2009.04117 (2020).

Group 3: “Can the ‘WaveFunctionCollapse’ algorithm run on an actual quantum computer?”

1277 Ref: paper by Karth and Smith, In Proceedings of FDG’17



