
Unit 12: Show me your phase, Mr. Unitary

Tzu-Chieh Wei
C. N. Yang Institute for Theoretical Physics and Department of Physics and Astronomy,

State University of New York at Stony Brook, Stony Brook, NY 11794-3840, USA
(Dated: September 25, 2024)

In this unit, we discuss quantum Fourier Transform, quantum phase estimation, Shor’s factoring
algorithm, and quantum linear system (such as the HHL algorithm).

Learning outcomes: You’ll be able to understand and apply one of the most important functions:
Quantum Fourier Transform and algorithms: Quantum Phase Estimation.

I. INTRODUCTION

Fourier transform and its discrete version are very useful tools in physics and engineers, these are defined as

Fourier transform and inverse : f̂(k) ≡
∫ ∞

−∞
dxf(x)ei2πxk, f(x) ≡

∫ ∞

−∞
dkf̂(k)e−i2πxk.

Discrete Fourier transform and inverse : f(x) −→ f̂(k) ≡ 1√
N

N−1∑
x=0

ei2πkx/Nf(x), f̂(k) −→ f(x) =
1√
N

N−1∑
k=0

e−i2πkx/N f̂(k).

In quantum computation, we expect that the latter can be naturally implemented as

|j⟩ −→ 1√
N

N−1∑
k=0

ei2πjk/N |k⟩,

where |j⟩ is an integer encoded in the binary representation |j = j1j2 . . . jn⟩, i.e., j =
∑n

q=1 jq 2
n−q, and we also

encode |k = k1k2 . . . kn⟩ similarly. (We note that readers may find different ordering in the IBM Qiskit, where their
most significant digit is labeled by jn−1 and the least significant digit is j0.) Therefore, the above discrete Quantum
Fourier Transform (QFT, not to be confused with quantum field theory) is written as

|j = j1j2 . . . jn⟩ −→
1

2n/2

2n−1∑
k=0

ei2πjk/2
n

|k = k1k2 . . . kn⟩.

Below, we shall see how to implement this with quantum circuits and how QFT can be useful in many quantum
algorithms.

II. QFT IN TERMS OF CIRCUITS

The explicit earliest construction of QFT was by Coppersmith [1].

FIG. 1. Illustration of a circuit to implement the quantum Fourier transform.

XII-2

FIG. 2. Illustration of the QFT and Bloch spheres.

|QFT(j)⟩ = 1

2n/2

∑
k′s={0,1}

ei2π
∑n

q,r=1 jq2
n−qkr2

n−r/2n |k = k1k2 . . . kn⟩,

which can be simplified as

|QFT(j)⟩ = 1

2n/2
⊗n

r=1

(∑
kr={0,1}

ei2π(
∑n

q=0 jqkr2
n−q−r)|kr⟩

)
,

which gives

1

2n/2
⊗n

r=1

(
|0⟩+ ei2π(

∑n
q=n−r+1 jq2

n−q−r)|1⟩
)
r
,

where in the exponent we can begin q at n− r+ 1 because for q <= n− r we have 2n−q−r ≥ 1 and thus the phase is
equivalent to 1. Moreover

∑n
q=n−r+1 jq2

n−q−r = 0.jn−r+1jn−r+2...jn. Thus, we conclude that

|QFT(j)⟩ = 1

2n/2
(|0⟩+ ei2π0.jn |1⟩)(|0⟩+ ei2π0.jn−1jn |1⟩) . . . (|0⟩+ ei2π0.j1...jn |1⟩).

Can this be implemented by elementary one- and two-qubit gates? The answer is yes. In the above, we see phases

of the form ei2π/2
q−r+1

and it is convenient to define a phase gate,

Rq−r+1 = R[q→r(q>r)] =

(
1 0

0 ei2π/2
q−r+1

)
,

and we will need a controlled version of the phase gate. The complete circuit is shown in Fig. 1. Even if you do not
fully understand the deriviation above, you can simply use the circuit diagram as how the input j = j1j2 . . . jn gets
mapped to the phases of the output qubits. It is interesting to note that the phase information is encoded in the
digits shifted stepwise as one progresses from one qubit to another. Furthermore, you may have noticed the swap (to
reverse the qubit ordering) at the end. Depending on specific applications, it may not be needed as one can adjust
the order accordingly. Alternatively, neighboring swaps can be implemented along the way to achieve the reversal of
the qubit ordering.

III. QFT AND BLOCH SPHERES AND AN APPLICATION ON ADDING INTEGERS

Given a product state as an input, the output of the QFT is also a product state, and therefore we can visualize
the output using Bloch spheres. We show the input spheres of |101⟩ and the output spheres of (|0⟩+ ei2π∗0.1012 |1⟩)⊗
(|0⟩+ ei2π∗0.012 |1⟩)⊗ (|0⟩+ ei2π∗0.12 |1⟩).
We note that Qiskit has opposite ordering to most other literatures, which we mentioned in an earlier lecture;

basically their qubits are arranged so that the most significant qubit (labelled e.g. qn−1) of n qubits is placed to the
left most position and the least significant qubit (labelled q0): |qn−1, qn−2, . . . , q1, q0⟩. However, in the circuit, the
top-most qubit is q0 and the bottom qubit is qn−1. The difference is illustrated in Fig. 3.

Application: adding two integers. Suppose we have to integers j and p to add. What we can do is first perform
on QFT on |j⟩ → |j̃⟩ ≡ QFT|j⟩ (e.g. without using the final swap). Then the bits’ information of j gets transformed
to phases of the qubits. To add p, we can apply phase gates to all qubits, depending on the value of p, e.g. the
first qubit will be multiplied by a phase ei2π0.p0p1...pn to |1⟩; the second qubit by ei2π0.p1...pn , etc. After this we can
perform iQFT, then the qubits represent |j + p⟩ (if there are sufficient number of qubits to encode the integer and
there is no overflow).

XII-3

FIG. 3. Illustration of the difference between Qiskit’s convention and other literature.

IV. QUANTUM PHASE ESTIMATION (QPE)

When one examines the output of the QFT, one notices that by inverting the QFT, the particular phase encoding
results in the binary string j1j2 . . . jn. Suppose that for some problem, we were able to create n qubits in the particular
state identical to the output of the QFT, then by inverting the QFT, one can read out the phase information. This is
the idea of quantum phase estimation (QPE) [2–4]. How we get can the desired ‘QFT’ state? The first qubit (after

the final swap) has the phase e2πi0.jn = e2πj∗2
n−1/2n and the last one has e2πj2

0/2n .
Assume that we have a unitary U (e.g. it can be the time evolution e−iHt) which has an eigenstate |u⟩ with

eigenvalue bing ei2πϕ, where ϕ = 0.ϕ1ϕ2 . . . ϕn Let us consider that it is exactly n-digit, i.e. ϕ = 0.ϕ1ϕ2 . . . ϕn.

Then the phase e2πiϕ∗2
n−1

can be obtained by U2n−1 |u⟩ and the other is by U |u⟩. The inverse QFT (iQFT) will give
us the digits of ϕ. The phase encoding circuit is shown in Fig. 4, where we use t qubits to encode the phase. There we
do not assume that ϕ has exactly t digits and it can be arbitrary. We can write the circuit in the following expression,

2t−1∑
τ=0

|τ⟩⟨τ | ⊗ Uτ =
∑
τ

|τ⟩⟨τ | ⊗ e−iHτ ,

which is a conditional ‘evolution’, whose time is controlled by the ancillary qubits.

FIG. 4. Illustration of the phase encoding.

If ϕ does not have exactly t bits, then the iQFT can give us wrong results. The phase state after iQFT becomes

iQFT : |ϕ⟩ = 1

2t/2
(
|0⟩+e2πi0.ϕtϕt+1···|1⟩

)(
|0⟩+e2πi0.ϕt−1ϕt···|1⟩

)
· · ·
(
|0⟩+e2πi0.ϕ1ϕ2···|1⟩

)
→ |ϕ̃⟩ =

∑
j

[1
2t

∑
k

e2πik(ϕ−j/2t)
]

︸ ︷︷ ︸
αj

|j⟩.

The probability of measuring j is pj = |αj |2. Naively, it should be peaked around the t-bit approximation of ϕ. This
is illustrated in Fig. 5, where we have ϕ = 0.00011000110000101110012 in binary or equally 0.09672375900870810 in

XII-4

FIG. 5. Illustration of the probability in getting measurement outcomes and the analysis.

demical and t = 4. Thus 24ϕ = 1.1000110000101110012, two of the best probable outcomes are (a) 00012 (prob=
0.331695) and (b) 00102 (prob= 0.48531).

We will not perform the detailed analysis here but refer the readers to the book by Nielsen and Chuang [5]. If one
sets the probability of success to be ≥ 1− ϵ then with t bits of encoding, the measured phase bits are only accurate
to the first nq bits, where

nq = t− log2

(
2 +

1

2ϵ

)
.

Example: QPE on S gate. Let us consider a simple example of S gate,

S =

(
1 0
0 eiπ/2

)
,

which has two eigenvalues of the form ei2πϕ, with ϕ = 0 and ϕ = 1/4 = 0.012 and eigenstates |0⟩ and |1⟩, respectively.
Given that the phases can be represented exactly with t = 2 qubits and the S gate acts on a single qubit, we will
consider a total of 3 qubits. This example is illustrated in Fig. 6.

The |0⟩ eigenstate is associated with a trivial phase and the |1⟩ is associated with a nontrivial phase; the |1⟩ is
prepared by applying X to |0⟩. In order to prepare the phase state, we need to implement controlled version of S
gate and its power (square in this case): C − S and C − S2 = CZ. The final part of the circuit is the iQFT that
reads out the bits of the phase (over 2π to be more precise). Since in this case a two-qubit iQFT is needed, the only
two-qubit gate is CR−1

2
= C − S−1. The single qubits needed are all Hadamard gates H. We can run this on Qiskit

Qasm simulators or real devices; we recommend the readers to try themselves.
We display an example code for the |1⟩ eigenstate case:

q = QuantumRegister(3)

c = ClassicalRegister(2)

qc = QuantumCircuit(q, c)

initialize |+> and |+>, |1>

qc.h(q[0])

qc.h(q[1])

qc.x(q[2])

circuit to generate the phase (of S operator) on qubit 1

qc.cu1(np.pi/2,q[1],q[2])

circuit to generate the phase (of S operator) on qubit 0

qc.cz(q[0],q[2])

qc.barrier()

inverse Quantum Fourier Transform is the Hadamard gate

qc.h(q[0])

XII-5

FIG. 6. Illustration of the QPE for the S gate.

qc.cu1(-np.pi/2,q[0],q[1])

qc.h(q[1])

measure qubit 0 & 1

qc.measure([0,1],[0,1])

Given the importance of QFT, it is already implemented in Qiskit and you import it in Python as follows,

from qiskit.circuit.library import QFT

from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister

qr_data=QuantumRegister(3)

qc=QuantumCircuit(qr_data)

qft=QFT(num_qubits=3, approximation_degree=0, do_swaps=False, inverse=False, insert_barriers=False,

name=’Qft’).decompose()

qc.append(qft,qr_data)

qc.decompose().draw(’mpl’)

The above code is used to generate one of the circuits (top right panel) in Fig. 3.

V. SEMICLASSICAL QFT

If QFT or iQFT is the last step, then controlled phase gates can be replaced by 0/1 measurement followed by
classical controlled phase gates, which was proposed by Niu and Griffiths, PRL ‘96 [6]. This can be easily seen from
Fig. 1, and let us omit the swap and consider the iQFT by reversing (and changing all the signs of the phase angles)
to read out jn, jn−1, etc. But one can use the classically controlled gates to replace all controlled phase gates. It can
be as follows. One first measures qubit n and obtains a value jn and all the reversed controlled phase gates controlled
by this qubit become classically controlled phase gates (depending on whether the outcome is 1 or not). Then one
measures (n− 1)-th qubit to read out jn−1 and replaces all controlled-phase gates by the classically controlled ones.
By continuing this until qubit 1, we can read out j1.

VI. APPLICATION: APPROXIMATE PROJECTION TO EIGENSTATES

When we discuss the QPE, we assume that the input register is an eigenstate |u⟩, but in general we may not have
the eigenstate and have a superposition, instead. The QPE (via iQFT) can approximately project the system to
some eigenstate: |ψ⟩ =

∑
i ai|ui⟩, i.e. project to approximately |ui⟩ with probability approximately |ai|2. We use

‘approximately’ because the phase in general is not exactly represented by the finite number of qubits and QPE is
done approximately.

XII-6

VII. KITAEV ITERATIVE QPE AND OTHER ITERATIVE SCHEMES

Kitaev iterative QPE. Kitaev describes in his textbook an approach of QPE using one ancillary qubit at a time
(in sequence). The idea of the diagram is shown here

where we also insert the S in the red-dashed box and the unitary U can be raised to a power of 2j−1. Without S, this
Hadamard-like test gives p0 − p1 = cos(2πϕ2j−1) and with S, it gives sin(2πϕ2j−1). Note that if Ua|y⟩ = |aymodN⟩,
then (Ua)

p = Uap = U(apmodN), so its exponential can be simplified. Basically, by knowing the cosine and sine of
0.ϕjϕj+1 . . . (for j = 1 to n) precisely enough (by repeating experiments) then we can dedude ϕ to certain accuracy.

Other iterative QPE. Another iterative one is given by the following picture,

In some sense, this iterative quantum phase estimation [Dobsicek, Johansson, Shumeiko, Wendin, PRA ‘07] can be
regarded as based on the semi-classical inverse QFT. One proceeds by reading out the most significant digit (with
certain probability of success) ϕn (from the phase 0.ϕn) and using this result to read out ϕn−1 from 0.ϕn−1ϕn by first
cancelling out ϕn before reading out ϕn−1 by the Hadamard gate. One continues this until ϕ0 is read out.

VIII. APPLICATION: SHOR’S FACTORING ALGORITHM

In this section, we will discuss Shor’s factoring algorithm. To explain it we find it useful to first the period finding
and the particular problem is the modular exponentiation.

Period finding in the modular exponentiation. Given positive integers x and N (x < N) with no common
factors, the period finding problem is find the least integer r such that

xr = 1 (modN).

We will define an unitary operator that implements the modular exponentiation,{
U |y⟩ ≡ |xy (modN)⟩, for y ∈ {0, 1}L, and y < N ;
U |y⟩ ≡ |y⟩, forN ≤ y < 2L.

It can be verified by direct substituion that the eigenstates of U are of the following form (labeled by the interger
s ∈ [0, r − 1])

|us⟩ ≡
1√
r

r−1∑
k=0

e
−2πisk

r |xkmodN⟩, U |us⟩ = e
2πis

r |us⟩.

From a previous section of the QPE, we can estimate the phase, or in particular s/r to certain accuracy (using a
sufficient number of qubits to encode the fraction).

However, we have a problem here, as we cannot create the eigenstate. Luckily, we can create a certain superposition
of all the eigenstates,

|‘1′⟩ = 1√
r

r−1∑
s=0

|us⟩,

XII-7

which is the binary representation of 1 = 00 . . . 012 that can be easily prepared. Then the QPE procedure outputs
randomly an approximation of si/r, with different si’s each time we carry out the QPE. We leave the details of how
to employ the ‘continued fraction’ method to find si to the book by Nielsen & Chuang [5].
We aim to achieve the accuracy to 2L+ 1 bits so that 2−2L−1 < 1/(2r2) and thus need to take

t = 2L+ 1 + log2

(
2 +

1

2ϵ

)
.

With the above accuracy we can deduce a ‘r’ and check whether it’s a correct answer (repeat if necessary). Note that
there is an improved error analysis by Chapell et al. [7].

Shor’s factoring algorithm. Can we factorize the following number?

N = 18070820886874048059516561644059055662781025167694013491701270214

50056662540244048387341127590812303371781887966563182013214880557.

It is known that primality test is polynomial time, so it is relatively easy to check that the above number is not
a prime number. But to factorize it using current classical computers will take almost an exponential time in the
number digits. However, Shor’s quantum algorithm takes in principle a time cubic in the number of digits, making
factorization a relatively simple task for quantum computers.

Let us now explain this algorithm. We can define a function that we discuss earlier,

Fx,N (a) := xamodN,

and we can find the period r using the QPE so that xr ≡ 1. With this we can explain the method behind Shor’s
algorithm. An important fact to notice is that if gcd(x,N) = 1 and that the period r of Fx,N (a) is even, we have

(xr/2 + 1)(xr/2 − 1) = xr − 1 = 0 (modN).

This means that (xr/2 + 1)(xr/2 − 1) is divisible by N and either of (xr/2 ± 1) has a nonzero common factor with N .
Example. For N = 15, we can choose x ∈ X = {2, 4, 7, 8, 11, 13, 14} and the corresponding periods are r ∈ R =

{4, 2, 4, 4, 2, 4, 2}. If we take x = 11, z = xr/2 = 11, then we find that gcd(11 + 1, 15) = 3 and gcd(11 − 1, 15) = 5,
thus we have the factorization 15 = 3× 5.
Shor’s algorithm is thus using quantum computers to find the period r. We will not analyze the success probability

(see Nielsen & Chuang); it suffices to note that it is finite and by repeating the procedure a few times, one can find a
factor with a high probability.

By the way the two factors of the above number are

a = 39685999459597454290161126162883786067576449112810064832555157243

b = 45534498646735972188403686897274408864356301263205069600999044599.

You can easily check that these are two factors by multiplying them together to see if the result agrees with the above
number, i.e. whether N = a× b. This also illustrates that factoring is a problem in NP, where it may not be easy to
find the answers, but given the answers, it is easy to check.

Update. In 2023, Oded Regev proposed another quantum algorithm to perform factoring [8], which turns out to be
faster than Shor’s algorithm, i.e., with gate complexity O(n3/2) (running

√
n + 4 times), where n is the number of

bits of the integer.

IX. APPLICATION: DISCRETE LOGARITHM

The goal of the discrete logarithm is: for two positive integers a and b we need to find the positive integer s such
that

b = as modN.

We can define a two-argument function,

f(x1, x2) = asx1+x2 modN.

XII-8

It is obvious that the function has the following (periodic) property,

f(x1 + q, x2 − q s) = f(x1, x2).

This means that the problem can be solved efficiently by a quantum algorithm [9] using both the phase estima-
tion/order or period finding that we have learned above. Its double-argument Fourier transform (in range [0, r − 1])
is

|f̂(q1, q2)⟩ =
1

r
√
r

r−1∑
x1=0

r−1∑
x2=0

e−2πi(q1x1+q2x2)/r|f(x1, x2)⟩.

We thus have

|f̂(q1, q2)⟩
requires
===
proof

{
1√
r

∑r−1
j=0 e

−2πiq2j/r|f(0, j)⟩, if q1 − sq2 multiple of r

0 otherwise

We can use two quantum registers, both with enough number of qubits, to perform phase encoding and then iQFT
to read out the two periods sl/r and l/r to deduce s.

X. APPLICATION: QUANTUM LINEAR SYSTEM ALGORITHM (A.K.A. HHL ALGORITHM)

The idea is to the solve following linear equation by a quantum computer,

Ax⃗ = b, x⃗ = A−1b,

which was considered by Harrow, Hassidim, Lloyd in a PRL paper in 2008 (hence the name HHL algorithm) [10].
There have also been a few improvements on the original scheme.

For simplicity, we assume A is an N ×N Hermitian matrix and

A|uj⟩ = λj |uj⟩.

The idea is to obtain the inverse, for each eigenspace (with nonzero eigenvalue λj ̸= 0), we want λ−1
j . We encode the

vector b as

|b⟩ =
N∑
i=1

bi|i⟩ =
N∑
j=1

βj |uj⟩.

First, we prepare a state

|Ψ0⟩ =
1√
T

T∑
τ=0

|τ⟩ ⊗ |b⟩ = |all τ⟩ ⊗
N∑
j=1

βj |uj⟩.

Similar to what we have discussed in the phase encoding above, we define

c−A ≡
∑
τ

|τ⟩⟨τ | ⊗ eiAt0τ .

We apply this to |Ψ0⟩,

|Ψ0⟩ → |Ψ1⟩ =
1√
T

T∑
τ=0

|τ⟩ ⊗
N∑
j=1

βje
iλjt0τ |uj⟩.

Then we apply the inverse QFT to first register for phase estimation,

|Ψ1⟩ → |Ψ2⟩ =
∑
j

βj |λ̃j⟩ ⊗ |uj⟩.

XII-9

Next, how to apply the inverse of A? specifically we do we divide in the above each term by λj ? If we could, then∑
j

βj/λj |λ̃j⟩ ⊗ |uj⟩
undoQPE−−−−−−→ |all τ⟩ ⊗

∑
j

βj/λj |uj⟩?

Unfortunately, the application of inverse cannot be done with unit probability. We attach an ancillary qubit in |0⟩,
then apply a U gate controlled by the first register:

∑
j

βj |λ̃j⟩ ⊗ |uj⟩ ⊗ |0⟩ →
∑
j

βj |λ̃j⟩ ⊗ |uj⟩ ⊗

(√
1− C2

λ2j
|0⟩+ C

λj
|1⟩

)
.

The we undo the QPE and arrive at

|all τ⟩ ⊗
∑
j

βj |uj⟩ ⊗

(√
1− C2

λ2j
|0⟩+ C

λj
|1⟩

)
.

The inversion is successful only when the ancilla measurement gives 1. Note that in the above, the constant C needs
to be chosen so that λj < C for all j. In the case of success, we obtain

|all τ⟩ ⊗
∑
j

βj
C

λj
|uj⟩ ⊗ |1⟩ = |all τ⟩ ⊗A−1|b⟩ ⊗ |1⟩.

Note that despite that the solution |x⃗⟩ is obtained in a quantum, a key question is whether such a form of solution
leads to any practical speedup? There have been discussions on this and further improvements to the HHL algorithm.

A. Variational approach for quantum linear systems

to add later ...

XI. CONCLUDING REMARKS

In this unit, we have discussed quantum Fourier Transform, quantum phase estimation, Shor’s factoring algorithm,
and quantum linear system (such as the HHL algorithm).

Learning outcomes: It is a good time to check whether you have achieved the following Learning Outcomes:
After this Unit, You’ll be able to understand and apply one of the most important functions: Quantum Fourier
Transform and algorithms: Quantum Phase Estimation.

Suggested reading: N&C chap 5, 6.3; KLM chapter 7, 8.4; Qb chap 3.8, 3.9, 3.11.

[1] D. Coppersmith, An approximate fourier transform useful in quantum factoring, arXiv preprint quant-ph/0201067 (2002).
[2] A. Y. Kitaev, Quantum measurements and the abelian stabilizer problem, arXiv preprint quant-ph/9511026 (1995).
[3] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Quantum algorithms revisited, Proceedings of the Royal Society of

London. Series A: Mathematical, Physical and Engineering Sciences 454, 339 (1998).
[4] D. S. Abrams and S. Lloyd, Quantum algorithm providing exponential speed increase for finding eigenvalues and eigen-

vectors, Phys. Rev. Lett. 83, 5162 (1999).
[5] M. A. Nielsen and I. Chuang, Quantum computation and quantum information (2002).
[6] R. B. Griffiths and C.-S. Niu, Semiclassical fourier transform for quantum computation, Physical Review Letters 76, 3228

(1996).
[7] J. M. Chappell, M. A. Lohe, L. Von Smekal, A. Iqbal, and D. Abbott, A precise error bound for quantum phase estimation,

Plos one 6, e19663 (2011).
[8] O. Regev, An efficient quantum factoring algorithm, arXiv preprint arXiv:2308.06572 (2023).
[9] P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceedings 35th annual symposium

on foundations of computer science (Ieee, 1994) pp. 124–134.
[10] A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev. Lett. 103,

150502 (2009).

https://doi.org/10.1103/PhysRevLett.83.5162
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1103/PhysRevLett.103.150502

	Unit 12: Show me your phase, Mr. Unitary
	Abstract
	Introduction
	QFT in terms of circuits
	QFT and Bloch spheres and an application on adding integers
	Quantum phase estimation (QPE)
	Semiclassical QFT
	Application: approximate projection to eigenstates
	Kitaev iterative QPE and other iterative schemes
	Application: Shor's factoring algorithm
	Application: discrete logarithm
	Application: quantum linear system algorithm (a.k.a. HHL algorithm)
	Variational approach for quantum linear systems

	Concluding remarks
	References

