Do poll 8/31-(1)

Today 8/31:

(1) Some review: Bloch sphere, mixed states, phase
kickback, Deutsch algorithm
(2) Jupyter Notebook Demo

https://nbviewer.jupyter.org/url/insti.physics.sunysb.edu/~twei/Courses/Fall2020/PHY682/Dem
o-QubitSphere.ipynb

(3) More algorithms

(4) Week 2: From foundation to science-fiction
teleportation




Review: Bloch sphere of a qubit
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U Example: what is the state on the sphere along negative x axis (|->)? positive y axis (|i>)?
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Review: mixed state  (rixbe of pue sht
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Review: observable and measurement

» Strong measurement projects wavefunction; outcome is often probabilistic
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‘Observables’” €=>‘basis’ of measurement (and possible measured values)
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Review: CNOT (controlled-NOT) gate
and the balanced function
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Review: phase kickback’

O Suppose the effect of the circuit is to compute f(x) and add it
to second register:
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Deutsch algorithm: one function call
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(and |0>-|1> in the second):
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> Quantum computers: need one evaluation only
and measure in +/-basis |4} = (|o) + |1))/V2

+ =» Measure: + constant
- balance

> First hint that quantum computer can be powerful!



Exercise: Deutsch-Josza Algorithm

Here we consider unknown function f that maps from n-bits to 1-bit. We
are_promised that f is either constant (f= the same value) or balanced (the

latter means exactly half of inputs f(x)=1, and other half f(x)=0). This

generalizes Deutsch’s problem from one bit to n bits.
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(1) Show the quantum state after the circuit. H R ISIS'Z Sa) = A IS, %
(2) Show that if f is constant, the first register is always +...+ ﬁ: 22 ) 123, -2, >
(3) Show that if f is balanced, the first register is always orthogonal to +...+



Quantum Parallelism

0 Consider the unitary evolution that evaluates f(x)

x=00..0, 00..1,..., 11..1
X X binary rep. of 0,1,2,..
b f(x) + b
) ® [b) — |z) @ |f(x) + b)
QO Use superposition inputs:
(10) +|1) +12) +...) ®|0)

= (0@ [fO)+ DS [fA) +2)[f2) +...)

a Parallelism = superposition of (argument, fcn value)
— potential power of quantum computers!



Measurement causes complication

X X
measure
0 :-: f(x)
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O To obtain answer: Need to measure!

> e.g. measure first register: k = second register: f(k)
only one answer at a time ® (and k is random)

> But can measure in different basis or/and second register

e.g. measure second register, obtain f;
=> first register in superposition of x such that f(x) = f,

=» QC useful only for determining symmetry properties of f



More quantum algorithms

ml Quantum Algorithm Zoo htep://math.nist.gov/quantum/zoo/

This is a comprehensive catalog of quantum algorithms. If you notice any errors or omissions, please
email me at stephen.jordan@nist.gov. Your help is appreciated and will be acknowledged.

Algebraic and Number Theoretic Algorithms
Algorithm: Factoring
Speedup: Superpolynomial

Description: Given an n-bit integer, find the prime factorization. The quantum algorithm of Peter Shor
solves this in O(ng) time [82,125]. The fastest known classical algorithm for integer factorization is

0 Notable ones:

> Shor’s factoring [~ exponential speedup]

> Grover’s searching [~ quadratic speedup] Shor

Grover

> Quantum Algorithm for Linear System: AT = b
[~ can be exponential speedup]
aka HHL (Harrow-Hassidim-Lloyd) algorithm



We will first see a Jupyter Notebook demo

(Just to give you an idea of the programming as an alternative way
to learn quantum computing. You don’t need to understand all the
details; as long as you can modify and have fun with the codes.)

https://nbviewer.jupyter.org/url/insti.physics.sunysb.edu/~twei/
Courses/Fall2020/PHY682/Demo-QubitSphere.ipynb

We will then look at two other simple algorithms.



Berstein-Vazirani algorithm_
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n-qubit Berstein-Vazirani algorithm

O For n qubits: the linear function is f(x) = a.x, where a & x are both n- component binary vectors
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Simon’s algorithm™

O Consider a function f:{0,1}" = finite set X. Xz 9v00
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Simon’s algorithm (cont’d)*
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> More generally %U@ +|x®s))

Algorithm for Simon’s Problem

1. Set a counter 7 = 1.

Up: [x)@[b) = |x) @[f(x) ®b)

2. Prepar

1
Vo ZxE{O,l}” x)|0
3. Apply U7, To produce the state
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4. (optional®) Measure the second register. \”; > 0 -
@n . o ©
5. Apply u the first register. gz%g*\x >, Y |
6. Measure the first register and rec ue’'w;. \/ c L S _)& /
7. If the dimension of the span of {w;} equals n — 1, then ) - W l\lﬁ
S

otherwise increment i and 0 . 4
8. Solve the linear equation Ws? = 07 Jand let s be the unique non-zero
solution.

9. Output s.






Week 2: From foundation to
science-fiction teleportation:
Bell inequality, teleportation
of states and gates,
entanglement swapping,
remote state preparation,
superdense coding, and
superdense teleportation




Quantum entangled states have correlations
stronger than classical states
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A simple equality and an inequality
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We have seen measurement of observables X, Y, Z or any one-qubit operator -
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In the context of measuring two choices of observables at two locations A: a & a’,
B: b & b’, we have the so-called Clauser-Horne-Shimony-Holt (CHSH) inequality:

—2 < E(a,b) + E(a,b) + E(d',b) —E(d’,0) <2



CHSH-Bell inequality (I5,,-)

CHSH generalized John Bell’s idea (his original Bell inequality). The assumption is
that a source emits e.g. a pair of photons

03 - B
(aora’) (borb’)

The choice of measurement axis (a or a’) at A or (b or b’) at B cannot affect the
outcome of the other side. Nevertheless, outcomes can be correlated and described
by some unknown-to-us distribution (depending on some hidden variable A). This is
also called the “Local hidden variable” theory

Ey(a,b) = / dX p(N)A(a, N B(b, )

where A(a,A)= %1 and B(b,A)= +1 are predetermined results for the measurement
settings a for A and b for B depending on the local hidden variable A; p(A) is its
distribution. Locality requires that the outcome A(a,A) does not depend on setting b
and that of B(b, A) does not depend on setting a.



Violation of CHSH-Bell inequality

axis (a or a’) (b or b’)

By averaging over the local hidden variable, we still have

|Er(a,b) + Ep(a,b') + Ep(a’,b) — Er(d’,b')] < 2. (1)

Quantum mechanics can violate this inequality. To be specific, the operators to
be measured are the Pauli operators . Let Eg(a,b) = (¢|0-d® d - b|)) denote
expectation of repeated measurement with along axes of unit vectors a and 5,
respectively. Define

— —

OB=53-d05-b+6-d05-V+6-d Q5 -b—0-ad®7-b.

For a singlet state [1/) = (| T4} —| 41))/V2, max, o pp |(¥|2B|w)| = 2+/2, which
can be achieved for the settings 6, = 7/2, 6/, = 0, 6, = w/4, and 6, = 37 /4,
where the angles are measured from the z-axis in the z — z plane.



Violation of Bell inequality

O Measurement along axes 1 and 2 of A & B are used to

check violation of Bell inequality note: (|G- @@ & - b)) = —a-b

08 =7/2

axis (a or a’)

(b or b’)

» The bound 2V2 is the Tsirelson bound. Deriving maximal violation and measurement
settings for an arbitrary state is a math problem; see Horodecki et al.

Phys. Lett. A 200, 340 (1995) and Phys. Lett. A 210, 223 (1996).



