
Week 1: The history of 
Q: Overview of this course 

and review of linear algebra, 
basics of quantum 

mechanics, quantum bits 
and mixed states



Early History of Q: important milestones

Feynmann 1992 & 1995: Quantum Computation and Quantum Simulations

Manin 1990: Idea of Quantum Computation
Benioff 1990: Turing Machine using Quantum Mechanics

EPR (Eistein-Podolsky-Rosen) 1935: “Can Quantum-Mechanical Description of 
Physical Reality Be Considered Complete?”
Bell 1964: Inequality to compare classical theory and quantum mechanics

Clauser-Horne-Shimony-Holt (CHSH) 1969: Another Inequality

Aspect, Granger and Roger 1982: Experimental violation of CHSH inequality

Bennett and Brassard 1984: Quantum Key Distribution using non-orthogonal states

Bennett et al. 1993: Quantum teleportation 

Ekert 1991: QKD using singlet pairs

Shor 1994: Quantum Factoring algorithm 

Grover 1996: Quantum Search algorithm 

Google 2019: Quantum Supremacy Demonstration 



One quantum bit (qubit)
Quantum bit is a two-level system, which can be described by a complex vector (it 
lives in a Hilbert space (denoted by C2), but let’s not worry about the rigorous 
mathematical definition), labeled by a symbol ψ, usually we write it as 

For convenience and as a convention, we will 
normalize the complex vector to have unit norm (total 
probability over distribution |α|2 and |β|2 is one):

Quantum gates or operators act on quantum states (their dimensions should match), so 
they behave like a matrix, e.g. the NOT or X gate:

Since it is a two-component vector, it has two basis vectors, corresponding to (by our choice):

so

which flips up to down



Getting used to bra-ket notations
We use a ‘ket’ notation for ψ, whose ‘dual row vector’ is denoted by a 
‘bra’ notation

The inner product results in a number:

The outer product results in a matrix (also called ‘density matrix’), also an operator:

The trace of this density matrix is actually the norm square

Interestingly, using the ‘cyclic’ property of the trace, we have (i.e. trace of outer 
product = inner product): 



Bloch sphere picture of a qubit

Evaluate the density matrix

we can choose to parametrize α & βGiven the normalization

If we define
Then

[Pauli matrices]



Properties of Pauli matrices

 Square to identity, anticommute & cyclic in commutator

 X, Y, Z are themselves rotation by 180 degrees (e.g. X flips up to down);
Note they are Hermitian X†=X and traceless  Tr(X)=Tr(Y)=Tr(Z)=0.

w.r.t. direction n

 They are related to spin angular momentum operators, i.e. they 
generate rotation of the qubit around respective axes



Pure states vs. mixed states

If |r|<1, then ρ does not represent the density matrix of a pure state, it is a 
mixed state! In other words, eigenvalues of ρ are both nonzero & less than one 
(rank-two in contrast to rank-one for the pure state)

 For general ρ, can directly calculate (exercise)

sometimes referred to as purity 

 We used the density matrix of a general pure state (a projector)           
and thus there is a constraint that 



How do we get mixed states?
 One can simply diagonalize ρ and obtain two eigenvalues p1 & p2 and 

eigenvectors (eigenstates) ψ1 & ψ2 then

Mixed states can come from statistical mixture of pure states 
(imagine a source randomly emit states ψi with probability pi)

 In the above example, we have the ‘spectral’ decomposition for ρ, and
ψ1 & ψ2 are orthonormal eigenstates

In general, there infinite ways of decomposing a mixed state (with more than two 
components), thus we have a statistical ensemble:



Basic quantum mechanical rules
 (I) Quantum states can have superposition

We have seen that a qubit can be a ‘superposition’ of up and down, 
with respective weights or more precisely, amplitudes

e.g. a Q coin:

But how do you put it in such a superposition (e.g. if we begin with 
up)? Ans. By using quantum gates (e.g. the Hadamard gate H)

But how are quantum gates implemented? One key approach is to let 
quantum states evolve (under the so-called Hamiltonian), and the 
evolution gives rise to the action of a quantum gate



Basic quantum mechanical rules
 (II) Evolution is Linear and Unitary

The ‘driver’ of the evolution is the Hamiltonian (unfortunately has 
same symbol H as the Hadamard). How it drives the evolution is:

Don’t worry, we won’t dwell on how to solve it (this is what do we in 
PHY251 or PHY308).  But there is a formal solution:

(Schrödinger’s equation and h-bar 
is the reduced Planck constant) 

We have a gate!

 Unitarity: 

 Linearity: 



Basic quantum mechanical rules
 (III) Strong measurement projects wavefunction; 

outcome is often probabilistic

This is one mystical part of quantum mechanics, but is easy to 
illustrate with a quantum coin. Suppose we measure in the ‘classical’ 
or ‘computational’ basis to reveal up or down on a Q coin:

 You obtain an outcome randomly. Sometimes it’s up (we will give 
a score of +1) and sometimes it’s down (we give a score of -1). What 
we know is that it occurs according to some distribution [Born rule]: 



Basic quantum mechanical rules
 Strong measurement projects wavefunction; outcome is often 

probabilistic
Now we frame the understanding into the standard QM language:

The notion of ‘observables’ is tightly related to the ‘basis’ of measurement,
in this case is the Z operator (as the observable)

The ‘eigenvalues’ are what we ‘read out’ and the ‘eigenstates’ define the 
measurement basis. The act of measurement will project the system randomly 
into one of the eigenstates of the observable. The average ‘score’ represents 
the expected value of the observable over many repeated measurements.  



Do poll 2-1



Beyond one qubit---entanglement
The true quantum-ness comes at two qubits or more, where you can have 
‘entanglement’. Superposition also occurs at classical waves, but entanglement is 
“the characteristic feature of quantum mechanics” according to Schrödinger

We will also see the advantage of Dirac’s ‘bra-ket’ notation.

We will see later that they are useful resources for many quantum tasks.
Notation wise, it is cumbersome to write N-qubit states using vectors, as it requires 2N

components

For two qubits, there are four basis states (we omit ‘tensor product’ ⊗ notation)

There are entangled states (which cannot be written as a product form)



Two-qubit gates

We now illustrate how to obtain one such entangled state from applying gates to the 
product state           ; we introduce the CNOT (Controlled-NOT or Controlled-X) gate 

Then

In terms of a quantum circuit (which we introduce now), it can be represented as:

H0

0

where we use 0 and 1 instead of up and down arrows, 
and we have introduced the diagram for the CNOT gate



Even if you never learn quantum mechanics 
before, you can still learn quantum information 
and computation provided you know matrices 
and vectors (linear algebra). 

Remember the three basic rules of QM and 
how to understand them in terms of linear 
algebra.

We are ready for the first quantum algorithm.



Balanced or constant? Deutsch algorithm
 Consider a function f mapping from one bit to one bit

 Question: Is the function “balanced” or “constant”?

 Four possibilities, classified into two categories:

balancedconstant

+ (addition modulo 2): 
1+1=0

 Classical computers: need two function evaluations to determine

 Quantum computers: need one evaluation

x f1(x) f2(x) f3(x) f4(x)

0 0 1 1 0
1 0 1 0 1

Uf
x

b

x

f(x)+b

Equivalently:



Useful observation/trick: `phase kickback’

 If we send in                              , ignoring normalization

Uf
x

b

x

f(x)+b

 Phase kickback:

 Suppose the effect of the circuit is to compute f(x) and add it
to second register: 

By linearity & 
superposition



Deutsch algorithm: one function call

 Consider sending |0>+|1> in first register
(and |0>-|1> in the second):

Uf
+

-

+/-
-

 Quantum computers: need one evaluation only
and measure in +/- basis

Measure: + constant
- balance

 First hint that quantum computer can be powerful!

Quantum
explores
Parallel
universes?

Uf
|x>

|0> - |1>
(-1)f(x) |x>

|0> - |1>

constant

balanced



Comment on input and readout

Uf
+

-

+/-
-

 Quantum computers: need one evaluation only
and measure in +/- basis

Measure: + constant
- balanced

 Usually, qubits are initialized to 0 and measurement is in 0/1 basis

 Use Hadamard gate to transform between 0/1 and +/-

 Use X gate to flip 0 to 1 

Uf
0

0 X H

H H 0/1 Measure: 0 constant
1 balanced



Do poll 2-2



Exercise: Deutsch-Josza Algorithm
Here we consider unknown function f that maps from n-bits to 1-bit. We 
are promised that f is either constant (f= the same value) or balanced (the 
latter means exactly half of inputs f(x)=1, and other half f(x)=0). This 
generalizes Deutsch’s problem from one bit to n bits.

Uf
x

b

x

f(x)+b

n n

(1) Show the quantum state after the circuit.
(2) Show that if f is constant, the first register is always +…+ 
(3) Show that if f is balanced, the first register is always orthogonal to +…+ 



Quantum Parallelism

Uf
x

b

x

f(x) + b

 Consider the unitary evolution that evaluates f(x)

 Use superposition inputs:

 Parallelism  superposition of (argument, fcn value) 
 potential power of quantum computers!

x=00..0, 00..1,
…, 11..1
binary rep. of 0,1,2,..



Measurement causes complication

 QC useful only for determining symmetry properties of f

 To obtain answer: Need to measure! 

Uf
x

0

x

f(x)

 e.g. measure first register: k second register: f(k)
only one answer at a time  (and k is random)

 But can measure in different basis or/and second register

measure

e.g. measure second register, obtain f0 , 
 first register in superposition of x such that f(x) = f0



More quantum algorithms

 Quantum Algorithm Zoo:

 Notable ones:

http://math.nist.gov/quantum/zoo/

 Shor’s factoring [~ exponential speedup]

 Grover’s searching [~ quadratic speedup]

 Quantum Algorithm for Linear System: 
[~ can be exponential speedup]
aka HHL (Harrow-Hassidim-Lloyd) algorithm

Shor Grover



We will discuss: Grover’s, Shor’s 
and HHL algorithms later. We 
discuss two other simpler 
problems and algorithms next.



Berstein-Vazirani algorithm

H0

-

presence of a=1 can be 
detected in +/- basis

 Simplest case: one qubit and the linear function is f(x)= a.x

For a=1, f(x)=x, and thus it is a CNOT

Uf

UfH

H0

-



n-qubit Berstein-Vazirani algorithm

H0

-

 Presence of ai=1 can be detected in +/- basis

 For n qubits: the linear function is f(x) = a.x, where a & x are both 
n-component binary vectors

Uf

Uf

H⊗ n

⊗ n



Simon’s algorithm
 Consider a function  f:{0,1}n → finite set X. 

We are promised that there is some “hidden” string s=s1s2..sn
such that f(x)=f(y) if and only if x=y or x=y⊕s (bitwise XOR)
 Find string s

 Observation: n-qubit Hadamard 

 If we have a superposition:

 no amplitude for s∙z=1 (mod 2)
i.e. only get z orthogonal to s



Simon’s algorithm (cont’d)

 More generally

H0

0
Uf

⊗n
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