
Today 8/31:

(1) Some review: Bloch sphere, mixed states, phase 
kickback, Deutsch algorithm

(2) Jupyter Notebook Demo
https://nbviewer.jupyter.org/url/insti.physics.sunysb.edu/~twei/Courses/Fall2020/PHY682/Dem
o-QubitSphere.ipynb

(3) More algorithms
(4) Week 2: From foundation to science-fiction 

teleportation

Do poll 8/31-(1)



Review: Bloch sphere of a qubit
is the same as

x

y

 Example: what is the state on the sphere along negative x axis (|->)? positive y axis (|i>)?

 Example: How do we use quantum gates to obtain these states starting from |0> ?



Review: mixed state
is the same as

x

y

 Example: how do we represent equal weight mixture of |-> and |i> ?

 Example: a mixed state can arise from entanglement with other system 



Review: observable and measurement
 Strong measurement projects wavefunction; outcome is often probabilistic

‘Observables’ ‘basis’ of measurement (and possible measured values)

 Example: When the observable is X? What is the probability to measure +?



Review: CNOT (controlled-NOT) gate 
and the balanced function

H0

0
where we use 0 and 1 instead of up and down arrows, 
and we have introduced the diagram for the CNOT gate



Review: `phase kickback’

 If we send in                              , ignoring normalization

Uf
x

b

x

f(x)+b

 Phase kickback:

 Suppose the effect of the circuit is to compute f(x) and add it
to second register: 

By linearity & 
superposition



Deutsch algorithm: one function call

 Consider sending |0>+|1> in first register
(and |0>-|1> in the second):

Uf
+

-

+/-
-

 Quantum computers: need one evaluation only
and measure in +/- basis

Measure: + constant
- balance

 First hint that quantum computer can be powerful!

Quantum
explores
Parallel
universes?

Uf
|x>

|0> - |1>

(-1)f(x) |x>

|0> - |1>

constant

balanced



Exercise: Deutsch-Josza Algorithm
Here we consider unknown function f that maps from n-bits to 1-bit. We 
are promised that f is either constant (f= the same value) or balanced (the 
latter means exactly half of inputs f(x)=1, and other half f(x)=0). This 
generalizes Deutsch’s problem from one bit to n bits.

Uf
x

b

x

f(x)+b

n n

(1) Show the quantum state after the circuit.
(2) Show that if f is constant, the first register is always +…+ 
(3) Show that if f is balanced, the first register is always orthogonal to +…+ 



Quantum Parallelism

Uf
x

b

x

f(x) + b

 Consider the unitary evolution that evaluates f(x)

 Use superposition inputs:

 Parallelism  superposition of (argument, fcn value) 
 potential power of quantum computers!

x=00..0, 00..1,…, 11..1
binary rep. of 0,1,2,..



Measurement causes complication

 QC useful only for determining symmetry properties of f

 To obtain answer: Need to measure! 

Uf
x

0

x

f(x)

 e.g. measure first register: k second register: f(k)
only one answer at a time  (and k is random)

 But can measure in different basis or/and second register

measure

e.g. measure second register, obtain f0 , 
 first register in superposition of x such that f(x) = f0



More quantum algorithms

 Quantum Algorithm Zoo:

 Notable ones:

http://math.nist.gov/quantum/zoo/

 Shor’s factoring [~ exponential speedup]

 Grover’s searching [~ quadratic speedup]

 Quantum Algorithm for Linear System: 
[~ can be exponential speedup]
aka HHL (Harrow-Hassidim-Lloyd) algorithm

Shor Grover



We will then look at two other simple algorithms.

We will first see a Jupyter Notebook demo
(Just to give you an idea of the programming as an alternative way 
to learn quantum computing. You don’t need to understand all the 
details; as long as you can modify and have fun with the codes.)

https://nbviewer.jupyter.org/url/insti.physics.sunysb.edu/~twei/
Courses/Fall2020/PHY682/Demo-QubitSphere.ipynb



Berstein-Vazirani algorithm

H0

-

presence of a=1 can be 
detected in +/- basis

 Simplest case: one qubit and the linear function is f(x)= a.x

For a=1, f(x)=x, and thus it is a CNOT

Uf

UfH

H0

-



n-qubit Berstein-Vazirani algorithm

H0

-

 Presence of ai=1 can be detected in +/- basis

 For n qubits: the linear function is f(x) = a.x, where a & x are both n-component binary vectors

Uf

Uf

H⊗ n

⊗ n



Simon’s algorithm*
 Consider a function  f:{0,1}n → finite set X. 

We are promised that there is some “hidden” string s=s1s2..sn
such that f(x)=f(y) if and only if x=y or x=y⊕s (bitwise XOR)
 Find string s

 Observation: n-qubit Hadamard 

 If we have a superposition:

 no amplitude for s∙z=1 (mod 2)
i.e. only get z orthogonal to s



Simon’s algorithm (cont’d)*

 More generally

H0

0
Uf

⊗n





Week 2: From foundation to 
science-fiction teleportation: 
Bell inequality, teleportation 
of states and gates, 
entanglement swapping, 
remote state preparation, 
superdense coding, and 
superdense teleportation



Quantum entangled states have correlations 
stronger than classical states



A simple equality and an inequality
We have seen measurement of observables X, Y, Z or any one-qubit operator 

gives an eigenvalue randomly, which is ±1 in this case.

 It is interesting that for four variables a, a’, b, b’ which can be ±1, we have:

 Thus, for any probability distribution p(a,a’,b,b’) we have [using E to denote expectation]

In the context of measuring two choices of observables at two locations A: a & a’, 
B: b & b’, we have the so-called Clauser-Horne-Shimony-Holt (CHSH) inequality:



CHSH-Bell inequality (I2222)
CHSH generalized John Bell’s idea (his original Bell inequality). The assumption is 
that a source emits e.g. a pair of photons

SourceA B

The choice of measurement axis (a or a’) at A or (b or b’) at B cannot affect the 
outcome of the other side. Nevertheless, outcomes can be correlated and described 
by some unknown-to-us distribution (depending on some hidden variable λ). This is 
also called the “Local hidden variable” theory

where A(a,λ)= ±1 and B(b,λ)= ±1 are predetermined results for the measurement 
settings a for A and b for B depending on the local hidden variable λ; ρ(λ) is its 
distribution. Locality requires that the outcome A(a,λ) does not depend on setting b 
and that of B(b, λ) does not depend on setting a. 

(a or a’) (b or b’) 



Violation of CHSH-Bell inequality
SourceA B

By averaging over the local hidden variable, we still have

axis (a or a’) (b or b’) 



Violation of Bell inequality
 Measurement along axes 1 and 2 of A & B are used to

check violation of Bell inequality

z

x

z

x

SourceA B

 The bound 2√2 is the Tsirelson bound. Deriving maximal violation and measurement 
settings for an arbitrary state is a math problem; see Horodecki et al.  

axis (a or a’) (b or b’) 

Phys. Lett. A 200, 340 (1995) and Phys. Lett. A 210, 223 (1996).


