Today 8/31:

(1) Some review: Bloch sphere, mixed states, phase kickback, Deutsch algorithm
(2) Jupyter Notebook Demo
https://nbviewer.jupyter.org/url/insti.physics.sunysb.edu/~twei/Courses/Fall2020/PHY682/Dem o-QubitSphere.ipynb
(3) More algorithms
(4) Week 2: From foundation to science-fiction teleportation

Review: Bloch sphere of a quit

Example: what is the state on the sphere along negative x axis (|->)? positive y axis (|i>)?

Review: mixed state (rixthe of pere sta)
$|\psi\rangle=\cos (\theta / 2)|\uparrow\rangle+e^{i \phi} \sin (\theta / 2)|\downarrow\rangle \quad$ is the same as

$$
\begin{aligned}
& \rho_{\psi}=|\psi\rangle\langle\psi|=\frac{1}{2}\left(I+r_{x} X+r_{y} Y+r_{z} Z\right) \\
& \quad r_{x}=\sin \theta \cos \phi, r_{y}=\sin \theta \sin \phi, r_{z}=\cos \theta \\
& \quad X \equiv\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), Y \equiv\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), Z \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

$|1\rangle=|\downarrow\rangle$

Example: how do we represent equal weight mixture of $\mid->$ and $|i\rangle$?

$|\psi\rangle=(||-| 0\rangle+|i\rangle|1\rangle\rangle$ when I "ignore" (trace over)
 the system.

Review: observable and measurement

- Strong measurement projects wavefunction; outcome is often probabilistic

$$
P_{\uparrow}=|\alpha|^{2}=|\langle\uparrow \mid \psi\rangle|^{2} \quad \sigma_{z}=+1
$$

$$
P_{\downarrow}=|\beta|^{2}=|\langle\downarrow \mid \psi\rangle|^{2} \quad \sigma_{z}=-1
$$

'Observables' \leftrightarrows 'basis' of measurement (and possible measured values)

$$
[Z=(+1)|\uparrow\rangle\langle\uparrow|+(-1)|\downarrow\rangle\langle\downarrow|]
$$

Expectation value: $\langle\psi| Z|\psi\rangle=P_{\uparrow} \cdot(+1)+P_{\downarrow} \cdot(-1)$
Example: When the observable is X? What is the probability to measure + ?

$$
\begin{array}{r}
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=(+1)|+X+|+(-1)|-X \sim| \\
P_{p}=|\langle+\mid \Psi\rangle|^{2} \quad P_{-}=|\langle-\mid \psi\rangle|^{2}
\end{array}
$$

$$
\begin{gathered}
|\psi\rangle=\alpha|\uparrow\rangle|0\rangle\rangle_{\text {inv }} \\
\text { sys,env } \\
+\beta|\downarrow\rangle \mid p_{\text {en v }} \\
\text { if measure the system }
\end{gathered}
$$

Review: CNOT (controlled-NOT) gate and the balanced function

$$
\begin{aligned}
& |\uparrow \uparrow\rangle \stackrel{H_{H}}{\Rightarrow} \frac{1}{\sqrt{2}}(\underbrace{|\uparrow\rangle+|\uparrow \nu\rangle) \otimes|\uparrow\rangle \xlongequal{\Longrightarrow} \xlongequal{\text { CNOT }_{1}} \frac{1}{\sqrt{2}}(|\uparrow \uparrow\rangle+|\psi \downarrow\rangle)}
\end{aligned}
$$

Review: `phase kickback

- Suppose the effect of the circuit is to compute $f(x)$ and add it

\square If we send in $|x\rangle(|0\rangle-|1|)$, ignoring normalization $\left\{\begin{array}{l}1 \oplus \mid=0 \\ 0 \oplus 0=0\end{array}\right.$

Deutsch algorithm: one function call

> Quantum computers: need one evaluation only and measure in $+/$ - basis $\quad| \pm\rangle \equiv(|0\rangle+|1\rangle) / \sqrt{2}$

> First hint that quantum computer can be powerful!

Exercise: Deutsch-Josza Algorithm

Here we consider unknown function f that maps from n-bits to 1-bit. We are promised that f is either constant ($f=$ the same value) or balanced (the latter means exactly half of inputs $f(x)=1$, and other half $f(x)=0)$. This generalizes Deutsch's problem from one bit to n bits.
n lones
$\times\{\equiv$

$$
|x\rangle \otimes|b\rangle \rightarrow|x\rangle \otimes|f(x)+b\rangle
$$

$$
(|x\rangle)=\left[\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)\right]^{\otimes n}=\underbrace{H \otimes H \otimes \ldots H}_{n} \underbrace{|0\rangle \otimes|0\rangle \otimes \ldots|0\rangle}_{n}
$$

$$
|b\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)
$$

(1) Show the quantum state after the circuit.

(2) Show that if f is constant, the first register is always $+\ldots+$
(3) Show that if f is balanced, the first register is always orthogonal to $+\ldots+$

Quantum Parallelism

- Consider the unitary evolution that evaluates $f(x)$

$\mathrm{x}=00 . .0,00 . .1, \ldots, 11 . .1$ binary rep. of $0,1,2, .$.

$$
|x\rangle \otimes|b\rangle \rightarrow|x\rangle \otimes|f(x)+b\rangle
$$

- Use superposition inputs:

$$
\begin{aligned}
& (|0\rangle+|1\rangle+|2\rangle+\ldots) \otimes|0\rangle \\
& \quad \rightarrow(|0\rangle \otimes|f(0)\rangle+|1\rangle \otimes|f(1)\rangle+|2\rangle \otimes|f(2)\rangle+\ldots)
\end{aligned}
$$

- Parallelism \rightarrow superposition of (argument, fcn value) \rightarrow potential power of quantum computers!

Measurement causes complication

- To obtain answer: Need to measure!
> e.g. measure first register: $k \rightarrow$ second register: $f(\mathrm{k})$ only one answer at a time $:($ and k is random)
> But can measure in different basis or/and second register
e.g. measure second register, obtain f_{0},
\rightarrow first register in superposition of x such that $f(x)=f_{0}$
\rightarrow QC useful only for determining symmetry properties of f

More quantum algorithms

Quantum Algorithm Zoohttp://math.nist.gov/quantum/zoo/

This is a comprehensive catalog of quantum algorithms. If you notice any errors or omissions, please email me at stephen.jordan@nist.gov. Your help is appreciated and will be acknowledged.

Algebraic and Number Theoretic Algorithms
Algorithm: Factoring
Speedup: Superpolynomial
Description: Given an n-bit integer, find the prime factorization. The quantum algorithm of Peter Shor solves this in $\widetilde{O}\left(n^{3}\right)$ time [82,125]. The fastest known classical algorithm for integer factorization is

a Notable ones:

> Shor's factoring [~ exponential speedup]
> Grover's searching [~ quadratic speedup]

Shor

Grover
> Quantum Algorithm for Linear System: $A \vec{x}=b$ [\sim can be exponential speedup] aka HHL (Harrow-Hassidim-Lloyd) algorithm

We will first see a Jupyter Notebook demo
 (Just to give you an idea of the programming as an alternative way to learn quantum computing. You don't need to understand all the details; as long as you can modify and have fun with the codes.)
 ```https://nbviewer.jupyter.org/url/insti.physics.sunysb.edu/~twei/ \\ Courses/Fall2020/PHY682/Demo-QubitSphere.ipynb```

We will then look at two other simple algorithms.

Berstein-Vazirani algorithm

\square Simplest case: one quit and the linear function is $\mathrm{f}(\mathrm{x})=\mathrm{a} \cdot \mathrm{x} \quad f(x)=a x$

$$
\begin{array}{ll}
|x\rangle \otimes|b\rangle \rightarrow|x\rangle \otimes|f(x)+b\rangle & a \operatorname{lo} \text { or } 1 \\
& a=0 \quad f(x)=0 \\
t(x)=x_{0} & a=1 \quad f(x)=x
\end{array}
$$

first register $:|0\rangle \xrightarrow{\mathrm{H}}|0\rangle+|1\rangle \xrightarrow{\mathrm{U}_{\mathrm{f}}}(-1)^{f(0)}|0\rangle+\underline{(-1)^{f(1)}}|1\rangle$

n-qubit Berstein-Vazirani algorithm

\square For n qubits: the linear function is $\mathbf{f}(\mathbf{x})=\mathbf{a} . \mathbf{x}$, where $\mathbf{a} \& \mathbf{x}$ are both n -component binary vectors

$-\quad \mathrm{U}_{\mathrm{f}} \quad|0\rangle-|1\rangle \quad|x\rangle \otimes|b\rangle \rightarrow|x\rangle \otimes|f(x)+b\rangle$
first register : $\left|0^{\otimes n}\right\rangle^{\mathrm{H}^{\otimes n}} \rightarrow \sum_{x_{i}^{\prime} s}\left|x_{1}\right\rangle \otimes\left|x_{2}\right\rangle \otimes \cdots\left|x_{n}\right\rangle$
$\stackrel{\mathrm{U}_{\mathrm{f}}}{\rightarrow} \sum_{x_{i}^{\prime} s}(-1)^{\sum_{i} a_{i} x_{i}}\left|x_{1}\right\rangle \otimes\left|x_{2}\right\rangle \otimes \cdots\left|x_{n}\right\rangle=\otimes_{i}\left(|0\rangle+(-1)^{a_{i}}|1\rangle\right)_{i}$
\checkmark Presence of $\mathrm{a}_{\mathrm{i}}=1$ can be detected in $+/-$ basis

Simon's algorithm*

\square Consider a function $f:\{0,1\}^{n} \rightarrow$ finite set X.
We are promised that there is some "hidden" string $s=s_{1} s_{2} . . s_{n}$ such that $f(x)=f(\boldsymbol{y})$ if and only if $\boldsymbol{x}=\boldsymbol{y}$ or $\boldsymbol{x}=\boldsymbol{y} \bigoplus s$ (bitwise XOR)

$$
\begin{aligned}
& x=000 \\
& s=010 \\
& y=010
\end{aligned}
$$

\rightarrow Find string s

\square Observation: n-qubit Hadamard

$$
\left(\begin{array}{l}
\left|\mathbf{0} \equiv 0^{\otimes n}\right\rangle \xrightarrow{H^{\otimes n}} \frac{1}{2^{n / 2}} \sum_{z_{i}^{\prime} s}\left|z_{1}\right\rangle \otimes\left|z_{2}\right\rangle \otimes \cdots\left|z_{n}\right\rangle=\left(\frac{1}{\left.2^{n / 2} \sum_{\mathbf{z}}|\mathbf{z}\rangle\right)}\right. \\
\left|\mathbf{s} \equiv s_{1} \ldots s_{n}\right\rangle \xrightarrow{H^{\otimes n}} \frac{1}{2^{n / 2}} \sum_{\mathbf{z}} \underbrace{(-1)^{\mathbf{s} \cdot / 2}}|\mathbf{z}\rangle
\end{array} \quad \text { s.z}=\sum_{i} s_{i} z_{i} \quad\right. \text { (b.nany addition) }
$$

> If we have a superposition:

$$
\begin{aligned}
&\langle\left.\frac{1}{\sqrt{2}}(|\mathbf{0}\rangle+|\mathbf{s}\rangle) \xrightarrow{H^{\otimes n}} \frac{1}{2^{(n+1) / 2}} \sum_{\mathbf{z})}^{(\underbrace{1+(-1) \cdot \mathbf{z}})} \right\rvert\, \mathbf{z}\rangle) \rightarrow \frac{1}{2^{(n-1) / 2}} \sum_{\mathbf{z} \in\{\mathbf{s}\}^{\perp}}|\mathbf{z}\rangle \\
& \text { ie. only get } \boldsymbol{z} \text { orthogonal to } s \\
& 5 \cdot \boldsymbol{z}=0
\end{aligned}
$$

Simon's algorithm (cont'd)*

$>$ More generally $\frac{1}{\sqrt{2}} \underbrace{\left.(|\mathbf{x}\rangle+|\mathbf{x} \oplus \mathbf{s}\rangle) \xrightarrow{H^{\otimes n}} \frac{1}{2^{(n-1) / 2}} \sum_{\left(\underline{\mathbf{s}\}^{\perp}}\right.}(-1)^{\mathbf{x} \cdot \mathbf{z}}|\mathbf{z}\rangle\right) .}$

Algorithm for Simon's Problem

1. Set a counter $i=1$.
2. Prepare $\frac{1}{\sqrt{2^{n}}} \sum_{\mathbf{x} \in\{0,1\}^{n}}|\mathbf{x}\rangle|\mathbf{0}\rangle$.

$$
U_{f}:|\mathbf{x}\rangle \otimes|\mathbf{b}\rangle \rightarrow|\mathbf{x}\rangle \otimes|f(\mathbf{x}) \oplus \mathbf{b}\rangle
$$

3. Apply U_{f}, to produce the state

$$
\sum_{\mathbf{x} \in\{0,1\}^{n}}|\mathbf{x}\rangle|f(\mathbf{x})\rangle .
$$

4. (optional ${ }^{2}$) Measure the second register.

5. Measure the first register and record the vatue \mathbf{w}_{i}.
6. If the dimension of the span of $\left\{\mathbf{w}_{i}\right\}$ equals $n-1$, then go to Step 8 , otherwise increment i and go to Step 2.
7. Solve the linear equation $\left(\mathbf{W s}^{T}=\mathbf{0}^{T}\right.$ and let \mathbf{s} be the unique non-zero
 solution.
8. Output s.

Week 2: From foundation to science-fiction teleportation: Bell inequality, teleportation of states and gates, entanglement swapping, remote state preparation, superdense coding, and superdense teleportation

Quantum entangled states have correlations stronger than classical states
are useful as well

A simple equality and an inequality

We have seen measurement of observables X, Y, Z or any one-qubit operator

$$
\vec{r} \cdot \vec{\sigma}, \quad \text { where } \vec{\sigma} \equiv(X, Y, Z), \quad|\vec{r}|=1
$$

gives an eigenvalue randomly, which is ± 1 in this case.

$>$ It is interesting that for four variables a, a', b, b' which can be ± 1, we have:
a

$$
\left.a b+a b^{\prime}+a^{\prime} b-a^{\prime} b^{\prime}=a b b+b^{\prime}\right)+a^{\prime}\left(b-b^{\prime}\right)= \pm 2
$$

a' ma

$$
-2 \leq \mathbf{E}\left(a b+a b^{\prime}+a^{\prime} b-a^{\prime} b^{\prime}\right) \equiv \sum_{a, a^{\prime}, b, b} p\left(a, a^{\prime}, b, b^{\prime}\right)\left(a b+a b^{\prime}+a^{\prime} b-a^{\prime} b^{\prime}\right)^{b-b^{\prime}} \leq 2=2 a-2
$$

In the context of measuring two choices of observables at two locations A: a \& a',
B: b \& b', we have the so-called Clauser-Horne-Shimony-Holt (CHSH) inequality:

$$
-2 \leq \mathbf{E}(a, b)+\mathbf{E}\left(a, b^{\prime}\right)+\mathbf{E}\left(a^{\prime}, b\right)-\mathbf{E}\left(a^{\prime}, b^{\prime}\right) \leq 2
$$

CHSH-Bell inequality (I_{2222})

CHSH generalized John Bell's idea (his original Bell inequality). The assumption is that a source emits e.g. a pair of photons

The choice of measurement axis (a or a^{\prime}) at A or (b or b^{\prime}) at B cannot affect the outcome of the other side. Nevertheless, outcomes can be correlated and described by some unknown-to-us distribution (depending on some hidden variable λ). This is also called the "Local hidden variable" theory

$$
E_{L}(a, b) \equiv \int d \lambda \rho(\lambda) A(a, \lambda) B(b, \lambda)
$$

where $A(a, \lambda)= \pm 1$ and $B(b, \lambda)= \pm 1$ are predetermined results for the measurement settings a for A and b for B depending on the local hidden variable $\lambda ; \rho(\lambda)$ is its distribution. Locality requires that the outcome $A(a, \lambda)$ does not depend on setting b and that of $B(b, \lambda)$ does not depend on setting a.

Violation of CHSH-Bell inequality

By averaging over the local hidden variable, we still have

$$
\begin{equation*}
\left|E_{L}(a, b)+E_{L}\left(a, b^{\prime}\right)+E_{L}\left(a^{\prime}, b\right)-E_{L}\left(a^{\prime}, b^{\prime}\right)\right| \leq 2 \tag{1}
\end{equation*}
$$

Quantum mechanics can violate this inequality. To be specific, the operators to be measured are the Pauli operators $\vec{\sigma}$. Let $E_{Q}(a, b) \equiv\langle\psi| \vec{\sigma} \cdot \vec{a} \otimes \vec{\sigma} \cdot \vec{b}|\psi\rangle$ denote expectation of repeated measurement with along axes of unit vectors \vec{a} and \vec{b}, respectively. Define

$$
2 B \equiv \vec{\sigma} \cdot \vec{a} \otimes \vec{\sigma} \cdot \vec{b}+\vec{\sigma} \cdot \vec{a} \otimes \vec{\sigma} \cdot \overrightarrow{b^{\prime}}+\vec{\sigma} \cdot \overrightarrow{a^{\prime}} \otimes \vec{\sigma} \cdot \vec{b}-\vec{\sigma} \cdot \overrightarrow{a^{\prime}} \otimes \vec{\sigma} \cdot \overrightarrow{b^{\prime}}
$$

For a singlet state $\left.|\psi\rangle=(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle) / \sqrt{2}, \max _{a, a^{\prime}, b, b^{\prime}}|\langle\psi| 2 B| \psi\right\rangle \mid=2 \sqrt{2}$, which can be achieved for the settings $\theta_{a}=\pi / 2, \theta_{a}^{\prime}=0, \theta_{b}=\pi / 4$, and $\theta_{b}^{\prime}=3 \pi / 4$, where the angles are measured from the z-axis in the $z-x$ plane.

Violation of Bell inequality

\square Measurement along axes 1 and 2 of A \& B are used to check violation of Bell inequality

$$
\text { note: }\langle\psi| \vec{\sigma} \cdot \vec{a} \otimes \vec{\sigma} \cdot \vec{b}|\psi\rangle=-\vec{a} \cdot \vec{b}
$$

$>$ The bound $2 \sqrt{ } 2$ is the Tsirelson bound. Deriving maximal violation and measurement settings for an arbitrary state is a math problem; see Horodecki et al.

Phys. Lett. A 200, 340 (1995) and Phys. Lett. A 210, 223 (1996).

