Home    Research Interests   Teaching   Our Group   CV    Publications    My papers on arXiv   GoogleScholar    Links    Media Hits

Publication list

last updated: Dec. 2024
ORCID record
Publication in terms of different categories

Peer-Reviewed Papers & arXiv


124.  "Student attitudes toward quantum information science and technology in a high school outreach program," Michele Darienzo, Angela M. Kelly, Dominik Schneble, and Tzu-Chieh WeiPhys. Rev. Phys. Educ. Res. 20, 020126 (2024).

123.  "Quantum Algorithm For Testing Convexity of Function," Nhat A. Nghiem and Tzu-Chieh Wei, arXiv:2409.03312

122.  "Subspace-thermal discrete time crystals from phase transitions between different n-tuple discrete time crystals, " Hongye Yu and Tzu-Chieh WeiarXiv:2409.02848

121. "Quantum Machine Learning Architecture Search via Deep Reinforcement Learning," Xin Dai, Tzu-Chieh Wei, Shinjae Yoo, and Samuel Yen-Chi Chen, arxiv:2407.20147

120.  "Improved Quantum Power Method and Numerical Integration Using Quantum Singular Value Transformation," Nhat A. Nghiem, Hiroki Sukeno, Shuyu Zhang, and Tzu-Chieh WeiarXiv:2407.11744

119. "Constant-depth preparation of matrix product states with adaptive quantum circuits," Kevin C. Smith, Abid Khan, Bryan K. Clark, S.M. Girvin, and Tzu-Chieh Wei, PRX Quantum 5,030344 (2024); also in arXiv:2404.16083
See also Physics: Preparing Entangled States Efficiently
Seel also PennyLane's implementation of our work

118. "Quantum Algorithm For Solving Nonlinear Algebraic Equations," Nhat A. Nghiem and Tzu-Chieh Wei, arXiv:2404.03810

117. "Bulk and boundary entanglement transitions in the projective gauge-Higgs model," Hiroki Sukeno, Kazuki Ikeda, and Tzu-Chieh Wei, Phys. Rev. B 110, 245102 (2024), also at arXiv:2402.11738

116.  "Kennedy-Tasaki transformation and non-invertible symmetry in lattice models beyond one dimension," Aswin Parayil Mana, Yabo Li, Hiroki Sukeno, and Tzu-Chieh Wei, Physical Review B 109, 245129 (2024), also in arXiv:2402.09520

115. "Feedback-based Quantum Algorithm Inspired by Counterdiabatic Driving," Rajesh K. Malla, Hiroki Sukeno, Hongye Yu, Tzu-Chieh Wei, Andreas Weichselbaum, and Robert M. Konik, Phys. Rev. Research 6, 043068 (2024), also at  arXiv:2401.15303

114. "Improved Quantum Algorithms for Eigenvalues Finding and Gradient Descent," Nhat A. Nghiem and Tzu-Chieh Wei, arXiv:2312.14786

113. "Efficient separate quantification of state preparation errors and measurement errors on quantum computers and their mitigation," Hongye Yu and Tzu-Chieh Wei, arXiv:2310.18881

112.  "Measuring Topological Field Theories: Lattice Models and Field-Theoretic Description," Yabo Li, Mikhail Litvinov, and Tzu-Chieh WeiarXiv:2310.17740

111.  "Detecting Multipartite Entanglement Patterns using Single Particle Green's Functions," Rajesh K. Malla, Andreas Weichselbaum, Tzu-Chieh Wei, Robert M. Konik, arXiv:2310.05870

110.  “A universal variational quantum eigensolver for non-Hermitian systems,” Huanfeng Zhao, Peng Zhang, and Tzu-Chieh Wei, Scientific Reports volume 13, Article number: 22313 (2023)

109. "Quantum Algorithm for Estimating Betti Numbers Using a Cohomology Approach," Nhat A. Nghiem, Xianfeng David Gu, and Tzu-Chieh Wei, arXiv:2309.10800 (2023)

108. "An improved method for quantum matrix multiplication," Nhat A. Nghiem and Tzu-Chieh Wei, Quantum Information Processing volume 22, Article number: 299 (2023)

107.  "Quantum simulation of lattice gauge theories via deterministic duality transformations assisted by measurements," Hiroki Sukeno and Tzu-Chieh Wei, Phys. Rev. A 109, 042611 (2024) ,  also at  arXiv:2305.12277

106. "Tensor Network Methods for Extracting CFT Data from Fixed-Point Tensors and Defect Coarse Graining," Wenhan Guo and Tzu-Chieh Wei, Phys. Rev. E 109, 034111 (2024), also in  arXiv:2305.09899

105. "Symmetry-enriched topological order from partially gauging symmetry-protected topologically ordered states assisted by measurements," Yabo Li, Hiroki Sukeno, and Aswin Parayil Mana, Hendrik Poulsen Natrup, and Tzu-Chieh Wei, Phys. Rev. B 108, 115144 (2023), also in arXiv:2305.09747

104. "Learning marginals suffices!" Nengkun Yu and Tzu-Chieh WeiarXiv:2303.08938

103. "Broadcasting single-qubit and multi-qubit-entangled states: authentication, cryptography, and distributed quantum computation,"
Hiroki Sukeno, Tzu-Chieh Wei, Mark Hillery, Janos A. Bergou, Dov Fields, Vladimir S. Malinovsky, Phys. Rev. A 107, 062605 (2023), also at arXiv:2303.00856

102. "Quantum Algorithm For Estimating Largest Eigenvalues," Nhat A. Nghiem  and Tzu-Chieh Wei, Physics Letter A 488, 129138 (2023), also at arXiv:2211.06179

101. "Constant-time Quantum Algorithm for Homology Detection in Closed Curves," Nhat A. Nghiem, Xianfeng David Gu, and Tzu-Chieh Wei, SciPost Phys. 15, 049 (2023), also in  arXiv:2209.12298

100. "Quantum State Transfer: Interplay between Gate and Readout Errors," Bharath Thotakura and Tzu-Chieh Wei, Quantum Information Processing 22, Article number: 275 (2023), also at arXiv:2209.07021

99. "Universal Measurement-Based Quantum Computation in a One-Dimensional Architecture Enabled by Dual-Unitary Circuits," David Stephen, Wen-Wei Ho, Tzu-Chieh Wei, Robert Raussendorf, and Ruben Verresen, Physical Review Letters 132, 250601(2024) also in arXiv:2209.06191

98. " Employing Interacting Qubits for Distributed Microgrid Control," Pouya Babahajiani, Peng Zhang, Tzu-Chieh Wei, Ji Liu, Xiaonan Lu, in IEEE Transactions on Power Systems, 2022, doi: 10.1109/TPWRS.2022.3196608

97. "Quantum computing in power systems," Yifan Zhou, Zefan Tang, Nima Nikmehr, Pouya Babbhajiani, Fei Feng, Tzu-Chieh Wei, Honghao Zeng, and Peng Zhang, in iEnergy,  doi: 10.23919/IEN.2022.0021(2022)

96. "Simulating large-size quantum spin chains on cloud-based superconducting quantum computers," Hongye Yu, Yusheng Zhao and Tzu-Chieh Wei, Phys. Rev. Research 5, 013183 (2023). also in  http://arxiv.org/abs/2207.09994
See also the blog by IBM on our work

95. "Broadcast of a restricted set of qubit and qutrit states,"
Mark Hillery, János A. Bergou, Tzu-Chieh Wei, Siddhartha Santra, and Vladimir Malinovsky,
Phys. Rev. A 105, 042611 (2022)

94. "Some aspects of Affleck-Kennedy-Lieb-Tasaki models: tensor network, physical properties, spectral gap, deformation, and quantum computation," Tzu-Chieh Wei, Robert Raussendorf and, Ian Affleck, in: Bayat, A., Bose, S., Johannesson, H. (eds) Entanglement in Spin Chains. Quantum Science and Technology.  pp89-125. Springer, Cham. https://doi.org/10.1007/978-3-031-03998-0_5, also in  arXiv:2201.09307

93.  "Two-particle States in One-dimensional Coupled Bose-Hubbard Models," Yabo Li, Dominik Schneble, and Tzu-Chieh WeiPhys. Rev. A 105, 053310 (2022) also in arXvi:2201.05536

92. "Geometric quantum adiabatic methods for quantum chemistry," Hongye Yu, Deyu Lu, Qin Wu, and Tzu-Chieh Wei, Phys. Rev. Research 4, 033045 (2022) also in arXiv:2112.15186

91. "Topological invariants beyond symmetry indicators: Boundary diagnostics for twofold rotationally symmetric superconductors," Yanzhu Chen, Sheng-Jie Huang, Yi-Ting Hsu, and Tzu-Chieh Wei, Physical Review B 105, 094518 (2022); also in arXiv:2109.06959

90. "Application of Quantum Machine Learning using the Quantum Kernel Algorithm on High Energy Physics Analysis at the LHC," Sau Lan Wu, Shaojun Sun, Wen Guan, Chen Zhou, Jay Chan, Chi Lung Cheng, Tuan Pham, Yan Qian, Alex Zeng Wang, Rui Zhang, Miron Livny, Jennifer Glick, Panagiotis Kl. Barkoutsos, Stefan Woerner, Ivano Tavernelli, Federico Carminati, Alberto Di Meglio, Andy C. Y. Li, Joseph Lykken, Panagiotis Spentzouris, Samuel Yen-Chi Chen, Shinjae Yoo, Tzu-Chieh Wei, Phys. Rev. Research 3, 033221 (2021); also in arXiv:2104.05059

89. "Hybrid Quantum-Classical Graph Convolutional Network," Sam Yen-Chi Chen, Tzu-Chieh Wei, Chao Zhang, Haiwang Yu, and Shinjae Yoo, arXiv:2101.06189

88. "Quantum Convolutional Neural Networks for High Energy Physics Data Analysis," Sam Yen-Chi Chen, Tzu-Chieh Wei, Chao Zhang, Haiwang Yu, and Shinjae Yoo, Phys. Rev. Research 4, 013231 (2022) also in arXiv:2012.12177

87. "Application of Quantum Machine Learning using the Quantum Variational Classifier Method to High Energy Physics Analysis at the LHC on IBM Quantum Computer Simulator and Hardware with 10 qubits," Sau Lan Wu, Jay Chan, Wen Guan, Shaojun Sun, Alex Wang, Chen Zhou, Miron Livny, Federico Carminati, Alberto Di Meglio, Andy C. Y. Li, Joseph Lykken, Panagiotis Spentzouris, Samuel Yen-Chi Chen, Shinjae Yoo, Tzu-Chieh Wei, Journal of Physics G: Nuclear and Particle Physics 48, 125003 (2021); also in arXiv: 2012.11560

86. "Seeking a many-body mobility edge with matrix product states in a quasiperiodic model," Nicholas Pomata, Sriram Ganeshan, and Tzu-Chieh Wei, Phys. Rev. B 108, 094201 (2023), also in arXiv:2012.09853

85. "Unified framework for quantum classification," Nhat A. Nghiem, Samuel Yen-Chi Chen, and Tzu-Chieh Wei, Phys. Rev. Research 3, 033056 (2021) and  arXiv:2010.13186

84. "Unsupervised learning of topological phase transitions using Calinski-Harabaz index," Jielin Wang, Wanzhou Zhang, Tian Hua, and Tzu-Chieh Wei, Phys. Rev. Research 3, 013074 (2021), also in arXiv:2010.06136

83. "Nonzero spectral gap in several  uniformly spin-2 and hybrid spin-1 and spin-2 AKLT models," Wenhan Guo, Nicholas Pomata and Tzu-Chieh Wei, Phys. Rev. Research 3, 013255 (2021), also in arXiv:2010.03137 

82. "Quantum Zeno approach for molecular energies with maximum commuting initial Hamiltonians," Hongye Yu and Tzu-Chieh Wei, Physical Review Research 3, 013104 (2021), also in arXiv:2006.01066

81. "Measurement-Based Quantum Computation," in Oxford Research Encyclopedia of Physics. Ed. Brian Foster. New York: Oxford University Press, March 2021 (pre-published version)

80. "Demonstrating the Affleck-Kennedy-Lieb-Tasaki spectral gap on 2D degree-3 lattices," Nicholas Pomata and Tzu-Chieh Wei, Phys. Rev. Lett. 124, 177203 (2020), also in  arXiv:1911.01410

79.  "AKLT models on decorated square lattices are gapped", Nicholas Pomata and Tzu-Chieh WeiPhys. Rev. B 100, 094429 (2019), also in arXiv:1905.01275

78. "Detector Tomography on IBM Quantum Computers and Mitigation of Imperfect Measurement," Yanzhu Chen, Maziar Farahzad, Shinjae Yoo, and Tzu-Chieh Wei, Phys. Rev. A 100, 052315 (2019) also arXiv:1904.11935

77. "Quantum algorithm for spectral projection by measuring an ancilla iteratively," Yanzhu Chen and Tzu-Chieh WeiPhys. Rev. A 101, 032339 (2020) and arXiv:1903.11999
One picture was selected in PRA's Kaleidoscope

76. "Global and short-range entanglement properties in excited, many-body localized spin chains," Colin G. West and Tzu-Chieh WeiarXiv:1809.04689

75. "Unwinding Short-Range Entanglement," Abhishodh Prakash, Junven Wang, and Tzu-Chieh Wei, Phys. Rev. B 98, 125108 (2018), also at arXiv:1804.11236

74. "Machine learning of phase transitions in the percolation and XY models," Wanzhou Zhang, Jiayu Liu, and Tzu-Chieh Wei, Phys. Rev. E 99, 032142 (2019)  also in arXiv:1804.02709

73. "Universal quantum computing using (Z_d)^3 symmetry-protected topologically ordered states," Yanzhu Chen, Abhishodh Prakash, and Tzu-Chieh Wei, Phys. Rev. A 97, 022305 (2018) also at arXiv:1711.00094

72. "Phase transitions of a 2D deformed-AKLT model," Nicholas Pomata and Ching-Yu Huang, and Tzu-Chieh WeiPhys. Rev. B 98, 014432 (2018) also at arXiv:1711.00036

71. "Quantum spin systems for measurement-based quantum computation," Tzu-Chieh Wei, invited review article in Advances in Physics X 3:1, DOI: 10.1080/23746149.2018.1461026

70. "Eigenstate phases with finite on-site non-Abelian symmetry," Abhishodh Prakash, Sriram Ganeshan, Lukasz Fidkowski, and Tzu-Chieh Wei, Phys. Rev. B 96, 165136 (2017), also at arXiv:1706.06062

69. "Universal measurement-based quantum computation in two-dimensional SPT phases," Tzu-Chieh Wei and Ching-Yu Huang, Phys. Rev. A 96, 032317 (2017), also arXiv:1705.06833

68. "Geometric Entanglement and Quantum Phase Transition in Generalized Cluster-XY models," Aydin Deger and Tzu-Chieh Wei, Quantum Inf Process 18: 326 (2019), https://doi.org/10.1007/s11128-019-2439-7, also in  arXiv:1702.01800

67. "Holographic encoding of universality in corner spectra," Ching-Yu Huang, Tzu-Chieh Wei and Roman Orus, Phys. Rev. B 95, 195170 (2017) also at arXiv:1702.01598

66. "Computational power of symmetry protected topological phases," David T. Stephen, Dong-Sheng Wang, Abhishodh Prakash, Tzu-Chieh Wei, and Robert Raussendorf, Phys. Rev. Lett. 119, 010504 (2017), also at arXiv:1611.08053

65. “Symmetry-protected topological phases with uniform computational power in one dimension,” Robert Raussendorf, Dongsheng Wang, Abhishodh Prakash, Tzu-Chieh Wei, and David Stephen, Phys. Rev. A 96, 012302 (2017), also at arXiv:1609.07549

64. “Emergence of the XY-like phase in the deformed spin-3/2 AKLT systems,” Ching-Yu Huang, Maximilian Anton Wagner, and Tzu-Chieh Wei, Phys. Rev. B 94, 165130 (2016), also in arXiv:1605.08417

63. “Detection of gapped phases of a 1D spin chain with onsite and spatial symmetries,” Abhishodh Prakash, Colin G. West, and Tzu-Chieh Wei, Phys. Rev. B 94, 045136 (2016), also in arXiv: 1604.00037

62 "Detecting and identifying 2D symmetry-protected topological, symmetry-breaking and intrinsic topological phases with modular matrices via tensor-network methods," Ching-Yu Huang and Tzu-Chieh WeiPhys. Rev. B 93, 155163 (2016) and arXiv:1512.07842

61 “Symmetry-protected topologically ordered states for universal quantum computation,” Hendrik Poulsen Nautrup and Tzu-Chieh WeiPhys. Rev. A 92, 052309 (2015) and arXiv:1509.02947

60. “Hamiltonian quantum computer in one dimension,” Tzu-Chieh Wei and John C. Liang, Phys. Rev. A 92, 062334 (2015), also at
arXiv:1512.06775.

59. “Density of Yang-Lee zeros in the thermodynamic limit from tensor network methods,” Artur Garcia-Saez and Tzu-Chieh WeiPhys. Rev. B 92, 125132 (2015)

58. “SuperDense teleportation using hyperentangled photons,” Trent M. Graham, Herbert J. Bernstein, Tzu-Chieh Wei, Marius Junge, Paul G. Kwiat, Nature Communications 6, 7185 (2015)

57. "Efficient evaluation of high-order moments and cumulants in tensor network states,"
Colin West, Artur Garcia-Saez, and Tzu-Chieh Wei, Phys. Rev. B 92, 115103 (2015)

56. "Transition of a Z3 topologically ordered phase to trivial and critical phases,"
Ching-Yu Huang and Tzu-Chieh Wei, Phys. Rev. B 92, 085405 (2015)

55. "Universal measurement-based quantum computation with spin-2 Affleck-Kennedy-Lieb-Tasaki states,"
Tzu-Chieh Wei and Robert Raussendorf, Phys. Rev A 92, 012310 (2015)

54. "Ground-state forms of 1D symmetry-protected topological phases and their utility as resource states for measurement-based quantum computation,"
Abhishodh Prakash and Tzu-Chieh Wei, Phys. Rev. A 92, 022310 (2015)

53. "Topological Transitions from Multipartite Entanglement with Tensor Networks:
A Procedure for Sharper and Faster Characterization,"
Roman Orus, Tzu-Chieh Wei, Oliver Buerschaper, Artur Garcia-Saez, Phys. Rev. Lett. 113, 257202 (2014)

52. "Topological Minimally Entangled States via Geometric Measure",
Oliver Buerschaper, Artur García-Saez, Román Orús, and Tzu-Chieh Wei, J. Stat. Mech. (2014) P11009

51. "Hybrid valence-bond states for universal quantum computation,"
Tzu-Chieh Wei, Poya Haghnegahdar, Robert Raussendorf, Phys. Rev. A 90, 042333 (2014).

50. "Transition in the quantum computational power,"
Tzu-Chieh Wei, Ying Li, and Leong Chuan Kwek, Phys. Rev. A 89, 052315 (2014)

49. "Geometric entanglement in topologically ordered states,"
Roman Orus, Tzu-Chieh Wei, Oliver Buerschaper, and Maarten Van den Nest,
New J. Phys. 16, 013015 (2014)

48. "Spectral gaps of Affleck-Kennedy-Lieb-Tasaki Hamiltonians using Tensor Network methods,"
Artur Garcia-Saez, Valentin Murg, Tzu-Chieh Wei
Phys. Rev. B 88, 245118 (2013)

47. "Quantum computational universality of spin-3/2 Affleck-Kennedy-Lieb-Tasaki states beyond the honeycomb lattice,"
Tzu-Chieh Wei, Phys. Rev. A 88, 062307 (2013)

46. "Symmetry constraints on temporal order in measurement-based quantum computation,"
R. Raussendorf, P. Sarvepalli, T.-C. Wei and P. Haghnegahdar,
Electronic Proceedings in Theoretical Computer Science (EPTCS), 95, pp.219-250 (2012).
and Information and Computation 250, 115 (2016)

45. "Monogamy of entanglement, N-representability problems and ground states,"
Tzu-Chieh Wei
Int. J. Mod. Phys. B 26, 1243014 (2012)

44. "Two-dimensional Affleck-Kennedy-Lieb-Tasaki state on the honeycomb lattice is a universal resource for quantum computation,"
Tzu-Chieh Wei, Ian Affleck, and Robert Raussendorf,
Phys. Rev. A 86, 032328 (2012)

43. "Quantum computation by measurement,"
Robert Raussendorf and Tzu-Chieh Wei, Annual Review of Condensed Matter Physics, vol.3 (2012), pp.239-261
DOI: 10.1146/annurev-conmatphys-020911-125041

42. "Quantum computational universality of the Cai-Miyake-Dur-Briegel 2D quantum state from Affleck-Kennedy-Lieb-Tasaki quasichains,"
Tzu-Chieh Wei, Robert Raussendorf, and Leong Chuan Kwek,
Phys. Rev. A 84, 042333 (2011)

41. "Thermal State as Universal Resources for Quantum Computation with Always-on Interactions,"
Ying Li, Daniel E. Browne, Leong Chuan Kwek, Robert Raussendorf, and Tzu-Chieh Wei,
Phys. Rev. Lett. 107, 060501 (2011)

40. "Affleck-Kennedy-Lieb-Tasaki State on a Honeycomb Lattice is a Universal Quantum Computational Resource,"
Tzu-Chieh Wei, Ian Affleck, and Robert Raussendorf,
Phys. Rev. Lett. 106, 070501 (2011) (selected as Editors' Suggestion Editors' Suggestion)

39. "Experimental Quantum Simulation of Entanglement in Many-body Systems,"
Jingfu Zhang, Tzu-Chieh Wei, and Raymond Laflamme,
Phys. Rev. Lett. 107, 010501 (2011)

38. "Creating multi-photon polarization bound-entangled states,"
Tzu-Chieh Wei, Johnathan Lavoie, and Rainer Kaltenbaek,
Phys. Rev. A 83, 033839 (2011)         

37. "Phase diagram of the SO(n) bilinear-biquadratic chain from many-body entanglement,"
Roman Orus, Tzu-Chieh Wei, and Hong-Hao Tu
Phys. Rev. B 84, 064409 (2011)

36. "Connections of geometric measure of entanglement of pure symmetric states to quantum state estimation,"
Lin Chen, Huangjun Zhu, and Tzu-Chieh Wei,
Phys. Rev. A 83, 012305 (2011)

35. "Global geometric entanglement in transverse-field XY spin chains: finite and infinite systems,"
Tzu-Chieh Wei, Smitha Vishveshwara and Paul M. Goldbart,
Quantum Inf. Comput. 11, 0326-0354 (2011)  [https://doi.org/10.26421/QIC11.3-4-10]

34. "Geometric entanglement of one-dimensional systems: bounds and scalings in the thermodynamic limit,"
Roman Orus and Tzu-Chieh Wei,
arXiv:1006.5584 to appear in Quantum Inf. Comput. 11, 0563-0573 (2011)

33. “Visualizing elusive phase transitions with geometric entanglement,”
Roman Orus and Tzu-Chieh Wei,
Phys. Rev. B 82, 155120 (2010)

32. "Accessing nanotube bands via crossed electric and magnetic fields,”
Wade DeGottardi, Tzu-Chieh Wei, Victoria Fernandez, and Smitha Vishveshwara,
Phys. Rev. B 82, 155411 (2010)

31. “Matrix Permanent and Quantum Entanglement of Permutation Invariant States,”
Tzu-Chieh Wei and Simone Severini,
J. Math. Phys. 51, 092203 (2010)

30. "Remote preparation of single-photon "hybrid" entangled and vector-polarization states,"
Julio T. Barreiro,  Tzu-Chieh Wei, and Paul G. Kwiat,
Phys. Rev. Lett. 105, 030407 (2010)

29. “Entanglement under the renormalization-group transformations on quantum states and quantum phase transitions using matrix product states,”
Tzu-Chieh Wei,
Phys. Rev. A 81, 062313 (2010)

28. "Tomonaga-Luttinger liquid physics in gated bilayer graphene,”
Matthew Killi, Tzu-Chieh Wei, Ian Affleck, and Arun Paramekanti,
Phys. Rev. Lett. 104, 216406 (2010)

27. "Exchange symmetry and global entanglement and full separability,"
Tzu-Chieh Wei,
Phys. Rev. A 81, 054102 (2010)

26. “Interacting boson problems can be QMA-hard,”
Tzu-Chieh Wei, Michele Mosca, and Ashwin Nayak,
Phys. Rev. Lett. 104, 040501 (2010)

25. “Maximally entangled three-qubit states via geometric measure of entanglement,”
Sayatnova Tamaryan, Tzu-Chieh Wei, and DaeKil Park,
Phys. Rev. A 80, 052315 (2009)

24. “Critical velocity of a clean one-dimensional superconductor,”
Tzu-Chieh Wei and Paul M. Goldbart,
Phys. Rev. B 80, 134507 (2009)

23. “The geometric measure of entanglement for symmetric states,”
R. Huebener, M. Kleinmann, T.-C. Wei, C. Gonzalez-Guillen, and O. Guehne,
Phys. Rev. A 80, 032324 (2009)

22. “Transverse field-induced effects in carbon nanotubes,”
Wade DeGottardi, Tzu-Chieh Wei, and Smitha Vishveshwara,
Phys. Rev. B, 79, 205421 (2009)

21. “Relative entropy of entanglement for multipartite mixed states: Permutation-invariant states and Dur states,”
Tzu-Chieh Wei,
Phys. Rev. A 78, 012327 (2008)

20. “Individual topological tunnelling events of a quantum field probed through their macroscopic consequences”,
Mitrabhanu Sahu, Myung-Ho Bae, Andrey Rogachev, David Pekker, Tzu-Chieh Wei, Nayana Shah, Paul M. Goldbart and Alexey Bezryadin,
Nature Phys. 5, 503 (2009); doi:10.1038/NPHYS1276

19. “Emergence of $h/e$-period oscillations in the critical temperature of small superconducting rings threaded by magnetic flux”,
Tzu-Chieh Wei and Paul M. Goldbart,
Phys. Rev. B 77, 224512 (2008)

18. “Beating the channel capacity limit for linear photonic superdense coding,”
Julio T. Barreiro, Tzu-Chieh Wei, and Paul G. Kwiat,
Nature Phys. 4, 282-286 (2008) See view and news by S.P. Walborn, Nature Phys. 4, 268 (2008)

17. “Local superfluid densities probed via current-induced superconducting phase gradients,”
David S. Hopkins, David Pekker, Tzu-Chieh Wei, Paul M. Goldbart, and Alexey Bezryadin,
Phys. Rev. B 76, 220506 (R) (2007)

16. “Hyperentangled Bell-state analysis,”
Tzu-Chieh Wei, Julio T. Barreiro, and Paul G. Kwiat,
Phys. Rev. A 75, 060305(R) (2007)

15. "The dynamics of condensate shells: collective modes and expansion,"
C. Lannert, T.-C. Wei, S. Vishveshwara,
Phys. Rev. A 75, 013611 (2007)

14. "Magnetic field enhancement of superconductivity in ultra-narrow wires,"
A. Rogachev, T.-C. Wei, D. Pekker, A.T. Bollinger, P. M. Goldbart, A. Bezryadin
Phys
. Rev. Lett. 97, 137001 (2006)

13. "Enhancing superconductivity: Magnetic impurities and their quenching by magnetic fields,"
T.-C. Wei, D. Pekker, A. Rogachev, A. Bezryadin, and P. M. Goldbart,
Europhys Lett. 75, 943 (2006)

12. "Structure and stability of Mott-insulator shells of bosons trapped in an optical lattice,"
B. DeMarco, C. Lannert, S. Vishveshwara, and T.-C. Wei,
Phys. Rev. A 71, 063601 (2005)

Erratum: “Structure and stability of Mott-insulator shells of bosons trapped in an optical lattice,” [Phys. Rev. A 71, 063601 (2005)]
B. DeMarco et al. Phys. Rev. A 73, 049903 (E) (2006)

11. "Remote state preparation: arbitrary remote control of photon polarization,"
Nicholas A. Peters, Julio Barreiro, Michael E. Goggin, Tzu-Chieh Wei, and Paul G. Kwiat,
Phys. Rev. Lett. 94, 150502 (2005)

10. "Mixed state sensitivity of several quantum information benchmarks,"
Nicholas A. Peters, Tzu-Chieh Wei, and Paul G. Kwiat, 
Phys. Rev. A 70, 052309 (2004)

9. "Global entanglement and quantum criticality in spin chains,"
Tzu-Chieh Wei, Dyutiman Das, Swagatam Mukhopadyay, Smitha Vishveshwara, and Paul M. Goldbart,
Phys. Rev. A 71, 060305(R) (2005)

8. "h/e magnetic flux modulation of the energy gap in nanotube quantum dots,"
Ulas C. Coskun, Tzu-Chieh Wei, Smitha Vishveshwara, Paul M. Goldbart, and Alexey Bezryadin,
Science v.304, p.1132-1134 (2004)

7. "Connections between relative entropy of entanglement and geometric measure of entanglement,"
Tzu-Chieh Wei, Marie Ericsson, Paul M. Goldbart, and William J. Munro,
Quantum Info. Comput. v4, p.252-272 (2004); eprint quant-ph/0405002

6. "Synthesizing arbitrary two-photon polarization mixed states,"
Tzu-Chieh Wei, Joseph B. Altepeter, David Branning, Paul M. Goldbart, D. F. V. James, Evan Jeffrey,
Paul G. Kwiat, Swagatam Mukhopadhyay, and Nicholas A. Peters,
Phys. Rev. A 71, 032329 (2005)

5. "Measures of entanglement in bound entangled states,"
T.-C. Wei, J.B. Altepeter, P.M. Goldbart, and W.J. Munro,
Phys. Rev. A 70, 022322 (2004)

4. "Maximally entangled mixed states: creation and concentration,"
N.A. Peters, J.B. Altepeter, D.A. Branning, E.R. Jeffrey, T.-C. Wei, and P.G. Kwiat,
Phys. Rev. Lett. 92, 133601 (2004)

Erratum: “Maximally Entangled Mixed States: Creation and Concentration,” [Phys. Rev. Lett. 92, 133601 (2004)]
Nicholas A. Peters et al.
Phys. Rev. Lett. 96, 159901 (E) (2006)

3. "Geometric measure of entanglement for bipartite and multipartite quantum states,"
T.-C. Wei and P.M. Goldbart,
Phys. Rev. A 68, 042307 (2003)

2. "Ancilla-assisted quantum process tomography,"
J.B. Altepeter, D. Branning, E. Jeffrey, T.-C. Wei, P.G. Kwiat, R.T. Thew, J.L. O'Brien, M.A. Nielsen, and A.G. White,
Phys. Rev. Lett. 90, 193601 (2003)

1. "Maximal entanglement versus entropy for mixed quantum states,"
T.-C. Wei, K. Nemoto, P.M. Goldbart, P.G. Kwiat, W.J. Munro, and F. Verstraete,
Phys. Rev A 67, 022110 (2003)

----------------------------------------------------------------------------------------------------------------------------

arXiv only (not published):

1. "Measurement-based quantum computation--a quantum-meachanical toy model for spacetime?"
Robert Raussendorf, Pradeep Sarvepalli, Tzu-Chieh Wei, and P. Haghnegahdar,
arXiv:1108.5774

2. "Topological Geometric Entanglement of Blocks,"
Roman Orus and Tzu-Chieh Wei,
arXiv:1108.1537

Return to top


Conference proceedings and others

1. "Two-qubit mixed states and the entanglement-entropy frontier,"
T.-C. Wei, K. Nemoto, P.M. Goldbart, P.G. Kwiat, W.J. Munro, and F. Verstraete,
Proceedings of the 6th international conference on quantum communication, measurement and computing, July 22-26, 2002, p.37-40, ed. J.H. Shapiro and O. Hirota, Rinton Press, 2003

2. "Taming entanglement,"
P.G. Kwiat, J.B. Altepeter, D. Branning, E. Jeffrey, N. Peters, and T.-C. Wei,
Proceedings of the 6th international conference on quantum communication, measurement and computing, July 22-26, 2002, p.117-122, ed. J.H. Shapiro and O. Hirota, Rinton Press, 2003

3. "Quantum information with optics," (invited article)
T.-C. Wei,
Physics Bimonthly, vol. 25, p.555-564 (2003), published by the Physical Society of Republic of China, Taipei, Taiwan (written in Chinese; pdf file, doc file).

4.  "Generation of two-qubit polarization maximally entangled mixed states,"
N. A. Peters, J. Altepeter, D. Branning, P. Goldbart, E. Jeffrey, T. Wei, and P. Kwiat,
in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper QMK2.

5. "Benchmarking and procrustean noise reduction of entangled mixed states,"
Nicholas A. Peters, Tzu-Chieh Wei, Paul G. Kwiat, 
Proc. SPIE Vol. 5468, p. 269-281, Fluctuations and Noise in Photonics and Quantum Optics II; Ed. Peter Heszler, 2004

6. "Quantifying multipartite entanglement,"
Tzu-Chieh Wei et al.,
in the Proceedings of the Seventh International Conference on Quantum Communication, Measurement and Computing, p.241-244, Ed. S. M. Barnett, E. Andersson, J. Jeffers, P. Ohberg, and O. Hirota, 2004; AIP Conf. Proc. 734, 241 (2004)

7. "Arbitrary Remote State Preparation of Photon Polarization,"
N. A. Peters, J. T. Barreiro, M. E. Goggin, T. Wei, and P. G. Kwiat,
in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2005), paper QTuG6

8. Remote state preparation: arbitrary remote control of photon polarizations for quantum communication,” 
N. A. Peters
, J. T. Barreiro, M. E. Goggin, T.-C. Wei, and P. G. Kwiat
.
Proc. SPIE 5893, 589308 (2005)

9.  "Experimental Hyperentanglement-Assisted Bell-State Analysis,"
J. T. Barreiro, T. Wei, and P. G. Kwiat,
in International Conference on Quantum Information, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JWC29.

10. "SuperDense Teleportation using Hyperentangled Photons," Trent M. Graham, Herbert J. Bernstein, Tzu-Chieh Wei, and Paul Kwiat,
Proceedings of Quantum Information and Measurement 2014

11. "The Spin-2 AKLT State on the Square Lattice is Universal for Measurement-based Quantum Computation," Tzu-Chieh Wei and Robert Raussendorf, 10th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2015) pp. 48-63 (Ed by S. Beigi and R. Koenig).

Return to top
Theses
My PhD thesis (UIUC 2004) “Quantum entanglement: geometric quantification and applications to multi-partite states and quantum phase transitions”---can be downloaded here
My MSc. thesis (NTU 1996) “Glueball mass calculation”

Return to top