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In this unit, we discuss the CHSH-Bell inequality and PR Box that are basic topics in quantum
foundation. This allows us to understand the difference between classical local theory, quantum
mechanics, and general no-signalling theory. We then move on to discuss variable protocols of quan-
tum information processing, such as quantum teleportation, entanglement swapping and superdense
coding.

Learning outcomes: (1) You’ll be able to understand what CHSH-Bell inequality is about. (2)
You’ll be able to understand basic and important protocols of quantum information processing.

I. INTRODUCTION

Quantum entangled states have correlations stronger than classical states. The earliest discussion on such correlation
originated in a paper by Einstein, Podolsky and Rosen on “Can Quantum-Mechanical Description of Physical Reality
Be Considered Complete?” [1] They wrote down what we now call an entangled state of two particles,

Ψ(x1, x2) =

∫ ∞

−∞
φx(x2)vx(x1)dx =

∫
∞

−∞
e(2πi/h)(x1−x2+x0)pdp,

and use it to discuss the element of physical reality and completeness of quantum theory, concluding that there was
something incompatible in the theory. A more moden example is a singlet state of two spins, which is what Jonh
Bell used for his famous inequality [2] that shows different results between quantum and classical theories. What we
will use to illustrate the discrepancy between quantum and classical theories is the inequality constructed by Clauser,
Horne, Shimony and Holt (CHSH) [3]. Experimental violation of Bell’s inequalities was the subject of 2022 Nobel
Prize in Physics (see https://www.nobelprize.org/prizes/physics/2022/summary/), which was awarded to Alain
Aspect, John F. Clauser and Anton Zeilinger.

It turns out that entangled states such as the singlet and other so-called Bell states can be a useful resource for a
few information processing tasks, such as quantum teleportation, superdense coding, quantum key distribution, etc.,
a paradigm shift which we will study in this unit.

II. CHSH-BELL INEQUALITY

We have seen measurement of observables X, Y , Z or any one-qubit operator r⃗ · σ⃗, where σ⃗ ≡ (X,Y, Z) and |r⃗| = 1,
gives an eigenvalue randomly, which is ±1 in this case. For variables (e.g. a, a′, b, and b′ below) that can be only +1
or −1, there is an interesting equality:

ab+ ab′ + a′b− a′b′ = a(b+ b′) + a′(b− b′) = ±2,

which you can easily verify and convince yourself. Thus, for any probability distribution p(a, a′, b, b′) we have (using
E to denote expectation),

−2 ≤ E(ab+ ab′ + a′b− a′b′) ≡
∑

a,a′,b,b′

ρ(a, a′, b, b′)(ab+ ab′ + a′b− a′b′) ≤ 2,

where ρ(a, a′, b, b′) is some probability distribution used to perform the average. In the context of measuring two
choices of observables at two locations A: a & a′, location B: b & b′, we have the so-called Clauser-Horne-Shimony-
Holt (CHSH) inequality:

−2 ≤ E(a, b) +E(a, b′) +E(a′, b)−E(a′, b′) ≤ 2.

Each E can be measured experimentally: for a given pair of axes, it is the probability sum of parallel outcomes minus
the probability sum of anti-parallel outcomes. The inequality is satisified by any classical local theories.

CHSH generalized John Bell’s idea (his original Bell inequality) and made their inequality easier to test experimen-
tally. As we show see below, that quantum mechanics can violate this inequality. The setting that can be used to test

https://www.nobelprize.org/prizes/physics/2022/summary/


II-2

FIG. 1. Illustration of a source emitting pairs of photons. The circles with a cross are used to indicate the measurement axes.

this and violate the inequality is a source that emits, e.g., a pair of photons that need to be entangled; see. Fig. 1.
The choice of measurement axis (a or a′) at A or (b or b′) at B cannot affect the outcome of the other side, otherwise,
there could be superluminal communication. Nevertheless, from a classical mechanics’ perspective, outcomes can be
correlated and should be described by some unknown-to-us distribution (depending on some hidden variable λ). This
is also called the “local hidden variable” (LHV) theory. The expectation of the measured outcomes is thus an average
over the hidden variable,

EL(a, b) ≡
∫
dλ ρ(λ)A(a, λ)B(b, λ),

where we have used A(a, λ) and B(b, λ) to denote the respective measured values±1 that can in principle depend on the
hidden variable. (This is the probability sum of parallel outcomes minus the probability sum of anti-parallel outcomes.)
The subscript L is used to denote the local hidden theory. Specifically, where A(a, λ) = ±1 and B(b, λ) = ±1 can
be thought of predetermined results for the measurement settings a at A and b at B depending on the local hidden
variable λ; ρ(λ) is its distribution.
Locality requires that the outcome A(a, λ) does not depend on setting b and that of B(b, λ) does not depend on

setting a. Later we will also see that a nonlocal theory can maximally violate the inequality.
By averaging over the local hidden variable, we still have the same inequality,

|EL(a, b) + EL(a, b
′) + EL(a

′, b)− EL(a
′, b′)| ≤ 2. (1)

The inequality is violated by Quantum Mechanics. To be specific, the operators to be measured are the Pauli

operators σ⃗. Let EQ(a, b) ≡ ⟨ψ|σ⃗ · a⃗⊗ σ⃗ · b⃗|ψ⟩ denote expectation of repeated measurement along axes of unit vectors

a⃗ and b⃗, respectively. Define

2B ≡ σ⃗ · a⃗⊗ σ⃗ · b⃗+ σ⃗ · a⃗⊗ σ⃗ · b⃗′ + σ⃗ · a⃗′ ⊗ σ⃗ · b⃗− σ⃗ · a⃗′ ⊗ σ⃗ · b⃗′.

We consider an experimental setup in Fig. 2. The claim is that for a singlet state |ψ⟩ = (| ↑↓⟩ − | ↓↑⟩)/
√
2, the

maximal expectation value of 2B over all measurement settings is

max
a,a′,b,b′

|⟨ψ|2B|ψ⟩| = 2
√
2,

which can be achieved for the setting θa = π/2, θ′a = 0, θb = π/4, and θ′b = 3π/4, where the angles are measured from
the z-axis in the z − x plane, as shown in the figure.

To verify this, we first note an identity for the single state |ψ⟩, which you can prove by direct calculation using
vectors and matrices or by properties of the singlet state under Pauli matrices (this is given as an exercise),

⟨ψ|σ⃗ · a⃗⊗ σ⃗ · b⃗|ψ⟩ = −a⃗ · b⃗.

With this, we can easily verify the violation 2
√
2 > 2 with this measurement setting, as a⃗ · b⃗ = cos(θa − θb) and

it is ±1/
√
2 for the axes chosen. The maximal bound 2

√
2 is the so-called Tsirelson bound [4]. Deriving maximal

violation and measurement settings for an arbitrary state is a math problem. But fortunately this was already solved;
see Horodecki et al. [5, 6].

We also note that the other three ‘Bell’ states also violate the inequality to the same degree,

|Φ±⟩ ≡ 1√
2
(| ↑↑⟩ ± | ↓↓⟩), |Ψ±⟩ ≡ 1√

2
(| ↑↓⟩ ± | ↓↑⟩).

Entanglement is also an important part and discussion in the black hole information paradox; see, e.g., Ref. [7]. An
exercise that readers can do is to figure out the settings of these other cases that achieve the maximal violation, given
the case for the singlet.

Experiments. One of the earlier experiments was done by Aspect, Granger and Roger in 1982 [8]. There have been
many experiments and there are several so-called loopholes that need to be closed in order to claim a complete victory
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of quantum mechanics over classical mechanics. I refer to a useful review article on “Bell’s Theorem” in Stanford
Encyclopedia of Philosophy at https://plato.stanford.edu/entries/bell-theorem/.

Bell’s inequality violation and Ekert’s quantum key distribution. We will discuss quantum key distribution
in a later unit. But with the setup for violating Bell’s inequality shown in Fig. 2, we can add two additional axes
(shown dashed-dotted), so that there are two pairs of axes that match on both sides. Then the two obsevers, Alice
and Bob, meaure their particles with three possible axes randomly chosen on their side. They compare these axes
afterwards. If their axes match, then their results must be anti-correlated (assuming using the singlet state |Ψ−⟩)
and can be used to establish a common long sequence of bit string (of course after flipping the anticorrelated results).
The rest can be used to calculate the violation of the CHSH-Bell inequality. The larger the violation, the better
the security. This was first proposed by Ekert [9], which turns the original subject of philosophical debate into a
technologically useful advantage.

III. A TWO-PLAYER GAME AND THE POPESCU-ROHRLICH BOX

A game. Here, consider a related inequality and a game between two players moderated by a referee. The game is
played as follows. First, the referee gives two bits x and y separately to Alice and Bob (without them knowing the
other’s bit). Then, Alice and Bob have to each produce a bit respectively (a and b) without communication. They
win the game if

xAND y = a⊕ b.

There are 8 winning cases out of a total of 16 possibilities. To play this game, Alice and Bob need to establish a
strategy beforehand and it is likely to follow some probablistic distribution. The conditional probability P (a, b|x, y)
that given x and y, a and b is produced is referred to as a “Box”. The question we are interested in is how to maximize
the probability of winning, which surely depends on the models for P .
It turns out that: (1) For classical no-signaling theory, the maximum winning probability is 3/4. We won’t be able

to prove the optimality but this answer can be understood by a particular stragety Alice and Bob take: they always
output 0. In four possible combinations of (x, y), three of them give xAND y = 0 and one gives 1.

(2) For quantum mechanics, the maximum winning probability is (2 +
√
2)/4 ≈ 0.8535. The

√
2 is related to the

2
√
2 in the maximal violation of the CHSH-Bell inequality. The connection basically comes from the following. We

regard x and y ∈ {0, 1} as representing two different measurement settings and a and b ∈ {0, 1} as representing two
different outcomes (i.e +1 and -1). Then, we can relate the probability of winning Pwin to the expectation of B via

Pwin =
1

2
+

⟨B⟩
4
. (2)

From the maximality of CHSH-inequality violation, we have

maxPwin =
1

2
+

√
2

4
.

That this is the maximum for quantum mechanics was proven by Tirelson [4].
Exercise. Prove Equation (2).

The PR Box. It is important that any box P (a, b|x, y) according to any strategy cannot violate the no-signaling
condition: for example, P (0, 0|0, 0)+P (0, 1|0, 0) = P (0, 0|0, 1)+P (0, 1|0, 1), i.e. the ‘marginal’ probability by summing
over the output of either Alice or Bob should not depend on the setting x or y on the other side.

Popescu and Rohrlich proposed a ‘box’ [10] that always achieves xAND y = a ⊕ b: P (0, 0|0, 0) = P (1, 1|0, 0) =
P (0, 0|0, 1) = P (1, 1|0, 1) = P (0, 0|1, 0) = P (1, 1|1, 0) = P (0, 1|1, 1) = P (1, 0|1, 1) = 1/2 (all other combinations are
zero). It turns out that this corresponds to simply setting all the conditional probabilities corresponding to non-
winning cases to zero and all the winning ones to 1/2. This is called the PR Box and luckily does not violate the
no-signaling condition, and it allows to win the above game with 100% probability. The PR Box allows much higher
violation of the CHSH inequality, giving |2B| = 4, and thus it has correlation stronger than quantum mechanics. For
those interested in delve deeper, I highly recommend a review article by Popescu [11].

IV. GHZ STATE: VIOLATION AT A SINGLE SHOT

We can generalize the Bell state |Φ+⟩ to three particles and arrive at the Greenberger-Horne-Zeilinger state [12],

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩).

https://plato.stanford.edu/entries/bell-theorem/
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FIG. 2. Illustration of the measurement setup for testing the CHSH inequality for the quantum state being |Ψ−⟩. Optimal
axes for other Bell states can be obtained by suitably rotating the axes shown here. The dash-dotted axes are added for the
purpose of quantum key distribution using Ekert’s protocol.

Now consider four commuting observables: (i) X ⊗X ⊗X, (ii) Y ⊗Y ⊗X, (iii) Y ⊗X ⊗Y , (iv) X ⊗Y ⊗Y . You can
verify that they mutually commute as any pair differs by two locations. You can also verify the following relations,

X ⊗X ⊗X|GHZ⟩ = (+1)|GHZ⟩, (3)

Y ⊗ Y ⊗X|GHZ⟩ = (−1)|GHZ⟩, (4)

Y ⊗X ⊗ Y |GHZ⟩ = (−1)|GHZ⟩, (5)

X ⊗ Y ⊗ Y |GHZ⟩ = (−1)|GHZ⟩. (6)

We can multiple all four sets of operators and both left and right hand sides give −1.

How do we explain the above four equations in terms of a classical theory? For a classical local theory, one attributes
these to local properties (with classical variables xi’s and yi’s):

x1x2x3 = +1, y1y2x3 = −1, y1x2y3 = −1, x1y2y3 = −1,

where xi, yi = ±1. But this gives contradiction when we multiply all four equalities together: 1 = −1! (experiments
e.g. by Dirk Bouwmeester and collaborators showed that QM is correct [13, 14]).

We note that this violation can also be formulated as a three-player game. There are many subjects in quantum
foundation that we do not have time to cover, such as Mermin’s magic square, Kochen-Specker theorem, and whether
the measurement postulate is necessary or not [15].

V. QUANTUM ENTANGLED STATES ARE USEFUL

We shall discuss several quantum information processing protocols proposed earlier in the development which use
simple entangled states such as Bell states and their generalization. These include quantum teleportation, entangle-
ment swapping, gate teleporation, superdense coding, remote state preparation, and superdense teleportation. In my
opinion, quantum teleporation is the most unexpected among these.

A. Quantum teleportation

As said earlier, one of the most incredible tasks that an entangled pair allows is quantum teleportation invented by
Bennett and collaborators [16]. For illustration, we use the state |Φ+⟩ to explain this. Suppose we have an arbitrary
(and unknown) state |ψ⟩1 of particle 1 at A, who shares the entanglement with B via |Φ+⟩23. The numbers in the
subscripts indicate which particles they are. Now let

|ψ⟩1 = a|0⟩+ b|1⟩, |ψ⟩1 ⊗ |Φ+⟩23 =
1√
2
(a|0⟩+ b|1⟩)1 ⊗ (|00⟩+ |11⟩)23.
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FIG. 3. Illustration of quantum teleportation. In this diagram, the unknown state is |ψ⟩ = α|0⟩ + β|1⟩ and the shared
entanglement is in the form of the singlet |Ψ−⟩.

Now we will do some manipulation on the state, and expand the right-hand side:

r.h.s. =
1√
2
(a|000⟩+ a|011⟩+ b|100⟩+ b|111⟩) (7)

=
1

2

{
a(|Φ+⟩+ |Φ−⟩)⊗ |0⟩+ a(|Ψ+⟩+ |Ψ−⟩)⊗ |1⟩+ b(|Ψ+⟩ − |Ψ−⟩)⊗ |0⟩+ b(|Φ+⟩ − |Φ−⟩)⊗ |1⟩

}
(8)

=
1

2

|Φ+⟩ ⊗ (a|0⟩+ b|1⟩)︸ ︷︷ ︸
|ψ⟩

+|Φ−⟩ ⊗ (a|0⟩ − b|1⟩)︸ ︷︷ ︸
Z|ψ⟩

+|Ψ+⟩ ⊗ (a|1⟩+ b|0⟩)︸ ︷︷ ︸
X|ψ⟩

+|Ψ−⟩ ⊗ (a|1⟩ − b|0⟩)︸ ︷︷ ︸
iY |ψ⟩

 . (9)

The unknown information a&b is preserved in the third particle, but depending on the outcome of the ‘Bell-state’
measurement (in the basis of |Φ±⟩ and |Ψ±⟩, there is an additional operator acting on |ψ⟩, which can be undone if
the measurement outcome is known.

Summarizing what the two parties need to do after Alice measures her particles 1 and 2, there four possible
outcomes, Alice informs Bob: (1) it is |Φ+⟩, please apply identity (nothing); (2) it is |Φ−⟩, please apply Z to particle
3; (3) it is |Ψ+⟩, please apply X to particle 3; (4) it is |Ψ−⟩, please apply −iY to particle 3. At the end, Bob recovers
the state |ψ⟩ at particle 3. (We note that in case (4), −iY formally cancels out iY . But applying Y also recovers |ψ⟩
up to an irrelevant global phase i.) Moreover, the probability of obtaining any of the four outcomes is (1/2)2 = 1/4,
according to our measurement postulate discussed in Unit 1. The setup of quantum teleportation is illustrated in
Fig. 3. Quantum teleportation was invented by Bennett and collaborators in early 1990s.

Exercise. (a). We explain the teleportation using the resource state |Φ+⟩. In Fig. 3, we illustrate the process using
|Ψ−⟩. Work out the correction operator needed for all four measurement outcomes. (b). In the original paper by
Bennett et al. [16], they already worked out the qudit (d-level) case. What are the possible two-qudit entangled
resource states and correction operators?

For the experiments using entangled photons, please see Bouwmeester et al. ’97 [17] and Pan et al. ’03 [18]. The
drawback in this system is that the Bell-state measurement cannot be done perfectly, only two of the four Bell states
can be distinguished (if no ancillary photons are added). The success rate is thus only 50%[19, 20]. With single-photon
ancillas, the scheme can be boosted to at least 3/4 success rate and may possibly be pushed to 100% [21]. There was
a recent experiment that demonstrated about 58% of success, beyond the no-ancilla limit [22].

B. Gate teleportation

[The following material in this section was taken from my review paper: “Quantum spin systems for measurement-
based quantum computation” [23].]
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FIG. 4. Illustration of the gate teleportation circuit. CZ indicates the Controlled-Z or gate and ξ is the measurement angle,
defined in the main text.

Consider an arbitrary qubit state |ψ⟩1 = a|0⟩1+ b|1⟩1, where the subscript 1 is used to label the qubit, and another

qubit in the state |+⟩2 = (|0⟩2 + |1⟩2)/
√
2 state. Note that |0⟩ and |1⟩ are the +1 and -1 eigenstates, respectively, of

the Pauli Z matrix Z = σz. In the following, the normalization, such as 1/
√
2, may be dropped for ease of notation.

Imagine we have a Controlled-Z gate CZmn ≡ |0⟩⟨0|m⊗11n+|1⟩⟨1|m⊗Zn. Note that the CZ gate is actually symmetric,
CZmn = CZnm, as the nontrivial action on the two qubits is only a phase shift: |11⟩ → −|11⟩. This can come from,
e.g., an Ising interaction in the presence of an external field.

Applying the CZ gate to the two qubits:
(
a|0⟩1+b|1⟩1

)
|+⟩2 → |Ψ⟩12 = a|0+⟩+b|1−⟩, wehre |−⟩ ≡ (|0⟩2−|1⟩2)/

√
2 ;

an entanglement is thus created between qubits 1 and 2. Imagine we perform a projective measurement on the first
qubit, described by the observable Ô(ξ) = cos ξ X + sin ξ Y (recall the measurement postulate in Unit 1), where
X = σx and Y = σy are the Pauli X and Y matrices, respectively. An equivalent description of the measurement is
the eigenstates of the observable | ± ξ⟩ ≡ (|0⟩ ± eiξ|1⟩)/

√
2, with eigenvalues ±1 = (−1)s (or equivalently a binary

variable s = 0, 1) to describe the measurement outcome.
Depending on the measurement outcome s on the first qubit, the second qubit is projected to (the derivation is left

as an exercise or see the lecture)

|ψ′⟩2 = ⟨±ξ|Ψ⟩12 ∼ H eiξZ/2 Zs(a|0⟩2 + b|1⟩2), (10)

where an overall phase factor is omitted. Such a procedure of (1) entangling an arbitrary input qubit |in⟩ with a
fixed |+⟩, followed by (2) measuring the first qubit in | ± ξ⟩ basis, results in the quantum information |in⟩ teleported
to the second qubit, with an additional outcome-dependent unitary gate U(ξ, s) = H eiξZ/2 Zs, where H is not a
Hamiltonian but the so-called Hadamard gate (see Unit 1)

H =
1√
2

(
1 1
1 −1

)
. (11)

This is referred to as the gate teleportation, schematically shown in Fig. 4. We shall see later in this course that this
gate teleportation can be used to understand an alternative framework of quantum computation: the measurement-
based quantum computation [24].

C. Entanglement swapping

FIG. 5. Illustration of entanglement swapping.

Here we discuss the entanglement swapping [25], which is a direct application of quantum teleportation. The
consequence is that two particles that were not previously entanglement can be made to become entangled via Bell
measurement on their respective partner particles. From the point of view of teleportation, the entanglement between,
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e.g. A and B1, is teleported to that between A and C by the procedure of teleporting B1 to C (via the entangled pair
shared between B2 and C). That is, C inherits the prior entanglement of B1 with A.
As illustrated in Fig. 5, imagine that Alice and Bob share an entangled pair and Bob and Charlie share another

entangled pair. By performing the Bell-state measurement on Bob’s two particles, Bob ‘teleports’ his entanglement
with Alice to Charlie (or equivalently, Bob ‘teleports’ his entanglement with Charlie to Alice). This results in shared
entanglement between Alice and Charlie.

FIG. 6. Illustration of the DLCZ quantum repeater protocol [26]; figure taken from [27].

The entanglement swapping is the basic element to establish entanglement between distant nodes (such as the
Duan-Luken-Cirac-Zoller with atomic ensemble quantum memory [26]) if there are many entangled pairs shared along
a path of nodes. We will see this in a later unit on quantum communication.

D. Remote State Preparation

A Bell state, such as the singlet, has strong correlation, and measurement outcomes on two sides are correlated.
Using this strong quantum correlation and the collapse of wave function by measurement, it is possible to remotely
prepare a state [28] (plus some possible additional ‘flip’ on the particle whose state is remotely prepared). Let us
illustrate this with the singlet state

|Ψ−⟩ = 1√
2
(|01⟩ − |10⟩).

From its antisymmetry, we can see that for any single qubit state |ψ⟩ and its orthogonal state |ψ⊥⟩ we use them to
as a basis to rewrite the singlet state,

|Ψ−⟩ = eiθ
1√
2
(|ψ⟩ ⊗ |ψ⊥⟩ − |ψ⊥⟩ ⊗ |ψ⟩),

where eiθ is some global phase. If Alice performs measurement on her particle in the basis {ψ,ψ⊥}, with probability
1/2, she obtains ψ⊥ and thus prepares Bob’s state in |ψ⟩. Similarly with probability 1/2, Alice prepares Bob’s state
in |ψ⊥⟩. However, in the latter case, it is in general impossible for Bob to transform from in |ψ⊥⟩ to |ψ⟩, except for
those ‘equatorial states’,

|ψ⟩ = 1√
2
(|0⟩+ eiϕ|1⟩,

whose orthogonal counterpart is

|ψ⟩ = 1√
2
(|0⟩ − eiϕ|1⟩.

The operation to ‘flip’ in this case is Z. The notion of remote state preparation and the first pioneering work was
done by Bennett and collaborators.
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E. Superdense coding

FIG. 7. Illustration of superdense coding.

A classical bit can encode two different messages and when it is transmitted physically, at most one bit of information
can be transmitted. However, we will see that by sending a physical quantum bit, at most two bits of information
can be transmitted [29]. By now, you probably have the feeling and predict that it required pre-shared entanglement.
As illustrated in Fig. 7, Alice can send two bits of classical message to Bob by sending one physical qubit!

It is easy to understand how this is possible and the required math regards local convertibility among the four Bell
states, i.e., the conversion can be done on either side by applying an action corresponding to a Pauli matrix. For
convenience, we display the four Bell states below,

|Φ±⟩ ≡ 1√
2
(|00⟩ ± |11⟩), |Ψ±⟩ ≡ 1√

2
(|01⟩ ± |10⟩).

We give examples of how to convert them locally,

|Φ−⟩ = Z ⊗ I|Φ+⟩ = I ⊗ Z|Φ+⟩, |Ψ+⟩ = X ⊗ I|Φ+⟩ = I ⊗ Z|Φ+⟩, |Ψ−⟩ = −iY ⊗ I|Φ+⟩ = I ⊗ (iY )|Φ+⟩.

Alice performs one of the four operations σi=0,1,2,3 (note σ0 = I identity) on her particle and sends her particle to
Bob. Then Bob possesses both particles and if he knows the initial shared entanglement is |Φ+⟩, he can perform a
Bell measurement and infer what operation Alice has performed using the above equations of the local conversion.

The superdense coding was first performed by Mattle et al. ’96 using entangled photons. However, as we have
mentioned earlier, only two of the Bell states (|Ψ±⟩) can be distinguished and the other two |Φ±⟩ cannot be distin-
guished between themselves, we can encode at most three messages, i.e. log2(3) ≈ 1.585 bits of information. However,
using other degrees of photons, such as the orbital angular momentum, ‘hyper-entanglement’ can be used to achieve
encoding of 2 bits of information. This was proposed by Kwiat and collaborators and an experiment to demonstrate
this was carried out in Kwiat’s group.

F. Superdense teleportation

Here, I describe a protocol called superdense teleportation, which was carried out in a work that I was involved
with. This protocol was originally proposed by Herbert Bernstein and the experiment was performed by the group of
Paul Kwiat at the University of Illinois [30]. In this setup, Alice wants to send the following state (with phases ϕ’s
supplied by Charlie) to Bob,

|ψ⟩1 =
1√
d

d−1∑
j=0

eiϕj |j⟩, withϕ0 = 0,
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The shared entangled state between Alice and Bob is

|Φ⟩12 =
1√
d

d−1∑
j=0

|j, j⟩,

a d-level qutrit pair of entanglement, which you may have seen in the exercise of quantum teleportation. Charlie

applies the phase shift Uϕ =
∑d−1
j=0 e

iϕj |j⟩⟨j| to particle 1 (of Alice) and measure it in the basis (a Fourier basis)
defined by

|k̃⟩ = 1√
d

d−1∑
j=0

ei2πjk/d|j⟩.

Upon obtaining k̃, Alice projects Bob’s particle to the following state

⟨k̃|1|Uϕ ⊗ I|Φ⟩12 =
1√
d

d−1∑
j=0

eiϕj ⟨k̃|1 · |j, j⟩ =
1

d

∑
j

eiϕj−i2πjk/d|j⟩.

Alice informs Bob of outcome k, and Bob applies

Vk =

d−1∑
j=0

ei2πjk/d|j⟩⟨j|

to his particle to recover |ψ⟩. In the experiment, the degrees of freedom used are photons’ polarization and orbital
angular momentum.

[To add other topics such as quantum broadcasting....]

VI. CONCLUDING REMARKS

In this unit, we have discussed the CHSH-Bell inequality, PR Box, and violation of local realistic theory with
the GHZ state. These belong to the subfield in quantum foundation. This allows us to understand the difference
between classical local realistic theory, quantum mechanics, and general no-signalling theory. After those, we have
discussed early protocols of quantum information processing, such as quantum teleportation, entanglement swapping
and superdense coding, as well as gate teleportation and superdense teleporation.

It is a good time to check whether you have achieved the following Learning Outcomes:
After this Unit, (1) You’ll be able to understand what CHSH-Bell inequality is about. (2) You’ll be able to understand
basic and important procotols of information processing.

Units 1 and 2 give you a quick approach to the theoretical basics of quantum principles and quantum information
processing protocols. In the next unit, we will discuss a few physical systems used in realizing quantum bits and
quantum information processing tasks.

Suggested reading: N&C 2.3, 2.6; KLM chapter 5; Qb 3.1-3.5.

There are many topics that could not be included to the lectures. For example, the Kochen-Spekker theorem and
contexualtiy; see https://en.wikipedia.org/wiki/Kochen-Specker_theorem; the Mermin-Peres magic square, see
the Wikipedia page https://en.wikipedia.org/wiki/Quantum_pseudo-telepathy for further discussion; Hardy’s
nonlocality of two particles without inequalities [31] and nonlocality of a single photon [32], etc.
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