last updated: Sep. 2024

ORCID record

Publication in terms of different categories

__Peer-Reviewed Papers & arXiv__

122. "Subspace-thermal discrete time crystals from phase transitions between different n-tuple discrete time crystals, " Hongye Yu and Tzu-Chieh Wei, arXiv:2409.02848

121. "Quantum Machine Learning Architecture Search via Deep Reinforcement Learning," Xin Dai, Tzu-Chieh Wei, Shinjae Yoo, and Samuel Yen-Chi Chen, arxiv:2407.20147

120. "Improved Quantum Power Method and Numerical Integration Using Quantum Singular Value Transformation," Nhat A. Nghiem, Hiroki Sukeno, Shuyu Zhang, and Tzu-Chieh Wei, arXiv:2407.11744

119. "Constant-depth preparation of matrix product states with adaptive quantum circuits," Kevin C. Smith, Abid Khan, Bryan K. Clark, S.M. Girvin, and Tzu-Chieh Wei, PRX Quantum 5,030344 (2024); also in arXiv:2404.16083

See also Physics: Preparing Entangled States Efficiently

118. "Quantum Algorithm For Solving Nonlinear Algebraic Equations," Nhat A. Nghiem and Tzu-Chieh Wei, arXiv:2404.03810

117. "Bulk and boundary entanglement transitions in the projective gauge-Higgs model," Hiroki Sukeno, Kazuki Ikeda, and Tzu-Chieh Wei, arXiv:2402.11738

116. "Kennedy-Tasaki transformation and non-invertible symmetry in lattice models beyond one dimension," Aswin Parayil Mana, Yabo Li, Hiroki Sukeno, and Tzu-Chieh Wei, Physical Review B 109, 245129 (2024), also in arXiv:2402.09520

115. "Feedback-based Quantum Algorithm Inspired by Counterdiabatic Driving," Rajesh K. Malla, Hiroki Sukeno, Hongye Yu, Tzu-Chieh Wei, Andreas Weichselbaum, and Robert M. Konik, arXiv:2401.15303

114. "Improved Quantum Algorithms for Eigenvalues Finding and Gradient Descent," Nhat A. Nghiem and Tzu-Chieh Wei, arXiv:2312.14786

113. "Efficient separate quantification of state preparation errors and measurement errors on quantum computers and their mitigation," Hongye Yu and Tzu-Chieh Wei, arXiv:2310.18881

112. "Measuring Topological Field Theories: Lattice Models and Field-Theoretic Description," Yabo Li, Mikhail Litvinov, and Tzu-Chieh Wei, arXiv:2310.17740

111. "Detecting Multipartite Entanglement Patterns using Single Particle Green's Functions," Rajesh K. Malla, Andreas Weichselbaum, Tzu-Chieh Wei, Robert M. Konik, arXiv:2310.05870

110. “A universal variational quantum eigensolver for non-Hermitian systems,” Huanfeng Zhao, Peng Zhang, and Tzu-Chieh Wei, Scientific Reports volume 13, Article number: 22313 (2023)

109. "Quantum Algorithm for Estimating Betti Numbers Using a Cohomology Approach," Nhat A. Nghiem, Xianfeng David Gu, and Tzu-Chieh Wei, arXiv:2309.10800 (2023)

108. "An improved method for quantum matrix multiplication," Nhat A. Nghiem and Tzu-Chieh Wei, Quantum Information Processing volume 22, Article number: 299 (2023)

107. "Quantum simulation of lattice gauge theories via deterministic duality transformations assisted by measurements," Hiroki Sukeno and Tzu-Chieh Wei, Phys. Rev. A 109, 042611 (2024) , also at arXiv:2305.12277

106. "Tensor Network Methods for Extracting CFT Data from Fixed-Point Tensors and Defect Coarse Graining," Wenhan Guo and Tzu-Chieh Wei, Phys. Rev. E 109, 034111 (2024), also in arXiv:2305.09899

105. "Symmetry-enriched topological order from partially gauging symmetry-protected topologically ordered states assisted by measurements," Yabo Li, Hiroki Sukeno, and Aswin Parayil Mana, Hendrik Poulsen Natrup, and Tzu-Chieh Wei, Phys. Rev. B 108, 115144 (2023), also in arXiv:2305.09747

104. "Learning marginals suffices!" Nengkun Yu and Tzu-Chieh Wei, arXiv:2303.08938

103. "Broadcasting single-qubit and multi-qubit-entangled states: authentication, cryptography, and distributed quantum computation,"

Hiroki Sukeno, Tzu-Chieh Wei, Mark Hillery, Janos A. Bergou, Dov Fields, Vladimir S. Malinovsky, Phys. Rev. A 107, 062605 (2023), also at arXiv:2303.00856

102. "Quantum Algorithm For Estimating Largest Eigenvalues," Nhat A. Nghiem and Tzu-Chieh Wei, Physics Letter A 488, 129138 (2023), also at arXiv:2211.06179

101. "Constant-time Quantum Algorithm for Homology Detection in Closed Curves," Nhat A. Nghiem, Xianfeng David Gu, and Tzu-Chieh Wei, SciPost Phys. 15, 049 (2023), also in arXiv:2209.12298

100. "Quantum State Transfer: Interplay between Gate and Readout Errors," Bharath Thotakura and Tzu-Chieh Wei, Quantum Information Processing 22, Article number: 275 (2023), also at arXiv:2209.07021

99. "Universal Measurement-Based Quantum Computation in a One-Dimensional Architecture Enabled by Dual-Unitary Circuits," David Stephen, Wen-Wei Ho, Tzu-Chieh Wei, Robert Raussendorf, and Ruben Verresen, Physical Review Letters 132, 250601(2024) also in arXiv:2209.06191

98. " Employing Interacting Qubits for Distributed Microgrid Control," Pouya Babahajiani, Peng Zhang, Tzu-Chieh Wei, Ji Liu, Xiaonan Lu, in IEEE Transactions on Power Systems, 2022, doi: 10.1109/TPWRS.2022.3196608

97. "Quantum computing in power systems," Yifan Zhou, Zefan Tang, Nima Nikmehr, Pouya Babbhajiani, Fei Feng, Tzu-Chieh Wei, Honghao Zeng, and Peng Zhang, in iEnergy, doi: 10.23919/IEN.2022.0021(2022)

96. "Simulating large-size quantum spin chains on cloud-based superconducting quantum computers," Hongye Yu, Yusheng Zhao and Tzu-Chieh Wei, Phys. Rev. Research 5, 013183 (2023). also in http://arxiv.org/abs/2207.09994

95. "Broadcast of a restricted set of qubit and qutrit states,"

Mark Hillery, János A. Bergou, Tzu-Chieh Wei, Siddhartha Santra, and Vladimir Malinovsky,

Phys. Rev. A 105, 042611 (2022)

94. "Some aspects of Affleck-Kennedy-Lieb-Tasaki models: tensor network, physical properties, spectral gap, deformation, and quantum computation," Tzu-Chieh Wei, Robert Raussendorf and, Ian Affleck, in: Bayat, A., Bose, S., Johannesson, H. (eds) Entanglement in Spin Chains. Quantum Science and Technology. pp89-125. Springer, Cham. https://doi.org/10.1007/978-3-031-03998-0_5, also in arXiv:2201.09307

93. "Two-particle States in One-dimensional Coupled Bose-Hubbard Models," Yabo Li, Dominik Schneble, and Tzu-Chieh Wei, Phys. Rev. A 105, 053310 (2022) also in arXvi:2201.05536

92. "Geometric quantum adiabatic methods for quantum chemistry," Hongye Yu, Deyu Lu, Qin Wu, and Tzu-Chieh Wei, Phys. Rev. Research 4, 033045 (2022) also in arXiv:2112.15186

91. "Topological invariants beyond symmetry indicators: Boundary diagnostics for twofold rotationally symmetric superconductors," Yanzhu Chen, Sheng-Jie Huang, Yi-Ting Hsu, and Tzu-Chieh Wei, Physical Review B 105, 094518 (2022); also in arXiv:2109.06959

90. "Application of Quantum Machine Learning using the Quantum Kernel Algorithm on High Energy Physics Analysis at the LHC," Sau Lan Wu, Shaojun Sun, Wen Guan, Chen Zhou, Jay Chan, Chi Lung Cheng, Tuan Pham, Yan Qian, Alex Zeng Wang, Rui Zhang, Miron Livny, Jennifer Glick, Panagiotis Kl. Barkoutsos, Stefan Woerner, Ivano Tavernelli, Federico Carminati, Alberto Di Meglio, Andy C. Y. Li, Joseph Lykken, Panagiotis Spentzouris, Samuel Yen-Chi Chen, Shinjae Yoo, Tzu-Chieh Wei, Phys. Rev. Research 3, 033221 (2021); also in arXiv:2104.05059

89. "Hybrid Quantum-Classical Graph Convolutional Network," Sam Yen-Chi Chen, Tzu-Chieh Wei, Chao Zhang, Haiwang Yu, and Shinjae Yoo, arXiv:2101.06189

88. "Quantum Convolutional Neural Networks for High Energy Physics Data Analysis," Sam Yen-Chi Chen, Tzu-Chieh Wei, Chao Zhang, Haiwang Yu, and Shinjae Yoo, Phys. Rev. Research 4, 013231 (2022) also in arXiv:2012.12177

87. "Application of Quantum Machine Learning using the Quantum Variational Classifier Method to High Energy Physics Analysis at the LHC on IBM Quantum Computer Simulator and Hardware with 10 qubits," Sau Lan Wu, Jay Chan, Wen Guan, Shaojun Sun, Alex Wang, Chen Zhou, Miron Livny, Federico Carminati, Alberto Di Meglio, Andy C. Y. Li, Joseph Lykken, Panagiotis Spentzouris, Samuel Yen-Chi Chen, Shinjae Yoo, Tzu-Chieh Wei, Journal of Physics G: Nuclear and Particle Physics 48, 125003 (2021); also in arXiv: 2012.11560

86. "Seeking a many-body mobility edge with matrix product states in a quasiperiodic model," Nicholas Pomata, Sriram Ganeshan, and Tzu-Chieh Wei, Phys. Rev. B 108, 094201 (2023), also in arXiv:2012.09853

85. "Unified framework for quantum classification," Nhat A. Nghiem, Samuel Yen-Chi Chen, and Tzu-Chieh Wei, Phys. Rev. Research 3, 033056 (2021) and arXiv:2010.13186

84. "Unsupervised learning of topological phase transitions using Calinski-Harabaz index," Jielin Wang, Wanzhou Zhang, Tian Hua, and Tzu-Chieh Wei, Phys. Rev. Research 3, 013074 (2021), also in arXiv:2010.06136

83. "Nonzero spectral gap in several uniformly spin-2 and hybrid spin-1 and spin-2 AKLT models," Wenhan Guo, Nicholas Pomata and Tzu-Chieh Wei, Phys. Rev. Research 3, 013255 (2021), also in arXiv:2010.03137

82. "Quantum Zeno approach for molecular energies with maximum commuting initial Hamiltonians," Hongye Yu and Tzu-Chieh Wei, Physical Review Research 3, 013104 (2021), also in arXiv:2006.01066

81. "Measurement-Based Quantum Computation," in Oxford Research Encyclopedia of Physics. Ed. Brian Foster. New York: Oxford University Press, March 2021 (pre-published version)

80. "Demonstrating the Affleck-Kennedy-Lieb-Tasaki spectral gap on 2D degree-3 lattices," Nicholas Pomata and Tzu-Chieh Wei, Phys. Rev. Lett. 124, 177203 (2020), also in arXiv:1911.01410

79. "AKLT models on decorated square lattices are gapped", Nicholas Pomata and Tzu-Chieh Wei, Phys. Rev. B 100, 094429 (2019), also in arXiv:1905.01275

78. "Detector Tomography on IBM Quantum Computers and Mitigation of Imperfect Measurement," Yanzhu Chen, Maziar Farahzad, Shinjae Yoo, and Tzu-Chieh Wei, Phys. Rev. A 100, 052315 (2019) also arXiv:1904.11935

77. "Quantum algorithm for spectral projection by measuring an ancilla iteratively," Yanzhu Chen and Tzu-Chieh Wei, Phys. Rev. A 101, 032339 (2020) and arXiv:1903.11999

One picture was selected in PRA's Kaleidoscope

76. "Global and short-range entanglement properties in excited, many-body localized spin chains," Colin G. West and Tzu-Chieh Wei, arXiv:1809.04689

75. "Unwinding Short-Range Entanglement," Abhishodh Prakash, Junven Wang, and Tzu-Chieh Wei, Phys. Rev. B 98, 125108 (2018), also at arXiv:1804.11236

74. "Machine learning of phase transitions in the percolation and XY models," Wanzhou Zhang, Jiayu Liu, and Tzu-Chieh Wei, Phys. Rev. E 99, 032142 (2019) also in arXiv:1804.02709

73. "Universal quantum computing using (Z_d)^3 symmetry-protected topologically ordered states," Yanzhu Chen, Abhishodh Prakash, and Tzu-Chieh Wei, Phys. Rev. A 97, 022305 (2018) also at arXiv:1711.00094

72. "Phase transitions of a 2D deformed-AKLT model," Nicholas Pomata and Ching-Yu Huang, and Tzu-Chieh Wei, Phys. Rev. B 98, 014432 (2018) also at arXiv:1711.00036

71. "Quantum spin systems for measurement-based quantum computation," Tzu-Chieh Wei, invited review article in Advances in Physics X 3:1, DOI: 10.1080/23746149.2018.1461026

70. "Eigenstate phases with finite on-site non-Abelian symmetry," Abhishodh Prakash, Sriram Ganeshan, Lukasz Fidkowski, and Tzu-Chieh Wei, Phys. Rev. B 96, 165136 (2017), also at arXiv:1706.06062

69. "Universal measurement-based quantum computation in two-dimensional SPT phases," Tzu-Chieh Wei and Ching-Yu Huang, Phys. Rev. A 96, 032317 (2017), also arXiv:1705.06833

68. "Geometric Entanglement and Quantum Phase Transition in Generalized Cluster-XY models," Aydin Deger and Tzu-Chieh Wei, Quantum Inf Process 18: 326 (2019), https://doi.org/10.1007/s11128-019-2439-7, also in arXiv:1702.01800

67. "Holographic encoding of universality in corner spectra," Ching-Yu Huang, Tzu-Chieh Wei and Roman Orus, Phys. Rev. B 95, 195170 (2017) also at arXiv:1702.01598

66. "Computational power of symmetry protected topological phases," David T. Stephen, Dong-Sheng Wang, Abhishodh Prakash, Tzu-Chieh Wei, and Robert Raussendorf, Phys. Rev. Lett. 119, 010504 (2017), also at arXiv:1611.08053

65. “Symmetry-protected topological phases with uniform computational power in one dimension,” Robert Raussendorf, Dongsheng Wang, Abhishodh Prakash, Tzu-Chieh Wei, and David Stephen, Phys. Rev. A 96, 012302 (2017), also at arXiv:1609.07549

64. “Emergence of the XY-like phase in the deformed spin-3/2 AKLT systems,” Ching-Yu Huang, Maximilian Anton Wagner, and Tzu-Chieh Wei, Phys. Rev. B 94, 165130 (2016), also in arXiv:1605.08417

63. “Detection of gapped phases of a 1D spin chain with onsite and spatial symmetries,” Abhishodh Prakash, Colin G. West, and Tzu-Chieh Wei, Phys. Rev. B 94, 045136 (2016), also in arXiv: 1604.00037

62 "Detecting and identifying 2D symmetry-protected topological, symmetry-breaking and intrinsic topological phases with modular matrices via tensor-network methods," Ching-Yu Huang and Tzu-Chieh Wei, Phys. Rev. B 93, 155163 (2016) and arXiv:1512.07842

61 “Symmetry-protected topologically ordered states for universal quantum computation,” Hendrik Poulsen Nautrup and Tzu-Chieh Wei, Phys. Rev. A 92, 052309 (2015) and arXiv:1509.02947

60. “Hamiltonian quantum computer in one dimension,” Tzu-Chieh Wei and John C. Liang, Phys. Rev. A 92, 062334 (2015), also at

arXiv:1512.06775.

59. “Density of Yang-Lee zeros in the thermodynamic limit from tensor network methods,” Artur Garcia-Saez and Tzu-Chieh Wei, Phys. Rev. B 92, 125132 (2015)

58. “SuperDense teleportation using hyperentangled photons,” Trent M. Graham, Herbert J. Bernstein, Tzu-Chieh Wei, Marius Junge, Paul G. Kwiat, Nature Communications 6, 7185 (2015)

57. "Efficient evaluation of high-order moments and cumulants in tensor network states,"

Colin West, Artur Garcia-Saez, and Tzu-Chieh Wei, Phys. Rev. B 92, 115103 (2015)

56. "Transition of a Z3 topologically ordered phase to trivial and critical phases,"

Ching-Yu Huang and Tzu-Chieh Wei, Phys. Rev. B 92, 085405 (2015)

55. "Universal measurement-based quantum computation with spin-2 Affleck-Kennedy-Lieb-Tasaki states,"

Tzu-Chieh Wei and Robert Raussendorf, Phys. Rev A 92, 012310 (2015)

54. "Ground-state forms of 1D symmetry-protected topological phases and their utility as resource states for measurement-based quantum computation,"

Abhishodh Prakash and Tzu-Chieh Wei, Phys. Rev. A 92, 022310 (2015)

53. "Topological Transitions from Multipartite Entanglement with Tensor Networks:

A Procedure for Sharper and Faster Characterization,"

Roman Orus, Tzu-Chieh Wei, Oliver Buerschaper, Artur Garcia-Saez, Phys. Rev. Lett. 113, 257202 (2014)

52. "Topological Minimally Entangled States via Geometric Measure",

Oliver Buerschaper, Artur García-Saez, Román Orús, and Tzu-Chieh Wei,

51. "Hybrid valence-bond states for universal quantum computation,"

Tzu-Chieh Wei, Poya Haghnegahdar, Robert Raussendorf, Phys. Rev. A 90, 042333 (2014).

50. "Transition in the quantum computational power,"

Tzu-Chieh Wei, Ying Li, and Leong Chuan Kwek, Phys. Rev. A 89, 052315 (2014)

49. "Geometric entanglement in topologically ordered states,"

Roman Orus, Tzu-Chieh Wei, Oliver Buerschaper, and Maarten Van den Nest,

New J. Phys. 16, 013015 (2014)

48. "Spectral gaps of Affleck-Kennedy-Lieb-Tasaki Hamiltonians using Tensor Network methods,"

Artur Garcia-Saez, Valentin Murg, Tzu-Chieh Wei

Phys. Rev. B 88, 245118 (2013)

47. "Quantum computational universality of spin-3/2 Affleck-Kennedy-Lieb-Tasaki states beyond the honeycomb lattice,"

Tzu-Chieh Wei, Phys. Rev. A 88, 062307 (2013)

46. "Symmetry constraints on temporal order in measurement-based quantum computation,"

R. Raussendorf, P. Sarvepalli, T.-C. Wei and P. Haghnegahdar,

Electronic Proceedings in Theoretical Computer Science (EPTCS), 95, pp.219-250 (2012).

and Information and Computation 250, 115 (2016)

45. "Monogamy of entanglement, N-representability problems and ground states,"

Tzu-Chieh Wei

Int. J. Mod. Phys. B 26, 1243014 (2012)

44. "Two-dimensional Affleck-Kennedy-Lieb-Tasaki state on the honeycomb lattice is a universal resource for quantum computation,"

Tzu-Chieh Wei, Ian Affleck, and Robert Raussendorf,

Phys. Rev. A 86, 032328 (2012)

43. "Quantum computation by measurement,"

Robert Raussendorf and Tzu-Chieh Wei, Annual Review of Condensed Matter Physics, vol.3 (2012), pp.239-261

DOI: 10.1146/annurev-conmatphys-020911-125041

42. "Quantum computational universality of the Cai-Miyake-Dur-Briegel 2D quantum state from Affleck-Kennedy-Lieb-Tasaki quasichains,"

Tzu-Chieh Wei, Robert Raussendorf, and Leong Chuan Kwek,

Phys. Rev. A 84, 042333 (2011)

41. "Thermal State as
Universal Resources for
Quantum Computation with Always-on Interactions,"

Ying Li, Daniel E. Browne, Leong Chuan Kwek, Robert Raussendorf, and Tzu-Chieh Wei,

Phys. Rev.
Lett. 107, 060501 (2011)

Tzu-Chieh Wei, Ian Affleck, and
Robert
Raussendorf,

Phys. Rev.
Lett. 106, 070501 (2011)
(selected as Editors' Suggestion )

39. "Experimental Quantum
Simulation of
Entanglement in Many-body Systems,"

Jingfu Zhang, Tzu-Chieh Wei,
and
Raymond Laflamme,

Phys. Rev.
Lett. 107, 010501 (2011)

Tzu-Chieh Wei, Johnathan
Lavoie, and Rainer Kaltenbaek,

Phys. Rev. A 83, 033839 (2011)

Roman Orus, Tzu-Chieh Wei, and
Hong-Hao Tu

Phys. Rev. B 84, 064409 (2011)

Lin
Chen, Huangjun Zhu, and Tzu-Chieh Wei,

Phys. Rev. A 83, 012305 (2011)

Tzu-Chieh Wei, Smitha
Vishveshwara and
Paul M. Goldbart,

Quantum
Inf. Comput. 11, 0326-0354
(2011) [https://doi.org/10.26421/QIC11.3-4-10]

Roman Orus and Tzu-Chieh Wei,

arXiv:1006.5584 to appear in Quantum Inf. Comput. 11, 0563-0573 (2011)

Roman Orus and Tzu-Chieh Wei,

Phys. Rev. B 82, 155120 (2010)

Wade DeGottardi, Tzu-Chieh Wei,
Victoria Fernandez, and Smitha
Vishveshwara,

Phys. Rev.
B
82, 155411 (2010)

Tzu-Chieh Wei and Simone
Severini,

J.
Math.
Phys. 51, 092203 (2010)

Julio T. Barreiro,
Tzu-Chieh Wei, and Paul G.
Kwiat,

Phys. Rev.
Lett. 105, 030407 (2010)

29. “Entanglement under the renormalization-group
transformations on quantum states and quantum phase transitions using
matrix product states,”

Tzu-Chieh Wei,

Phys. Rev. A 81, 062313 (2010)

Matthew Killi, Tzu-Chieh Wei,
Ian Affleck, and Arun
Paramekanti,

Phys.
Rev. Lett. 104, 216406 (2010)

Tzu-Chieh Wei,

Phys. Rev. A 81, 054102 (2010)

Tzu-Chieh
Wei, Michele Mosca, and Ashwin Nayak,

Phys. Rev.
Lett. 104, 040501 (2010)

Sayatnova Tamaryan, Tzu-Chieh Wei,
and DaeKil
Park,

__Phys. Rev. A 80,
052315 (2009)__

Tzu-Chieh Wei and Paul M.
Goldbart,

Phys. Rev.
B
80, 134507 (2009)

R. Huebener, M. Kleinmann, T.-C. Wei,
C. Gonzalez-Guillen, and
O. Guehne,

__Phys. Rev. A 80,
032324 (2009)__

Wade DeGottardi, Tzu-Chieh Wei,
and Smitha Vishveshwara,

Phys. Rev.
B, 79, 205421 (2009)

Tzu-Chieh Wei,

Phys. Rev.
A
78, 012327 (2008)

Mitrabhanu
Sahu, Myung-Ho
Bae, Andrey Rogachev,
David Pekker, Tzu-Chieh Wei, Nayana
Shah, Paul M. Goldbart and Alexey
Bezryadin,

Nature
Phys. 5, 503 (2009);
doi:10.1038/NPHYS1276

19. “Emergence of $h/e$-period
oscillations in the critical
temperature of small superconducting rings threaded by magnetic flux”,

Tzu-Chieh Wei and Paul M. Goldbart,

Phys. Rev.
B
77,
224512 (2008)

Julio T. Barreiro, Tzu-Chieh Wei,
and Paul G. Kwiat,

Nature
Phys. 4, 282-286 (2008)

17. “Local superfluid
densities probed
via current-induced superconducting phase gradients,”

David S. Hopkins,
David Pekker, Tzu-Chieh Wei, Paul M. Goldbart, and Alexey
Bezryadin,

Phys. Rev.
B 76, 220506 (R) (2007)

__ __

Tzu-Chieh Wei, Julio T.
Barreiro, and Paul G. Kwiat,

Phys. Rev.
A
75, 060305(R) (2007)

C. Lannert, T.-C. Wei, S. Vishveshwara,

Phys. Rev.
A
75, 013611 (2007)

A. Rogachev, T.-C. Wei, D. Pekker,
A.T. Bollinger, P. M. Goldbart,
A. Bezryadin,

Phys. Rev. Lett.
97, 137001
(2006)

13. "Enhancing superconductivity:
Magnetic impurities
and their quenching by magnetic fields,"

T.-C. Wei, D. Pekker,
A. Rogachev, A. Bezryadin,
and P. M. Goldbart,

Europhys Lett. **75**,
943 (2006)

12. "Structure and stability of
Mott-insulator shells
of bosons trapped in an optical lattice,"

B. DeMarco,
C. Lannert, S. Vishveshwara,
and T.-C. Wei,

Phys. Rev.
A 71, 063601 (2005)

Erratum:
“Structure and stability of
Mott-insulator
shells of bosons trapped in an optical lattice,” [Phys. Rev. A **71**,
063601 (2005)]

B. DeMarco *et al.* Phys. Rev. A **73**,
049903 (E) (2006)

11. "Remote state preparation:
arbitrary remote control
of photon polarization,"

Nicholas A. Peters, Julio Barreiro, Michael E. Goggin,
Tzu-Chieh Wei, and Paul G. Kwiat,

Phys. Rev. Lett. 94,
150502 (2005)

10. "Mixed state sensitivity of several
quantum
information benchmarks,"

Nicholas A. Peters, Tzu-Chieh Wei,
and Paul G. Kwiat,

Phys.
Rev. A 70, 052309 (2004)

9. "Global entanglement and quantum
criticality in spin
chains,"

Tzu-Chieh Wei, Dyutiman Das, Swagatam
Mukhopadyay,
Smitha Vishveshwara,
and Paul M. Goldbart,

Phys.
Rev. A 71, 060305(R) (2005)

8. "h/e
magnetic flux
modulation of the energy gap in nanotube
quantum
dots,"

Ulas C. Coskun,
Tzu-Chieh Wei, Smitha Vishveshwara,
Paul M. Goldbart, and
Alexey Bezryadin,

Science
v.**304**, p.1132-1134 (2004)

7. "Connections
between relative entropy of
entanglement and geometric measure of entanglement,"

Tzu-Chieh Wei,
Marie
Ericsson, Paul M. Goldbart, and William J.
Munro,

Quantum
Info. Comput. v4,
p.252-272
(2004); eprint
quant-ph/0405002

6. "Synthesizing arbitrary
two-photon polarization mixed states,"

Tzu-Chieh Wei, Joseph B. Altepeter,
David Branning, Paul M. Goldbart, D. F. V. James, Evan Jeffrey,

Paul G. Kwiat,
Swagatam Mukhopadhyay, and Nicholas A. Peters,

Phys. Rev. A 71, 032329
(2005)

5. "Measures of entanglement in bound
entangled
states,"

T.-C. Wei, J.B. Altepeter, P.M. Goldbart,
and W.J. Munro,

Phys. Rev. A 70, 022322 (2004)

4. "Maximally entangled mixed states:
creation and
concentration,"

N.A. Peters, J.B. Altepeter,
D.A. Branning, E.R. Jeffrey, T.-C.
Wei, and
P.G. Kwiat,

Phys.
Rev. Lett. 92,
133601 (2004)

Erratum: “Maximally Entangled Mixed States:
Creation
and Concentration,” [Phys. Rev. Lett. **92**,
133601 (2004)]

Nicholas A. Peters *et al.* Phys. Rev. Lett. **96**, 159901 (E) (2006)

3. "Geometric measure of
entanglement for bipartite and
multipartite quantum states,"

T.-C. Wei and P.M. Goldbart,

Phys. Rev. A 68, 042307
(2003)

2. "Ancilla-assisted
quantum
process tomography,"

J.B. Altepeter, D. Branning,
E. Jeffrey, T.-C. Wei, P.G. Kwiat,
R.T. Thew, J.L. O'Brien, M.A. Nielsen, and
A.G. White,

Phys.
Rev. Lett. 90, 193601 (2003)

1. "Maximal entanglement versus entropy for mixed
quantum states,"

T.-C. Wei, K. Nemoto, P.M. Goldbart,
P.G. Kwiat,
W.J. Munro,
and F. Verstraete,

Phys.
Rev A 67, 022110 (2003)

arXiv only (not published):

1. "Measurement-based quantum computation--a quantum-meachanical toy
model for spacetime?"

Robert Raussendorf, Pradeep Sarvepalli,
Tzu-Chieh Wei, and P.
Haghnegahdar,

arXiv:1108.5774

2. "Topological Geometric Entanglement of Blocks,"

Roman Orus and Tzu-Chieh Wei,

arXiv:1108.1537

__Conference
proceedings and others __

T.-C. Wei, K. Nemoto, P.M.
Goldbart, P.G. Kwiat, W.J. Munro,
and F. Verstraete,

Proceedings
of the 6th international conference on quantum
communication, measurement and computing,

P.G. Kwiat, J.B.
Altepeter, D. Branning, E. Jeffrey, N. Peters, and T.-C. Wei,

Proceedings
of the 6th international conference
on quantum communication, measurement and computing, July 22-26,
2002,
p.117-122, ed. J.H. Shapiro and O. Hirota, Rinton Press, 2003

T.-C. Wei,

Physics Bimonthly,
vol. 25, p.555-564 (2003), published by
the Physical Society of Republic of China,

N. A. Peters, J. Altepeter, D. Branning, P. Goldbart, E. Jeffrey, T. Wei, and P. Kwiat,

in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper QMK2.

5. "Benchmarking and procrustean noise reduction of entangled mixed states,"

Nicholas A. Peters, Tzu-Chieh Wei, Paul G. Kwiat,

Proc. SPIE Vol. 5468, p. 269-281, Fluctuations and Noise in Photonics and Quantum Optics II; Ed. Peter Heszler, 2004

6. "Quantifying multipartite entanglement,"

Tzu-Chieh Wei et al.,

in the Proceedings of the Seventh International Conference on Quantum Communication, Measurement and Computing, p.241-244, Ed. S. M. Barnett, E. Andersson, J. Jeffers, P. Ohberg, and O. Hirota, 2004; AIP Conf. Proc.

7. "Arbitrary Remote State Preparation of Photon Polarization,"

N. A. Peters, J. T. Barreiro, M. E. Goggin, T. Wei, and P. G. Kwiat,

in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper QTuG6.

8. “Remote state preparation: arbitrary remote control of photon polarizations for quantum communication,”

N. A. Peters, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat.

Proc. SPIE

9. "Experimental Hyperentanglement-Assisted Bell-State Analysis,"

J. T. Barreiro, T. Wei, and P. G. Kwiat,

in International Conference on Quantum Information, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JWC29.

10. "SuperDense Teleportation using Hyperentangled Photons," Trent M. Graham, Herbert J. Bernstein, Tzu-Chieh Wei, and Paul Kwiat,

Proceedings of Quantum Information and Measurement 2014

11. "The Spin-2 AKLT State on the Square Lattice is Universal for Measurement-based Quantum Computation," Tzu-Chieh Wei and Robert Raussendorf, 10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015) pp. 48-63 (Ed by S. Beigi and R. Koenig).

Return to top

Theses

My PhD thesis (UIUC 2004) “Quantum entanglement: geometric quantification and applications to multi-partite states and quantum phase transitions”---can be downloaded here

My MSc. thesis (NTU 1996) “Glueball mass calculation”

Return to top