Home    Teaching  PHY682  Announcement/Update  AcademicCalendar

Suggested topics and papers for presentation

back to PHY682 main page

Less recent:
1. Irreversibility and Heat Generation in the Computing Process
2. High-Efficiency Quantum Interrogation Measurements via the Quantum Zeno Effect
3. Quantum mechanical computer by Richard Feynman
4. Experimental Quantum Computations on a Topologically Encoded Qubit (an experiment on implementing an error correction code)
5. Quantum Metropolis sampling & A quantum-quantum Metropolis sampling
6. Universal quantum computation with ideal Clifford gates and noisy ancillas & Magic state distillation with low overhead
7. Linear optical quantum computing with photonic qubits
8. Universal blind quantum computation & Demonstration of Blind Quantum Computing
9. An area law for one-dimensional quantum systems & Improved one-dimensional area law for frustration-free systems
10. Asymptotically Optimal Approximation of Single Qubit Unitaries by Clifford and T Circuits Using a Constant Number of Ancillary Qubits & Fast and efficient exact synthesis of single qubit unitaries generated by Clifford and T gates
11. A Polynomial Quantum Algorithm for Approximating the Jones Polynomial
12. Approximating Turaev-Viro 3-manifold invariants is universal for quantum computation

Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection, Michał Parniak et al,  Nature Communications (2017). DOI: 10.1038/s41467-017-02366-7

Photonic schemes and implementations:
A scheme for efficient quantum computation with linear optics
E. Knill, R. Laflamme & G. J. Milburn
Nature volume 409, pages46–52(2001)
Realization of a Photonic Controlled-NOT Gate Sufficient for Quantum Computation

Sara Gasparoni, Jian-Wei Pan, Philip Walther, Terry Rudolph, and Anton Zeilinger
Phys. Rev. Lett. 93, 020504 – Published 9 July 2004
Demonstration of an all-optical quantum controlled-NOT gate
J. L. O'Brien, G. J. Pryde, A. G. White, T. C. Ralph & D. Branning
Nature volume 426, pages264–267(2003)
3/4-Efficient Bell Measurement with Passive Linear Optics and Unentangled Ancillae
Fabian Ewert and Peter van Loock
Phys. Rev. Lett. 113, 140403 – Published 30 September 2014
Universal linear optics
Jacques Carolan, Christopher Harrold, Chris Sparrow, Enrique Martín-López, Nicholas J. Russell, Joshua W. Silverstone, Peter J. Shadbolt, Nobuyuki Matsuda, Manabu Oguma, Mikitaka Itoh, Graham D. Marshall, Mark G. Thompson, Jonathan C. F. Matthews, Toshikazu Hashimoto, Jeremy L. O’Brien, Anthony Laing,
Science  14 Aug 2015: Vol. 349, Issue 6249, pp. 711-716
Universal photonic quantum computation via time-delayed feedback, Hannes Pichler et al.,  Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1711003114
Photon Subtraction by Many-Body Decoherence, C. R. Murray et al,  Physical Review Letters (2018). DOI: 10.1103/PhysRevLett.120.113601
Mapping and Measuring Large-scale Photonic Correlation with Single-photon Imaging, K. Sun, J. Gao, M.-M. Cao, Z.-Q. Jiao, Y. Liu, Z.-M. Li, E. Poem, A. Eckstein, R.-J. Ren, X.-L. Pang, H. Tang, I. A. Walmsley, X.-M. Jin,  Optica, 6, 3, 244-249 (2019). DOI: 10.1364/OPTICA.6.000244 [news]
Photonic quantum information processing: a concise review
Sergei Slussarenko, Geoff J. Pryde, Applied Physics Reviews 6, 041303 (2019)
Perspective: Toward large-scale fault-tolerant universal photonic quantum computing
Shuntaro Takeda, Akira Furusawa, APL Photonics 4, 060902 (2019)
Boson sampling with 20 input photons in 60-mode interferometers at 10^14 state spaces,
Hui Wang et al., Phys. Rev. Lett. 123, 250503 (2019)
Controlled-Phase Gate Using Dynamically Coupled Cavities and Optical Nonlinearities, by Mikkel Heuck, Kurt Jacobs and Dirk R. Englund, 20 April 2020, Physical Review Letters.
DOI: 10.1103/PhysRevLett.124.160501


Quantum supremacy:
Quantum supremacy using a programmable superconducting processor
Frank Arute, Kunal Arya, […] John M. Martinis, Nature volume 574, pages505–510(2019)
IBM's comment on Google's Quantum Supremacy

Topological Quantum Computation and related:
Unpaired Majorana fermions in quantum wires. A. Yu Kitaev, Physics-Uspekhi Supplement. 44 (131): 131–136 (2001)
Non-Abelian anyons and topological quantum computation
Chetan Nayak, Steven H. Simon, Ady Stern, Michael Freedman, and Sankar Das Sarma
Rev. Mod. Phys. 80, 1083 – Published 12 September 2008

Quantum dots related:
Quantum computation with quantum dots, Daniel Loss and David Divincenzo, Phys. Rev. A  57, 120 (1997)
A silicon-based nuclear spin quantum computer. Kane, B. E.  Nature 393, 133–137 (1998)
Single-shot readout of an electron spin in silicon
, Andrea Morello et al, Nature volume 467pages687691(2010)
Operation of a silicon quantum processor unit cell above one kelvin, C. H. Yang et al., Nature volume 580pages350354(2020)
Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot, R. C. C. Leon et al, Nature Communications volume 11, Article number: 797 (2020) 
Coherent spin-state transfer via Heisenberg exchange
Yadav P. Kandel, Haifeng Qiao, Saeed Fallahi, Geoffrey C. Gardner, Michael J. Manfra & John M. Nichol
Nature volume 573, pages553–557(2019)

Tuning single-electron charging and interactions between compressible Landau level islands in graphene
. by Daniel Walkup, Fereshte Ghahari, Christopher Gutiérrez, Kenji Watanabe, Takashi Taniguchi, Nikolai B. Zhitenev, Joseph A. Stroscio. Physical Review B, 2020; 101 (3) DOI: 10.1103/PhysRevB.101.035428
Gigahertz Single-Electron Pumping Mediated by Parasitic States. by Alessandro Rossi, Jevgeny Klochan, Janis Timoshenko, Fay E. Hudson, Mikko Möttönen, Sven Rogge, Andrew S. Dzurak, Vyacheslavs Kashcheyevs, Giuseppe C. Tettamanzi.  Nano Letters, 2018; DOI: 10.1021/acs.nanolett.8b00874
Coherent transfer of quantum information in a silicon double quantum dot using resonant SWAP gates
A. J. Sigillito, M. J. Gullans, L. F. Edge, M. Borselli & J. R. Petta
npj Quantum Information volume 5, Article number: 110 (2019)

Foundations:
Generalized Hardy’s Paradox, Shu-Han Jiang, Zhen-Peng Xu, Hong-Yi Su, Arun Kumar Pati, and Jing-Ling Chen
Phys. Rev. Lett. 120, 050403 – Published 30 January 2018

State discrimination:
Optimal Unambiguous Discrimination of Pure Quantum States, János A. Bergou, Ulrike Futschik, and Edgar Feldman
Phys. Rev. Lett. 108, 250502 – Published 21 June 2012

Others:
Observation of dynamical fermionization. Joshua M. Wilson, Neel Malvania, Yuan Le, Yicheng Zhang, Marcos Rigol, David S. Weiss. Science, 2020; 367 (6485): 1461 DOI: 10.1126/science.aaz0242
Phonon heat transfer across a vacuum through quantum fluctuations. King Yan Fong, Hao-Kun Li, Rongkuo Zhao, Sui Yang, Yuan Wang, Xiang Zhang.  Nature, 2019; 576 (7786): 243 DOI: 10.1038/s41586-019-1800-4

Quantum Simulations:
Quantum simulation by I. M. Georgescu, S. Ashhab, and Franco Nori
Rev. Mod. Phys. 86, 153 – Published 10 March 2014
Toward the first quantum simulation with quantum speedup
Andrew M. Childs,  Dmitri Maslov, Yunseong Nam, Neil J. Ross, and Yuan Su
PNAS September 18, 2018 115 (38) 9456-9461

Quantum Communication:
Long-distance quantum communication with atomic ensembles and linear optics.  Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Nature 414, 413–418 (2001)
Quantum repeaters based on atomic ensembles and linear optics
Nicolas Sangouard, Christoph Simon, Hugues de Riedmatten, and Nicolas Gisin
Rev. Mod. Phys. 83, 33 – Published 21 March 2011

The quantum internet
by H. J. Kimble, Nature 453, 1023-1030 (2010)
Deterministic quantum teleportation with feed-forward in a solid state system. L. Steffen, et al., Nature, 2013, 500: 319-322; doi: 10.1038/nature12422
Quantum Communication with Photons, Mario Krenn, Mehul Malik, Thomas Scheidl, Rupert Ursin, Anton Zeilinger, Optics in Our Time pp 455-482 (2016), also in arXiv
All-photonic quantum repeaters by Koji Azuma, Kiyoshi Tamaki & Hoi-Kwong Lo
Nature Communications volume 6, Article number: 6787 (2015)
Experimental time-reversed adaptive Bell measurement towards all-photonic quantum repeaters, Yasushi Hasegawa et al., Nature Communications (2019). DOI: 10.1038/s41467-018-08099-5
Experimental quantum repeater without quantum memory
Zheng-Da Li, Rui Zhang, Xu-Fei Yin, Li-Zheng Liu, Yi Hu, Yu-Qiang Fang, Yue-Yang Fei, Xiao Jiang, Jun Zhang, Li Li, Nai-Le Liu, Feihu Xu, Yu-Ao Chen & Jian-Wei Pan
Nature Photonics volume 13, pages644–648(2019)
Multimode and Long-Lived Quantum Correlations Between Photons and Spins in a Crystal
Cyril Laplane, Pierre Jobez, Jean Etesse, Nicolas Gisin, and Mikael Afzelius
Phys. Rev. Lett. 118, 210501 (2017)
Solid-State Source of Nonclassical Photon Pairs with Embedded Multimode Quantum Memory

Kutlu Kutluer, Margherita Mazzera, and Hugues de Riedmatten
Phys. Rev. Lett. 118, 210502 – Published 24 May 2017
Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells, Y-F Pu, N. Jiang, W. Chang, H-X Yang, C. Li, and L-M Duana, Nat Commun. 2017; 8: 15359.
Published online 2017 May 8. doi: 10.1038/ncomms15359

Entanglement between a Diamond Spin Qubit and a Photonic Time-Bin Qubit at Telecom Wavelength
Anna Tchebotareva, Sophie L. N. Hermans, Peter C. Humphreys, Dirk Voigt, Peter J. Harmsma, Lun K. Cheng, Ad L. Verlaan, Niels Dijkhuizen, Wim de Jong, Anaďs Dréau, and Ronald Hanson
Phys. Rev. Lett. 123, 063601 – Published 5 August 2019

Quantum Solution to the Byzantine Agreement Problem
, Matthias Fitzi, Nicolas Gisin, and Ueli Maurer, Phys. Rev. Lett. 87, 217901 (2001)
Experimental Demonstration of a Quantum Protocol for Byzantine Agreement and Liar Detection
Sascha Gaertner, Mohamed Bourennane, Christian Kurtsiefer, Adán Cabello, and Harald Weinfurter
Phys. Rev. Lett. 100, 070504 (2008)
Solution to the mean king's problem using quantum error-correcting codes, by M Yoshida, G Kimura, T Miyadera, H Imai, J Cheng, 10.1103/PhysRevA.91.052326(2015)

Quantum Secret Sharing Among Four Players Using Multipartite Bound Entanglement of an Optical Field
Yaoyao Zhou, Juan Yu, Zhihui Yan, Xiaojun Jia, Jing Zhang, Changde Xie, and Kunchi Peng
Phys. Rev. Lett. 121, 150502 – Published 12 October 2018
Quantum Teleportation of Shared Quantum Secret
Sang Min Lee, Seung-Woo Lee, Hyunseok Jeong, and Hee Su Park
Phys. Rev. Lett. 124, 060501 – Published 11 February 2020

Quantum Sensing:
Quantum sensing. Degen, C. L., Reinhard, F. & Cappellaro, P.  Rev. Mod. Phys. 89, 035002 (2017)

back to PHY682 main page
Other incomplete list of addtional reading:

Quantum Computer Made from Photons Achieves a New Record
Waiting for the Quantum Simulation RevolutionGabriel Popkin, October 21, 2019• Physics 12, 112
A Solid Footing for a Quantum Repeater
Microsoft Makes Bet Quantum Computing Is Next Breakthrough by John Markoff, The New York Times, June 23, 2014
The Quantum Quest for a Revolutionary Computer by Lev Grossman, Time Magazine
NOBEL 2012 Physics: Manipulating individual quantum systems
"Quantum Computing Promises New Insights, Not Just Supermachines" by Scott Aaronson (Professor of Computer Science at MIT) in New York Times
"Quantum Entanglement: A Modern Perspective" by Barbara M. Terhal, Michael M. Wolf and Andrew C. Doherty, Physics Today v56, p46 (2003)
"Recent Progress in Quantum Algorithms" by Dave Bacon and Wim van Dam, Communications of the ACM, Vol. 53, Pp. 84-93(2010)
Scott Aaronson's Complexity Zoo
Stephen Jordan's Quantum Algorithm Zoo
Problems in Quantum Information
Michael Nielsen's YouTube video courses: quantum computing for the determined
"Why Now is the Right Time to Study Quantum Computing" by Aram Harrow, The ACM Magazine for Students - The Legacy of Alan Turing: Pushing the Boundaries of Computation archive Volume 18 Issue 3, Spring 2012 Pages 32-37
"The First Quantum Machine" (Breaktrhough of the year 2010), Adrian Cho, Science vol. 330, p. 1604 (2010)
"Silicon Quantum Computer a Possibility" by E.S. Reich, Nature News (2011) doi:10.1038/news.2011.29
"Quantum Entanglement Links 2 Diamonds" by John Matson, Scientific American, Dec. 1, 2011
"Moving Beyond Trust in Quantum Computing" by Vlatko Vedral, Science Vol.335, pp.294-295 (2012).
"Quantum Computers" by Ladd, Jelezko, Laflamme, Nakamura, Monroe & O'Brien, Nature 464, 45-53 (2010)
"Entangled states of trapped atomic ions" by Rainer Blatt & David Wineland, Nature 453, 1008-1015 (2010)
"Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins" by  Joseph W. Britton, Brian C. Sawyer, Adam C. Keith, C.-C. Joseph Wang, James K. Freericks, Hermann Uys, Michael J. Biercuk & John J. Bollinger, Nature 484, 489-492 (2012).
"Quantum coherence and entanglement with ultracold atoms in optical lattices" by Immanuel Bloch, Nature 453, 1016-1022 (2010)
"The quantum internet" by H. J. Kimble, Nature 453, 1023-1030 (2010)
"Superconducting quantum bits" by John Clarke & Frank K. Wilhelm, Nature 453, 1031-1042 (2008)
"Coherent manipulation of single spins in semiconductors" by Ronald Hanson & David D. Awschalom, Nature 453, 1043-1049 (2008)
"Physics: Quantum Computing" by E. Knill, Nature 463, 441-443 (2010)
"Quantifying entanglement in macroscopic systems" by Vlatko Vedral, Nature 453, 1004-1007 (2010)

News:
Solid-state qubits
Diamonds used for quantum computing

Others:
 20 Quantum Computing companies to know
Quantum Computing Incorporated – the first publicly traded Quantum Computing stock
Quantum Computing Report and Quantum Computing Startup Comapnies


Supplementary materials:

Various qubits:
Polarizer (wikipedia page)
Time-bin encoding (wikipedia page); Physics viewpoint by Todd Pittman on "It's a Good Time for Time-Bin Qubits"
What makes good qubits? Diamonds and ions could hold the answer
Nitrogen-vancancy center in diamond: wikipedia
Nitrogen-vacancy centers: Physics and applications, short article at Cambridge Core
Sensitivity optimization for NV-diamond magnetometry,John F. Barry, Jennifer M. Schloss, Erik Bauch, Matthew J. Turner, Connor A. Hart, Linh M. Pham, and Ronald L. Walsworth, Rev. Mod. Phys. 92, 015004 – Published 31 March 2020
10-qubit diamond-based system

Trapped-ion quantum computing: Progress and challenges, Applied Physics Reviews 6, 021314 (2019)
Cooling ions: youtube
Paul trap illustration: youtube
How to build QC with trapped ions? link

Superconducting qubits and the physics of Josephseon junction---an article by Jonh Martinis
Circuit QED: Superconducting Qubits Coupled to Microwave Photons by S. M. Girvin

Non-Abelian Statistics of Half-Quantum Vortices in p-Wave Superconductors, D. A. Ivanov, Phys. Rev. Lett. 86, 268 – Published 8 January 2001

back to PHY682 main page