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In this unit, we discuss no cloning of quantum states, non-orthogonal state discrimination, quan-
tum tomographic tools, and quantum cryptography: quantum key distribution from transmitting
qubits and from shared entanglement.

Learning outcomes: You’ll be able to understand why no cloning actually helps to distribute
secret keys.

I. INTRODUCTION

Classical information can be copied and this seems to be obvious. We make zerox copies of papers, copy files, record
music, etc. However, in the quantum world, copying is generally not possible, i.e.,

|α⟩|blank⟩ ̸→ |α⟩|α⟩.

This is referred to as no cloning [1–3]. It can be easily proved by contradiction. Assume that one could copy via some
unitary process,

|α⟩|blank⟩ −→ |α⟩|α⟩,
|β⟩|blank⟩ −→ |β⟩|β⟩,

where we use |blank⟩ to denote some reference state just like a blank paper in the classical world. However, the
unitary operation preserves the overlap, and thus we have

⟨α|β⟩ = ⟨α|β⟩2 → ⟨α|β⟩ = 0 or 1.

This does not hold in general, and thus cloning is not possible in general. However, we see that when ⟨α|β⟩ = 0 or 1
holds, they are either orthogonal or identical and behave like classical states, and can be cloned.

One consequence of cloning is that it would allow to distinguish non-orthogonal states with certainty. Suppose we
can copy quantum states, then a state |α⟩ would become |α⟩⊗n and two orthogonal states could be copied so that the
copied states become orthogonal for large enough n,

⟨α|β⟩n → 0,

and therefore, they could be distinguished.
On the other hand, deterministic discrimination of non-orthogonal states, if possible, could be used to perform

cloning of non-orthogonal states! This can be understood as follows. Suppose classical description of two states is
known, but don’t know which one is given. If one could uniquely determine which, one could then produce as many
copies (given its description is known).

Self-consistently, neither cloning nor deterministic non-orthogonal discrimination is possible, so there is no contra-
diction.

II. STATE DISCRIMINATION

We know that non-orthogonal states cannot be distinguished or discriminated with unit success probability. But
how well can we distinguish these states? Imagine there are two one-qubit states which may not be orthogonal: ψ1

and ψ2, which appears with equal probability. For simplicity, one can take

|ψ1⟩ = |0⟩, |ψ2⟩ = cos θ|0⟩+ sin θ|1⟩, with 0 ≤ θ ≤ π/2.

The key question is: what is the best strategy to distinguish these two states?
This question needs to be clarified. We will consider (i) to maximum overall success probability (a.k.a. minimum-

error) and (ii) to maximize the unambiguous discrimination.
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FIG. 1. Cloning is not possible for quantum information.

A. Minimum-error discrimination

We will design an orthogonal basis for such a measurement,

|v1⟩ = cosϕ|0⟩+ sinϕ|1⟩, |v2⟩ = − sinϕ|0⟩+ cosϕ|1⟩.

Then we will assign that if the outcome is v1 then we declare it is ψ1; we declare it is ψ2 if the outcome is v2; see
illustration in Fig. 2b. However, we need to note that this scheme is not un-ambiguous, i.e., even if v1 is detected,
the state can still be ψ2. So we want to maximize the success probability,

P (ϕ) =
1

2
|⟨v1|ψ1⟩|2 +

1

2
|⟨v2|ψ2⟩|2 =

1

2
cos2 ϕ+

1

2
sin2(θ − ϕ).

This probability is easily maximized,

max at ϕ = −(π/2− θ)/2 : maxP = (1 + sin θ)/2.

In general, there is the so-called Helstrom bound [4] that gives an lower bound on the error for arbitrary distribution
for the two states (p1, p2),

Perr ≥
1

2
(1−

√
1− 4p1p2|⟨ψ1|ψ2⟩|2).

The case we have (p1, p2) = (1/2, 1/2) is a special case.

B. Unambiguous discrimination

In this second case, we want to know excatly what states we have unambigously. However, it is not possible to
succeed with unit probability so we need to maximize the probability of unambiguous discrimination. This means
that we can use three non-negative operators M1, M2 and M3 that correspond to must-be state 1, must-be state 2,
and ‘don’t know’, respectively.

Since there are only two states, if we choose an operator proportional to projector orthogonal to ψ2, then if the
corresponding detector clicks, we know it must come from the state ψ1, etc. Thus, we can define that three operators
as follows,

M1 = c|ψ⊥
2 ⟩⟨ψ⊥

2 |, M2 = c|ψ⊥
1 ⟩⟨ψ⊥

1 |, M3 = I −M1 −M2,

where we allows a constant c (the weight in the unambiguous discrimination), but we want it to be as large as possible,
and it is constrained by

M3 = I − c(− sin θ|0⟩+ cos θ|1⟩)(− sin θ⟨0|+ cos θ⟨1|)− c|1⟩⟨1| ≥ 0.

We thus obtain the success probability

Psuccess =
1

2
Tr(|ψ1⟩⟨ψ1| ·M1) +

1

2
Tr(|ψ2⟩⟨ψ2| ·M2),
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FIG. 2. State discrimination: (a) two non-orthogonal state; (b) minimum error (or maximum probability) discrimination; (c)
optimal unambiguous discrimination.

which gives,

[Psuccess = c
1

2
|⟨0|(− sin θ|0⟩+ cos θ|1⟩|2 + c

1

2
⟨1|(cos θ|0⟩+ sin θ|1⟩|2 = c sin2 θ ≤ 1− cos θ.

In the last equality, we have used the fact

max
M3≥0

c = 1/(1 + cos θ).

For the moment, we leave the detailed derivation to the readers.
For earlier discussions on state discrimination, see Refs. [5–7]. For later development, see, e.g. Refs. [8, 9]. In

addition to uneven distribution, one can also consider more than two states and mixed states. But these are beyond
the scope of this course.

III. PUBLIC KEY CRYPTOGRAPHY

We have discussed no cloning and no perfect discrimination of non-orthogonal states, and we will see that this can be
useful for secure communication. But why do we want to use quantum properites to perform secure communication?
One reason is that current public key cryptography using e.g. RSA can be broken by Shor’s quantum factoring
algorithm [10].

Let us re-cap the RSA crypo scheme below.

� Choose two different large prime numbers p and q; define N = pq.

� Φ = (p− 1)(q − 1) is a number coprime with N and less than N .

� Choose e coprime with Φ and compute d = e−1(mod (Φ) or ed = 1(modΦ).

� Broadcast public key e and number N .

� Other party encodes message a (assume coprime to N) to be b = ae(modN) and we can decode it by bd =
a(ed) = a · anΦ = a(modN), noting that aΦ = 1(modN).

� We can identify ourselves by encoding our signature s to be t = sd(modN), everyone can verify it by decoding
te = s(modN).

Given that RSA can be broken by quantum computers, is there any classical secure communication? Indeed, the
so-called “one-time pad” is secure if the length is as long as the message and is used only once; see Fig. 3. A key
question will be how to generate these one-time pads, which is discussed in the next section.

IV. QUANTUM CRYPTOGRAPHY

The goal is to establish a random sequence between Alice and Bob.
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FIG. 3. Illustration of the one-time pad.

A. BB84

Given physical transmission of quantum bits is via photons (e.g. using polarizations as encoding), we list the
possible bit encoding for the BB84 protocol below (invented by Bennett and Brassard [11]),

The protocol exploits the non-orthogonality between |0⟩ and |+⟩ (or |1⟩ and |−⟩). For each bit 0 or 1, Alice randomly
selects between the two bases 0/1 or +/−. Bob at his end needs to measure in the same basis in order to have
correlated bits. This means half of the time, the bases will not match.

� Alice randomly selects a random sequence, e.g. 0101011. . . For each bit (0 or 1) she randomly selects H/V or
D/A basis, e.g. HVDVDAV. . . .

� For each bit Bob randomly selects a basis H/V or D/A to measure, e.g. [H/V][D/A][H/V][H/V][D/A][H/V][D/A].
Suppose Bob measures: H D V V D H D.

� They openly compare bases (not results), and keep results when measured in the same basis, e.g. HVD...=010...

� They can compare a subset of results to make sure the security.

Attacking QKD? We now consider possible attacks to crack the QKD. First let us consider the “intercept-and-
resend” attack. The eavesdropper Eve performs measurement on the intercepted photon (from Alice) in a randomly
chosen basis H/V or D/A and resends a new photon to Bob according to her measurement result.

When Alice and Bob happen to use the same basis: If Eve uses the correct basis (50% of the time), then both she
and Bob will decode Alice’s bit value correctly. In this case, no error is introduced by Eve. If Eve uses the wrong
basis (50% of the time), then both she and Bob will have random measurement results. Because Alice and Bob have
50% of using the same basis, the overall quantum bit error rate (QBER) is 25%. Naively, if the detected QBER in
reality is close to this value, then the communication channel is not secure. Specifically, If QBER >14.6% then QKD
is not secure; if QBER <12.4% it is secure; see, e.g., Ref. [12].
An important advantage of this QKD scheme is that once a QKD session is over, no classical “transcript” exists for

Eve to keep since the communication is quantum. In contrast, in the public key crptography, Eve can copy encrypted
messages and wait until private key is broken to decrypt the messages.

QKD has been applied, e.g. in the bank transaction and government communication. It was even used to encrypt
security communications in the 2007 Swiss election and the 2010 World Cup; see https://www.scientificamerican.
com/article/swiss-test-quantum-cryptography/ and https://www.prweb.com/releases/2010/05/prweb3998874.
htm.

Making keys more secure. Alice and Bob can further perform two classical steps to increase correlation between
their key strings and reduce mutual information with Eve.

� Information reconciliation: error-correction conducted over a public channel (e.g. using parity check).

� Privacy amplification: a procedure for Alice and Bob to distill a common private key from a raw key about
which Eve might have partial information.

In the latter step, Alice and Bob employ local randomness by using universal hash functions G, which map the set
of n-bit strings A to the set of m-bit strings B, such that for any distinct a1, a2 ∈ A, when g is chosen uniformly at
random from G, then the probability that g(a1) = g(a2) is at most 1/|B|.

https://www.scientificamerican.com/article/swiss-test-quantum-cryptography/
https://www.scientificamerican.com/article/swiss-test-quantum-cryptography/
https://www.prweb.com/releases/2010/05/prweb3998874.htm
https://www.prweb.com/releases/2010/05/prweb3998874.htm
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FIG. 4. Illustration of the Bell-inequality test and Ekerlt’s protocol for secret key distribution.

[h]

FIG. 5. Illustration of the three quantum tomographic tools.

B. Ekert’s protocol

We have used the singlet state in the Bell-inequality violation,

|Ψ−⟩ = 1√
2
(|01⟩ − |10⟩),

and the measurement set up is in Fig. 4 if Alice and Bob measure their particles along either their axis 1 or 2. Ekert
realized that adding one more measurement axis (labeled 3 at each location), one could achieve QKD and test its
security [13].

In particular, measurement using (A3,B1) and (A2,B3) gives anticorrelation and this allows the two parties to
establish common secret keys. To ensure security, they use other measurement combinations to test the violation of
the Bell inequality. The higher the violation, the better the security.

C. Six-state (Singapore) protocol

Will add later...

V. QUANTUM TOMOGRAPHIC TOOLS

In this section, we discuss things that are not directly related to no-cloning, but rather tools that allow us to
characterize quantum states, processes and detection. These are called quantum state tomography (QST) [14, 15],
quantum process tomography (QPT) [16, 17], and quantum detector tomography (QDT) [18], respectively. Other
tools that are of use include quantum gate set tomography, randomized benchmarking, and quantum volume, and we
will discuss the latter topics if time permits.

A. Quantum state tomography

The goal of QST is to estimate an unknown state, given multiple copies. Let us first illustrate with a one qubit
state,

ρ =
1

2
(I + r⃗ · σ⃗) = 1

2
(I + rxσx + ryσy + rzσz),
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where

rj = Tr(ρσj) = Tr(ρ|0j⟩⟨0j |)− Tr(ρ|1j⟩⟨1j |),

and we have use the notation σj |0/1j⟩ = ±|0/1j⟩. This means that we need to measure the probabilities of the
following projectors

|0⟩⟨0|, |1⟩⟨1|, |+⟩⟨+|, |−⟩⟨−|, |+ i⟩⟨+i|, | − i⟩⟨−i|.

Since Tr(ρ|0j⟩⟨0j |) + Tr(ρ|1j⟩⟨1j |) = 1, the number of projectors needed to measure can be further reduced to just 3.
The one-qubit QST is illustrated in Fig. 6.

Two-qubit QST. The above consideration can be easily generalized to two and multiple qubits. For two qubits, we
use the decomposition,

ρ2−qubit =
1

4

∑
µ,ν=0,x,y,z

rµνσµ ⊗ σν ,

where σ0 ≡ I and

rµν = Tr(ρ2−qubitσµ ⊗ σν).

The above expression for rµν indicates that measurement will be done in coincidence, i.e. in the product basis.
More n-qubit QST, n-qubit coincidence needs to be measured and the number of operators needed to measure scale
exponentially with n, and it becomes very costly as n becomes large.

FIG. 6. Illustration of the one-qubit state tomography.

B. Quantum process tomography

From measuring a limited number of different input states (but unlimited supply of each), is it possible to predict
the result for a general input state? This is the goal of QPT, as illustrated in Fig. 7. This is possible as any quantum
process is linear and if one knows how the process acts on the finite number of complete matrix elements, then by
linearity one knows the action on any linear combination.

Specifically, if we know the how the element |j⟩⟨k| is transformed,

E : |j⟩⟨k| →
∑
µ

Eµ|j⟩⟨k|E†
µ = E(|j⟩⟨k|),

then we can deduce the transformation on ajk|j⟩⟨k|,

E :
∑
jk

ajk|j⟩⟨k| →
∑
jk

ajkE(|j⟩⟨k|).
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FIG. 7. Illustration of the quantum process tomography. The black box represents certain process and it turns the input ρ
into the output ρ′.

FIG. 8. Illustration of the quantum detector tomography.

But how can we obtain the action on |j⟩⟨k|? Let us answer this by an example of one qubit. Arbitrary |j⟩⟨k| can be
expressed in some linear combination of projectors, as illustrated below,

|0⟩⟨1| = |+⟩⟨+|+ i|+ i⟩⟨+i| = 1 + i

2
|0⟩⟨0| − 1 + i

2
|1⟩⟨1|, |1⟩⟨0| = |+⟩⟨+| − i|+ i⟩⟨+i| = 1− i

2
|0⟩⟨0| − 1− i

2
|1⟩⟨1|.

This is called the standard QPT. There are also slightly varied approaches, e.g. using entangled pairs or correlated
but unentangled pairs and let one part of the pairs undergo the process and perform the full tomography on the
output pairs. These are called entanglement-assisted PT and ancilla assisted PT. For experimental demonstrations,
see, e.g., Ref. [17].

C. Quantum detector tomography

We have seen some idea of this in measurement mitigation. The quantum detector tomography allows us to correct
measuremet statistics. Here we explain what QDT is; the key idea is illustrated in Fig. 8.

The assumption is that we have an informationally complete set of test states {ρm} be prepared with error much
smaller than the error in the measurement or detection. The goal is to infer when detector outcome l clicks, what
exactly is measured? As we learned earlier, this detector click should corresponds to some non-negative operator πl
that describes the POVM associated with the click.

This was proposed almost two decades ago, but some recent application in QDT comes from characterizing photon
detectors. More recent application is the measurement error mitigation.

We will illustrate the idea by one qubits and it can be straightforwardly generalized to multiple-qubit detectors.
We assume we have the capability to prepare with high fidelity the states

ρm = {|0⟩, |1⟩, |+⟩, |−⟩, |+ i⟩, | − i⟩},

and these can be easily prepared, e.g. on many quantum computers, via simple gate operations, which are of high
fidelity. Our task is then to determine the POVM operators {π0, π1} corresponding to the two outcomes 0 and 1,
respectively. in this case, we have π0 + π1 = I, so the two are not independent.

The procedure is very simple: we prepare different states ρm and record the number of clicks flm by the detector
outcome πl. From the procedure, we have

plm = Tr(ρmπl) ≈
flm∑
l′ fl′m

.

Since the problem is linear, one can invert to find πl from the probabilities. Fiurasek [PRA 64, 024102 (2001)] [19]
provided a maximum-likelihood method that allows us to iteratively find πl accurately. We will not describe the
detail here but refer the readers to the paper for the procedure to process the data. For recent experimental results on
superconducting qubits, see, e.g., Ref. [20], where the authors also describe how to used the characterized detectors
to infer ideal measurement distribution.

VI. GATE QUALITY CHARACTERIZATION

to add soon...
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A. Quantum volume

For quantum volume, we refer to Ref. [21].

B. Randomized benchmarking

For the earlier proposal of randomized benchmarking, we refer to Ref. [22].

VII. CONCLUDING REMARKS

In this unit, we have discussed no cloning of quantum states, non-orthogonal state discrimination, quantum to-
mographic tools, and quantum cryptography: quantum key distribution from transmitting qubits and from shared
entanglement.

It is a good time to check whether you have achieved the following Learning Outcomes:
After this Unit, You’ll be able to understand why no cloning actually helps to distribute secret keys.

Suggested reading: N&C 12.1, 12.6; Qb chap 3.12
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